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Abstract

Gender classification is a task of paramount importance for face recognition
researchers, and it can be useful in a large set of applications. In this paper we
investigate the gender classification problem from a non-conventional perspective.
In particular, we are interested in understanding which factors critically affect
the accuracy of available technologies, better explaining differences between face
and gender recognition.

To this purpose we propose a novel challenging protocol over the dimensions
of the Face Recognition Grand Challenge version 2.0 database (FRGC2.0) and
we evaluate our protocol with respect to several classification algorithms, and
processing different types of features, like Gabor and LBP. Our results show that
gender classification is unexpectedly independent from factors like the race of
the subject, face expressions, and variations of illumination conditions.

1 Introduction

Gender classification is a well-established problem in the field of automatic face recog-
nition, and – as reported, e.g., in [15] – it is a task of paramount importance for face
recognition researchers. A successful gender classification can boost a large number of
advanced applications like search engines, surveillance systems and interfaces, and can
help to steer gender-specific services. In the scientific literature, e.g., in [10], gender
classification is often reported as one of the most challenging problems related to face
recognition. In the last two decades, the computer vision scientific community has pro-
posed several approaches. Starting from the seminal work of Golomb, Lawrence, and
Sejnowski [6], key contributions are due to Cottrell and Metcalfe [5] – who proposed a
multi-layer neural network approach – and Brunelli and Poggio [3], who detailed in the
early 90s a system based on HyperBF networks. More recently, Moghaddam and his
co-authors [12] proposed a methodology based on Support Vector Machine (SVM) with
Radial Basis Function kernels. Mäkinen and Raisamo [11] surveyed several method-
ologies based on Multilayer Neural Network, SVM and Discrete AdaBoost. Lapedriza
and colleagues [9] investigated the usage of boosting classifiers, like AdaBoost and
JointBoosting. Finally, Shobeirinejad and Gao [17] presented a technique in which a
histogram intersection is used as a measure of similarity for classification.

Most of the contributions listed above, in particular recent ones, agree on a generic
processing scheme composed of a preliminary feature extraction step, followed by a
classification algorithm. This scheme proved to be effective in face recognition and the
extension to the gender recognition problem has been quite straightforward and equally
effective. In fact, these two steps are semantically very different: feature extraction has
to do with image signals which are considered relevant for the problem (for instance the
skin color could be extremely relevant for race detection) whilst classification has to do

This research has received funding from Autonomous Region of Sardinia (Italy), L.R. 07/08/2007,
n. 7, under grant agreement CP 2 442, “Adaptive Biometric Systems: Methodologies, Models, and
Algorithms”.

TR No. CVL -2012-001 University of Sassari



Understanding Critical Factors in Gender Recognition 4

with the optimal partition of the feature space, possibly taking into account existing
constraints.

In this paper we investigate the gender classification problem by an extended
empirical analysis on the Face Recognition Grand Challenge version 2.0 (FRGC2.0)
dataset [14]. To this extent, a first contribution concerns the proposal of a challeng-
ing experimental protocol for the gender recognition problem. Inspired by the above
feature extraction-classification dicothomy and from experiments detailed in [14], we
describe a procedure based on the exploitation of the dimensions offered by the data
collected in FRGC2.0 – i.e., subject, face expression, race, environmental conditions.
The proposed protocol is for general purpose, and it can be easily extended to other
datasets and to different features and classifiers.

Our second, and more relevant contribution, concerns the application of the pro-
posed protocol to a significant set of features and classifiers, proving that gender clas-
sification should be treated as a problem very different from face classification. In our
experiments, 1-Nearest-Neighbour [1], Aggregation Pheromone density based pattern
Classification (APC) [8], and Support Vector Machines [4], are used as classifiers. Fea-
ture extraction is based on Gabor features – see, e.g., [16] –, Local Binary Patterns
(LBP) [13] and raw pixel values with histogram equalization.

Noticeably external factors critically affecting the accuracy of face recognition
like race, expressions and environmental conditions, are in the case of gender almost
irrelevant. We also report interesting insights related to the feature extraction step.
Particularly, Gabor features turn to be an effective choice in uncontrolled environment,
while, in the case of controlled environment raw pixel values perform equally well.

The paper is structured as follows. In Section 2 we introduce the notation used and
we give a brief description of the FRGC2.0 dataset. We also briefly introduce both
the classification algorithms and the feature extraction methods herewith employed.
In Section 3 we describe our experimental setup, detailing the experimental protocol.
Section 4 shows the results of the experimental protocol applied to a selected set of
features and classifiers. Finally, in Section 5 conclusions are drawn.

