165 research outputs found

    A Review of Geophysical Modeling Based on Particle Swarm Optimization

    Get PDF
    This paper reviews the application of the algorithm particle swarm optimization (PSO) to perform stochastic inverse modeling of geophysical data. The main features of PSO are summarized, and the most important contributions in several geophysical felds are analyzed. The aim is to indicate the fundamental steps of the evolution of PSO methodologies that have been adopted to model the Earth’s subsurface and then to undertake a critical evaluation of their benefts and limitations. Original works have been selected from the existing geophysical literature to illustrate successful PSO applied to the interpretation of electromagnetic (magnetotelluric and time-domain) data, gravimetric and magnetic data, self-potential, direct current and seismic data. These case studies are critically described and compared. In addition, joint optimization of multiple geophysical data sets by means of multi-objective PSO is presented to highlight the advantage of using a single solver that deploys Pareto optimality to handle diferent data sets without conficting solutions. Finally, we propose best practices for the implementation of a customized algorithm from scratch to perform stochastic inverse modeling of any kind of geophysical data sets for the beneft of PSO practitioners or inexperienced researchers

    Advanced Applications for Underwater Acoustic Modeling

    Get PDF

    Multi-user detection for multi-carrier communication systems

    Get PDF
    Doctor of PhilosophyDepartment of Electrical and Computer EngineeringBalasubramaniam NatarajanWireless broadband communications is a rapidly growing industry. New enabling technologies such as multi-carrier code division multiple access (MC-CDMA) are shaping the future of wireless systems. However, research efforts in improving MC-CDMA receiver performance have received limited attention and there is a need for innovative receiver designs for next generation MC-CDMA. In this thesis, we propose novel multi-user detection (MUD) schemes to enhance the performance of both synchronous and asynchronous MC-CDMA. First, we adapt the ant colony optimization (ACO) approach to solve the optimal MUD problem in MC-CDMA systems. Our simulations indicate that the ACO based MUD converges to the optimal BER performance in relatively few iterations providing more that 95% savings in computational complexity. Second, we propose a new MUD structure specifically for asynchronous MC-CDMA. Previously proposed MUDs for asynchronous MC-CDMA perform the detection for one user (desired user) at a time, mandating multiple runs of the algorithm to detect all users' symbols. In this thesis, for the first time we present a MUD structure that detects all users' symbols simultaneously in one run by extending the receiver's integration window to capture the energy scattered in two consecutive symbol durations. We derive the optimal, decorrelator and minimum mean square error (MMSE) MUD for the extended window case. Our simulations demonstrate that the proposed MUD structures not only perform similar to a MUD that detects one user at a time, but its computational complexity is significantly lower. Finally, we extend the MUD ideas to multicarrier implementation of single carrier systems. Specifically, we employ the novel MUD structure as a multi-symbol detection scheme in CI-CDMA and illustrate the resulting performance gain via simulations

    Modelling scattering of electromagnetic waves in layered media: An up-to-date perspective

    Get PDF
    This paper addresses the subject of electromagnetic wave scattering in layered media, thus covering the recent progress achieved with different approaches. Existing theories and models are analyzed, classified, and summarized on the basis of their characteristics. Emphasis is placed on both theoretical and practical application. Finally, patterns and trends in the current literature are identified and critically discussed

    An Equivalent Point-Source Stochastic Model of the NGA-East Ground-Motion Models and a Seismological Method for Estimating the Long-Period Transition Period TL

    Get PDF
    This dissertation deals with the stochastic simulation of the Next Generation Attenuation- East (NGA-East) ground-motion models and a proposing a new method of calculating the long-period transition period parameter, TL, in the seismic building codes. The work of this dissertation is carried out in two related studies. In the first study, a set of correlated and consistent seismological parameters are estimated in the in Central and Eastern United States (CEUS) by inverting the median 5%-damped spectral acceleration (PSA) predicted from the Next Generation Attenuation-East (NGA-East) ground-motion models (GMMs). These seismological parameters together form a point-source stochastic GMM. Magnitude-specific inversions are performed for moment magnitude ranges Mw 4.0-8.0, rupture distances Rrup = 1-1000 km and periods T = 0.01-10s, and National Earthquake Hazard Reduction Program site class A conditions. In the second study, the long-period transition period parameter TL is investigated, and an alternate seismological approach is used to calculate it. The long-period transition period parameter is utilized in the determination of the design spectral acceleration of long-period structures. The estimation of TL has remained unchanged since its original introduction FEMA 450-1/2003; The calculation is loosely based on a correlation between modal magnitude Mw and TL that does not account for different seismological parameters in different regions of the country. This study will calculate TL based on the definition of corner period, and will include two seismological parameters, the stress parameters Δσ and crustal velocity in the source region β, in its estimation. The results yield a generally more conservative (or longer) estimation of TL than the estimation that is currently used in engineering design standards

