17,301 research outputs found

    Feature selection for sky image classification based on self adaptive ant colony system algorithm

    Get PDF
    Statistical-based feature extraction has been typically used to purpose obtaining the important features from the sky image for cloud classification. These features come up with many kinds of noise, redundant and irrelevant features which can influence the classification accuracy and be time consuming. Thus, this paper proposed a new feature selection algorithm to distinguish significant features from the extracted features using an ant colony system (ACS). The informative features are extracted from the sky images using a Gaussian smoothness standard deviation, and then represented in a directed graph. In feature selection phase, the self-adaptive ACS (SAACS) algorithm has been improved by enhancing the exploration mechanism to select only the significant features. Support vector machine, kernel support vector machine, multilayer perceptron, random forest, k-nearest neighbor, and decision tree were used to evaluate the algorithms. Four datasets are used to test the proposed model: Kiel, Singapore whole-sky imaging categories, MGC Diagnostics Corporation, and greatest common divisor. The SAACS algorithm is compared with six bio-inspired benchmark feature selection algorithms. The SAACS algorithm achieved classification accuracy of 95.64% that is superior to all the benchmark feature selection algorithms. Additionally, the Friedman test and Mann-Whitney U test are employed to statistically evaluate the efficiency of the proposed algorithms

    The COST292 experimental framework for TRECVID 2007

    Get PDF
    In this paper, we give an overview of the four tasks submitted to TRECVID 2007 by COST292. In shot boundary (SB) detection task, four SB detectors have been developed and the results are merged using two merging algorithms. The framework developed for the high-level feature extraction task comprises four systems. The first system transforms a set of low-level descriptors into the semantic space using Latent Semantic Analysis and utilises neural networks for feature detection. The second system uses a Bayesian classifier trained with a “bag of subregions”. The third system uses a multi-modal classifier based on SVMs and several descriptors. The fourth system uses two image classifiers based on ant colony optimisation and particle swarm optimisation respectively. The system submitted to the search task is an interactive retrieval application combining retrieval functionalities in various modalities with a user interface supporting automatic and interactive search over all queries submitted. Finally, the rushes task submission is based on a video summarisation and browsing system comprising two different interest curve algorithms and three features

    Bi-Objective Nonnegative Matrix Factorization: Linear Versus Kernel-Based Models

    Full text link
    Nonnegative matrix factorization (NMF) is a powerful class of feature extraction techniques that has been successfully applied in many fields, namely in signal and image processing. Current NMF techniques have been limited to a single-objective problem in either its linear or nonlinear kernel-based formulation. In this paper, we propose to revisit the NMF as a multi-objective problem, in particular a bi-objective one, where the objective functions defined in both input and feature spaces are taken into account. By taking the advantage of the sum-weighted method from the literature of multi-objective optimization, the proposed bi-objective NMF determines a set of nondominated, Pareto optimal, solutions instead of a single optimal decomposition. Moreover, the corresponding Pareto front is studied and approximated. Experimental results on unmixing real hyperspectral images confirm the efficiency of the proposed bi-objective NMF compared with the state-of-the-art methods

    Understanding critical factors in gender recognition

    Get PDF
    Gender classification is a task of paramount importance in face recognition research, and it is potentially useful in a large set of applications. In this paper we investigate the gender classification problem by an extended empirical analysis on the Face Recognition Grand Challenge version 2.0 dataset (FRGC2.0). We propose challenging experimental protocols over the dimensions of FRGC2.0 – i.e., subject, face expression, race, controlled or uncontrolled environment. We evaluate our protocols with respect to several classification algorithms, and processing different types of features, like Gabor and LBP. Our results show that gender classification is independent from factors like the race of the subject, face expressions, and variations of controlled illumination conditions. We also report that Gabor features seem to be more robust than LBPs in the case of uncontrolled environment
    • …
    corecore