2 Data, Algorithms, and Features

2.1 The FRGC2.0 dataset

Our empirical evaluation is based on 2D images comprised in the Face Recognition
Grand Challenge dataset, version 2.0. The dataset is composed of more than 50,000
images, see Figure 1 for some samples. As reported in [14], the dataset is composed of
both a training and a validation set, denoted in the following as Γ and Σ, respectively.

We model both Γ and Σ as sets composed of the total amount of the subjects
(males and females) involved in the images collections. Therefore, we can look at the
FRGC2.0 training set as a set Γ = {γ

1
, . . . , γ

n
}, with n = 291 (the total amount of

involved subjects), in which each γ
j

denotes the pool of images related to the subject

j. Each image γjk ⊂ γ
j

is characterized by a tuple of three elements < C,E,R >,

where:
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Figure 1: Images samples from the FRGC2.0 database. Neutral, smiling and different
light conditions images from the same person are depicted in the first row. In the
second row, they are depicted images related to the different races, namely Asian,
Asian Middle Eastern, Asian Southern, Black or African American, Hispanic, and
White.

• C = {c2l, c3l, u} denotes the types of control, i.e., controlled images with two or
three studio lights (c2l and c3l, respectively), and uncontrolled images (denoted
as u).

• E = {BlankStare,Happiness} denotes the facial expressions in the dataset im-
ages, i.e., neutral and smiling, respectively.

• R = {A,AME,AS,BAA,H,U,W} denotes the race of the subject, where, fol-
lowing the categorization of FRGC2.0, A stands for “Asian”, AME for “Asian
Middle Eastern”, AS for “Asian-Southern”, BAA for “Black or African Ameri-
can”, H for “Hispanic”, while U stands for “Unknown”, and, finally, W denotes
“White” race.

The same is done for the test set Σ = {σ1, . . . , σn}, with n = 466.

2.2 Algorithms

In this work, we model the gender classification problem as a binary pattern classi-
fication one. In binary classification problems, a set of patterns is given, i.e., input
vectors X = {x1, . . . xk} with xi ∈ Rn, and a corresponding set of labels, i.e., output
values Y ∈ {0, 1} – in our case, male and female. We think the labels as generated
by some unknown function f : Rn → {0, 1} applied to the patterns, i.e., f(xi) = yi
for i ∈ {1, . . . , k} and yi ∈ {0, 1}. The task of a binary classifier c is to extrapolate f
given X and Y, i.e., construct c from X and Y so that when given some x? ∈ X, c(x?)
will equal f(x?); such task can be achieved training an inductive model of c.

In the following, we briefly review the classifiers that we use in our empirical anal-
ysis.

• 1-nearest-neighbor (1-NN): It is a classifier yielding the label of the training
instance which is closer to the given test instance, whereby closeness is evalu-
ated using some proximity measure, e.g. Euclidean distance; we use the method
described in [1] to store the training instances for fast look-up.
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• Aggregation Pheromone density based pattern Classification (APC): It
is a pattern classification algorithm modeled on the ants colony behaviour and
distributed adaptive organization in nature. Each data pattern is considered as
an ant, and the training patterns (ants) form several groups or colonies depending
on the number of classes present in the data set. A new test pattern (ant) will
move along the direction where average aggregation pheromone density (at the
location of the new ant) formed due to each colony of ants is higher and hence
eventually it will join that colony. The reader is referred to [8] for further details.

• Support Vector Machine (SVM): It is a supervised learning algorithm used
for both classification and regression tasks. Roughly speaking, the basic training
principle of SVMs is finding an optimal linear hyperplane such that the expected
classification error for (unseen) test patterns is minimized. The reader is referred
to [4] for further details.

2.3 Features

We compute different input vectors X of both Γ and Σ using the raw values of the
pixels and extracting Gabor and LBP features.

As a basic feature we use the raw pixel values (PV in the following) of the im-
age converting the image matrix in a mono-dimensional vector. To compensate for
illumination changes, histogram equalization is first applied; in order to reduce the
dimension, images are therefore scaled to 64x64 pixels.

Concerning the Gabor features, first image dimension is scaled with respect to the
position of the eyes. Next, a bank of Gabor filters with 5 scales and 8 orientations is
applied to the preprocessed image on the 64 nodes of a uniform 8 × 8 grid superimposed
to the image, obtaining – for each preprocessed image – a feature vector composed of
2560 elements. In order to do that, we used a piece of software built on top of the
Feature Extraction Library (FELib) [18].

