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Summary 

Continuous monitoring and early damage detection of engineering structures are of 

practical importance since failures of structures may cause great casualties and 

property loss. The ‘health’ status of a structure can be evaluated with the values of 

key parameters determined by structural identification based on observed structural 

response. Nevertheless, difficulty in numerical convergence poses a great challenge 

to identify a large and complex structural system globally due to considerable 

number of unknown parameters and degrees of freedom (DOFs) involved. To this 

end, substructural identification strategy based on the concept of ‘divide and 

conquer’ provides a novel way to improve numerical convergence due to largely 

reduced number of unknowns and DOFs. 

Although the idea of substructural identification is not new and seems 

straightforward, the main challenge lies in acquiring complete dynamic 

measurements at interface, as input to the substructure of concern. Since it is 

difficult or expensive to obtain complete interface measurements, particularly for 

beam and plate substructures involving angular accelerations, a recovery method is 

developed in this study to compute angular accelerations via measurements of 

strains and translational accelerations. Incorporating this recovery method, an 

improved genetic algorithm (GA) based on a search space reduction method 

(SSRM) is employed to identify unknown substructural parameters. Numerical 
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studies of parameter identification on beam and plate substructures are conducted to 

validate the effectiveness of the proposed identification strategy.  

The difficulty in excitation measurement poses another great challenge in many 

identification methods for structural or substructural systems. To address this issue, 

an iterative identification algorithm, involving the use of Tikhonov regularization 

method and SSRM, is proposed to identify structural parameters without excitation 

measurements. In each iteration of the strategy, Tikhonov regularization method is 

adopted to identify the unmeasured excitation forces in state space while structural 

or substructural parameters are updated with the identification results from SSRM. 

Numerical studies for global structural identification as well as substructural 

identification without measurement of excitation forces on a beam and a plate 

demonstrate the performance of the proposed strategy. Its effectiveness is further 

verified by an experimental study on a 10-storey frame in laboratory.  

Finally, an iterative strategy is developed for substructural identification to address 

the simultaneous absence of complete interface measurements and excitation forces. 

The strategy is successfully tested for parameter identification of beam and plate 

substructures with limited interface measurements and unmeasured excitations. 

Experimental studies conducted on a 10-storey frame and a small-scale jack-up 

model further verify the effectiveness of the proposed strategy. 
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Chapter 1. Introduction 

During the last few decades, health monitoring and damage identification of 

engineering systems during their service life has attracted increasing attention in the 

fields of mechanical, aeronautical and civil engineering. Continuous health 

monitoring and early damage detection on the existing and ageing infrastructure is 

of significant importance since sudden failure of structures causes great casualties 

and property loss. Therefore, it is necessary to conduct health monitoring and 

damage assessment for in-service structures to ensure safe operation.   

In early years, visual inspection has been widely applied for structural health 

monitoring and damage detection. However, it has some inherent drawbacks. It is 

difficult to inspect large and complex structures due to the inaccessibility of many 

parts. Moreover, most damage, initiating from the inside of structural components, 

cannot be detected by naked eyes. Furthermore, structural condition assessment by 

visual inspection is largely based on subjective criteria. In addition, the visual 

inspection procedure can be very tedious and time consuming. To complement 

visual inspection, local non-destructive evaluation (NDE) techniques have been 

developed. In general, local NDE is based on experimental methods, such as 

acoustic or ultrasound methods, magnetic field methods, radiography, eddy-current 

methods and thermal field methods (Doebling et al., 1996). These methods usually 

require location of possible structural damage to be known as a priori (Zou et al., 

2000). Furthermore, service is often interrupted when such monitoring is conducted. 
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In addition, local NDE is more suitable for individual structural components instead 

of large and complex structures.  

Due to the limitations of visual inspection and local NDE, vibration-based NDE has 

been proposed as a global identification technique based on the idea that the 

measured structural vibration responses reflect its dynamic characteristics (Farrar et 

al., 2001). From mathematical point of view, vibration-based NDE is an inverse 

problem with the aim of identifying unknown structural parameters from measured 

vibration data. System identification is extensively employed to solve this inverse 

problem. When system identification is applied to a structural system with the aim 

of determining its physical parameters (mass, stiffness and damping), based on 

measured input (excitation) and output (structural response), it is generally known as 

structural identification. By employing structural identification methods, continuous 

health monitoring and damage detection of a structure system with constant dynamic 

measurements are possible. Damage inside a structure, which adversely affects 

current or future performance of that structure system, is generally assumed to cause 

decrease in structural stiffness. By recording and comparing the identified stiffness, 

the damage inside a structure can be located and quantified.  

In recent years, rapid advances of technology in many areas have facilitated 

development of structural identification. For instance, exponential increase in 

computer capacity and scientific computation speed has made system identification 

feasible for very large structures; Advances in sensor technology, PC-based data 

acquisition systems, wireless communication techniques and broadband data 

transmission have made real application of structural identification possible. With 
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primary results by structural identification, health status of structures can be 

evaluated and appropriate repair and maintenance work can be accordingly planned. 

1.1 Overview of structural identification methods 

There are many comprehensive reviews (Doebling et al., 1996, 1998; Farrar et al., 

2001; Sohn et al., 2004) on structural identification methods. During past two 

decades, significant progress has been achieved on modal-based methods using 

natural frequencies and their changes since frequencies can be cheaply acquired 

from measured vibration responses (Kim et al., 2003; Carden and Fanning, 2004; 

Fan and Qiao, 2011). The fundamental idea of modal-based methods is that damage-

induced changes in physical parameters (mass, damping, and stiffness) will cause 

detectable changes in modal parameters (natural frequencies, modal damping, and 

mode shapes). Nevertheless, the detected natural frequency changes alone may not 

be sufficient for a unique identification of structural damage since lower frequency 

modes are insensitive to small levels of local damage (Salawu, 1997). To address 

this issue, considerable research works were presented by using other supplementary 

modal measurements such as mode shape (Ratcliffe, 1997), mode shape curvature 

(Pandy et al., 1991; Wahab et al., 1999) and some combinations of frequency and 

mode shape information of structures, e.g. modal strain energy (Shi et al., 1999, 

2002), frequency response function (Wang et al., 1997; Hwang and Kim, 2004), 

frequency response function curvature (Sampaio et al., 1999), flexibility (Alvandi 

and Cremona, 2006) and flexibility curvature (Lu et al., 2002). From practical point 

of view, however, it is inconvenient to apply these methods for in-service structures 

since it is difficult to accurately extract modal parameters from vibration data 
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without excitation force measurements. Furthermore, the identification results of 

most modal-based methods largely depend on the accuracy of measurements, and 

they are normally insensitive to small damage in structures. In addition, the accuracy 

of identification results can be improved by incorporating measurements of higher 

modes, mode shape curvature etc., but these supplementary modal measurements are 

difficult to accurately acquire in practice. 

In the last decade, frequency and time domain methods have been extensively 

explored for structural parameter identification. Frequency domain methods often 

deal with measurements of structural frequency response function while time 

domain methods often directly handle measured structural vibration signals. These 

two groups of methods estimate parameters of the mathematical model describing 

the structure by minimizing the error between the predicted and observed output. 

The frequency and time domain methods only require limited vibration responses 

measurements in structures. Furthermore, since measurements of frequency response 

function and vibration signals contain global information of structures, these 

methods are in principle capable of identifying large and complex structures. In 

practice, since structural responses are directly measured by a variety of sensors, e.g. 

accelerometers, strain gauges etc., frequency domain methods have to convert the 

measured response data into the frequency domain by one of the Fourier methods 

(Caravani et al., 1997). Time domain methods are generally capable of capturing 

detailed information and adjusting the structure parameters so that the predicted 

output matches the time-evolving measurements as closely as possible (Koh and 

Shankar, 2003).  



 Chapter 1. Introduction 

5 

 

Structural identification methods can be categorized in other ways according to their 

characteristics and purposes, e.g. parametric and non-parametric models, 

deterministic and stochastic methods, classical and non-classical methods. In this 

research, structural identification methods will be reviewed firstly based on a 

classical and non-classical categorization, followed by discussion of structural 

identification without input and substructural identification methods. 

1.2 Classical identification methods 

Most classical methods have sound mathematical basis. Some typical classical 

methods are least-square method, maximum-likelihood technique and the extended 

Kalman filter. These three classic methods will be reviewed in the context of 

structural identification as follows. 

1.2.1 Least-square methods 

Least-square method is perhaps the first classical method applied for structural 

identification. It estimates the unknown parameters of structural systems by 

minimizing the sum of squared errors between the predicted and measured outputs. 

In the field of structural identification, the equation of motion for a structural system 

can be reformulated into an algebraic equation with unknown stiffness and damping 

coefficients to be determined by solving the algebraic equation with sufficient 

measurements. Since the idea and implementation of this method are quite simple 

and straightforward, it has been widely applied for structural identification and 

damage assessment. 
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Stiffness and damping coefficients of a three-DOF structure system was identified 

by use of least-square method (Agbabian et al., 1991). Least-square method was 

used to identify the fundamental parameters of a simple mathematical model for a 

mechanical subsystem of a large shaking table such as the effective mass, effective 

horizontal stiffness (Ozcelik et al., 2008). Classical least-square methods are able to 

identify constant parameters, but they are inapplicable to track time-varying system 

parameters. To address this issue, some improved least-square methods were further 

developed for complicated identification problems. A recursive least-square method 

with an updated least-square fit technique incorporated was employed to identify 

stiffness and damping parameters of a building subjected to dynamic excitations 

(Caravani et al., 1997). Their results show that the identified parameters converge to 

the accurate values with 5% noise contaminated dynamic measurements. Recursive 

least-square method was applied for damage assessment on a three-floor shaking 

table benchmark model experimentally (Chu and Lo, 2011). Furthermore, this 

method was employed in identifying time-varying modal properties of a real 

building in Taiwan. Their results show that global damage behaviour due to weak 

element or components failure can be revealed with the proposed recursive least-

square method. The location and extent of the structural damage in continua were 

correctly identified by using only a limited amount of measurements of incomplete 

modal data (Chen and Bicanic, 2000). A new adaptive tracking technique based on 

the least-square estimation approach (Yang and Lin, 2005) was proposed to identify 

the time-varying structural parameters. Their simulation results demonstrate that the 

proposed technique is capable of tracking the parametric change of structures 

induced by damages. Significant achievements have been made on applying the 
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least-square method to structural identification and damage detection, but the noise 

contaminated data and the requirements of sufficient measurements impair its 

performance and limit its applications in this field.  

1.2.2 Maximum-likelihood estimation 

In statistics, maximum-likelihood estimation is a well-known and widely applied 

approach to the problem of estimating parametric models by maximizing the 

probability of predicted and observed data. This probability refers to the likelihood 

function of the measurements. Since likelihood function is monotonically increasing, 

the parameters are determined by minimizing the logarithm of likelihood function 

for ease of manipulation. Compared with the least-squares method, maximum-

likelihood estimation is superior in determining parameters with non-liner model 

and non-normal data due to its advantages such as sufficiency, consistency, 

efficiency and parameterization invariance (Myung, 2003; Franklin, 2005). 

Mathematical formulation of back analysis for soil and rock parameters with field 

instrumentation data with a maximum-likelihood framework was presented 

(Ledesma et al., 1996) and the formulation was applied to identify parameters in a 

tunnel excavation problem (Gens et al., 1996). The maximum-likelihood method 

employed in identification procedure provided an estimation of the reliability of 

identified Young’s modulus of three layers and the ratio of horizontal to vertical in-

situ stress in the excavation zone. They also found that reasonable agreement has 

also been achieved between the stiffness values estimated from field measurement 

and those measured in laboratory. The frequency response functions for non-
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parametric identification of rotor-bearing systems with random or multi-sine 

excitation were estimated based on the maximum-likelihood estimator, considering 

noise in multiple-input and multiple-output (Peeters et al., 2001a). An identification 

procedure based on frequency response functions with maximum likelihood 

estimation method was developed to yield modal parameters with uncertainties 

(Peeters et al., 2001b) and was applied for an experimental rotor rig excited by 

random or multi-sin forces. Their results show that the modal parameters of the rotor 

rig can be accurately estimated. An automatic identification and tracking procedure 

based on a frequency domain maximum-likelihood estimator was proposed 

(Verboven et al., 2002) and applied for damage assessment in a slat track of an 

Airbus A320 commercial airplane (Parloo et al., 2002). Their results indicate that 

high accuracy and confident bounds for the estimated parameters are obtained by 

applying frequency-domain maximum-likelihood algorithm with noisy 

measurements. In maximum-likelihood estimation, a good initial guess of unknown 

parameters is very important, since the likelihood function is usually a nonlinear 

function of the parameters.  

1.2.3 Kalman filter methods 

The Kalman filter, firstly introduced by Kalman (1960), is an algorithm which 

operates recursively on streams of noisy input data to produce a statistically 

optimal estimation of the underlying system state by minimizing the mean-square 

error. A linear dynamic system can be modeled by a Markov chain discretely in time 

domain, and Kalman filter provides optimal estimation in each discrete time 

increment for the linear system subjected to Gaussian white noise disturbances. The 
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standard Kalman filter is inapplicable for non-linear systems due to its linear 

assumption. To further apply it to nonlinear dynamic systems, extended Kalman 

filter is proposed to avoid divergent estimation of the parameters and provide 

acceptable estimation results.  

The extended Kalman filter has been widely applied for nonlinear state estimation 

and parameter identification based on vibration measurements in civil engineering 

due to its advantages such as high efficiency and accuracy. The extended Kalman 

filter, incorporated with a weighted global iteration procedure in an objective 

function for stable and convergent estimation, was applied to system identification 

for multiple-DOF linear systems, bilinear hysteretic systems, and equivalent 

linearization of bilinear hysteretic systems (Hoshiya and Saito, 1984). Their 

proposed approach gives fairly satisfactory estimation for parameters of these 

systems. Later on, to obtain stable solutions and fast convergence to optima, 

extended Kalman filter weighted local iteration procedure was proposed and applied 

for parameter identification in a linear single-DOF model under various noise 

conditions (Hoshiya and Sutoh, 1992). 

An extended Kalman filter approach with an adaptive tracking technique 

incorporated was proposed to identify the structural parameters and their changes 

after damage events with vibration data (Yang et al., 2006). Their simulation results 

demonstrated that the proposed approach is applicable of, and effective in, tracking 

the changes of system parameters with measured vibration data for both linear and 

nonlinear structures. In addition, the proposed approach was further applied to 

identify the structural parameters with unknown inputs (Yang et al., 2007). Their 
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simulation results for linear and nonlinear structures demonstrate that the proposed 

approach is capable of identifying the structural parameters, parameters variations as 

well as unknown excitations. To produce better state estimation and parameter 

identification, an unscented Kalman filter approach was proposed and applied to 

structural identification for highly nonlinear systems (Wu and Smyth, 2007). Their 

numerical studies show that the unscented Kalman filter is more robust to noise 

contaminated measurements, applicable to non-differentiable function and highly 

computationally efficient. 

1.3 Non-classical identification methods 

Non-classical methods are based on some heuristic or meta-heuristic concepts (e.g. 

evolutionary principles) and often depend on computer power for the extensively 

and hopefully robust search. Generally, many non-classical methods support 

complex optimization with multi-objectives, uncertainty, nonlinearity, discontinuity 

or discreteness while many aforementioned classic methods are inapplicable for 

these complex optimization problems. Comprehensive surveys on meta-heuristic 

optimization methods were conducted (Blum and Roli, 2003; Rani and Moreira, 

2010). In this study, simulated annealing, tabu search, ant colony optimization, 

particle swarm optimization, neural networks and genetic algorithm are reviewed as 

the representatives for non-classical methods. 

1.3.1 Simulated annealing 

The simulated annealing strategy, initially introduced for optimization problems by 

Kirkpatrick et al. (1983), mimics the physical annealing procedure which involves 
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heating and controlled cooling of a material to increase its crystal size as well as 

reduce its defects. The thermal equilibrium at any given temperature can be finally 

reached through heating which causes the atoms to wander randomly to higher 

energy state from their initial positions as well as cooling which allows them to find 

states of lower internal energy. The optimization problem with simulated annealing 

is to find the global minimum of a complicated function of all atomic coordinates. A 

comprehensive review on convergence of the simulated annealing algorithm to an 

optimal solution was given by Lundy and Mees (1986). 

Kirkpatrick et al. (1983) applied the method for two combinatorial optimization 

problems: the travelling salesman problem and the layout of chips in circuit design. 

Furthermore, the simulated annealing strategy was also applied for other 

optimization problems, such as groundwater management optimization (Dougherty 

et al., 1991), optimization examination timetabling problem (Thompson et al., 1998), 

and optimal ship routing (Kosmas and Vlachos, 2012). In structural engineering, the 

simulated annealing method was intensively applied for optimization design of 

various structural systems. Amongst, the strategy was developed for discrete 

optimization of a three-dimensional 6-storey, unsymmetrical steel frames subjected 

to gravity and seismic loads (Balling, 1991). Furthermore, a 10-storey frame of two 

or eight variables was optimized with a simulated annealing algorithm incorporating 

sensitivity analysis and automatic reduction of the search range (Pantelides and Tzan, 

1997). In addition, a distributed simulated annealing algorithm was applied for 

optimal design of a 21-storey irregular steel braced frame subjected to multiple 

constraints including stress, maximum displacement, and inter-storey drift (Park and 

Sung, 2002). 
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Simulated annealing is also intensively applied in the field of structural 

identification and damage detection. Simulated annealing algorithm was employed 

to identify parameter structure in a one-dimensional groundwater flow model 

(Zheng and Wang, 1996). This approach was further extended to identify both the 

parameter structure and the parameter values. In addition, the technique of simulated 

annealing was applied to locate and quantify damages in a simulated test structure 

with experimental data obtained from cracked steel cantilever beams by minimizing 

the appropriate cost function in terms of the parameters (Ruotolo et al., 1997). An 

adaptive simulated annealing global optimization technique was developed to 

estimate the location and severity of damages in a simply supported reinforced 

concrete beam with experimental modal data from an I-40 Bridge (Bayissa and 

Haritos, 2007). 

Although simulated annealing algorithm is good at hill climbing for optimal 

solutions and widely applied for various optimization problems, its convergence 

speed is very slow (Jeong and Lee, 1996; Zhou and Yi, 2007). To improve the 

convergence speed, some hybrid optimization algorithms have been proposed. 

Adaptive simulated annealing genetic algorithm incorporating simulated annealing 

and genetic algorithm was proposed for system identification (Jeong and Lee, 1996). 

A hybrid algorithm combing an adaptive real-parameter genetic algorithm with 

simulated annealing was proposed to detect damages in beam-type structures with 

static displacement responses and natural frequencies information (He and Hwang, 

2006). To enhance global searching ability, a new method called genetic simulated 

annealing algorithm syncretizing the genetic algorithm and simulated annealing was 

presented for identification of structural parameters of frames (Zhou and Yi, 2007). 
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Their results show that these proposed algorithms preserve the merits of each 

algorithm while not substantially altering their identities, and speeds up the 

convergence.  