    Air Force Institute of Technology Research Report 2007

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, Mathematics, Statistics and Engineering Physics

    Optimización del diseño estructural de pavimentos asfálticos para calles y carreteras

    Get PDF
    gráficos, tablasThe construction of asphalt pavements in streets and highways is an activity that requires optimizing the consumption of significant economic and natural resources. Pavement design optimization meets contradictory objectives according to the availability of resources and users’ needs. This dissertation explores the application of metaheuristics to optimize the design of asphalt pavements using an incremental design based on the prediction of damage and vehicle operating costs (VOC). The costs are proportional to energy and resource consumption and polluting emissions. The evolution of asphalt pavement design and metaheuristic optimization techniques on this topic were reviewed. Four computer programs were developed: (1) UNLEA, a program for the structural analysis of multilayer systems. (2) PSO-UNLEA, a program that uses particle swarm optimization metaheuristic (PSO) for the backcalculation of pavement moduli. (3) UNPAVE, an incremental pavement design program based on the equations of the North American MEPDG and includes the computation of vehicle operating costs based on IRI. (4) PSO-PAVE, a PSO program to search for thicknesses that optimize the design considering construction and vehicle operating costs. The case studies show that the backcalculation and structural design of pavements can be optimized by PSO considering restrictions in the thickness and the selection of materials. Future developments should reduce the computational cost and calibrate the pavement performance and VOC models. (Texto tomado de la fuente)La construcción de pavimentos asfálticos en calles y carreteras es una actividad que requiere la optimización del consumo de cuantiosos recursos económicos y naturales. La optimización del diseño de pavimentos atiende objetivos contradictorios de acuerdo con la disponibilidad de recursos y las necesidades de los usuarios. Este trabajo explora el empleo de metaheurísticas para optimizar el diseño de pavimentos asfálticos empleando el diseño incremental basado en la predicción del deterioro y los costos de operación vehicular (COV). Los costos son proporcionales al consumo energético y de recursos y las emisiones contaminantes. Se revisó la evolución del diseño de pavimentos asfálticos y el desarrollo de técnicas metaheurísticas de optimización en este tema. Se desarrollaron cuatro programas de computador: (1) UNLEA, programa para el análisis estructural de sistemas multicapa. (2) PSO-UNLEA, programa que emplea la metaheurística de optimización con enjambre de partículas (PSO) para el cálculo inverso de módulos de pavimentos. (3) UNPAVE, programa de diseño incremental de pavimentos basado en las ecuaciones de la MEPDG norteamericana, y el cálculo de costos de construcción y operación vehicular basados en el IRI. (4) PSO-PAVE, programa que emplea la PSO en la búsqueda de espesores que permitan optimizar el diseño considerando los costos de construcción y de operación vehicular. Los estudios de caso muestran que el cálculo inverso y el diseño estructural de pavimentos pueden optimizarse mediante PSO considerando restricciones en los espesores y la selección de materiales. Los desarrollos futuros deben enfocarse en reducir el costo computacional y calibrar los modelos de deterioro y COV.DoctoradoDoctor en Ingeniería - Ingeniería AutomáticaDiseño incremental de pavimentosEléctrica, Electrónica, Automatización Y Telecomunicacione

    Parameter Identification with Unknown Input and Incomplete Measurements

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Técnicas alternativas para amplificação de Raman em telecomunicações