Concerning the Local Binary Pattern operator (LBP), it was originally designed for
texture description but recently it has been successfully applied to face description and
gender classification. The original LBP operator assigns a label to every pixel of an
image by thresholding the 3x3 neighborhood of each pixel with the center pixel value
and converting the result in a binary number. In order to describe the textures at
different scales, the LBP operator has been extended to use neighborhoods at different
distances from the considered pixel. The operator was denoted as LBPP,R, where P is
the number of sampling points on a circle of radius R. An interesting extension of LBP
takes in account the bitwise transitions of the obtained binary pattern [13]. According
with the results obtained by Ahonen et al. in [2] the LBP u2

8,2 operator was selected in
order to obtain a good trade-off between description performance and feature vector
length. The considered image is divided in a 7x7 windows and the LBP u2

8,2 is applied
to each window. The histograms are computed independently within each window and
then they are concatenated. The resulting histogram has size m x n where m is the
number of windows (49 in this case) and n is the length of a single LBP u2

8,2 histogram
(10 in this case) so the total histogram size is 490.
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# F M
Γt 1027 42.65% 57.35%
Σv 1292 43.19% 56.61%
Σa 1262 45.01% 54.99%
Σb 1958 50.56% 49.45%
Σc 1958 50.56% 49.45%

Table 1: Synopsis of training, validation and test sets. The table is structured as
follows. The first column shows the name of set (in the case of test sets, we report
groups only), and it is followed by three columns. The first column (“#”) reports the
total amount of images in the set, while the remaining two (“F” and “M”) report the
percentage of the images in the set, labeled as female and male, respectively.

3 Experimental Setup

Aim of this section is to develop an experimental protocol useful to analyze the sensi-
tiveness of classification algorithms with respect to several image characteristics – i.e.,
expression and race of the subject, illumination variations – in the gender classification
problem.

In order to do that, the FRGC2.0 dataset was used in our experiments. Considering
2D images, it is composed of about 40,000 images related to 466 subjects of different
races. Images were taken at different illumination conditions, and subjects had different
expressions. Considering the total amount of images, 43.93% depicts female subjects,
while the remaining depicts male subjects.

In order to accomplish our goals, our target is to compute classification models
trained on data having specific values of C, E, and R. To do that, we train the
algorithms described in Section 2.2 selecting controlled images – two studio lights
– related to “White” subjects (the most recurrent in the FRGC2.0) having a neutral
expression. In other words, we train the classifiers on a set Γt in which, for each subject
j, |γj| is equal to the total amount of images γjk ⊂ γj such that (C = c2l) ∧ (E =

BlankStare) ∧ (R = W ).
In machine learning literature, it is well-established that classifiers performance

could vary with respect to different parameter tunings. In order to have a fair compar-
ison among classifiers, we proceed as follows. First, we split the FRGC2.0 validation
set Σ in two parts. The first one is composed of the images related to the 291 subjects
also occurring in Γ. This partition – Σv in the following – is used for parameter tuning
purpose. We compute Σv with the same criteria of Γ:

Σv : for each subject j, σjk ⊂ σj such that (C = c2l) ∧ (E = BlankStare) ∧ (R = W )

Concerning the test set, we consider the partition of Σ composed of the images
related to the 175 subjects not occurring in Γ. We compute 9 different test sets that
can be organized in 3 groups:

• Σa: for each subject j, ∀σjk ⊂ σj ∈ Σ such that γj 6∈ Γ and (E = BlankStare)∧
(R = W ). The rational of such group is to have the same facial expression and
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Classifier PV Gabor LBP
Acc. Par. Acc. Par. Acc. Par.

1-NN 97.54% – 98.99% – 96.59% –
APC 95.90% δ = 2 99.07% δ = 0.1 94.27% δ = 50
SVM 98.80% c = 2, g = 0 99.46% c = 2, g = 2 97.29% c = 16, g = 2e-06

Table 2: Parameter optimization for the considered algorithms. The table is organized
as follows. The first column shows the name of the algorithms, and it is followed
by three groups of columns, reporting the results of the optimization considering PV,
Gabor and LBP features. Each group of columns is composed of two subcolumns,
reporting the accuracy (column “Acc.”) of the computed model, and the related pa-
rameters (column “Par.”).

race of the training set, in order to have a baseline for our comparisons. This
group is composed of three test sets, i.e., Σa,c2l, Σa,c3l, Σa,u, representing test sets
in which σjk has a value of C equal to c2l, c3l, and u, respectively.