1.3.2 Tabu search 

Tabu search algorithm was initially proposed and applied for employee scheduling 

problem by Glover and McMillan (1986). A local dynamic neighborhood search 

procedure embedded in tabu search algorithm was employed to find an improved 

solution in the neighborhood of current solution, until the stopping criterion has 

been satisfied. The memory structures embodied in tabu search algorithm allows the 

method to go beyond points of local optima by admitting non-improving moves 

(Glover, 1990). It enhanced the performance of tabu search method over most 

conventional local search methods. Three-tier memory structure, e.g. short, 

intermediate and long-term structures, serves to intensify and diversify the search to 

achieve superior performance.  

Tabu search algorithm was widely applied for various optimization problems, such 

as travelling salesman problem (Fiechter, 1994; Gendreau et al., 1998), graph 

partitioning (Rolland et al., 1996), vehicle routing problem (Gendreau et al., 1994, 

1996), quadratic assignment problem (Misevicius, 2005). Some research works were 

also reported on its applicability to structural engineering optimization problems. 

Amongst, tabu search was employed for weight minimization of two-dimensional 

frame structures considering multiple load conditions with stress, displacement and 

local/global buckling constraints, and multiple objective functions in the problem 

formulation (Bennage and Dhingra, 1995). The cross-sectional areas of a space truss 
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were taken as variables for optimal structural design in terms of weight 

minimization with tabu search algorithm (Bland, 1998). In addition, tabu search 

algorithm was applied for optimization of 3-storey/3-bay, 9-storey/5-bay, and 20-

storey/5-bay steel moment resisting frames (Kargahi et al., 2006). They found that 

tabu search optimization was able to achieve a larger weight reduction for these 

three frames than commercially available programs (Kargahi and Anderson, 2006).  

Tabu search algorithm was extendedly applied for parameter identification of 

different engineering systems. The parameter structure and parameter values for 

one-dimensional groundwater flow model were successfully identified with tabu 

search algorithm while most of traditional gradient-based methods were not 

applicable for this type of inverse problem (Zheng and Wang, 1996). To achieve 

faster and more efficient search, an adaptive tabu search was proposed for 

identification of mechanical system such as hot-air tube, system with torsional 

resonance, static nonlinearity and inverted pendulum (Puangdownreong et al., 2002). 

In addition, tabu search algorithm was employed to determine the optimal parameter 

values of different processes to be modeled (Bagis, 2006). Their results demonstrate 

that tabu search algorithm is fast and efficient for system identification problems 

with appropriate value of initial solution, type of move, size of neighborhood, tabu 

list size, aspiration criterion, and stopping criterion. 

From mechanism point of view, tabu search algorithm climbs the hill in the steepest 

direction and stops at the top then goes downwards to search for another hill to 

climb. Therefore, a considerable number of iterations are spent on climbing hills 

rather than searching for the tallest hill. For complex and difficult problems, the 
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computational resources for tabu search algorithm spent on unwanted search areas 

exploration are un-negligible. In addition, tabu search algorithm is not guaranteed to 

achieve optimal solutions. However, it is fortunate that tabu search algorithm can be 

readily to be integrated with other methods to improve the convergence speed as 

well as the solution quality. A new integrated genetic algorithms, based on tabu 

search and simulated annealing method was proposed to solve the unit commitment 

problem (Mantawy et al., 1999). Their results show that the proposed algorithm 

performs high speed of convergence and high quality of solutions compared with 

individual genetic algorithm, simulated annealing and tabu search methods. Recently, 

a new hybrid algorithm combining enhanced continuous tabu search with elitism 

based genetic algorithm was proposed and applied to parameter estimation problems 

(Ramkumar et al., 2011). Their proposed hybrid algorithm yielded unbiased 

estimation for parameters with the presence of colored noise. 

1.3.3 Ant colony optimization 

Ant colony optimization was initially introduced by Dorigo (1992) to find an 

optimal path in graph through the behaviour of ants seeking a good (i.e., short) path 

from their nest to a food source. Ants initially explore the area for food around their 

colony randomly. As soon as the food is found, a chemical pheromone trail is laid 

down on the ground of the trip back to their nest so that the location of food source 

can be found by other ants through tracking pheromone. The quantity of pheromone 

deposited may depend on the quantity and quality of the food. However, the 

pheromone trail evaporates with time, thus a long path back to the nest costs more 

time for pheromone evaporation to a lower density compared with a short path. In 
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addition, the density of pheromone in shorter path will become higher due to 

frequently march. As a result, when a shortest path is found by one ant, other ants 

are more likely to follow that path, and the positive feedback eventually leads all 

ants to follow that single path (Dorigo and Blumb, 2005). 

Ant colony optimization is a typical meta-heuristic algorithm based on stochastic 

search procedures, which are used to obtain sufficiently good solutions to many 

optimization problems with reasonable computational time. It has been successfully 

applied to combinatorial optimization problems such as traveling salesman problem 

(Dorigo and Gambardella, 1997), routing problem in a computer network (Di Caro 

and Dorigo, 1998), quadratic assignment problem (Maniezzo and Colorni, 1999), 

sequential ordering problem (Gambardella and Dorigo, 2000) and shop scheduling 

problems (Blum and Sampels, 2004). 

In the field of structural engineering, ant colony optimization was widely applied to 

optimization of various structures. Amongst, it was utilized to design space trusses 

(Camp and Bichon, 2004) and steel frames (Camp et al., 2005) by minimizing the 

total weight or cost of the structure while satisfying design constraints such as 

allowable stresses in members and/or nodal deflection limits. Ant colony 

optimization has been extended and applied for continuous and mixed discrete-

continuous optimization problems recently (Socha, 2004). A new ant colony 

algorithm was proposed to solve dynamic continuous optimization problems (Tfaili 

and Siarry, 2008). The effectiveness of the proposed algorithm was proved through 

good performance in their experiment on a set of dynamic continuous test functions. 

In addition, an improved ant colony optimization algorithm was proposed and 

http://apps.webofknowledge.com.libproxy1.nus.edu.sg/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=2CbbnhIbegjEcng5d6F&author_name=Di%20Caro,%20G&dais_id=11033548
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applied to a series of constrained engineering problems, including the design 

problem of trapezoidal channels, tension/compression string, welded beam, pressure 

vessel and 10-bar truss (Kaveh and Talatahari, 2008).   

In the field of structural health monitoring, ant colony optimization algorithm was 

adopted to identify the parameters of a concrete dam (Li et al., 2003).  They found 

that the algorithm is more efficient and robust in converging to the global minima 

for model parameter estimation than gradient-type methods. Furthermore, ant colony 

optimization algorithm was used for identifying single and multiple damages in a 2-

storey rigid frame (Yu and Xu, 2010). Their identification results show that the 

algorithm is very effective in locating and quantifying the severity of the structural 

damages. Later on, the effectiveness and robustness of ant colony algorithm was 

further verified experimentally on a building model of a 3-storey steel frame 

structure fabricated in laboratory (Yu and Xu, 2011). The experimental results 

converged quickly in identifying damage location and extent for four different 

damage patterns. In addition, the ant colony optimization was employed for 

structural as well as substructural damage identification (Hu and Zhang, 2011). 

Their results demonstrate that this algorithm is very efficient and stable for structural 

damage identification. 

Ant colony optimization has advantages in giving positive and rapid feedback in 

process of searching the solution, thus it can find optimal solution for various 

complicated optimization problems. However, disadvantages of using the algorithm 

do exist such as difficult theoretical analysis, uncertain convergence in spite of 
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convergence is guaranteed and the changing probability distribution by iteration 

(Ziad et al., 2012). 

1.3.4 Particle swarm optimization 

Particle swarm optimization, originally proposed by Kennedy and Eberhart (1995), 

mimics the social behaviour in flock of birds, bees and fishes on correcting their 

movements to avoid predators or seek food sources. It searches a space through 

adjusting the trajectories of individual particles, stochastically approaching toward 

the positions of the best previous performance of their own and neighbors (Clerc and 

Kennedy, 2002; Kameyama, 2009).  

Particle swarm optimization is a population-based stochastic search algorithm with 

evolutionary advantages through sharing information among individual particles. 

Recently, it was widely applied in diverse engineering optimization problems, such 

as power systems design (del Valle et al., 2008; Alrashidi and El-Hawary, 2009), 

controllers design (Gaing, 2004; Zamani et al., 2009), mechanical systems design 

(He et al., 2004). The algorithm was further applied in the field of structural size and 

shape optimization. Standard size and shape optimization for 2-bar plane truss, 10-

bar plane truss, 25-bar space truss and torque arm selected from literature were 

conducted to evaluate performance of particle swarm optimization algorithm (Fourie 

and Groenwold, 2002). Furthermore, the optimization algorithm was employed for 

the optimal sizing design of convex 10-bar truss, non-convex 25-bar truss and 

convex 36-bar truss (Schutte and Groenwold, 2003). Design of three different truss 

systems was taken as benchmark optimization tasks with particle swarm 

optimization algorithm (Perez and Behdinan, 2007). 



 Chapter 1. Introduction 

19 

 

Particle swarm optimization algorithm was further introduced to detect the location 

and extent of damage in structural systems due to its major advantages including 

high reliability and stability, independence of initial estimates of heuristic 

parameters. The location and extent of single and multi-damage in a 2-storey rigid 

frame were accurately detected with an improved particle swarm optimization 

algorithm (Yu and Wan, 2008). A damaged stiffness matrix in a simulated cantilever 

beam model was identified with this optimization algorithm (Abdalla, 2009). A new 

particle swarm optimization algorithm was introduced to determine the damage 

location and extent in a 10-bar truss and a cracked free-free beam (Begambre and 

Laier, 2009), where the optimization algorithm was able to locate the global 

optimum with great accuracy and confidence by a small number of function 

evaluations compared with simulated annealing algorithm. Recently, a two-stage 

method incorporating particle swarm optimization algorithm was proposed to 

identify the location and extent of multiple damages in structural systems 

(Seyedpoor, 2012). In the first stage, a modal strain energy based index was 

presented to locate damages while in the second stage a particle swarm optimization 

algorithm was adopted to determine the damage extent. Numerical results of a 

cantilevered beam and 31-bar planar truss demonstrated that the proposed two-stage 

method is able to accurately identify multiple structural damages. Besides, a multi-

stage optimization approach based on the swarm intelligence algorithm was 

presented to precisely identify the locations and extents of damages in a 15-element 

cantilevered beam, a 31-bar planar truss and a 63-element space frame based on 

natural frequency changes in these structures (Seyedpoor, 2011).  
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Particle swarm optimization algorithm has become increasingly popular due to its 

simplicity and high convergence speed. However, some unexpected results may 

appear when the optimization algorithm is applied for multiple objectives problems. 

The non-dominated points on the Pareto front are difficult to locate since the 

velocity and position of each individual is guided by more than one criterion (Coello 

et al., 2004). Therefore, different modifications have been introduced to standard 

particle swarm optimization algorithm to improve its performance. A multi-

objective particle swarm optimization algorithm, incorporated with techniques 

including storage and continuous modification of potential solution in external 

repository, self adaptive mutation, and a simple yet efficient constraint handling 

methodology, was proposed to identify a real one storey and one bay reinforced 

concrete frame (Perera et al, 2010). Their results show that the proposed modified 

algorithm can handle damage identification problems with modeling error in finite 

element model as well as multiple objectives in the optimization model. A hybrid 

optimization algorithm combining particle swarm optimization algorithm with 

genetic algorithm was proposed to identify multiple crack damages in a thin plate 

using an inverse time-domain formulation with the objective of minimizing the 

difference between the measured and theoretically predicted accelerations (Sandesh 

and Shankar, 2010). Their numerical identification results show that the proposed 

hybrid algorithm obtains more accurate identification results. 

1.3.5 Neural network 

Research on neural network (NN) has recently drawn considerable attention and the 

way it works is to imitate how brain operates. NN models are made up of 

http://en.wikipedia.org/wiki/Reinforced_concrete
http://en.wikipedia.org/wiki/Reinforced_concrete
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interconnected processing elements called neurons which respond in parallel to a set 

of input signals given to each. An NN model consists of three main parts, namely 

neurons, weighted interconnections between neurons and activation functions that 

act on the set of input signals at neurons to produce output signals. Training of an 

NN model refers to the determination of weights in the model using some training 

algorithms which are essential to most NN models. NN has unique capability to be 

trained to recognize given patterns and to classify other untrained patterns. 

Therefore, NN operates as a black-box, model-free and adaptive tool to capture and 

learn significant structures of data. 

NN method gives an approximate solution to a problem instead of solving the 

problem in a rigorous mathematical sense. It has many advantages such as massive 

parallelism, adaptability, robustness, and the inherent capability to handle nonlinear 

systems (Chen et al., 1995). Therefore, it has been extensively studied and 

successfully applied to various problems including face detection (Rowley et al., 

1998), river flow prediction (Karunanithi et al., 1994), and image classification (Lu 

and Weng, 2007). The applications of NN in the field of civil engineering were 

comprehensively reviewed by Flood and Kartam (1994a; 1994b), Rafiq et al. (2001) 

and Adeli (2001). 

Adeli and Park (1995a) developed a neural dynamic model for structural 

optimization. Later this model was applied to optimal plastic design of low-rise steel 

frames (Park and Adeli, 1995). Their results show that the proposed model is able to 

yield stable results with randomly selected starting points. In addition, a nonlinear 

neural dynamics model for structural optimization with highly nonlinear and 
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complicated constraints was proposed and applied to a minimum weight design of 

space trusses subjected to stress and displacement constraints and multiple loading 

conditions (Adeli and Park, 1995b). The proposed model was further extended for 

optimal design of cold-formed steel beams and applied to three commonly used 

shapes (hat, I, and Z) according to the American Iron and Steel Institute allowable 

stress design or load and resistance factor design specifications (Adeli and Karim, 

1997).  

In the field of structural identification and damage detection, the capability of NN 

was demonstrated (Wu et al., 1992) through a simple 3-storey frame, modeled as a 

‘shear building’, with girders assumed to be rigid and columns being flexible. In 

their study the computed acceleration time histories were used as measured 

responses of the structure, which then were passed through a Fast Fourier Transform 

(FFT) process and the resulting Fourier spectra of the acceleration time histories 

were used as input to NN. Their results indicate that NN is capable of learning the 

behaviour of undamaged and damaged structures and identifying the damaged 

member with evaluated damage extent based on the frequency response of the 

structure. They also pointed out a big challenge remaining to be resolved before this 

approach becomes a truly viable method of structural damage assessment in 

complex structures: a considerate amount of samples is required in NN for training 

process due to large number of unknown parameters involved.  

A NN-based substructural identification (Yun and Bahng, 2000) was conducted to 

estimate stiffness parameters of a complex structural system, particularly for the 

case with noisy and incomplete measurements of modal data. In their study, 
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substructural identification and sub-matrix scaling factor were employed to 

overcome the issues associated with many unknown parameters in a large structural 

system. In addition, Latin hypercube sampling and component mode synthesis 

method were adapted for efficient pattern generation for training the NN, which can 

adequately establish the relationship between stiffness parameters and modal 

information. Two numerical studies on a two-span truss and a multi-storey frame 

show that the substructural technique and the concept of sub-matrix scaling factor 

are very efficient to reduce the number of unknown stiffness parameters to be 

estimated. Besides, the identified results were acceptable even with noisy 

measurements. 

Since training NN with samples is time-consuming, to reduce the number of training 

samples without significantly affecting the accuracy of neural network prediction, 

orthogonal arrays selection (Chang et al., 2002) for samples training was developed 

to improve computational efficiency. To demonstrate the efficiency of orthogonal 

arrays method, four other sample selection methods were also employed for 

comparison, namely the full factorial selection, the hypercube selection, the linear 

selection and the random selection. The comparisons results of two cases including a 

simply supported T beam and a circular plate indicated that the orthogonal arrays 

selection is most efficient. An adaptive multiplayer perceptron technique (Xu et al., 

2001) and a progressive NN (Liu et al., 2002b) were proposed to detect cracks and 

determine the elastic constants of anisotropic laminated plates. In their study, a 

modified back-propagation learning algorithm with a dynamically adjusted learning 

rate and an additional jump factor was developed to speed up the training process for 

the NN model. Furthermore, to reduce the number of training data, they adopted the 
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concept of orthogonal array to generate the representative combinations of elastic 

constants. Although many efforts have been put on improving the performance of 

NN, the computational efficiency of NN does not compare well with those of other 

non-classic methods, such as genetic algorithm and particle swarm optimization. 

1.3.6 Genetic algorithm 

Genetic Algorithm (GA) is a very powerful and efficient global optimization method 

based on the principle of ‘survival of the fittest’, which imitates biological evolution 

by natural selection, random crossover and mutation. GA implements a stochastic 

searching procedure and operates with a population of chromosomes, which 

represent a set of trial parameters of the target problem. In general, GA starts with an 

initial population, usually obtained through random sampling, followed by three GA 

operations, shown in Fig. 1.1. In the selection operation, members of the 

chromosomes that give the best value of objective function are chosen as the fittest. 

By using other two genetic operators, crossover and mutation, GA continuously 

explores potential feasible chromosomes. In GA operation, through selection, 

crossover and mutation on current population, a likely better new population will be 

generated. In general, chromosomes are encoded in binary or real number. However, 

when GA is implemented for engineering problems, long and unwanted 

computational time is spent on coding and encoding these binary numbers. 

Moreover, binary coded GA may find it difficult to make some jumps in the search 

space, due to the limitation of representation ability of binary strings.  
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Figure 1.1 Flowchart of GA  

Selection operation is to determine which chromosome in current population to be 

placed in the mating pool, and it also decides that chromosomes with better fitness 

will be given more copies in the mating pool. Generally, there are two different 

selection ways, proportion based and ranking based. The proportion based selection 

decides the number of copies for the chromosomes by the proportion of fitness to the 

sum of fitness for whole current population, which may potentially lead to a 

premature solution. The ranking based selection arrays chromosomes by the value of 

fitness function, and determines the number of copies by its ranking in current 

population. It avoids being trapped in local optima by allowing the algorithm to limit 

differences of selection proportions between fitter and less fit chromosomes. 

Crossover is usually performed on randomly selected pairs of chromosomes in the 

mating pool. In fact, the single-point crossover is favourable for binary-coding GA. 

It randomly selects a crossover point and exchanges the information of two 

chromosomes after that point. The arithmetic crossover may be more effective for 

the real-coding GA. It performs a linear combination of two chromosomes. After 

crossover, the new population is then subjected to mutation to further explore 

available space for variables to avoid premature solution. After these three GA 

operations, a new generation is evolved. 
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GA was widely applied in the field of structural health monitoring owing to its 

inherent advantages, such as global search capacity due to the population-to-

population search scheme, fairly loose requirement on initial guess and ease of 

implementation for parallel computing. Fruitful achievements have been 

accomplished on the application of GA for structural identification and damage 

detection. GA was employed to detect the location and magnitude of the damage on 

a statically indeterminate truss bridge by minimizing difference of measured and 

predicted static displacements (Chou and Ghaboussi, 2001). The presence, size and 

degree of flaw in the core layer of sandwiches plates were successfully detected with 

GA based on the time-harmonical response of the plate to harmonic excitation (Liu 

and Chen, 2001). A combined GA and nonlinear least-square method was proposed 

to determine the material property of composite plate (Liu et al., 2002a). A real 

parameter-coded micro-GA was proposed to inversely determine material constants 

of composite laminates using dynamic response at one point on the plate surface 

(Liu et al., 2005). To determine the material constants of the laminated cylindrical 

shells, a uniform crossover micro-GA was employed as the inverse operator with 

transient dynamic displacement responses obtained at only one receiving point on 

the outer surface of shells (Han et al., 2002). By minimizing a global error derived 

from dynamic residual vectors, GA was applied for parameter identification in three 

different structures, namely a two-dimensional truss, a cantilever beam and a portal 

frame (Rao et al., 2004). Based on a continuum damage model, GA was adopted as 

search engine for health assessment in a simply supported concrete beam with 

measured modal data (Perera and Torres, 2006).  



