565 research outputs found

    Scheduling cross-docking operations under uncertainty: A stochastic genetic algorithm based on scenarios tree

    Get PDF
    A cross-docking terminal enables consolidating and sorting fast-moving products along supply chain networks and reduces warehousing costs and transportation efforts. The target efficiency of such logistic systems results from synchronizing the physical and information flows while scheduling receiving, shipping and handling operations. Within the tight time-windows imposed by fast-moving products (e.g., perishables), a deterministic schedule hardly adheres to real-world environments because of the uncertainty in trucks arrivals. In this paper, a stochastic MILP model formulates the minimization of penalty costs from exceeding the time-windows under uncertain truck arrivals. Penalty costs are affected by products' perishability or the expected customer’ service level. A validating numerical example shows how to solve (1) dock-assignment, (2) while prioritizing the unloading tasks, and (3) loaded trucks departures with a small instance. A tailored stochastic genetic algorithm able to explore the uncertain scenarios tree and optimize cross-docking operations is then introduced to solve scaled up instaces. The proposed genetic algorithm is tested on a real-world problem provided by a national delivery service network managing the truck-to-door assignment, the loading, unloading, and door-to-door handling operations of a fleet of 271 trucks within two working shifts. The obtained solution improves the deterministic schedule reducing the penalty costs of 60%. Such results underline the impact of unpredicted trucks’ delay and enable assessing the savings from increasing the number of doors at the cross-dock

    An Ant Colony Optimization for the Multi-Dock Truck Scheduling Problem with Cross-Docking

    Get PDF
    Cross-docking operation is a new distribution strategy for synchronizing inbound and outbound trucks at the terminal. Products move directly from inbound dock to shipping dock without being stored in the distribution center. In this paper, we consider the truck scheduling problem which simultaneously determines dock assignment and truck scheduling of both inbound and outbound trucks for a multi-door cross-docking operation. The objective is to minimize total holding cost at the cross-docking terminal. A mixed integer programming model is first formulated for the problem. Since both dock assignment and truck scheduling problems are NP-hard, this truck scheduling problem is more difficult to solve. Thus we propose an ant colony optimization (ACO) algorithm for the problem. To evaluate the proposed ACO, 24 instances are generated and tested. The computational results and comparison with Gurobi optimizer solutions show that the ACO is competitive

    Application of exact and multi-heuristic approaches to a sustainable closed loop supply chain network design

    Get PDF
    Closed-loop supply chains (CLSC) are gaining popularity due to their efficiency in addressing economic, environmental, and social concerns. An important point to ponder in the distribution of CLSC is that imperfect refrigeration and bad road conditions may result in product non-conformance during the transit and thus such products are to be returned to the supply node. This may hinder the level of customer satisfaction. This paper presents a sustainable closed-loop supply chain framework coupled with cross-docking subject to product non-conformance. A cost model is proposed to investigate the economic and environmental aspects of such systems. The transportation cost is analyzed in terms of total carbon emissions. A set of metaheuristics are administered to solve the model and a novel lower bound is proposed to relax the complexity of the proposed model. The results of different size problems are compared with the branch and bound approach and the proposed lower bound. The results indicate that the proposed research framework, mathe-matical model, and heuristic schemes can aid the decision-makers in a closed-loop supply chain context

    Multi-echelon distribution systems in city logistics

    Get PDF
    In the last decades , the increasing quality of services requested by the cust omer, yields to the necessity of optimizing the whole distribution process. This goal may be achieved through a smart exploitation of existing resources other than a clever planning of the whole distribution process. For doing that, it is necessary to enha nce goods consolidation. One of the most efficient way to implement it is to adopt Multi - Echelon distribution systems which are very common in City Logistic context, in which they allow to keep large trucks from the city center, with strong environmental a dvantages . The aim of the paper is to review routing problems arising in City Logistics , in which multi - e chelon distribution systems are involved: the Two Echelon Location Routing Problem ( 2E - LRP) , the Two Echelon Vehicle Routing Problem (2E - VRP) and Truck and Trailer Routing Problem (TTRP), and to discuss literature on optimization methods, both exact and heuristic, developed to address these problems