• Σb: for each subject j, ∀σjk ⊂ σj ∈ Σ such that γj 6∈ Γ and (E = BlankStare).
In this group are involved images that are not constrained to a particular value
of R. The rational of such group is to compare the accuracy of the classifiers
with respect to the race of the involved subjects. Also this group if composed of
three test sets, i.e., Σb,c2l, Σb,c3l, Σb,u.

• Σc: for each subject j, ∀σjk ⊂ σj ∈ Σ such that γj 6∈ Γ and (E = Happiness).
The rational of such group is to compare the accuracy of the classifiers with
respect to a different face expression. Also this group is not constrained by a
particular value of R. It is composed of three test sets: Σc,c2l, Σc,c3l, Σc,u.

Cardinalities and label distributions of the sets are reported in Table 1.

4 Empirical Results

Aim of our first experiment is to train gender classification model with 1-NN, APC,
and SVM. In order to do that, we perform a parameter grid search involving both APC
and SVM, and we proceed as follows:

• Concerning APC, we explore the parameter δ related to the pheromone intensity
of described in [8].

• Concerning SVM, we consider a C-SVC with a Radial Basis Function (RBF)
kernel. In particular, we explore the parameter space related to both cost c and
the parameter g of the kernel RBF.

We test the obtained models on Σv, and the results of these experiments related to
the best configuration found – in terms of accuracy – are depicted in Table 2. For all
the experiments in the following, when we refer to APC and SVM, we will intend that
such algorithms are tuned by using the parameters shown in Table 2.
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Test set 1-NN APC SVM
Σa,c2l 83.60% 84.86% 95.80%
Σa,c3l 81.70% 84.15% 95.01%
Σa,u 64.10% 67.99% 76.39%

Σb,c2l 81.31% 82.38% 91.37%
Σb,c3l 81.10% 82.69% 91.78%
Σb,u 63.89% 66.70% 75.49%

Σc,c2l 80.03% 80.54% 88.07%
Σc,c3l 81.00% 81.15% 89.07%
Σc,u 65.83% 68.08% 78.19%

Table 3: Evaluation results using PV features. The table is composed of four columns.
The first one (“Test set”) denotes the test set on which classifiers has been evaluated.
The three following columns report the accuracy performance (in percentage) related
to 1-NN, APC, and SVM (columns “1-NN”, “APC”, and “SVM”, respectively).

In our next experiment, we evaluate the performance of 1-NN, APC, and SVM
trained on Γt using PV feature, and tested on the test sets described in Section 3.
Table 3 shows the results of such experiment.

Looking at the table, we can see that SVM outperforms the other classifiers, re-
porting an accuracy greater than 90% on all test sets having C = c2l and C = c3l in
both groups Σa and Σb. SVM is also the most performing classifier for C = u. Looking
at the table in detail, concerning Σa,c2l, we can see that SVM accuracy is more than
10% greater than both 1-NN and APC accuracies. We can consider the results related
to Σa,c2l as a reference for the experiments in the following, because it is composed of
images having the same value of C, E, and R used to compute Γt. Considering now
the results related to Σa,c3l, we report that the accuracy of all classifiers is very close
to the one reported for Σa,c2l. As a consequence, we can conjecture that all considered
classifiers are robust with respect to controlled illumination variations. Looking now
at the results in uncontrolled environment – Σa,u –, we report a leak of classifiers per-
formance. SVM is yet the best classifier, but its accuracy is about 20% less than the
one reported for both Σa,c2l and Σa,c3l.

Considering now the results related to Σb group, we can see the same pattern
described for Σa: SVM outperforms the other classifiers, and there is a lack of per-
formance for C = u. Also the accuracy results for all classifiers are very close to the
ones reported for Σa. However, as discussed in Section 3, images comprised in such
test sets are not constrained from a particular value of R. As a consequence, we can
conjecture that classifiers performance are not affected by this element. We can reach
analogous conclusions looking at the results related to the group Σc, in which also E
is not constrained.