 Chapter 1. Introduction 

27 

 

To further improve the performance of GA, some efforts have been made to 

incorporate other search algorithms or alter the architecture of GA. To obtain good 

identification results for systems with many unknown parameters, a hybrid 

computational strategy was proposed (Koh et al., 2003a), which combines GA with 

a compatible local search operator. In the study, two hybrid methods were 

formulated and illustrated by numerical studies to perform significantly better than 

GA method without local search. A fairly large structure was identified with good 

results, with incomplete measurements and noisy data taken into consideration. To 

improve the accuracy and computational efficiency, a modified GA by search space 

reduction method (SSRM) based on migration and artificial selection was proposed 

for parameter identification of multiple-DOF structural systems (Perry et al., 2006). 

This modified GA achieves significant improvement in terms of identification 

accuracy and computational speed compared with a standard GA. Later on, this 

modified GA was applied in an output-only strategy for identifying structural 

parameters and damage in a system of buildings numerically as well as a 7-storey 

steel frame experimentally based on incomplete, noise-contaminated acceleration 

measurements (Perry and Koh, 2008). Several sampling methods such as random 

uniform distribution, Latin hypercube, orthogonal array and Hammersley sequence 

sampling (Zhang et al., 2010a) and some local search methods such as conjugate 

gradient method, Broyden-Fletcher-Goldfarb-Shanno method and simulated 

annealing (Zhang et al., 2010b) were incorporated to reduce the search space for 

parameters and enhance the convergence speed of GA. Their results show that 

Hammersley sequence sampling and Broyden-Fletcher-Goldfarb-Shanno method 

achieve substantial improvement of GA in terms of efficiency and accuracy. 
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1.4 Structural identification with unknown input 

Generally, information of excitations are required and taken as input information in 

most of structural identification methods. However, it is often difficult or even 

impossible to measure excitations when structural systems are subjected to wind 

forces or earthquake loads etc. In this regard, some structural identification methods 

were proposed without excitation measurements.  

A considerable number of methods, such as Ibrahim time domain method (ITD), 

random decrement technique (RDT), Natural Excitation Technique (NExT) and 

Eigensystem Realization Algorithm (ERA), were proposed to extract natural 

frequencies, modal damping ratios and mode shapes of a structure from measured 

vibration signals. Structural parameters are then identified through the extracted 

modal properties. ITD technique was proposed (Ibrahim, 1977) to extract structure 

modal parameters directly from measured structure free-decay response signals. 

Nevertheless, in practice, it is difficult to acquire free-decay response when the 

structure is under operation. To overcome this difficulty, RDT was proposed (Cole, 

1971) to extract free vibration signals from ambient vibration measurements. With 

extracted modal parameters from combined ITD and RDT, structural mass, damping 

and stiffness matrices were identified (Huang et al., 1999; Lin et al., 2001). The 

mathematical basis was proposed (Vandiver et al., 1982) to show that displacement 

responses of system are equivalent to free-decay responses of the system when input 

excitation is stationary Gaussian white noise process. RDT incorporated with ITD 

method were successfully applied to Hakucho suspension bridge in Japan 

(Siringoringo and Fujino, 2008) with recorded ambient vibration data. The basic 
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principle of NExT method (Farrar and James III, 1997) involves a time domain 

curve algorithm to formulate a cross-correlation function between various response 

measurements on an ambiently excited structure to estimate the resonant frequencies 

and modal damping. When the structure is subjected to ambient vibration, the cross-

correlation function between two response measurements has the same analytical 

form as the impulse response function (or free vibration response) of the structure. 

ERA method (Juang and Pappa, 1985), developed to analyze impulse response 

functions, was applied for cross-correlation functions to obtain resonant frequencies 

and modal damping of structures. Reliable modal parameters of Hakucho bridge 

were obtained through NExT combined with ERA (Siringoringo and Fujino, 2008). 

In the aforementioned several methods, the accuracy of extracted modal parameters 

suffers from approximation of external excitations to be stationary Gaussian white 

noise process. In some situations, this approximation is unrealistic when the 

structures are subjected to earthquake induced ground motion, strong wind and 

impact forces etc. In addition, the natural frequencies of first few modes may not 

change significantly even in presence of major defects, indicating low sensitivity for 

detecting damage.  

Extended Kalman filter (EKF) was adopted to identify system parameters without 

input excitation on various systems, multiple degree-of-freedom linear systems, 

bilinear hysteretic systems, and equivalent linearization of bilinear hysteretic 

systems (Hoshiya and Saito, 1984) when the system was subjected to harmonic 

excitation or Gaussian white noise excitation. A weighted global iteration (WGI) 

procedure was developed by them to improve the efficiency and accuracy of 
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identification results of EKF. They further developed a weighted local iteration 

(WLI) to improve the performance of EKF in parameter identification of plain strain 

problems (Hoshiya and Sutoh, 1993). An algorithm (Shi et al., 2000) in the nature of 

EKF for system identification was proposed to simultaneously estimate system 

parameters and input power spectral density without requirement of an assumption 

of input excitation form. Without any restriction on unknown input excitation, an 

iterative least square (ILS) method was proposed (Wang and Haldar, 1994) to 

simultaneously identify parameters of an earthquake excited structure and the 

ground motion. This approach was validated on different types of structures 

including shear-type building, plane trussed and frames. Nevertheless, application of 

this approach is limited since the output response measurements at all structural 

DOFs are necessary. Generally, it is virtually impossible to acquire response 

measurements at every one DOF especially when a large number of DOFs are 

involved in a structural system. To address this issue, a technique of combination of 

ILS and EKF (Wang and Haldar, 1997) was proposed to identify unknown structural 

parameters at element level with limited observations. A modified ILS method 

(Chen et al., 2004) was developed to identify both structural parameters and input 

time history with complete and noise free as well as incomplete and noise slightly 

contaminated output measurements. The application of their approach was limited to 

clean or slightly polluted measurements.  

An iterative gradient-based model updating method (Lu and Law, 2007) based on 

dynamic response sensitivity was proposed to identify input excitation force and 

physical parameters of a structure. Both sinusoidal and impulsive forces on a single-

span beam and a two-span beam were studied in their numerical examples. In their 
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approach, Newmark method was used to compute structural dynamic response and 

its sensitivities with respect to different parameters of the system. Instead of 

Newmark method in their previous work, the state-space approach (Lu et al., 2011) 

was adopted to compute both structural dynamic responses and responses 

sensitivities with respect to structural parameters as well as force parameters. An 

iterative damped least-squares method (Zhang and Law, 2009) was applied to 

simultaneously identify structural parameters and unknown orthogonal coefficients 

in Chebyshev polynomial approximation which was used to model the support 

excitation. In their study, local damage and unknown support excitation in a 15-

storey shear building and a 5-storey steel frame structure were accurately detected 

from only a few dynamic responses of the structures. Nevertheless, the numerical 

convergences posed large difficulties due to the introduced considerable number of 

unknown coefficients in Chebyshev polynomial approximation. 

1.5 Substructural identification methods 

In practice, it is impossible to identify all unknown structural parameters for a large 

complex system at one time. Numerical convergence poses the first difficulty due to 

large number of unknown parameters to be identified. Furthermore, modeling error 

affects the accuracy of identification results since it is rather difficult to build a very 

accurate mathematic model for a complex structural system. In addition, the process 

of identification is extremely time-consuming since structural dynamic response will 

be computed repeatedly for a system with a large number of DOFs. 
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To address these difficulties, substructural identification, based on the concept of 

‘divide and conquer’ strategy, provides a feasible solution to identify a large and 

complex structure system progressively. With substructure approach, a large and 

complex structure is partitioned into many substructures, each with far fewer DOFs 

and unknown parameters, so that system identification can be carried out for each 

substructure of manageable size independently. There are several advantages of 

substructural identification: (1) The speed and capability of numerical convergence 

to accurate solution can be significantly improved due to reduced number of 

unknowns as well as DOFs involved in system identification. (2) Far few sensors are 

required to be installed in the substructure of concern. (3) Modeling errors can be 

largely reduced since complicated boundary condition and connection of different 

structural parts are excluded in substructure. (4) It is unnecessary to measure the 

excitations if they are outside of the substructure of interest. (5) The identification 

efficiency of substructures can be largely improved with parallel computing by 

carrying out system identification for each substructure independently. 

Many classical methods were employed as search engines for substructural 

identification during the last two decades. The earliest work on substructural 

identification in time domain was reported by Koh et al. (1991) who identified the 

stiffness and damping coefficients using extended Kalman filter with a weighted 

global iteration algorithm. In their study, substructural identification was carried out 

on three types of structures, namely a shear building, a plane frame building and a 

plane truss bridge. Their results show that substructure approach performs much 

better than global structural identification in terms of accuracy and efficiency. 

Extended Kalman filter with weighted global iteration was also employed for 
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substructural identification in a simple shear building (Orate and Tanabe, 1993) and 

2-storey plane frames (Orate and Tanabe, 1994). A discrete auto-regressive, moving 

average mode with stochastic input and sequential prediction error method was 

applied for parameter estimation of substructures in a multi-storey building and a 

truss bridge (Yun and Lee, 1997).  

The eigen-system realization algorithm and Kalman filter identification were 

employed for parameter identification based on the first- and second-order 

substructure model (Tee et al., 2005). Numerical studies of a 12-DOF system and a 

larger structural system with 50 DOFs with noise contaminated responses as well as  

laboratory experiments of an 8-storey frame model illustrated that the proposed 

methodology is able to locate and quantify the damage fairly accurately. However, 

response measurements of accelerations are required at all DOFs for this method. 

From application point of view, it is difficult even impossible to obtain complete 

measurements due to limited available number of sensors. To eliminate the 

requirement of complete measurements, an improved substructural identification 

strategy (Tee et al., 2009) was developed by integrating condensation model 

identification with a recovery method (Koh et al., 2006). Numerical simulation on a 

multi-storey shear buildings and a 50-DOF structure system with limited number of 

sensors as well as experimental study on an 8-storey steel plane frame subjected to 

shaker and impulse hammer excitations were performed to examine effectiveness 

and efficiency of the strategy. Both the numerical and experimental results show that 

the proposed strategy yields reasonably accurate identification in terms of location 

and extent of damages. However, a considerable number of sensors are still required 

for this approach and the maximum noise level allowed is limited to only 5%. In 
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addition, at least one internal force is required to be applied within the substructure, 

thus it is inapplicable for substructural identification when input excitation is applied 

outside the substructure of concern. 

A combination of a modified iterative least-square technique for substructural 

identification in the first stage and extended Kalman filter with a weighted global 

iteration for global structural identification in the second stage was proposed without 

measurements of input excitation (Katkhuda and Haldar, 2008). Although the 

approach avoids the measurements of input forces, responses at all DOFs of the 

substructure and the location of the applied excitation are necessary to implement 

their proposed substructural identification. Incorporated with discrete adjoint 

variable method and virtual distortion method, parameter identification of concerned 

substructure from a global structure was carried out by assuming fixed boundaries of 

the isolated substructure and applying virtual forces on these boundaries (Hou et al., 

2005). The virtual forces were computed by assuming the substructural responses at 

all DOFs with the modeled fixed boundary conditions to vanish. A numerical 

example of a frame-truss with 5% and 10% noise levels and an experiment of a 

cantilever beam were conducted to illustrate success of the isolation methodology in 

terms of computational efficiency and identification accuracy compared with global 

structural identification. However, in the study, it is necessary to measure the 

responses at all DOFs of the substructure, which constrains applicability of the 

method in case of a hardly accessible boundary.  

Compared with application of classical methods in substructural identification, the 

emerging non-classical methods are more promising in terms of effectiveness, 
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efficiency and robustness. With rapid development of computer capacity in recent 

years, an increasing number of non-classical methods were employed, especially NN 

and GA, for substructural identification. 

NN for estimating substructural stiffness was first studied by Yun and Bahng (2000). 

Natural frequencies and mode shapes were used as input patterns to NN for element-

level identification with incomplete measurements of mode shapes. The 

effectiveness of the proposed method was validated by substructural identification of 

a 2-span truss and a multi-storey frame structure. However, in the numerical 

example of a multi-storey frame, limited number of sensors, unavailable angular 

DOFs measurements and severely contaminated observed data yielded largely 

deteriorated estimations for substructural stiffness. NN for substructural 

identification was further applied for joint damage assessment in a numerical study 

of 2-bay 10-storey frame and an experimental study of a 2-storey frame (Yun et al., 

2001). Their results show that joint damages can be reasonably estimated even in 

case where measured modal vectors were limited to a localized substructure and data 

were severely corrupted by noise. NN was further employed to develop a 

substructural identification methodology in time domain with direct use of the 

acceleration measurements instead of observed natural frequencies and mode shapes 

(Xu and Du, 2006). The effectiveness of the proposed method was validated through 

reasonably accurate estimation of stiffness and damping coefficient for the 

substructure in a shear building. In addition, a multi-stage NN was presented to 

detect location and extent of damage in a two-span continuous concrete slab and a 3-

storey portal frame based on substructure approach with measured modal parameters 

such as frequencies and mode shapes as input to NN (Bakhary et al., 2010a, 2010b). 
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Their identification results show that the approach can successfully detect damages 

in substructures under different damage scenarios. 

Due to its robustness and ease of implementation, GA was employed as a search 

engine for substructural identification and progressive structural identification of a 

fairly large system of 50 DOFs (Koh et al., 2003b). In their study, the substructure 

model based on the concept of ‘quasi-static displacement’ was proposed to eliminate 

the requirement of time signals of displacement and velocity at the interface. 

Known-mass and unknown-mass systems with up to 102 unknown parameters were 

successfully identified even with incomplete and noisy measurements. Due to the 

difficulty of obtaining complete interface measurements, particularly angular 

responses at the interface of  beam/frame structures, a new substructural 

identification method with GA embedded was developed in frequency domain to 

determine the unknown parameters, which completely eliminates the need of 

interface measurements (Koh and Shankar, 2003). The applicability of the proposed 

method was validated through numerical studies of a uniform beam containing two 

substructures and a non-uniform beam with five substructures. The parameter 

identification of nonlinear structures with GA in time domain has been carried out 

based on substructural approach from relatively simple lumped mass systems to 

complex truss systems (Kumar and Shankar, 2009). It is worthwhile to apply GA to 

substructural identification due to its inherent advantages, such as globally 

numerical convergence induced by population-to-population search, no requirement 

for initial condition and gradient information as well as ease of implementation. 
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1.6 Objectives and scope 

 

Based on literature review, excitation measurements are required and treated as 

input in many structural identification methods. Nevertheless, it is difficult or even 

impossible to acquire measurement data of excitations in some situations such as 

natural forces. The absence of excitation measurements poses a huge challenge in 

the application of many structural identification methods.  

Substructural identification approach has shown its advantages in terms of efficiency 

and accuracy compared with global structural identification due to fewer DOFs and 

unknowns involved. But complete interface measurements are necessary in most 

substructural identification methods. From practical point of view, they are not 

always possible to obtain. In particular, for beam and plate substructures, it is 

difficult or expensive to accurately measure the considerable number of angular 

accelerations at interface. The absence of complete interface measurements causes 

another great difficulty in achieving reliable identification results. 

In view of the above challenge and difficulty, the main objectives of this study are: 

(1) Develop effective structural and substructural identification strategies without 

excitation measurements.   

 
(2) Propose applicable identification strategy for beam and plate substructures 

with incomplete interface measurements. 

To achieve these objectives, the scope of this research includes: 
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(1) Present a substructural identification strategy for beam and plate substructures 

without measurements of interface angular accelerations, by employment of 

measurements of strains and translational accelerations.  

 

(2) Propose an iterative identification strategy for parameter identification of 

structural systems without excitation measurements. 

 

(3) Further develop the proposed strategy in (2) for substructural identification 

without measurements of forces applied within substructures. 

 

(4) Develop a substructural identification strategy without complete interface 

measurement as well as excitation force measurements.  

 

(5) Investigate the performance of identification strategies in (1), (2), (3) and (4) 

through numerical studies. 

 

(6) Validate the effectiveness of identification strategies in (2), (3) and (4) through 

experimental studies. 

In summary, from practical point of view, the identification strategies proposed in 

this study are to address the insufficiency or absence of input information such as 

the excitation forces as well as interface responses especially the angular 

accelerations. 
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1.7 Research significance  

The main challenge in structural and substructural identification lies in the fact that 

excitation forces are difficult or even impossible to measure accurately in practice. 

The requirement of complete interface measurements poses another great challenge 

in the application of substructural identification, particularly for beam and plate 

substructures where angular accelerations at interface are needed but not necessarily 

measureable. The main significance of this research is to overcome these two 

challenges through development of innovative identification strategies. The original 

contributions are summarized as follows. 

(1) The proposed recovery method is capable of accurately computing interface 

angular accelerations via measurements of strains and translational 

accelerations, so as to provide complete interface measurements required for 

parameter identification of beam and plate substructures. The method has the 

advantage of avoiding measurement of angular accelerations at interface, 

which is more difficult or more expensive to measure than translational 

accelerations. 

 

(2) The recovery method recovers angular accelerations not only at interface but 

also at some internal DOFs. The accuracy of identification results is 

significantly improved by involving these recovered internal angular 

accelerations in fitness function since angular accelerations are more sensitive 

to the change of substructural parameters than internal translational 

accelerations. 
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(3) Savitzky-Golay differentiation algorithm is introduced for computing the 

second-order derivatives of strain measurements due to its simple idea of least-

squares polynomial fitting and ease of implementation with well-established 

coefficients. Differentiation error may be significant in the beginning part of 

signals due to insufficient data. This problem is effectively mitigated in the 

GA-based identification by ignoring the initial part of simulated and measured 

signals in fitness function.   

 

(4) Force measurements are difficult or even impossible to obtain in some cases. 

An iterative identification strategy, incorporating Tikhonov regularization 

method and SSRM, is proposed for identification of global structures and 

substructures with no need for force measurements. Tikhonov regularization 

method is introduced for force identification whereas SSRM is employed for 

parameter identification.  

 

(5) It is not always possible to obtain complete interface measurements. The 

iterative strategy is further developed for substructural identification when the 

interface measurements are insufficient or even absent. The unmeasured 

interface accelerations are treated in a similar way to unknown forces, which 

are identified with Tikhonov regularization method.  

 

(6) Finally, combining the above two strategies, i.e., (4) and (5), leads to the 

iterative identification strategy that is capable of accurately identifying the 
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time history of unknown excitation forces and unmeasured interface 

accelerations.  