    Cross-docking: A systematic literature review

    Get PDF
    This paper identifies the major research concepts, techniques, and models covered in the cross-docking literature. A systematic literature review is conducted using the BibExcel bibliometric analysis and Gephi network analysis tools. A research focus parallelship network (RFPN) analysis and keyword co-occurrence network (KCON) analysis are used to identify the primary research themes. The RFPN results suggest that vehicle routing, inventory control, scheduling, warehousing, and distribution are most studied. Of the optimization and simulation techniques applied in cross-docking, linear and integer programming has received much attention. The paper informs researchers interested in investigating cross-docking through an integrated perspective of the research gaps in this domain. This paper systematically reviews the literature on cross-docking, identifies the major research areas, and provides a survey of the techniques and models adopted by researchers in the areas related to cross-docking

    Cross-Docking: A Proven LTL Technique to Help Suppliers Minimize Products\u27 Unit Costs Delivered to the Final Customers

    Get PDF
    This study aims at proposing a decision-support tool to reduce the total supply chain costs (TSCC) consisting of two separate and independent objective functions including total transportation costs (TTC) and total cross-docking operating cost (TCDC). The full-truckload (FT) transportation mode is assumed to handle supplier→customer product transportation; otherwise, a cross-docking terminal as an intermediate transshipment node is hired to handle the less-than-truckload (LTL) product transportation between the suppliers and customers. TTC model helps minimize the total transportation costs by maximization of the number of FT transportation and reduction of the total number of LTL. TCDC model tries to minimize total operating costs within a cross-docking terminal. Both sub-objective functions are formulated as binary mathematical programming models. The first objective function is a binary-linear programming model, and the second one is a binary-quadratic assignment problem (QAP) model. QAP is an NP-hard problem, and therefore, besides a complement enumeration method using ILOG CPLEX software, the Tabu search (TS) algorithm with four diversification methods is employed to solve larger size problems. The efficiency of the model is examined from two perspectives by comparing the output of two scenarios including; i.e., 1) when cross-docking is included in the supply chain and 2) when it is excluded. The first perspective is to compare the two scenarios’ outcomes from the total supply chain costs standpoint, and the second perspective is the comparison of the scenarios’ outcomes from the total supply chain costs standpoint. By addressing a numerical example, the results confirm that the present of cross-docking within a supply chain can significantly reduce total supply chain costs and total transportation costs

    The multi-vehicle dial-a-ride problem with interchange and perceived passenger travel times

    Get PDF
    The Dial-a-Ride Problem (DARP) introduced in the early 1980s is the NP-Hard optimization problem of developing the most cost-efficient vehicle schedules for a number of available vehicles that have to start from a depot, pick up and deliver a set of passengers, and return back to the same depot. DARP has been used in many modern applications, including the scheduling of demand-responsive transit and car pooling. This study departs from the original definition of DARP and it extends it by considering an interchange point where vehicles can exchange their picked-up passengers with other vehicles in order to shorten their delivery routes and reduce their running times. In addition to that, this study introduces the concept of generalized passenger travel times in the DARP formulation which translates the increased in-vehicle crowdedness to increased perceived passenger travel times. This addresses a key issue because the perceived in-vehicle travel times of passengers might increase when the vehicle becomes more crowded (i.e., passengers might feel that their travel time is higher when they are not able to find a seat or they are too close to each other increasing the risk of virus transmission or accidents). Given these considerations, this study introduces the Dial-a-Ride Problem with interchange and perceived travel times (DARPi) and models it as a nonlinear programming problem. DARPi is then reformulated to a MILP with the use of linearizations and its search space is tightened with the addition of valid inequalities that are employed when solving the problem to global optimality with Branch-and-Cut. For large problem instances, this study introduces a tabu search-based metaheuristic and performs experiments in benchmark instances used in past literature demonstrating the computation times and solution stability of our approach. The effect of the perceived passenger travel times to the vehicle running costs is also explored in extensive numerical experiments.</p
    • …
    corecore