Considering now Gabor features, we report the results of our experiment in Table 4.
Looking at the table, we can see that also in this case SVM outperforms the other
classifiers, reaching an accuracy greater than 90% on all test sets having C = c2l and
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Test set 1-NN APC SVM
Σa,c2l 82.88% 86.53% 91.92%
Σa,c3l 83.44% 87.48% 92.95%
Σa,u 64.66% 68.70% 78.68%

Σb,c2l 83.20% 86.57% 90.60%
Σb,c3l 83.71% 87.13% 91.62%
Σb,u 65.37% 68.18% 77.99%

Σc,c2l 74.44% 80.75% 90.14%
Σc,c3l 74.11% 81.61% 90.81%
Σc,u 63.48% 64.86% 71.12%

Table 4: Evaluation results using Gabor features. The table is organized as Table 4.

Test set 1-NN APC SVM
Σa,c2l 79.63% 81.93% 90.89%
Σa,c3l 81.30% 81.06% 91.36%
Σa,u 53.80% 51.34% 51.98%

Σb,c2l 82.79% 85.03% 91.73%
Σb,c3l 82.53% 83.76% 92.13%
Σb,u 49.08% 52.35% 54.44%

Σc,c2l 80.08% 81.97% 90.40%
Σc,c3l 77.43% 78.65% 89.32%
Σc,u 56.84% 54.70% 55.41%

Table 5: Evaluation results using LBP features. The table is organized as Table 3.

C = c3l. SVM is also the most performing classifier for C = u. Looking at the table in
detail, concerning Σa,c2l, we can see that SVM accuracy is more than 5% greater than
APC accuracy, and about 9% greater than 1-NN accuracy. Considering now the results
related to Σa,c3l, we report that the accuracy of all classifiers is very close to the one
reported for Σa,c2l. Looking now at the results in Σa,u, we report a leak of classifiers
performance also in this case. SVM is yet the better classifier, but its accuracy is
about 14% smaller than the one reported for both Σa,c2l and Σa,c2l. We also report
that performance of both 1-NN and APC decrease of about 20%. Considering now
the results related to Σb group, we can see the same pattern described for Σa: SVM
outperforms the other classifiers, and there is a lack of performance for C = u. Also
the accuracy results for all classifiers are very close to the ones reported for Σa.

Our last experiment is analogous to the previous one, with the noticeable difference
that we used LBP features instead of Gabor features. Table 5 shows the results of such
experiment.

Looking at the table, we can see that SVM is the best classifier – in terms of
accuracy – also in this case. Looking in detail the results related to Σa, Σb, and Σc, we
can also report the same pattern found using both PV and Gabor features. This fact
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confirm our conjecture that gender classification is independent from both values of
E and R, and also from controlled illumination variations. However, differently from
previous tables, LBP features are almost useless in the uncontrolled cases Σa,u, Σb,u,
and Σc,u.

5 Conclusions

The paper investigates the gender classification problem trying to understand which
factors critically affect the accuracy of available technologies. The proposed protocol
exploits the dimensions of FRGC2.0 database analyzing the sensitivity of a two-steps
feature extraction-classification approach with respect to three different classifiers and
three orthogonal types of features.

The results of our empirical analysis can be summarized as follows:

• Gender classification is independent from the race of the subjects. Our results
show that training an inductive model on a set of images composed of subject of
only one race, the accuracy of the classifiers is about the same if in the test set
we involve subjects of different races.

• Gender classification accuracy does not change in a noticeable way for controlled
changes of illumination. We showed that, training classifiers on FRGC2.0 con-
trolled images with two studio lights, and testing them on controlled images with
three studio lights, the accuracy result is almost the same of the test performed
on controlled images with two studio lights.

• Different face expressions do not influence in a noticeable way the gender classi-
fication accuracy applying SVM to Gabor and LBP features. This result is very
clear applying SVM to both Gabor and LBP features. A limited degradation is
reported for PV features, starting from a 96% results obtained for Σa,2cl. This
fact is probably related to iconic information content of PV features, while both
Gabor and LBP features are mainly related to the frequency image content.

As a final comment, our analysis confirms that race, expressions, and illumination
conditions are for gender recognition almost irrelevant. Obviously, relaxing constraints
concerning race and expression, the global accuracy of the recognition decreases. But
this behaviour is independent both from classifiers and features.

Concerning classifiers, we report that SVMs always outperform other classifiers.
Concerning features, our investigation confirms that Gabor features are an effective
choice in the case of uncontrolled environment. Moreover, our analysis show that also
trivial features as PV can be usefully adopted for gender classification.

As future work, we are planning to investigate additional dimensions of FRGC2.0,
e.g. age, and to extend our analysis to other datasets, including masking and face
occlusions. In addition, we plan to extend our analysis to additional feature repre-
sentation and state-of-the-art gender classification methods, and carefully consider the
statistical significance of the classifier results.
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