1.8 Thesis outline 

The thesis consists of six chapters, arranged according to the progressive 

development and application of different proposed substructural identification 

strategies. 

In the first chapter, the background of structural identification is introduced, 

followed by literature review on various structural identification methods 

categorized into classical and non-classical methods. Then the reviews on structural 

identification with unknown input and substructural identification methods are 

conducted. Finally, the objectives and scope, research significance and outline of the 

thesis are provided. 

In Chapter 2, to eliminate the requirement of angular acceleration measurements at 

the interface of beam and plate substructures, a substructural identification strategy 

is presented by use of translational acceleration and strain measurements. A 

recovery method is developed to compute angular accelerations from measured 

strains and translational accelerations. Then the unknown substructural parameters 

are identified with SSRM. Numerical studies of parameter identification in beam 

and plate substructures are conducted to validate the effectiveness of the proposed 

identification strategy.  
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In Chapter 3, an iterative identification strategy for parameter identification of 

structural systems is developed to address absence of input excitation measurements. 

First, the equation of motion of structural systems is formulated into discrete time 

state space form according to the locations of sensors installed. A strategy 

incorporating the Tikhonov regularization method and SSRM is proposed to identify 

the unknown structural parameters. Tikhonov regularization method is employed to 

identify the excitation forces and SSRM is applied for parameter identification of the 

structural system in each iteration. To validate the effectiveness of the proposed 

identification strategy, numerical simulations are carried out on a simply supported 

beam and a cantilever plate without measurements of applied forces. An 

experimental study of structural identification on a 10-storey frame is conducted to 

further verify the proposed identification strategy. 

In Chapter 4, a new strategy, incorporating the ideas proposed in Chapter 2 and 3, is 

developed for substructural identification without measurements of excitation forces 

applied within substructures as well as without interface angular accelerations which 

are computed from the measured strains and translational accelerations with the 

recovery method in Chapter 2. First, the discrete time state space form for 

substructures with the concept of ‘quasi-static displacement’ is established to 

facilitate force identification with Tikhonov regularization method while SSRM is 

employed as the search engine for substructural parameter identification. Numerical 

studies of parameter identification in beam and plate substructures and the 

experimental study for substructural stiffness identification on a 10-storey frame are 

carried out to validate the effectiveness of the proposed strategy.  



 Chapter 1. Introduction 

43 

 

In Chapter 5, an iterative substructural identification strategy is developed to 

simultaneously address the issues of incomplete interface measurements and 

unknown excitations. The unknown interface accelerations and the unmeasured 

excitation forces within the substructure are updated with Tikhonov regularization 

method while substructural parameters are identified with SSRM. Two numerical 

examples of parameter identification in beam and plate substructures as well as two 

experimental studies on a 10-storey frame and a laboratory fabricated jack-up are 

carried out to further investigate the performance of the proposed identification 

strategy. 

The last chapter concludes the thesis with key findings. Some recommendations for 

future work are outlined. 
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Chapter 1

Introduction, literature review
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Chapter 2: I → SS ← O (strains + translational accelerations)

Substructural identification using strains and translational accelerations

Chapter 3:  S ← O

Structural identification with unknown input 

Chapter 4: SS ← O (strains + translational accelerations)

Substructural identification with unknown input
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Substructural identification with unknown input and without 
complete interface measurements
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Figure 1.2 Organization of thesis 
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Chapter 2. Substructural Identification with 

Measurements of Strains and Translational 

Accelerations  

Theoretically, given sufficient dynamic measurements, it is possible to identify all 

unknown parameters for large and complex structural systems at one time. 

Nevertheless, numerical convergence poses the first challenge due to large number 

of unknown parameters and degrees of freedom (DOFs) involved. Furthermore, for a 

complex structural system, it is rather difficult to build a very accurate mathematic 

model. Thus the accuracy of identification results will be inevitably affected by the 

modeling error. Additionally, parameter identification for a structure with a large 

number of DOFs will be extremely time-consuming since structural dynamic 

responses are needed to be computed repeatedly in the process of identification. To 

this end, based on the novel concept of ‘divide and conquer’, substructural 

identification strategy is adopted to reduce the number of unknowns and DOFs, so 

as to improve the numerical convergence to the optimal solution, reduce the 

modeling error and enhance the computational efficiency.  

The idea of substructural identification appears straightforward by dividing a large 

and complex structure into many substructures which can be identified separately. 

The main difficulty lies, however, in obtaining interface forces at interface DOFs 

which are necessary to compute dynamic responses of the concerned substructure, 
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separated from the remaining part of structure. The complete displacement, velocity 

and acceleration measurements at interface DOFs should be gathered to compute the 

substructural interface forces. Although the interface displacement and velocity can 

be obtained from the measured acceleration at interface by applying integration 

techniques, the accuracy of integrated displacement and velocity is inevitably 

affected by noise in the acceleration measurements. To avoid measuring interface 

displacement and velocity, Koh et al. (2003b) proposed a concept of ‘quasi-static 

displacement’ to compute the interface force with the measured interface 

acceleration by neglecting the damping force, which is usually small compared to 

the inertia force in typical civil engineering structures subjected to dynamic loads. 

With this concept, the substructural parameters are successfully identified 

numerically and experimentally without interface displacement and velocity 

measurements.  

Although it is unnecessary to measure the interface displacement and velocity, the 

complete acceleration measurements at interface DOFs are still required to compute 

interface forces for substructural forward analysis. At the interface of beam and plate 

substructures, it is necessary to measure not only translational accelerations but also 

angular (rotational) accelerations. In principle, angular acceleration can be obtained 

indirectly by post-processing the available angular displacement or velocity signal 

(Ovaska and Valiviita, 1998). Nevertheless, angular displacement or velocity 

sensors of various kinds have disadvantages such as complicated design, high cost or 

low precision (Liang et al., 2010). For instance, capacitive sensors have high 

demands on processing; optical sensors have limitations for their integration in 

miniature mechanical systems (Khiat et al., 2010). Although some numerical 
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differentiation algorithms and filtering methods were developed to alleviate the 

noise amplification effect in process of differentiation, these effects are unfavourable 

since the main noise in angular acceleration comes from the quantization of angular 

displacement and velocity signal during the approximate differentiation. Angular 

accelerometers have not been widely used in commercial application due to their 

limited angular measurement range or high cost as their major drawbacks, although 

they measure angular accelerations in a direct way (Wolfaardt, 2005). For instance, a 

high precision of miniature force balance angular accelerometer Columbia SR-220 

RNP weights 113g, whose mass effect is negligible for application to large 

structures, but may not be small enough for application to small structures and 

substructures. Although some microelectromechanical systems (MEMS) angular 

accelerometers have been invented and developed, their performance cannot be 

compared to that of conventional sensors (Aizawa et al., 2008). Therefore, from 

application point of view, it is not easy to accurately acquire complete angular 

accelerations directly at interface while they are required as input for substructural 

identification.  

In contrast, with the advantages of being small in size and mass, easy attachment, 

high sensitivity and low in cost, strain gauge is one of the most widely applied 

sensors in research and industry. In addition, the technology and application of fiber 

sensors have progressed rapidly in the last two decades due to their advantages over 

other types of sensors in terms of electrically passive operation, electromagnetic 

interference immunity, high sensitivity, and multiplexing capabilities (Kersey et al., 

1997). For structural health monitoring, impact detection, shape control and 

vibration damping, fiber Bragg grating (FBG) optical strain sensors are widely 
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applied in bridges, mines, marine vehicles and aircrafts, as demonstrated by Rao 

(1999). Therefore, in practice, strains can be readily obtained by applying strain 

gauges in most cases and FBG optical strain sensors for some special conditions 

such as harsh environments and long-range, long-term deployments. 

To overcome the difficulty of obtaining angular acceleration directly with expensive 

angular accelerometers or indirectly with angular displacement sensors or 

gyroscopes (angular rate sensors), a recovery method is proposed to compute 

interface angular accelerations by use of measured strains and translational 

accelerations. Incorporating with this recovery method, SSRM is applied to identify 

the unknown substructural parameters. Numerical studies of substructural 

identification in a simply supported beam and a cantilever plate are conducted to 

validate the effectiveness of the proposed identification strategy. 

2.1 Substructure method with the concept of ‘quasi-static 

displacement’  

This method was proposed by Koh et al. (2003b), briefed as follows. Generally, the 

motion of a multi-DOF dynamic system can be described as 

[ ]{ } [ ]{ } [ ]{ } { }M u C u K u P+ + =                                                                      (2.1) 

where [ ]M , [ ]C and [ ]K are mass, damping and stiffness matrices of the structural 

system, respectively. { }u , { }u , { }u represent the acceleration, velocity and 

displacement responses when the structure is subject to excitation forces { }P . 
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The procedure of structural identification involves computing dynamic responses 

repeatedly, when the system involves a large number of unknown parameters, 

obtaining dynamic responses for whole structure with considerable number of DOFs 

can be incredibly time consuming. The substructure method (Koh et al., 2003a) was 

proposed to focus on a part of the structure we are interested in, which significantly 

reduces the number of unknown parameters and DOFs. The equation of motion for a 

substructure extracted from Eq. (2.1) yields 

j j j
rj rr rj rr rj rr r

r r r

u u u
M M C C K K P

u u u
     

     + + =          
     

 

 
                                              (2.2) 

where subscripts r and j denote internal and interface DOFs of the substructure. 

Treating interface responses as ‘input’ for the substructure concerned, Eq. (2.2) can 

be rearranged as 

[ ]{ } [ ]{ } [ ]{ } { } { } { } { }rr r rr r rr r r rj j rj j rj jM u C u K u P M u C u K u     + + = − − −                             (2.3) 

The concept of “quasi-static displacement” vector is adopted to eliminate the 

requirement of time signals of displacement and velocity since the acceleration 

measurement is preferred over displacement and velocity in practice (Koh et al., 

2003b). The displacements at internal DOFs are expressed as the sum of quasi-static 

displacements { }sru  and relative dynamic displacements { }*
ru  

{ } { } { }*s
r r ru u u= +                                                                                                        (2.4) 

Quasi-static displacements can be obtained by solving Eq. (2.3) while ignoring the 

applied force, inertia effect and damping effect (all time-derivative terms set to zero).  
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[ ] ( ){ } { }s
rr r rj jK u t K u = −                                                                                             (2.5) 

or 

{ } [ ] { } [ ]{ }1s
r rr rj j ju K K u r u−  = − =                                                                                 (2.6) 

where [ ]r  is called the influence coefficient matrix which relates internal DOFs to 

interface DOFs under the quasi-static condition. Based on the quasi-static concept, 

we have 

{ } [ ] { } [ ]{ }1s
r rr rj j ju K K u r u−  = − =                                                                                   (2.7) 

{ } [ ] { } [ ]{ }1s
r rr rj j ju K K u r u−  = − =                                                                                   (2.8) 

Substituting Eq. (2.7) and Eq. (2.8) into Eq. (2.3) leads to 

[ ]{ } [ ]{ } [ ]{ } { } [ ][ ]( ){ } [ ][ ]( ){ }* * *
rr r rr r rr r r rj rr j rj rr jM u C u K u P M M r u C C r u   + + = − + − +      

 
(2.9) 

where { }*
ru , { }*

ru and { }*
ru  are responses with applied forces located within the 

substructure, inertial and damping effects into consideration. Since damping force is 

usually small compared to inertia force in typical civil engineering structures, the 

velocity dependent part in the interface forces is assumed to be negligible. Thus Eq. 

(2.9) can be rearranged as 

[ ]{ } [ ]{ } [ ]{ } { } [ ][ ]( ){ }* * *
rr r rr r rr r r rj rr jM u C u K u P M M r u + + = − +                                    (2.10) 
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If there is no force applied within the substructures, { }rP vanishes and the response 

of internal DOFs are determined solely by the interface forces. Equation (2.10) can 

be written as 

[ ]{ } [ ]{ } [ ]{ } [ ][ ]( ){ }* * *
rr r rr r rr r rj rr jM u C u K u M M r u + + = − +                                          (2.11) 

Only accelerations (no displacements or velocities) at interface DOFs are required to 

compute the interface forces.  

2.2 Angular acceleration recovery method 

The angular acceleration recovery method is based on the derived strain-to-

displacement relation by Reich and Park (2001) to determine nodal rotational 

displacements with strains. Within an element, the displacement { }u  can be divided 

into deformation { }d  and rigid body motion { }r as follows 

{ } { } { }u d r= +                                                                                                       (2.12) 

The rigid body motion can be written as 

{ } [ ]{ }r α α= Φ                                                                                                         (2.13) 

where [ ]αΦ and { }α are the elemental rigid body modes and associated rigid body 

motion amplitude. Within an element, the displacement-strain relation is 

{ } [ ]{ }s S u=                                                                                                             (2.14) 
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Since the rigid body motion does not induce any strain, substitute Eq. (2.12) into Eq. 

(2.14) 

{ } [ ]{ } [ ] { } { } [ ]{ }( )s S u S d r S d= = + =                                                                        (2.15) 

From Eq. (2.15), the deformation can be obtained by taking pseudo inverse 

operation on the rank-deficient matrix [ ]s  

{ } [ ]{ } [ ] [ ] [ ] { }
1T T

sd s S S S s
−

 = Φ =     
                                                                         (2.16) 

Hence, the displacement within an element can be expressed as 

{ } [ ]{ } [ ]{ }su s α α= Φ + Φ                                                                                            (2.17) 

where [ ]{ }s sΦ  and [ ]{ }α αΦ represent the deformation and rigid body motion within 

an element in Eq. (2.12). For a beam, plate or shell element, the displacement { }u

involves translational displacement { }wu and angular displacement { }uθ . Equation 

(2.17) is partitioned into translational and angular groups, giving  

{ } { }w sw w

s

u
s

u
α

θ θ αθ

α
Φ Φ     

= +     Φ Φ     
                                                                                    (2.18)               

With the measured translational motion and strain, the unknown angular 

displacement { }uθ and rigid body motion amplitude { }α can be obtained by solving 

Eq. (2.18) as follows 

{ } { }
10

0
w sw

w
s

I
s u

u I
α

θ αθ θ

α −−Φ  Φ         = −        −Φ Φ        
                                                                 (2.19) 
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From Eq. (2.19), it is obvious that the angular displacement { }uθ  and rigid body 

motion amplitude { }α can be uniquely determined by the measured strain and 

translational displacement within an element. Reich and Park (2001) adopted this 

approach and successfully obtained unknown angular displacements by use of strain 

and translational displacement measurements in numerical examples of a cantilever 

beam and a cantilever plate. In practice, however, the acceleration measurement is 

preferred over displacement since displacement transducers are difficult or 

expensive to install, compared with accelerometers. Furthermore, from Eq. (2.10), 

instead of interface angular displacements, interface angular accelerations are 

involved as a part of complete interface acceleration measurements, which are 

indispensable for forward analysis of substructures. Differentiating Eq. (2.19) twice 

with respect to time yields 

{ } { }
10

0
w sw

w
s

I
s u

u I
α

θ αθ θ

α −−Φ  Φ         = −        −Φ Φ        


 


                                                                (2.20) 

From Eq. (2.20), it is clear that the translational acceleration { }wu  can be measured 

directly with accelerometers and { }s can be obtained by differentiating the measured 

strain. Then the angular acceleration { }uθ can be solved with measured { }wu  and 

computed { }s  with Eq. (2.20).  

2.3 Search space reduction method 

The convergence rate and accuracy of GA highly depend on the size of the search 

space. Search space reduction method (SSRM), proposed by Koh and Perry (2006, 
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2010), yields more accurate solutions with improved efficiency by adaptively 

reducing the search space limits for unknown parameters in GA. The essential idea 

of SSRM is simple: reduce the time spent on looking far outside the area where the 

optimal solution lies in, and let the search space for those parameters reduce quickly. 

These are achieved by carrying out several runs of the improved GA based on 

migration and artificial selection (iGAMAS), followed by the computation of the 

mean and standard deviation of the identified parameters. The standard deviation 

indicates the uncertainty of the parameter. Small value of standard deviation implies 

converged identified parameter. When some parameters converge almost exactly, 

the SSRM effectively reduces the number of unknown parameters and those 

remaining can be identified more efficiently. The flowchart of SSRM is illustrated in 

Fig. 2.1.  
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Figure 2.1 Flowchart of SSRM  

The basic parameters defined in SSRM are the number of runs for evaluation of 

search limits, the width of the reduced search space window and the total number of 

runs. The number of runs is used for evaluating the search space, hence the value of 

the number of runs should be selected moderately so that it is sufficient to get a good 

estimation of the mean of the parameters, but not so large that it includes very old 

results that would slow down the convergence. In general, more runs will make the 
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system identification more robust at the price of increase in total computational time. 

The new search space is defined as 

Search space = Mean ± Window × Standard deviation 

The new search space is usually not wider than the original limits. In SSRM, the 

mean values of parameters are calculated using weighted results and the more recent 

runs are given a higher weight. A small standard deviation implies the mean is very 

likely close to the optimal parameter value and the search limits can be reduced 

since normally the value of width of window is unchanged. It is important to choose 

a window sufficiently small to achieve convergence but adequately wide to confine 

the actual solution within the new search space. In practice, a value of window width 

of about 4 has been found to be efficient. The total number of runs is decided by 

accuracy requirement. The mean values and standard deviation of parameters can be 

obtained from results of the previous runs. Then the updated search limits can be 

calculated to narrow down the search space. Generally, the results will be 

increasingly accurate when the search space reduces after each run. However, 

accuracy will be limited due to factors such as noise and it is possible that there is no 

further improvement after a time. Therefore in general, more total runs lead to more 

accurate results; but the computational time increases rapidly. 

The heart of SSRM is the improved GA based on migration and artificial selection, 

whose important features distinguishing iGAMAS (Perry et al., 2006; Koh and Perry, 

2010) from ‘normal’ GA are inclusion of multiple species, artificial selection, 



Chapter2. Substructural Identification with Measurements of Strains and Translational Accelerations 

57 

 

regeneration and variable data length procedure. The flowchart of iGAMAS is 

shown in Fig. 2.2. 
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Figure 2.2 Flowchart of iGAMAS  
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The real power of the iGAMAS strategy lies in division of the population into 

different species. In GA, it is difficult to find a balance between utilizing the 

information from previous good solutions (exploitation), and maintaining a broad 

search capacity (exploration). With multiple species, this problem is greatly settled 

since as one species searches broadly another searches locally around the best 

solutions. Four species have been adopted in iGAMAS. Species 1 is used to store the 

best results and species 2-4 conduct the search from a very broad random search to a 

more refined local search.  