    Get PDF
    Doutoramento em FísicaO presente trabalho centra-se no estudo dos amplificadores de Raman em fibra ótica e suas aplicações em sistemas modernos de comunicações óticas. Abordaram-se tópicos específicos como a simulação espacial do amplificador de Raman, a equalização e alargamento do ganho, o uso de abordagens híbridas de amplificação através da associação de amplificadores de Raman em fibra ótica com amplificadores de fibra dopada com Érbio (EDFA) e os efeitos transitórios no ganho dos amplificadores. As actividades realizadas basearam-se em modelos teóricos, sendo os resultados validados experimentalmente. De entre as contribuições mais importantes desta tese, destaca-se (i) o desenvolvimento de um simulador eficiente para amplificadores de Raman que suporta arquitecturas de bombeamento contraprogantes e bidirecionais num contexto com multiplexagem no comprimento de onda (WDM); (ii) a implementação de um algoritmo de alocação de sinais de bombeamento usando a combinação do algoritmo genético com o método de Nelder- Mead; (iii) a apreciação de soluções de amplificação híbridas por associação dos amplificadores de Raman com EDFA em cenários de redes óticas passivas, nomeadamente WDM/TDM-PON com extensão a região espectral C+L; e (iv) a avaliação e caracterização de fenómenos transitórios em amplificadores para tráfego em rajadas/pacotes óticos e consequente desenvolvimento de soluções de mitigação baseadas em técnicas de clamping ótico.The present work is based on Raman Fiber Amplifiers and their applications in modern fiber communication systems. Specific topics were approached, namely the spatial simulation of Raman fiber amplifiers, the gain enlargement and equalization the use of hybrid amplification approaches by association of Raman amplifiers with Erbium doped fiber amplifiers (EDFA) and the transient effect on optical amplifiers gain. The work is based on theoretical models, being the obtained results validated experimentally. Among the main contributions, we remark: (i) the development of an efficient simulator for Raman fiber amplifiers that supports backward and bidirectional pumping architectures in a wavelength division multiplexing (WDM) context; (ii) the implementation of an algorithm to obtain enlargement and equalization of gain by allocation of pumps based on the association of the genetic algorithm with the Nelder-Mead method; (iii) the assessment of hybrid amplification solutions using Raman amplifiers and EDFA in the context of passive optical networks, namely WDM/TDM-PON with extension the C+L spectral bands; (iv) the assessment and characterization of transient effects on optical amplifiers with bursty/packeted traffic and the development of mitigation solutions based on optical clamping

    Advanced raman amplification techniques for high capacity and broadband coherent optical transmission systems

    Get PDF
    This thesis presents a detailed study of different advanced Raman fibre laser (RFL) based amplification schemes and the development of novel broadband distributed and discrete Raman amplifiers in order to improve the transmission performance of modern high capacity, long-haul coherent optical systems. The numerical modelling of different Raman amplifier techniques including power distribution of signal, pump and noise components, RIN transfer from pump to signal, broadband gain optimization and so on have been described in details.The RIN and noise performances of RFL based distributed Raman amplifiers (DRAs) with different span lengths, forward pump powers and input reflection levels have been characterized experimentally. It has been shown through coherent transmission experiment that, in order to improve pump power efficiency, a low level of input reflection up to ~10% can be allowed without increasing the Q factor penalty > 1dB due to additional signal RIN penalty.A novel broadband (>10nm) first order Raman pump is developed for use as a forward pump in long-haul transmission experiment. Significant signal RIN mitigation up to 10dB compared with conventional low RIN, narrowband sources was obtained for bidirectional DRA schemes. Long-haul coherent transmission experiments with 10×120Gb/s DP-QPSK system were carried out in are circulating loop setup using the proposed broadband pump in bidirectional and backward only pumping configurations. The maximum transmission reach up to ~8330km was reported with first order broadband pumped bidirectional DRA, with transmission reach extensions of 1250km and1667km compared with conventional backward only and first order semiconductor pumped bidirectional pumping scheme respectively.Finally, a novel design of bidirectional broadband distributed DRA is proposed to reduce the noise figure tilt and improve the WDM transmission performances. Furthermore, broadband discrete Raman amplifier schemes in dual stage configuration are also shown for high gain, high output power, low noise and low nonlinear performance
    corecore