The solutions with GA easily converge to local optima and it is difficult to find the 

global optimal solution. Regeneration involves the complete random replacement of 

a species. In iGAMAS, only species 2 and 3 are regenerated, which allows species 4 

to focus on refining the previously generated solutions and species 2 and 3 search 

for new possibilities. A reintroduction is introduced to ensure that species 4 operates 

on a set of good solutions, by inserting individuals from species 1 into species 4 at a 

prescribed interval. Migration allows exchanging information between species, 

which help share important information among different species by exchanging 

randomly selected individuals. Artificial selection ensures that the fittest individuals 

are stored in species 1 for future refinement. If any individuals are better, they will 

replace the worst individuals in species 1 so that species 1 always contains the best 

solutions. 
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2.4 Substructural identification strategy 

It is generally difficult or expensive to measure the complete angular accelerations at 

the interface of beam and plate types of substructures due to the difficulty or 

expense to accurately measure angular accelerations in practice. In contrast, 

measurements of strains and translational acceleration can be readily and 

economically obtained with strain gauges and translational accelerometers, which 

are widely applied in experiments and industry. Therefore, it is beneficial to 

compute interface angular accelerations by incorporating strain and translational 

acceleration measurements. In this study, by adopting angular acceleration recovery 

method as discussed in Section 2.2, the interface and some internal angular 

accelerations will be firstly computed by use of the strain and translational 

acceleration measurements. The complete interface acceleration measurements are 

obtained to ensure substructural forward analysis. The flowchart of substructural 

identification is shown in Fig. 2.3. 

Strain 
measurements

Translational acceleration 
measurements

Angular acceleration 
recovery method

Savitzky-Golay 
differentiator

Substructural identification
(SSRM)

Some internal 
angular acceleration

 Complete interface 
angular acceleration

Start

 

Figure 2.3 Flowchart of substructural identification strategy using measurements of 
strains and translational accelerations 
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As briefed in Section 2.3, SSRM achieves significant enhancement in terms of 

accuracy and efficiency compared to a standard GA, by narrowing the search space 

adaptively based on the statistics of results obtained. In this study, SSRM is adopted 

as the search engine to identify unknown substructural parameters by minimizing the 

difference between the simulated and measured internal accelerations in the 

substructure through a fitness function. The fitness function in GA is defined as    

( ) ( )
( )( )

2

2
1 1

1

, ,M L
m e

i j m

f
u i j u i j

c
E u i= =

=
−

+∑∑
 



                                                                                    (2.21)       

where subscripts m  and e  denote measured and estimated quantities, respectively; 

L  is the number of time steps and M  is the number of measurement sensors used. 

( )( ) ( )2 2

1
, /

L

m m
n

E u i u i j L
=

= ∑  represents the mean squared value of ith measured 

accelerations. Constant c  is chosen to have the same order of normalized summed 

square error which is the second term in the denominator of the fitness function. In 

this study, an appropriate value for the constant c  is predefined as 0.001, with the 

same magnitude of the summed square error in the following two numerical 

examples. In general, more reliable identification results will be obtained with more 

measurements. Therefore, the measurements in the fitness function include not only 

the directly measured translational accelerations but also some recovered angular 

accelerations at internal DOFs. 
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2.5 Numerical examples 

The performance of the proposed substructural identification strategy is 

demonstrated for the application of damage detection and structural identification 

through two numerical examples of a simply supported beam and a cantilever plate. 

The mass parameter for each element is assumed to be known in both examples. The 

unknown parameters include the flexural rigidity in the beam example and Young’s 

modulus in the plate example in the respective substructures, as well as the two 

damping coefficients. A fairly broad search range of these parameters is defined as 

half to double of their exact values. For the simply supported beam example, the 

damage in the substructure is quantified by comparing the values of the flexural 

rigidity for each element before and after damage occurrence. For the cantilever 

plate, the substructure health status can be evaluated based on the computed 

elemental stiffness from the identified Young’s modulus. 

The simulated responses of all DOFs of beam and plate numerical models are first 

computed in terms of displacement, velocity and acceleration with Newmark’s 

constant acceleration method. Damping effect is considered by assuming 5% critical 

damping for the first two modes. The uncontaminated strains at the selected 

measurement points are computed with these simulated responses accordingly. In 

practice, measurements are inevitably contaminated by noise which may affect the 

accuracy of identification results. Thus the noise effects should be considered in the 

numerical study. To simulate noise polluted measurements, a noise contaminated 

signal X  is represented by adding noise to a clean signal  cleanX  as follows 
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( )clean cleanX X Noise Noise Level RMS X= + × ×                                                           (2.22) 

where ‘ Noise ’ is randomly generated noise vector of Gaussian distribution with zero 

mean and unit standard deviation. ‘ Noise Level ’ is the given noise level. ( )cleanRMS X

is the root-mean-square of the clean measurement. The effect of measurement noise 

is considered by introducing three levels of noise, 0%, 5% and 10%. To consider the 

stability of random search of GA based on its nature of stochastic search, the 

substructural identification results in this chapter are averaged from 5 tests with 

different simulated measurement data.  

2.5.1 Substructural damage identification on a simply supported beam  

A simply supported beam of 960 mm length, 50 mm width and 3 mm height is 

modeled by 16 identical elements connected to 17 nodes as shown in Fig. 2.4. There 

are two DOFs, i.e., a vertical translation and a rotation on each intermediate node, 

while only the rotation is considered for the two supporting nodes. The Young’s 

modulus and density of the beam are 2.1×1011N/m2 and 7,862 kg/m3, respectively. 

Euler beam model is applied with negligible shear strain due to the large length to 

height ratio. 
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Figure 2.4 A simply supported beam (a) Without damage, (b) With damage and (c) 
Its numerical model  

Damage in the simply supported beam is simulated as decrease in flexural rigidity 

by cutting the beam transversely as indicated in Fig. 2.4, in which the effective beam 

width in element 6 and 10 is reduced from 50 mm to 24 mm. A random excitation 

acts on node 13. Structural response subjected to this excitation is computed for 0.4 

s with a sampling rate of 5,000. To quantify the damages in this simply supported 

beam, the measurements in undamaged and damaged states are required, which 

serve to identify the flexural rigidity of substructure before and after damage 

occurrence. In this study, the extent of the damage is defined as the percentage of 

flexural rigidity loss to the undamaged flexural rigidity 

_ _

_

100%i u i d
i

i u

EI EI
D

EI
−

= ×                                                                                          (2.23) 

where iD is the damage extent for element i , _i uEI and _i dEI are the flexural rigidity of 

the undamaged and damaged element i . With known exact structural parameters in 
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undamaged and damaged states, the flexural rigidity is 23.625 2N m⋅  and 11.34 2N m⋅  

for undamaged and damaged element, respectively. Therefore, the damage extent in 

element 6 and 10 is 52% due to the reduction of element width. In this study, the 

absolute identification error in the identified stiffness is defined as the ratio of 

absolute error in the identified value to the exact value. 

1 5432 6 10987 11 12 16151413
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Figure 2.5 Three different substructures with sensor placements (a) SS1, (b) SS2 and 

(c) SS3 

Three different substructures are investigated, respectively denoted as SS1, SS2 and 

SS3 for convenience shown in Fig. 2.5. SS1, SS2 and SS3 contain elements 5-8, 

elements 8-11 and elements 5-11, respectively. The strain information from installed 

strain gauges at the top surface of beam in these three substructures is obtained. The 

translational (linear) accelerations from instrumented accelerometers are measured 

at the selected locations illustrated in Fig. 2.5. To recover interface angular 

accelerations of SS1, SS2 and SS3, the strains are assumed to be measured in 

elements 5 and 8, elements 8 and 11, elements 5 and 11 or elements 5, 8 and 11, 
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respectively. For SS1, the translational accelerations are assumed to be available at 5 

nodes, namely, the 5th, 6th, 7th, 8th and 9th node. For SS2, the translational 

accelerations are assumed to be measured at nodes 8, 9, 10, 11 and 12. In the 

identification, two damping parameters are also taken as unknowns resulting in 6, 6 

and 9 unknown parameters for SS1, SS2 and SS3, respectively. The GA parameters 

used for identification of SS1, SS2 and SS3 are presented in Table 2.1. 

Table 2.1 GA parameters used for identification of SS1, SS2 and SS3 

 SS1 and SS2 SS3 
Number of unknown parameters 6 9 
Population size 30 × 3 50 × 3 
Runs 4/10 4/10 
Generations 100 100 
Crossover rate 0.4 0.4 
Mutation rate 0.2 0.2 
Window width 4.0 4.0 
Migration 0.05 0.05 
Regeneration 3 3 
Reintroduction 30 30 

To improve the accuracy of identification results, not only the measured internal 

translational accelerations but also some recovered internal angular accelerations are 

accounted in evaluation of the fitness function. The recovered angular accelerations 

at nodes 6 and 8 of SS1 are involved in the fitness function evaluation. In SS2, the 

recovered angular accelerations at nodes 9 and 11 are treated as measurements and 

used in evaluation of the fitness function. The damage identification results for SS1 

and SS2 are shown in Fig. 2.6 and Fig. 2.7. The substructural identification errors 

for SS1 and SS2 in pre-damaged and post-damaged states are listed in Table 2.2. 
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Figure 2.6 Identified damage extent of SS1 
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Figure 2.7 Identified damage extent of SS2 
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Table 2.2 Absolute identification errors of SS1 and SS2 in undamaged and damaged 
states 

Beam state Noise level 
SS1 SS2 

Mean error 
(%) 

Max error 
(%) 

Mean error  
(%) 

Max error 
(%) 

Undamaged  

0% 1.56 2.97 2.27 3.59 

5% 3.60 5.96 5.24 7.87 

10% 5.51 11.87 6.75 11.67 

Damaged  

0% 1.39 2.54 1.91 2.64 

5% 4.42 6.48 2.03 4.09 

10% 6.48 9.10 7.03 9.26 

 

The identified results in Fig. 2.6 and Fig. 2.7 show that the proposed method gives 

reliable identification results of the locations and extents of damage in element 6 and 

10. When the measurements contain 10% noise, the extents of the damage in 

element 6 of SS1 and element 10 of SS2 are identified as 50.11% and 51.32% 

reduction in flexural rigidity, which are very close to the exact 52% flexural rigidity 

degradation. In the worst case, the maximum false damage identified is 7.85% and 

7.21% in element 5 of SS1 and element 9 of SS2 when the strains and translational 

measurements are contaminated by 10% noise. In addition, the substructural 

identification errors in Table 2.2 show that the flexural rigidities for undamaged and 

damaged substructures are successfully identified with the proposed identification 

strategy even when the measurements are polluted by 10% noise.  

Two different sensor placement schemes are applied to identify SS3, as shown in 

Fig 2.5, denoted as Case 1 and Case 2. Twelve sensors are employed for both cases: 

four strain gauges and eight accelerometers in Case 1 while six strain gauges and six 

accelerometers in Case 2. In Case 1, the strain measurements are collected in 

element 5 and 11, and the translational accelerations are available at nodes 5-12. In 
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Case 2, the strains in elements 5, 8 and 11, the translational accelerations at nodes 5, 

6, 8, 9, 11 and 12 are measured. In Case 1, the recovered angular accelerations at 

node 6 and 11 as well as the directly measured translational accelerations at node 6, 

7, 8, 9 10 and 11 are used in the fitness function. In Case 2, the recovered angular 

accelerations as well as the measured translational accelerations at node 6, 8, 9 and 

11 are employed to compute the fitness function in GA. The damage identification 

results of Case 1 and Case 2 for SS3 are shown in Fig. 2.8 and Fig. 2.9. The 

substructural identification errors of both cases in undamaged and damaged states 

are listed in Table 2.3. 
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Figure 2.8 Identified damage extent of SS3 (Case 1) 
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Figure 2.9 Identified damage extent of SS3 (Case 2) 

Table 2.3 Absolute identification errors for Case 1 and Case 2 of SS3 in undamaged 
and damaged states 

 

Beam state Noise level 

SS3 

Case 1 Case 2 
Mean error 

(%) 
Max error 

(%) 
Mean error  

(%) 
Max error 

(%) 

Undamaged  

0% 1.17 2.38 1.91 2.92 

5% 3.92 6.38 2.42 3.35 

10% 6.97 11.95 4.48 7.07 

Damaged  

0% 0.87 2.08 1.72 3.16 

5% 3.48 6.05 2.52 3.67 

10% 6.09 10.68 3.93 6.35 

 

Damage identification results in Fig. 2.8 and Fig. 2.9 show that the identified 

damages in element 6 and 10 are quite close to the exact values. The maximum false 

identified damage is less than 8% in element 7 of SS3 (Case 1) and around 5% in 

element 5 of SS3 (Case 2) when 10% noise is introduced into the measurements. 

These results, including the maximum error 11.95% for Case 1 and 7.07% for Case 
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2, as listed in Table 2.3, indicate that the location and severity of damaged in SS3 

are successfully identified with both sensor placement schemes even if the 

measurements are contaminated by 10% noise. 

From the damage identification results in Fig. 2.8 and Fig. 2.9, the advantage of the 

sensor placement scheme of Case 2 over that of Case 1 is not remarkable. In both 

cases, the damages in SS3 can be successfully identified and the maximum false 

identification errors around 8% for Case 1 and 5% for Case 2 are comparable. 

Nevertheless, the substructural identification errors in Table 2.3 provide clear 

evidence that more accurate identification results are obtained in Case 2 than Case 1, 

especially when relatively high noise level is introduced. The maximum 

identification error for the undamaged SS3 decreases to 7.07 % of Case 2 from 

11.95% of Case 1 and 6.85% of Case 2 from 10.68% of Case 1 for the damaged 

SS3. Compared with Case 1, the sensor placement scheme in Case 2 show its 

advantages in terms of accuracy of identification results due to more number of 

angular accelerations at internal DOFs used in fitness function evaluation. The 

sensitivity study indicates that internal angular accelerations are more sensitive to 

substructural parameters than translational accelerations at internal DOFs. A more 

detailed discussion is given in Section 2.6.2. 

2.5.2 Substructural identification on a cantilever plate 

A 2 m long, 2 m wide and 0.04 m thick cantilever plate shown in Fig. 2.10 is 

modeled by 8 × 8 thin plate elements, in which the out-of-plane shear strain is 

negligible due to small ratio of plate thickness to its length or width. There are three 

DOFs at each node, one translation and two rotations except for the nodes at the 
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fixed edge. The Young’s modulus and density of the plate are 2.1×1011 N/m2 and 

7,862 kg/m3, respectively. A random excitation is applied at one corner of the free 

edge, shown in Fig. 2.10. Subjected to this excitation, structural response is 

computed for 0.4 s with a sampling rate of 5,000. 
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Figure 2.10 A cantilever plate model with excitation at a corner 

In this cantilever plate, two different substructures SS1 and SS2 are considered, 

shown in Fig. 2.11. SS1 contains 16 elements, i.e., elements 19, 20, 21, 22, 27, 28, 

29, 30, 35, 36, 37, 38, 43, 44, 45 and 46. There are 24 elements in SS2, i.e., elements 

6, 7, 8, 14, 15, 16, 22, 23, 24, 30, 31, 32, 38, 39, 40, 46, 47, 48, 54, 55, 56, 62, 63 

and 64.  
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Figure 2.11 (a) A cantilever plate, (b) SS1 and (c) SS2 

To obtain complete interface acceleration measurements, translational 

accelerometers and strain gauge rosettes are installed at the interface of SS1 and SS2. 

In total, 24 accelerometers and 48 strain gauge rosettes are employed in SS1. There 

are 27 accelerometers and 32 strain gauge rosettes installed in SS2. The strain gauge 

rosettes in Fig. 2.11 measure three in-plane strains { }x y xyε ε γ and the 

accelerometers record the translational acceleration signals on selected locations. In 

SS1, the internal measurements includes the directly measured translational 

accelerations and recovered angular accelerations at nodes 31, 32, 33, 40, 42, 49, 50 

and 51, thus there are 24 number of internal responses involved for fitness function 

evaluation in GA. In SS2, 36 internal responses are used to guide GA to search for 

the optimal solution, including the directly measured translational accelerations at 18 

nodes 7, 8, 16, 18, 25, 26, 34, 36, 43, 44, 52, 54, 61, 62, 70, 72, 79 and 80 as well as 

the recovered angular accelerations at nodes 7, 16, 25, 34, 43, 52, 61, 70 and 79. In 

substructural identification, the unknown stiffness for each element and two 

unknown damping coefficients result in 18 and 26 unknown parameters for SS1 and 
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SS2, respectively. The GA parameters used for identification of SS1and SS2 are 

listed in Table 2.4. 

Table 2.4 GA parameters used for identification of SS1 and SS2  

 SS1  SS2 
Number of unknown parameters 18 26 
Population size 50 × 3 90 × 3 
Runs 4/20 4/20 
Generations 200 200 
Crossover rate 0.4 0.4 
Mutation rate 0.2 0.2 
Window width 4.0 4.0 
Migration 0.05 0.05 
Regeneration 3 3 
Reintroduction 30 30 

Figures 2.12 and 2.13 present the stiffness identification results of SS1 and SS2 with 

0%, 5% and 10% noise polluted measurements. The mean and maximum 

identification errors of SS1 and SS2 are summarized in Table 2.5. 
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Figure 2.12 Stiffness identification results of SS1  
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Figure 2.13 Stiffness identification results of SS2 

Table 2.5 Absolute identification errors of SS1 and SS2  

Noise level 
SS1 SS2 

Mean error 
(%) 

Max error 
(%) 

Mean error  
(%) 

Max error 
(%) 

0% 1.08 2.91 2.87 6.98 

5% 3.55 6.26 5.55 11.54 

10% 6.38 11.30 8.39 16.67 

The identification results of SS1 and SS2 in Figs. 2.12-2.13 indicate that the 

stiffness can be reasonably identified even with noisy measurements. The proposed 

strategy is effective to deal with complex interfaces where a considerable number of 

angular acceleration measurements are required for substructural identification. 

Since GA yields a good solution but not the exact solution based on its heuristic 

search nature, it is difficult to identify unknown parameters exactly even with clean 

signals, as indicated in Table 2.5 for 0% noise case. It is also observed that the 

optimal solution in GA search domain shifts due to the noise in the measurements 
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(Zhang, 2009), which would definitely affect the identified results. The two factors 

both contribute to the identification error in each identified parameter. Therefore, 

quality of the identified results is evaluated by the mean error of all unknown 

parameters in a statistical sense. As seen in Table 2.5, the mean and maximum 

identification errors of 1.08% and 2.91% in SS1 for unpolluted measurement 

indicate that the values of identified stiffness are quite close to the exact solution. 

The mean and maximum error of 6.38% and 11.30% in SS1 show that the 

identification results in SS1 are quite excellent even when the measurements are 

contaminated by 10% noise. In comparison with the identification results of SS1, the 

identified stiffness in SS2 deviates from the exact solution to some extent, but still 

acceptable from practical point of view. As indicated in Table 2.4, there are 18 and 

26 unknown parameters involved in SS1 and SS2, respectively. The main reason of 

more accurate identification results achieved for SS1 is that there is less number of 

unknown parameters involved in SS1 compared with that in SS2. The other reason is 

that more accurate angular accelerations at internal nodes are recovered in SS1 with 

average values from surrounding different elements. In Fig. 2.11, the recovered 

angular accelerations at nodes 31, 33, 49 and 51 in SS1 are the average values from 

three adjacent elements, while the other angular accelerations are averaged from two 

adjoining elements. Generally, more accurate values are obtained by the averaging 

technique which can reduce the effect of noise. However, in SS2, although the 

angular acceleration at nodes 16, 25, 34, 43, 52, 61, 70 and 79 are averaged from 

two adjacent elements, larger errors exist in the recovered angular accelerations at 

the two corner nodes 7 and 79 since they are computed from only one element with 

the recovery method in Section 2.2.  
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2.6 Discussion 

2.6.1 Differentiation error 

From Eq. (2.20), the second order derivatives of the measured strains are needed to 

compute the angular accelerations. Therefore, it is a critical issue to select an 

appropriate differentiation algorithm in this identification strategy, since the 

accuracy of recovered angular acceleration is largely dependent on it. In practice, 

measurements are inevitably contaminated by noise, and inappropriate 

differentiation operation will substantially amplify the noise effect in the results. In 

this regard, Savitzky-Golay differentiation algorithm is adopted in this study in view 

of its several advantages (Luo et al., 2005). Savitzky-Golay differentiation algorithm 

is based on a simple idea of the least-squares polynomial fitting by a moving 

window. Furthermore, the differentiation coefficients can be easily obtained from a 

well-established table (Savitzky et al., 1964). Moreover, Savitzky-Golay 

differentiation algorithm can be tailored with arbitrary length and polynomial order 

for versatile applications. Savitzky-Golay differentiation algorithm provides a good 

numerical derivative estimation of signal, especially those containing noise.  

Although Savitzky-Golay algorithm is potentially accurate for differentiation, it 

suffers from a major drawback that it is unable to accurately compute the derivatives 

at two ends of the signal due to reduced number of measurement data involved for 

derivatives estimation. In this regard, large errors exist at the two ends of the 

estimated second derivatives of the strain measurements. In addition, it is very 

difficult to obtain accurate second derivatives of the transient responses due to the 
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large fluctuation in the measurements, especially when the applied force starts from 

a relatively high magnitude. Therefore, large differentiation errors will be induced in 

the recovered interface angular acceleration at the initial part, due to the drawback of 

Savitzky-Golay differentiation algorithm and the difficulty of acquiring accurate 

derivatives of violently fluctuating measurements. For instance, the exact and 

recovered angular acceleration at node 8 in SS3 in Fig. 2.5 with the unpolluted 

translational acceleration and strain measurements for the first 200 data points are 

plotted in Fig. 2.14 when the applied force starts from a high amplitude. 
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Figure 2.14 Exact and recovered interface angular acceleration at node 8 of SS3 

Large deviations in recovered angular acceleration at the initial part shown in Fig. 

2.14 will inevitably affect accuracy of the identification results. Large discrepancy is 

also discovered in simulated acceleration at internal DOFs at initial part due to 

inaccurate estimation of interface angular accelerations at the beginning part. 

Although the effect of differentiation error at the ending part of simulated responses 
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is not as serious as that at the beginning part, it is beneficial to exclude the 

comparison between the simulated response and measurements at two ends in fitness 

function to mitigate effects of differentiation error on the identification results. This 

operation will certainly cost some computational time for the first certain time steps. 

Fortunately, the differentiation error in the recovered angular acceleration decays 

fast if random forces starting from small amplitude are applied. Therefore, the 

additional computational time can be substantially reduced since the differentiation 

error only affects the simulated responses in limited initial time steps. 

2.6.2 Sensitivity studies 

The equation of motion for a substructure can be written as 

[ ]{ } [ ]{ } [ ]{ } { } { } { } { }rr r rr r rr r r rj j rj j rj jM u C u K u P M u C u K u     + + = − − −                             (2.3) 

By introducing two Rayleigh damping coefficients, the damping matrix can be 

expressed as [ ] [ ] [ ]0 1rr rr rrC a M a K= +  and 0 1rj rj rjC a M a K     = +      . It is assumed that 

the mass matrix remains unchanged during the identification. Differentiating Eq. 

(2.3) with respect to elemental stiffness iK , we have 

[ ] { } [ ] { } [ ] { } [ ]{ } [ ]{ } { } { }1 1
rj rjrr rrr r r

rr rr rr r r j j
i i i i i i i

K KK Ku u u
M C K a u u a u u

K K K K K K K

   ∂ ∂∂ ∂∂ ∂ ∂    + + = − − − −
∂ ∂ ∂ ∂ ∂ ∂ ∂

 
    (2.24) 

In substructural identification, the two unknown damping coefficients 0a and 1a are 

treated as the unknown structural parameters needed to be identified. Thus it is 

necessary to discuss the response sensitivity with respect to these two unknown 

damping coefficients. Differentiating Eq. (2.3) with respect to 0a  and 1a , we obtain 
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[ ] { } [ ] { } [ ] { } [ ]{ } { }

[ ] { } [ ] { } [ ] { } [ ]{ } { }
0 0 0

1 1 1

r r r
rr rr rr rr r rj j

r r r
rr rr rr rr r rj j

u u u
M C K M u M u

a a a
u u u

M C K K u K u
a a a

∂ ∂ ∂
 + + = − −  ∂ ∂ ∂

∂ ∂ ∂
 + + = − −  ∂ ∂ ∂

 
 

 
 

                                 (2.25) 

Therefore, through Eq. (2.24) and Eq. (2.25), the internal response sensitivity with 

respect to structural parameters can be computed. 

In the numerical example of substructural damage identification of a simply 

supported beam, two different sensor placements are settled for SS3 as shown in Fig. 

2.15. 

1 2 543 6 7 8

Accelerometer
Strain gauge

SS3 (Case 1)

SS3 (Case 2)

 
Figure 2.15 Two different sensor placements for damage identification of SS3 

The same number of sensors is employed as well as the same number of internal 

measurements used in fitness function evaluation for Case1 and Case 2. The only 

difference between these two cases is that more internal translational accelerations 

are involved in Case 1 and more angular accelerations are involved in Case 2.  For 

instance, translational accelerations at node 3 are exclusively involved in Case 1 and 

angular accelerations at node 4 are only involved in Case 2. The sensitivity of these 

two response in 1 s with respect to element stiffness 1K , 3K , 5K and 7K  are computed. 
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Figure 2.16 Sensitivity of translation acceleration at node 3 and angular acceleration 
at node 4 to elemental stiffness K1, K3, K5 and K7 of SS3 

In Fig. 2.16, sensitivities for the angular acceleration at node 4 are at least one order 

larger than those of the translational acceleration at node 3, which implies that the 

angular acceleration at node 4 is significantly more sensitive to the change of 

stiffness than the translational acceleration at node 3. The sensitivity study is also 

applied to other internal responses in SS3. It is found that angular acceleration is 

more sensitive to the change of stiffness values than translational acceleration at 

internal DOFs. As more angular acceleration at internal DOFs are used in the fitness 

function, the measurement scheme in Case 2 achieves better performance than Case 

1 in terms of accuracy of the identification results shown in Table 2.3. With 

measured strains and translational accelerations, not only the angular accelerations at 

interface but also some angular accelerations at internal DOFs are recovered by the 
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proposed recovery method. The accuracy of identification results can be 

significantly improved by employing these recovered internal angular accelerations 

in evaluation of the fitness function. In this regard, it is worthwhile to recover more 

number of angular accelerations at internal DOFs by judiciously measuring strains 

and translational accelerations at the interior of substructures for the purpose of 

improving the accuracy of identification results. 

2.7 Summary 

In this chapter, a substructural identification strategy with angular acceleration 

recovery method and SSRM is proposed to identify unknown substructural 

parameters. In substructural identification, due to the requirement of angular 

acceleration measurements at the interface of beam and plate substructures as well 

as the difficulty or expense to measure them, a recovery method is developed to 

compute the interface angular accelerations by use of the translational accelerations 

and strain measurements. Incorporating the recovery method, SSRM is employed to 

identify unknown physical parameters for substructural systems due to its excellent 

global and local search ability. The proposed identification strategy is validated 

through two numerical simulations, i.e., substructural damage detection in a simply 

supported beam and substructural identification in a cantilever plate. The results 

show that the locations and severities of damages in the simply supported beam are 

successfully identified, and the elemental stiffness in a cantilever plate is determined 

to be close to the exact values. In addition, the effectiveness of the proposed strategy 

is investigated by introducing different levels of noise into the measurements.  
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The existence of large differentiation errors at the two ends of the computed angular 

acceleration time histories inevitably affects the accuracy of identification results. 

While the differentiation error attenuates rapidly in the initial part of recovered 

angular responses, its effect on the identification results can be largely alleviated by 

excluding the comparison between the affected simulated responses and 

measurements in fitness function. The sensitivity studies show that the angular 

accelerations are more sensitive to the change of stiffness than translational 

accelerations at internal DOFs. Therefore, to improve the accuracy of the 

identification results, it is beneficial to use more number of internal angular 

accelerations for evaluation of the fitness function by extending the measurements 

scheme of strain and translational acceleration into the interior of substructures. 
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Chapter 3. Global Structural Identification with 

Unknown Input 

Generally, force measurements are required in structural identification since they are 

treated as input information. Nevertheless, in some situations, it is difficult to 

acquire force measurement data. For instance, external excitations such as wind 

loads or earthquake loads are difficult to be accurately measured in practice. As 

reviewed in Section 1.4, although many structural identification methods have been 

proposed to address the absence of excitation measurements, most of them are only 

applicable to ambiently excited structures due to Gaussian noise approximation for 

the excitations. Generally, the performance of these methods may not be satisfactory 

with noisy measurements. In this chapter, an iterative identification strategy is 

proposed for global structural identification without measurements of excitation 

forces. The locations of applied forces in the structure are assumed known in the 

process of identification. The strategy is a synergy of Tikhonov regularization 

method and SSRM, which are employed for force identification and structural 

parameter identification, respectively.  

To facilitate force identification with Tikhonov regularization method, the discrete 

time state space form is developed for global structures. After Tikhonov 

regularization method for force identification is briefly reviewed, the 



Chapter 3. Global Structural Identification with Unknown Input 

84 

 

implementation of the proposed identification strategy is described, followed by 

numerical and experimental studies.  

3.1 Discrete time state space form for global structure 

A multi-DOF dynamic system can be described as 

[ ] ( ){ } [ ] ( ){ } [ ] ( ){ } ( ){ }M u t C u t K u t P t+ + =                                                                  (3.1) 

where [ ]M , [ ]C and [ ]K are mass matrix, damping matrix and stiffness matrix of the 

structural system, respectively. ( ){ }u t , ( ){ }u t and ( ){ }u t represent the acceleration, 

velocity and displacement responses. ( ){ }P t is the excitation forces applied to the 

structural system. Newmark method of constant acceleration is adopted herein to 

compute dynamic responses of the structural system for each time step. 

{ } { } ( ){ } { }

{ } { } { } ( ){ } { }

1 1

2

1 1

1

1 2 2
2

k k k k

k k k k k

u u t u u

tu u t u u u

δ δ

α α

+ +

+ +

  = + ∆ − + 
 ∆  = + ∆ + − +  

   

  
                                                (3.2) 

where α and δ  are the Newmark constants ( 1 / 4α = , 1 / 2δ = ), and k and t∆ are the 

time step and time interval. Substituting Eq. (3.2) into Eq. (3.1), equation of motion 

for the structural system can be expressed in two consecutive time steps as 

{ } [ ]{ } [ ]{ }1 1k k kU A P B U
+ +
= +                                                                                      (3.3) 

where { } { } { } { }{ }T
U u u u=   , consisting of dynamic displacement, velocity and 

acceleration responses. The matrices [ ]A  and [ ]B  are  
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[ ] [ ] [ ] [ ] 12 *T
A t I t I I Mα δ

−
   = ∆ ∆                                                                           (3.4) 

[ ]
[ ] [ ] ( )[ ]

[ ] ( )[ ] [ ] [ ] [ ] [ ] ( )[ ] ( )[ ]

2

2

1 2
2

0 1 1 1 2
2

0 0 0

tI t I I
tB I t I A K C t K t C K

α

δ δ α

 ∆
∆ − 

   ∆
= ∆ − − + ∆ ∆ − + −   

  
 
     

(3.5) 

where [ ] [ ] [ ]* 2M M t C t Kδ α  = + ∆ + ∆  . In practice, the measurements { }y only contain 

a limited number of structural responses. Herein, mapping matrix [ ]R  is established 

to relate the measurements { }y to the structural dynamic response { }U . Then the 

measurements { }y at time step 1k + can be expressed as 

{ } [ ]{ }1 1k ky R U
+ +
=                                                                                                      (3.6) 

In this study, it is assumed that the structure starts to respond from at-rest state. 

Substituting Eq. (3.6) into Eq. (3.3) from the first to the last time step n , the relation 

between measurements { }y and excitation forces { }P  is expressed as 

{ }
{ }

{ }

{ }

[ ][ ]
[ ][ ][ ] [ ][ ]

[ ][ ] [ ] [ ][ ] [ ] [ ][ ]

[ ][ ] [ ] [ ][ ] [ ] [ ][ ] [ ] [ ][ ]

{ }
{ }

{ }

{ }

11 1

12 2

1 2
1

1 2
1

0 0 0 0
0 0 0

0 0k k

k k

n n n k
n n

R Ay P
R B A R Ay P

y PR B A R B A R A

y PR B A R B A R B A R A

− −

− − −

    
    
    
        =                       





      



      

 

           (3.7) 

In Eq. (3.7), [ ] [ ] 1
1 0 0

T
A M − =   is determined by the assumed initial condition of 

zero displacement and velocity responses. Equation (3.7) can be represented in short 

form as 
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{ } [ ]{ }y H P=                                                                                                            (3.8) 

3.2 Tikhonov regularization  

Estimating unknown input excitations to a structural system with measurement data 

is an inverse dynamic problem. Generally, it is difficult to solve this problem since 

the matrix relating the unknown input (excitations) to the output (measurements) is 

ill-conditioned. For this problem, least-square method always yields unbounded 

solutions with contaminated measurements. To this end, Tikhonov regularization, a 

method of least squares minimization, was proposed to treat this problem by 

imposing a penalty term in the objective function (Tikhonov et al., 1995). 

Appropriate selection of the optimal regularization parameter, which is the 

coefficient for the penalty term, is the key issue in Tikhonov regularization method. 

Usually, discrepancy principle, generalized cross-validation (GCV) and L-curve 

method are adopted to compute the optimal regularization parameter. The general 

rule of the discrepancy principle (Phillips, 1962) is to choose the regularization 

parameter by setting the residual norm equal to some upper bounds of the errors in 

the measurements. Nevertheless, it is pointed out that a close bound of the errors in 

the measurements is generally difficult to estimate (Hansen and O´leary, 1993) as 

the major disadvantage of the discrepancy principle. The performance of GCV 

(Trujillo and Busby, 1989) was investigated in the inverse heat conduction problem. 

It works well but suffers from comparatively expensive computation for large size 

problems. To address this issue, with reasonable computational resources, the L-

curve method was proposed (Hansen, 1992; Hansen and O´leary, 1993) to choose 

the regularization parameter at the characteristic L-shaped ‘corner’ in the graph of 
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the norm of regularized solution versus the norm of the corresponding residual. 

Therefore, in this study, L-curve method is adopted to determine the regularization 

parameter since it does not require the information of close bound of noise in 

measurements, which is difficult to estimate in practice and it shows higher 

computational efficiency compared with GCV. 

Moving forces on a bridge, modeled as Euler-Bernoulli beam and Timoshenko beam 

(Law and Zhu, 2000), were identified using the Tikhonov regularization method 

embedded with L-curve method to determine the optimal regularization parameter. 

In their study, the identified forces are significantly improved especially at the 

beginning and end of the time history with the regularization procedure. Later on, 

they extended their research into identifying vehicles axles load and moving forces 

on a bridge modeled as an orthotropic rectangular plate (Zhu and Law, 2000, 2001). 

In addition, the prestress force in a prestressed concrete beam (Law and Lu, 2005) 

was identified in time domain by a system identification approach and Tikhonov 

regularization technique with measured displacements and strains. Furthermore, 

inverse programming and Tikhonov regularization incorporated into the moving 

force identification algorithm were applied to a theoretical bridge model to derive 

the optimal force solution (Gonz´alez et al., 2008). In this study, considering its 

favourable performance in the field of force identification, Tikhonov regularization 

is employed to identify unknown excitations imposed on structural systems. 
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3.3 Iterative global structural identification strategy 

In this chapter, an iterative strategy is proposed to identify the unmeasured 

excitation forces and the unknown structural parameters. It is assumed that the 

locations of applied forces in the structure are known. The flowchart of the 

identification strategy is shown in Fig. 3.1. 

Update structural parameters

Force identification by solving Eq. (3.8)
(Tikhonov regularization method)

Identified unmeasured excitation 

Structural identification 
(SSRM)

Reach predefined maximum 
iteration ?

Yes

Measurement set 1

Measurement set 2

Iter=1, randomly generated 

Check convergence ?
Eq. (3.9)

No

Yes

Start

Reach predefined iteration to 
reduce search space?

No

Output results

Yes No

Redefine search space
Limits=mean ± window×SD

Not beyond initially defined search limits
But contains minimum search space

Minimum limits=mean×(1 ± minimum search band)

 

Figure 3.1 Flowchart of global structural identification strategy with unknown input 
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Prior to structural identification, the measurements are grouped into two sets, 

denoted as measurement set 1 and set 2. As shown in Fig. 3.1, measurement set 1 is 

used for force identification with Tikhonov regularization method while set 2 is 

employed for parameter identification with SSRM. The number of measurements in 

set 1 should be equal to or larger than that of unknown forces applied to the structure. 

Set 1 and set 2 may share some but not all of the measurements. Equation (3.7), used 

for force identification, is derived into state space based on Eq. (3.1), used for 

parameter identification. Shown in different form, these two equations are actually 

equivalent with different purposes. Equation (3.7) is employed for force 

computation and Eq. (3.1) is solved repeatedly to estimate the structural parameters. 

Set 1 and set 2 must contain different measurements with the purpose of updating 

excitation forces and structural parameters iteratively. The procedure for global 

structural identification with the proposed strategy is explained as follows: 

Step 1: Start with an initial guess of the structural parameters by random generation 

from their search space. 

Step 2: Compute [ ]H  in Eq. (3.8) for the structure according to the locations of 

measurements in set 1 with the values of structural parameters. 

Step 3: Identify the unknown excitation forces by solving Eq. (3.8) with Tikhonov 

regularization method based on knowledge of locations of the applied forces. 

Step 4: Identify structural parameters with SSRM by minimizing the difference 

between the simulated responses and the measurement set 2 based on identified 

excitations from step 3 as input. 
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Step 5: Update structural parameters with the identification results from step 4, and 

then go to step 2.  

Step 5: Repeat the identification procedure from step 2 to step 5 until the 

convergence criterion in Eq. (3.9) is satisfied or the predefined maximum iteration 

number is reached. 

The convergence criterion is that the mean absolute error after iter iterations iter
meanerr

should be not greater than the prescribed tolerance tol in Eq. (3.9). 

1

1

iter iterN
i i

iter
iiter i

mean

K K
Kerr tol
N

−

=

−

= ≤
∑

                                                                                    (3.9) 

where N  is the number of unknowns involved in structural identification. 1iter
iK − and 

iter
iK are the identified ith parameter after iter-1 and iter iterations, respectively. In 

this study, the two unknown damping coefficients are excluded in computation of 

iter
meanerr  in Eq. (3.9) since unknown structural stiffness values are the key parameters 

of interest. The algorithm of the strategy is as follows. 

Initialization: {x}initial={a}initial  + U(0,1) × ({b}initial - {a}initial) 

                      {y}  →  {y}set 1  and  {y}set 2 

For  iter = 1  to  predefined maximum iteration number 

If   iter = 1 

{x}iter = {x}initial 

Else 

{x}iter = {x}iter-1 

End 
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[H]iter  ←  {x}iter (Eq. (3.8)) 

Force identification (Tikhonov regularization method) by solving 

{y}set 1 = [H]iter {P}iter     →     {P}iter  

If  iter ≤  predefined iteration to reduce search space   

{a}iter ← {a}initial  and  {b}iter ← {b}initial   

Else 

{a}iter = mean – window × standard deviation 

{b}iter = mean + window × standard deviation 

{a}minimum = mean × (1 – minimum search band) 

{b}minimum = mean × (1 + minimum search band) 

{a}iter  ← min( max({a}initial, {a}iter), {a}minimum) 

{b}iter  ← max( min({b}initial, {b}iter), {b}minimum) 

End 

Parameter identification (SSRM): 

Input: {P}iter  and  ({a}iter ,{b}iter)   →   {x}iter       

 Check convergence with Eq. (3.9) 

End 

Figure 3.2 Algorithm of global structural identification with unknown input 

In the algorithm presented in Fig. 3.2, U(0,1) stands for uniform probability 

distribution. With the predefined initial search limits ({a}initial, {b}initial) for the 

unknown parameters, the initial estimated structural parameters {x}initial are 

randomly generated in their search limits. The measurements {y} are grouped to 

measurement set 1 {y}set 1 and measurement set 2 {y}set 2, which are employed to 

identify unmeasured excitation forces and unknown structural parameters, 

respectively. 

To improve convergence rate of identification, four parameters are employed to 

redefine the search space for each parameter, including predefined iteration to 
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reduce search space, predefined iteration for evaluating the search limits, the width 

of window for search space reduction and predefined minimum search band. Before 

the predefined iteration to reduce search space reached, a large search space for each 

parameter is employed for sufficient exploration since the estimated parameters 

deviate severely from their exactness at the beginning. Subsequently, it is beneficial 

to improve convergence rate by reducing search space based on a coarse estimation 

of structural parameters from previous iterations. It is found that 5 iterations are 

sufficient for a large exploration to achieve a coarse estimation of each parameter. 

Therefore, for the first 5 iterations, a large exploration space [0.5, 2] for each 

parameter is defined in SSRM, and then the search space is evaluated and updated 

from the 6th iteration. The new search space is determined by the number of 

iterations for evaluating the search limits, the width of the reduced search space 

window and the defined minimum search band. The results of previous 5 iterations 

have been sufficient for evaluating the new search space. A window width of about 

4 has been found to be efficient to redefine the new search space based on its 

weighted average value and standard deviation. Furthermore, a suitable value of 0.1 

for the minimum search band is defined to prevent premature searching induced by 

overly constrained search space.  

3.4 Numerical examples  

To test the performance of the proposed strategy for global structural identification, 

a simply supported beam and a cantilever plate subjected to unknown excitation 

forces are taken as numerical examples with the aim of identifying the stiffness of 

each element and the two Rayleigh damping coefficients. The simply supported 
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beam in Fig. 3.3 and the cantilever plate in Fig. 3.8 are both meshed by 16 elements, 

which results in 18 unknown parameters in GA for both examples. The initial search 

space for each unknown parameter is defined as [0.5, 2] of their exact values. The 

GA parameters for each of the two examples are shown in Table 3.1.  

Table 3.1 GA parameters used for global beam and plate identification 

 Beam and Plate 
Number of unknown parameters 18 
Population size 90 × 3 
Runs 4/20 
Generations 200 
Crossover rate 0.4 
Mutation rate 0.2 
Window width 4.0 
Migration 0.05 
Regeneration 3 
Reintroduction 30 

In both numerical examples, 0.02 and 20 are adopted as the tolerance in Eq. (3.9) 

and the maximum number of iterations, respectively. Signals of 0.4 s are recorded 

from the accelerometers installed on the beam and plate with a sampling rate of 

5,000. Furthermore, noise effect is investigated by introducing 0%, 5% and 10% 

noise in the measurement data. 

3.4.1 Damage identification on a simply supported beam 

The same simply supported beam in Fig. 2.4 is taken as the first numerical example 

to verify the performance of the proposed identification strategy. It is assumed that 

the unknown random force is applied at node 13 while 10 accelerometers at nodes 2, 

3, 4, 6, 8, 10, 12, 14, 15 and 16 are instrumented to record translational acceleration 

signals shown in Fig. 3.3. 
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Figure 3.3 The simply supported beam (a) Numerical model and (b) Sensor 

placement  

In this study, the acceleration measurements at nodes 2, 3, 6, 8, 10, 12 and 15, 

denoted as set 1 are used to identify unknown input forces with Tikhonov 

regularization method. The measurements at nodes 2, 4, 6, 8, 10, 14 and 16, denoted 

as set 2 for fitness function evaluation with Eq. (2.21) to identify the 18 unknown 

structural parameters, including flexural rigidities of 16 elements and 2 damping 

coefficients. After 20 iterations, the identified damage extents in the 16 elements for 

0%, 5% and 10% noise cases are presented in Fig. 3.4. 
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Figure 3.4 Identified damage extent of the simply supported beam 
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As seen in Fig. 3.4, with 0%, 5% and 10% noise contaminated measurements, the 

damage extents in element 6 are detected as 51.6%, 52.7% and 50.0%. For 0%, 5% 

and 10% noise cases, 51.7%, 54.2% and 52.1% reduction of flexural rigidity are 

identified in element 10. These identified damages in elements 6 and 10 are very 

close to the exact value 52%. The maximum falsely identified damages are less than 

10% for the 10% noise case. These excellent damage identification results indicate 

that the proposed strategy is able to accurately locate and quantify the damages in 

the beam even with noisy measurements. The identification errors for undamaged 

and damaged beam after 1st, 5th, 10thand 20th iteration are tabulated in Table 3.2. 

After 20 iterations, the optimal regularization parameter λ  is determined by L-curve 

method as 0.0065, 0.2113 and 0.2812 for 0%, 5% and 10% noise cases. A large 

value of regularization parameter also indicates that there is a large residual error in 

the identified results. 

Table 3.2 Absolute identification errors with respect to noise level and iteration 
number 

Noise level Iteration 
number 

Undamaged state Damaged state 
Mean error 

(%) 
Maximum error 

(%) 
Mean error 

(%) 
Maximum error 

(%) 

Noise free 

1 50.94 92.47 39.87 76.32 
5 6.30 22.35 5.12 16.24 

10 2.86 5.70 2.13 6.74 
20 0.76 1.95 1.08 2.74 

5% noise 

1 33.97 93.79 37.91 70.26 
5 12.03 39.21 15.62 36.20 

10 5.97 12.49 7.67 16.51 
20 3.99 6.54 3.34 6.88 

10% noise 

1 40.42 87.62 35.17 82.07 
5 16.31 35.59 15.02 30.08 

10 8.44 22.21 8.20 20.76 
20 5.06 10.67 6.55 11.28 

In Table 3.2, the identification errors are quite large for the 1st iteration since the 

unknown parameters are generated in a random way within the search space. Then 



Chapter 3. Global Structural Identification with Unknown Input 

96 

 

the identification errors start to reduce rapidly. After 20 iterations, acceptable 

identification results are achieved with less than 7% and 12% of mean and 

maximum errors for undamaged and damaged beam based on 10 % noise 

contaminated measurements. The identification results for the undamaged beam 

with unpolluted measurements for the 20 iterations are plotted in Fig. 3.5 and Fig. 

3.6. 
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Figure 3.5 Identification results of elements 1-8 in undamaged beam, 0% noise  
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Figure 3.6 Identification results of elements 9-16 in undamaged beam, 0% noise  

As demonstrated in Fig. 3.5 and Fig. 3.6, in the 1st iteration, the randomly estimated 

flexural rigidities of 16 elements from their corresponding search spaces yield 

largely deviated results with considerable maximum and mean errors of 92.5% and 

50.9%. But the subsequent iterations, the identified flexural rigidities converge fast 

to their exact values. Excellent results with less than 2% and 1% for the maximum 

and mean errors after 20 iterations are achieved. Moreover, fluctuated identification 

results are present in the first 5 iterations due to the broad search space [0.5, 2] for 

each parameter. In the subsequent iterations, gradually converged identified values 

of flexural rigidities are achieved after the implementation of evaluating and 

updating their search spaces. For instance, the identified values of flexural rigidity in 

element 8 and the corresponding search space for 20 iterations are plotted in Fig. 3.7. 
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Figure 3.7 Identified flexural rigidity and its search space of element 8, 0% noise  

With implementation of the search space updating method illustrated by the 

algorithm in Fig. 3.2, the results in Fig. 3.7 demonstrate that a broad search limit 

[0.5, 2] is predefined for the unknown parameters for the first 5 iterations. Then 

from the 6th iteration, the new search limit is redefined by the computed mean values 

and standard deviation based on the identification results from the previous 5 

iterations. A minimum search limit [0.9, 1.1] is also defined herein to prevent 

premature local optima, especially when insensitive parameters are involved. The 

new updated and reduced search space for each parameter after 5 iterations is 

effective to improve the convergence rate by spending more computational time on 

evaluation of the candidates close to the global optima.  
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3.4.2 Structural identification on a cantilever plate 

A cantilever plate, with length, width and thickness of 2 m, 2 m and 0.04 m, shown 

in Fig. 3.8 is taken as the second numerical example to validate the performance of 

the proposed strategy. The cantilever plate is modeled by 4 × 4 thin plate elements 

with negligible out-of-plane shear strains due to large ratio of in-plane dimensions to 

its thickness. At each node, there are three DOFs, one translation and two rotations 

except for the nodes at the fixed edge. The Young’s modulus and density of the plate 

in this numerical simulation are 2.1×1011 N/m2 and 7,862 kg/m3, respectively. A 

random excitation is applied at one corner of the free edge, shown in Fig. 3.8. 

Structural responses are computed for 0.4 s with a sampling rate of 5,000.  

There are 18 unknown structural parameters, including 16 stiffness and 2 damping 

coefficients. The translational acceleration signals are recorded at nodes 2, 4, 8, 10, 

12, 14, 18, 20, 22 and 24, thus 10 accelerometers are installed. The measurements at 

nodes 2, 4, 8, 12, 20 and 24, denoted as set 1 and the measurement data at nodes 2, 

4, 10, 14, 18, 20, 22 and 24 denoted as set 2 are employed to identify the excitation 

force and structural parameters, respectively. 
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Figure 3.8 (a) Numerical model of a cantilever plate and (b) Sensor placement  

The identification results after 20 iterations with 0%, 5% and 10% noise 

contaminated measurements are presented in Fig. 3.9 while the maximum and mean 

identification errors are listed in Table 3.3. 
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Figure 3.9 Stiffness identification results of the cantilever plate 
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Table 3.3 Absolute identification errors with respect to noise level  

Noise level 
Plate 

Mean error 
(%) 

Maximum error 
(%) 

0% 2.01 3.70 
5% 5.34 9.55 

10% 8.09 15.35 
 

The identified stiffness of each element illustrated in Fig. 3.9 is in good agreement 

with the exact value for 0%, 5% and 10% noise cases based on only 10 acceleration 

measurements. Satisfactory identification results with mean error of 8.09% and 

maximum error of 15.35% are achieved for the 10% noise case. The results show 

that the proposed strategy is capable of accurately identifying unknown structural 

parameters without excitation measurements. 

3.5 Experimental study 

To further verify the effectiveness of the proposed strategy for global structural 

identification, an experimental study on a 10-storey steel frame in Fig. 3.10, which 

was fabricated by Trinh T. N. (2010), is conducted.  



Chapter 3. Global Structural Identification with Unknown Input 

102 

 

10-storey 
steel frame

Rigid 
support

Damages

 

Figure 3.10 The 10-storey steel frame 

The frame, total height of 2.0 m and a plan of 0.2×0.4 m, consists of 6 flexible 

columns (rectangular section of 0.0046×0.025 m) and relatively stiff beams (square 

hollow sections of 0.025×0.025 m). According to measured mass and volume of a 

piece of sample, the density of the steel used in the experiment is determined as 

approximately 7,540 kg/m3. A lumped mass numerical model, shown in Fig. 3.11, is 

built to represent this frame which behaves as a 2D shear building due to the 

symmetry of structure and loading as well as significantly heavy beam system at 

each level compared with the columns. The lumped mass of each level is 

approximately calculated from the member sizes and steel density. The mass is 3.25 

kg for levels 1-9 and 3.00 kg for level 10. 
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Figure 3.11 (a) Illustration of a 10-storey steel frame and (b) The lumped-mass 
model  

3.5.1 Stiffness measurements  

A static test is conducted herein to estimate the stiffness of each frame level. The 

frame is mounted horizontally to a rigid vertical support and force is applied by 

hanging a weight with hooks at different level in the frame. The displacement at 

each level is recorded using displacement transducers and a data acquisition system. 

From Eq. (3.10), the stiffness of each storey can be computed as applied force 

divided by the displacement difference between adjacent levels. To mitigate the 

effect of possible frame torsion, two displacement transducers are symmetrically 
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installed at each level to give the average displacement measurement for 

computation of stiffness. 

i
i

WK
x

=
∆

                                                                                                                          (3.10) 

where iK is the stiffness at storey i ; W is the applied weight at level i and ix∆ is the 

displacement difference between level i  and 1i − . 

In the experiment, to reduce noise effect on measurement signals, sufficiently heavy 

weights of 25, 30 and 35 kg are sequentially applied at each level. First the weight 

was applied at level 10 and the displacements are measured at levels 9 and 10. This 

procedure is repeated for the remaining storeys by shifting the whole system of 

applied weights and transducers inwards up to level 1 by applying the weight at 

level 1 and measuring the displacement at level 1. The instrumentation for static test 

is shown in Fig. 3.12.  
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Figure 3.12 Instrumentation of the static test 
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Three heavy weights 25, 30 and 35 kg are sequentially applied to the frame from 

level 10 to level 1. For each applied weight, the stiffness of each storey is computed 

with Eq. (3.10) based on the corresponding displacement measurement data. With 

the three computed stiffness values under different applied weights, the least-square 

method is employed for estimating stiffness of each storey. The measured stiffness 

of each storey by static test is shown in Table 3.4.  

Table 3.4 Measured stiffness by static test  

Storey Measured stiffness  
(kN/m) 

1 475.96 
2 277.42 
3 430.88 
4 283.41 
5 267.68 
6 396.09 
7 378.09 
8 263.91 
9 252.09 

10 362.55 

The stiffness value of different storey shown in Table 3.4 is quite different since 

there are some damages existed in the frame, indicated in Fig. 3.10. Based on the 

measured stiffness values of each storey listed in Table 3.4, and with estimated mass 

3.25 kg for levels 1-9 and 3.00 kg for level 10 based on known steel density and 

dimension of member size of the frame, the natural frequencies of the frame are 

computed and shown in Table 3.5. 

Table 3.5 Natural frequencies computed from measured stiffness by static test 

Mode number Natural frequency (Hz) 
1 7.71 
2 22.66 
3 35.82 
4 52.36 
5 64.54 
6 75.89 
7 82.28 
8 88.78 
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9 99.00 
10 101.81 

Subsequently, the stiffness of each storey is validated by an impact test. The frame is 

hammered at level 10 and the accelerometers, installed at every level, collect the 

measurement data using a 16-channel digital oscilloscope with 2,000 samples/s. The 

natural frequencies of this frame are obtained from the power spectra of 3 s 

measurement data in frequency domain via Fast Fourier transform (FFT). The FFT 

results from the impact test with frequency ranging from 0 to 100 Hz are shown in 

Fig. 3.13.  
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Figure 3.13 Natural frequencies of the frame 

From Fig. 3.13, the first eight natural frequencies from the impact test are 7.4, 23.0 

37.2, 53.0, 65.5, 76.8, 84.0 and 97.5 Hz. They are merely 4.0%, 1.5%, 3.9% 1.22%, 

1.49%, 1.17%, 2.09% and 9.82% different from the results by static test in Table 
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3.5. It shows that the first seven natural frequencies from the impact test are in 

excellent agreement with those from the static test. It validates the correctness of the 

measured frame stiffness from static test and verifies the accurateness of the 

assumed lumped mass numerical model in representing the frame behaviour.  

3.5.2 Dynamic test 

In this study, an excitation force is generated by a shaker acting vertically on the 

frame through a connection rod at level 10, as shown in Fig. 3.14. The signal of 

excitation forces generated by NI software (LabView SignalExpress) is passed 

through a power amplifier (Labworks PA-141) to produce sufficient power for the 

electromagnetic shaker (Labworks ET-126B). The signal from accelerometers is 

collected by data acquisition unit (Yokogawa SL1000), shown in Fig. 3.14. 

Shaker
(ET-126B)

Accelerometers

 Data acquisition unit

Force sensor

 

Figure 3.14 Instrumentation of the dynamic test 
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Ten accelerometers are mounted on top of each level of the frame, as shown in Fig. 

3.14 and Fig. 3.15, and the specifications for these accelerometers are listed in Table 

3.6. An ICP (Integrated Circuit Piezoelectric) force sensor (PCB-208C02) with a 

sensitivity of 49.59 mV/lbf is installed between the shaker and the connection rod to 

measure the applied force, shown in Fig. 3.14. 

PCB-352B

Dytran-3055B

PCB-353B51

PCB-353B51

Dytran-3041A

  

Figure 3.15 Installed accelerometers on the frame 

Table 3.6 Specifications of the accelerometers installed on the frame 

level Accelerometer 
model 

Sensitivity 
(mV/g) 

Measurement range  Frequency range 
(Hz) 

1 PCB-352B 1,021 ±5g 2 – 10,000  
2 PCB-352B 1,021 ±5g 2 – 10,000 
3 PCB-352B 1,017 ±5g 2 – 10,000 
4 Dytran-3055B 505.5 ±10g 1 – 10,000 
5 Dytran-3055B 513.4 ±10g 1 – 10,000 
6 Dytran-3055B 494 ±10g 1 – 10,000 
7 Dytran-3055B 520.3 ±10g 1 – 10,000 
8 PCB-353B51 522 ±10g 1 – 2,000 
9 Dytran-3041A 530.2 ±10g 1 – 3,000 

10 PCB-353B51 489 ±10g 1 – 2,000 
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Signals from the 10 installed accelerometers are recorded at a sampling rate of 

2,000. Thus 2 s of measurement time results in 4K sample points recorded from each 

accelerometer. Random force is generated from the shaker to excite the frame at 

level 10, illustrated in Fig. 3.14. There are 12 unknown parameters involved in the 

global frame identification, including 10 stiffness of each storey and 2 damping 

coefficients. The search range for the unknown stiffness is set as half to double of 

the measured values from the static test. And the search limits for the two damping 

coefficients ( oa  and 1a ) are set as 0-4 and 0-0.0002, respectively. The GA 

parameters are set the same as the numerical study of damage identification on the 

simply supported beam shown in Table 3.1 but with 12 unknown structural 

parameters. 

Level 10987654321

Accelerometer

F(t)

Storey 10987654321

 

Figure 3.16 Sensor placements in the frame 

As shown in Fig. 3.16, the measurements at level 1 and 2 are excluded in structural 

identification due to relatively low signal-to-noise ratio. A dynamic test is carried 

out for stiffness identification of global frame with the measurements of the forces 

applied at level 10 of the frame, for the purpose of comparison of the stiffness 

identification without excitation measurements. Eight acceleration measurements at 

levels 3-10 are employed to evaluate the fitness function in GA for global frame 

identification with 3 different random forces applied to the frame, shown in Fig. 
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3.17. Figure 3.18 demonstrates that the corresponding identification results 

compared with the measured stiffness by the static test when the frame is excited by 

different random forces. The average of identified stiffness of each storey based on 

these three different forces is listed in Table 3.7. 
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Figure 3.17 Three random forces applied to the frame at level 10 
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Figure 3.18 Identified stiffness of the frame with force measurements 

Table 3.7 Identification results of the frame with force measurements 

Storey Stiffness (kN/m) 
(static test) 

Stiffness (kN/m) 
(dynamic test) 

Error 
(%) 

1 475.96 615.17 +29.25 
2 277.42 191.37 -31.02 
3 430.88 326.25 -24.28 
4 283.41 263.59 -6.99 
5 267.68 257.39 -3.85 
6 396.09 399.70 +0.91 
7 378.09 383.02 +1.30 
8 263.91 264.59 +0.26 
9 252.09 275.00 +9.09 

10 362.55 324.35 -10.54 

From Fig. 3.18, with different forces applied to the frame, the identified stiffness is 

in good agreement with the measured stiffness by static test except at storeys 1-3. 

The noise level in the acceleration measurements at levels 1-10 is about 12.1%, 

10.2%, 7.2%, 4.6%, 5.8%, 3.2%, 2.9%, 3.1%, 4.9% and 3.5% which is evaluated by 

the root-mean-square ratio of the noise signals to measurements. The significant 

difference between the measured and identified stiffness for storeys 1-3 is mainly 
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caused by the noisy measurements near the support. Due to high ratio of noise-to-

signal for the acceleration measurements at levels 1 and 2, these two measurements 

are excluded in evaluating the fitness function. Therefore, it is extremely difficult to 

accurately identify the stiffness of these levels close to the support since no 

measurements near the support are involved in fitness function evaluation. Good 

agreement between measured and identified stiffness at levels 4-10 is achieved for 

static and dynamic test, with the maximum error of 10.54% at level 10, illustrated in 

Table 3.7.  

3.5.3 Global frame identification with unknown input force 

Subsequently, the proposed strategy is implemented to identify the frame without 

the force measurements as shown in Fig. 3.19.  

Level 10987654321

Accelerometer

F(unmeasured)

Storey 10987654321

 

Figure 3.19 Sensor placements for frame identification without force measurements 

The acceleration responses are measured at levels 3-10 under the same set of 3 

different random forces as in the dynamic test, shown in Fig. 3.19. The acceleration 

measurements at levels 3, 5, 7 and 9 are grouped as set 1 to identify the unmeasured 

force applied at level 10. Measurements at levels 4, 6, 8 and 10 are grouped as set 2 

to identify 12 unknown structural parameters of the frame, including the stiffness of 

each storey and two unknown damping coefficients. The initial search limits for the 

stiffness values are set as 0.5-2.0 times of their measured values in Table 3.4. The 
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search space for the two damping parameters is set as 0-4 and 0-0.0002, 

respectively. The same GA parameters in the dynamic test are selected herein. The 

maximum iteration number 20 and the tolerance 0.02 are predefined in the 

identification. The identification results compared with measured stiffness from the 

static test as well as the averaged results based on 3 different forces are presented in 

Fig. 3.20. The averaged identified stiffness for each storey based on these 3 different 

forces is summarized in Table 3.8. 
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Figure 3.20 Identified stiffness of the frame without force measurements 

Table 3.8 Identification results of the frame without force measurements 

Storey Stiffness (kN/m) 
(static test) 

Stiffness (kN/m) 
(dynamic test) 

Stiffness (kN/m) 
Identified 

Error (%) 
Compared 

with static test 
Compared 

with dynamic test 
1 475.96 615.17 496.17 +4.25 -19.34 
2 277.42 191.37 213.84 -22.92 +11.74 
3 430.88 326.25 342.99 -20.40 +5.13 
4 283.41 263.59 260.74 -8.00 -1.08 
5 267.68 257.39 239.76 -10.43 -6.85 
6 396.09 399.70 384.21 -3.00 -3.88 
7 378.09 383.02 371.02 -1.87 -3.13 
8 263.91 264.59 302.30 +14.55 +14.25 
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9 252.09 275.00 286.84 +13.78 +4.31 
10 362.55 324.35 350.01 -3.46 +7.91 

From Fig. 3.20 and Table 3.8, there is a significant discrepancy between the 

identified stiffness and measured stiffness from static test and dynamic test on 

storeys 1-3 with identification errors up to 22.92% and 19.34%. The main reason 

accounting for this discrepancy is due to the low ratio of signal to noise 

measurements close to the support. Excluding the measurements at levels 1 and 2 

also introduces huge difficulty to accurately identify stiffness of the storeys close to 

the support due to no nearby measurements involved in the computation of fitness 

function. 

The identified stiffness values of the levels close to the free end of the frame also 

relatively severely deviate from the measured values mainly due to only 4 

acceleration measurements involved in stiffness parameter identification. The 

accuracy of identified stiffness of mid-levels of the frame, shown in Fig. 3.20, 

cannot catch up with the results from the dynamic test, demonstrated in Fig. 3.18. 

The main reason is that there are 8 acceleration measurements involved in 

evaluation of fitness function in the dynamic test.   

In this experiment, the accuracy of identification results suffers from the inevitable 

modeling errors, including the imprecise lump-mass numerical model to represent 

the frame, coarse estimation of the mass on each level and the approximate fixed 

boundary condition. Furthermore, the measurement noise inevitably affects the 

identification results, leading to inaccurate identified stiffness for storeys 1-3. The 

limited number of measurements used for stiffness parameter identification also 
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degrades the accuracy of identification results especially near the free end of the 

frame. Despite these adverse factors in the experiment, the proposed strategy is able 

to reasonably identify the stiffness values at levels 4-10 of the frame with maximum 

errors of 14.55% and 14.25% compared with those from static and dynamic tests 

without force measurements. 

3.6 Estimation of force 

The proposed strategy yields not only identified structural parameters but also, as a 

by-product, identified time history of excitation. For instance, the identified random 

force applied at node 13 of the undamaged simply supported beam for the first 0.4 s 

in Fig. 3.3 with unpolluted measurements (i.e. 0% noise) after 1st, 5th and 20th 

iteration are presented in Fig. 3.21 through Fig. 3.23, respectively.  
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Figure 3.21 Identified force after 1 iteration, 0% noise 
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Figure 3.22 Identified force after 5 iterations, 0% noise  
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Figure 3.23 Identified force after 20 iterations, 0% noise  

As seen in Fig. 3.21, there are a great difference between the identified force after 

the 1st iteration and the exact solution due to inaccurately estimated structural 
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parameters with 50.94% mean error and 92.47% maximum error, shown in Table 

3.2. The difference reduces significantly after 5 iterations and the results after 20 

iterations are in excellent agreement with the exact force, demonstrated in Fig. 3.23. 

Fast convergence in the identified force is observed from comparison among Fig. 

3.21 through Fig. 3.23. The absolute error in the identified force and the mean 

absolute error in the identified flexural rigidities for 16 elements in each iteration are 

demonstrated in Fig. 3.24, indicating that the unmeasured excitations and the 

unknown structural parameters approach their exact values together. In Fig. 3.24, 

identifiedf  and exactf represent the identified and exact force. The absolute error in the 

identified force is defined as the ratio of the root-mean-square (RMS) of ( identifiedf -

exactf ) to exactf . The mean absolute error is computed based on the identified flexural 

rigidities of 16 elements in the simply supported beam.  
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Figure 3.24 Identification errors in estimated forces and flexural rigidities, 0% noise 
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Furthermore, to investigate the noise effect, 1 second of the identified force time 

history for the 5% and 10% noise cases after 20 iterations is plotted in Fig. 3.25 and 

Fig. 3.26, where obvious drifts are observed in the identified force compared with its 

exactness. After applying FFT to the identified force and plotting power spectra of 

the identified force for 0-100 Hz, it is found that the drifts are only confined to low 

frequencies, shown in Fig. 3.27 and Fig. 3.28. 
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Figure 3.25 Identified force, 5% noise  
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Figure 3.26 Identified force, 10% noise  
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Figure 3.27 FFT results of the identified force, 5% noise  
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Figure 3.28 FFT results of the identified force, 10% noise  

Although the time history of the identified excitation contains drift, it can be readily 

corrected by suppressing its low frequency components with filter methods. For 10% 

noise case, Fig. 3.29 demonstrates the filtered force by letting the identified force in 

Fig. 3.26 go through a high pass Butterworth filter with cutoff frequency of 5 Hz, 

which is much lower than 47.9 Hz of the first natural frequency of the simply 

supported beam. The filtered force is in good agreement with the exact force, 

implying that the proposed strategy is also capable of providing accurate estimation 

of the unmeasured forces. 
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Figure 3.29 Filtered results of the identified force, 10% noise 

3.7 Summary 

In this chapter, an iterative strategy is proposed for global structural identification 

without force measurements. The identification strategy, a synergy of Tikhonov 

regularization method for force identification and SSRM for parameter 

identification, is developed to identify the unknown parameters of structures. Force 

identification and parameter identification are carried out iteratively to achieve a 

converged optimal solution. In this strategy, to improve the convergence rate, a 

technique for computation and renewal of search space is developed to save 

computational time on evaluating the candidates far away from the optimal solution. 

A minimum search space is defined for sufficient exploration to prevent premature 

local optima. 
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The proposed strategy is applied to global structural identification on a simply 

supported beam and a cantilever plate to examine its performance. Numerical results 

show that the strategy is able to accurately locate and quantify the damages in the 

beam as well as estimate the stiffness of the plate. The effectiveness of the strategy 

is demonstrated by the converged results within 20 iterations. Reasonable 

identification results in terms of accuracy are achieved with 0%, 5% and 10% noise 

contaminated measurements. 

To further validate the effectiveness of the proposed strategy, global structural 

identification is carried out experimentally on a 10-storey frame with 3 different 

random excitations. Static and dynamic tests are conducted to estimate the stiffness 

of each storey of the frame. Good agreement is achieved between the measured 

stiffness through static test and identified stiffness by dynamic test except on storeys 

closed to the fixed support. The proposed strategy is implemented to identify the 

frame stiffness without force measurements. The low ratio of signal-to-noise 

measurements at the levels close to the support, and the exclusion of acceleration 

measurements at levels 1 and 2 in the evaluation of fitness function, causes 

accurately identifying the stiffness values for the levels near the support extremely 

difficult. There are only 4 acceleration measurements involved in stiffness parameter 

identification, which largely degrades the accuracy of identification results with 

limited number of measurements.  Despite these limitations, the proposed strategy 

provides reasonably satisfactory results except storeys 1-3, compared with those 

from static and dynamic test. 
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Based on the results from the numerical and experimental studies, the proposed 

strategy is able to accurately identify structural parameters without force 

measurements.  
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Chapter 4. Substructural Identification with Unknown 

Input  

In Chapter 2, measurements of excitation forces if applied within substructures are 

required for substructural identification. In practice, it is not easy to acquire accurate 

measurement data of excitation forces and in some cases, the forces such as seismic 

loads and wind loads are difficult or even impossible to measure. The absence of 

excitation measurements poses a huge challenge in the application of many proposed 

substructural identification methods. To address this issue, an iterative strategy, in 

conjunction with Tikhonov regularization method introduced in Section 3.2 for force 

identification and SSRM introduced in Section 2.3 for parameter identification, is 

developed herein for substructural identification without the requirement of force 

measurements.  

In this chapter, angular accelerations at the interface of substructures are acquired by 

measurements of strains and translational accelerations with the recovery method in 

Chapter 2. The accuracy of the recovered angular accelerations is affected by not 

only the noise but also the differentiation error. Differentiation error in the integrated 

displacement and velocity from acceleration will be amplified. Therefore, it is more 

appropriate to develop a discrete time state space form for substructures with the 

concept of ‘quasi-static displacement’ instead of integration techniques. After the 

substructure is formulated in discrete time state space form, the procedure of 
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implementing the strategy for substructural identification is presented. Then 

numerical studies are conducted for identification on beam and plate substructures, 

followed by experimental work on substructural identification on a 10-storey frame.  

4.1 Discrete time state space form for substructure with concept of 

‘quasi-static displacement’ 

Based on ‘quasi-static displacement’, the equation of motion of a multi-DOF 

damped substructural system under external forces with neglected damping force is 

expressed as 

[ ] ( ){ } [ ] ( ){ } [ ] ( ){ } ( ){ } [ ][ ]( ) ( ){ }* * *
rr r rr r rr r r rj rr jM u t C u t K u t P t M M r u t + + = − +   

              
(4.1) 

Section 2.1 provides the details about the derivation of Eq. (4.1). [ ]rrM , [ ]rrC  and 

[ ]rrK are the mass, damping and stiffness matrices for the substructure. Subscripts r  

and j  represent internal and interfacial DOFs of substructures, respectively. ( ){ }*
ru t , 

( ){ }*
ru t and ( ){ }*

ru t  represent the relative dynamic displacement, velocity and 

acceleration of the substructure, respectively. Newmark method in Eq. (3.2) is 

employed to compute the substructural relative dynamic responses. Then the discrete 

state space form of Eq. (4.1) is 

{ } [ ]{ } [ ]{ } [ ]{ }* *
1 11r rr r rr r rr jk kk k

U A P B U C u
+ ++

= + +                                                           (4.2) 

Herein, subscript ‘ rr ’ distinguishes the matrix for substructure from that for global 

structure. { }*
rU  represents { } { } { }{ }* * * T

r r ru u u  , the relative dynamic displacement, 
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velocity and acceleration at internal DOFs. { }ju is the acceleration responses at 

interface DOFs. The matrices [ ]rrA , [ ]rrB  and [ ]rrC  for the substructure are derived as  

[ ] [ ] [ ] [ ] 12 *T

rr rrA t I t I I Mα δ
−

   = ∆ ∆                                                                         (4.3) 

[ ]
[ ] [ ] ( )[ ]

[ ] ( )[ ] [ ] [ ] [ ] [ ] ( )[ ] ( )[ ]

2

2

1 2
2

0 1 1 1 2
2

0 0 0
rr rr rr rr rr rr rr

tI t I I
tB I t I A K C t K t C K

α

δ δ α

 ∆
∆ − 

   ∆
= ∆ − − + ∆ ∆ − + −   
   
 
    

(4.4) 

[ ] [ ] [ ][ ]( )rr rr rj rrC A M M r = − +                                                                                   (4.5) 

In Eqs. (4.3) - (4.5),  [ ] [ ] [ ]* 2
rr rr rr rrM M t C t Kδ α  = + ∆ + ∆   and [ ] [ ] 1

rr rjr K K−  = −   . If 

[ ]1R  is defined as the mapping matrix relating the limited acceleration measurements 

to dynamic responses of the substructure, the relative dynamic acceleration 

measurements { }*y can be expressed as 

{ } [ ]{ }* *
1 rk k

y R U=                                                                                                      (4.6) 

Substitute Eq. (4.6) into Eq. (4.2) for every time step, { }*y  can be written in terms of 

excitations located within the substructure and acceleration responses at interface as 

follows 
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(4.7) 

where the matrices [ ] 1*
1 0 0

T

rrA M −   =     and [ ][ ]( )* *
1 1 rj rrC A M M r     = − +     are 

derived based on assumed initial condition of zero displacement and velocity. It is 

noted that the substructural response at internal DOFs consists of two components, 

the quasi-static response and the relative dynamic response. In this study, only the 

accelerations are involved in measurements { }y due to its ease of measuring over 

displacement and velocity. The quasi-static acceleration at internal DOFs is derived 

as Eq. (2.8) in Chapter 2 

{ } [ ]{ }s
r j kk

u r u=                                                                                                           (4.8) 

If
 [ ]2R represents the mapping matrix

 
relating the measurements to the substructural 

acceleration responses, the quasi-static acceleration measurements { }sy are written as 

{ } [ ] ( ){ } [ ][ ] ( ){ }2 2
s s

r j kk k
y R u t R r u t= =                                                                            (4.9) 
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After summing the relative dynamic acceleration measurements{ }*y  and quasi-static 

acceleration measurements{ }sy , the measurements { }y can be written as 
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(4.10) 

or { } [ ]{ } [ ]{ }1 2 jy H P H u= +  in short. 

With complete acceleration measurements at the interface, Eq. (4.10) can be 

rewritten as  

{ } [ ]{ } [ ]{ }2 1jy H u H P− =                                                                                         (4.11) 

By employment of { }y  representing { } [ ]{ }2 jy H u−  , Eq. (4.11) becomes 

{ } [ ]{ }1y H P=                                                                                                         (4.12) 

4.2 Iterative substructural identification strategy 

To apply the proposed strategy for substructural identification, as a start, the 

complete acceleration responses at the interface are required, including the directly 
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measured translational accelerations and the recovered angular accelerations by 

using strain and translational acceleration measurements with the recovery method 

in Chapter 2. All the available acceleration measurements are grouped into two sets. 

Set 1 and set 2 may share some but not all of the measurements. The functions of 

these measurements sets are shown in Fig. 4.1. 

Start

Angular acceleration
 recovery method

Strain and translational 
acceleration measurements

Complete interface acceleration
(recovered + measured) Internal acceleration

Measurement set 2 Measurement set 1

Identify unmeasured forces
 within substructure

Tikhonov regularization method

Identify unknown substructural  
parameters

SSRM

 

Figure 4.1 Functions of different measurement sets 

As shown in Fig. 4.1, with known excitation force locations, measurement set 1 is 

used for force identification and set 2 is employed for substructural identification. 

The number of measurement set 1 should be equal to or greater than the number of 

the unknown forces applied within substructures. From Eq. (4.1), the responses of 

substructural systems are determined by two types of forces, namely the interface 

forces and the applied forces within substructures. The requirement of interface 

forces is fulfilled by acquiring complete interface measurements shown in Fig. 4.1. 

Finally, the proposed iterative strategy in Fig. 3.1 is implemented for substructural 
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identification without measurements of excitation forces. The procedure to 

implement the proposed strategy for substructural identification is as follows. 

Step 1: Start with an initial guess of the substructural parameters, which are 

generated randomly from their search space. 

Step 2: Compute [ ]1H  and [ ]2H  in Eq. (4.10) with the values of substructural 

parameters, according to the locations of the measurements in set 1. 

Step 3: Compute { }y in Eq. (4.12) with available complete interface acceleration 

responses, including the directly measured translational accelerations as well as the 

recovered angular accelerations. Then the excitation forces { }P are identified with 

Tikhonov regularization method by solving Eq. (4.12). 

Step 4: Identify substructural parameters with SSRM based on measurement set 2 

and the identified excitation forces from step 3. 

Step 5: Update substructural parameters with the identification results from step 4, 

then go to step 2.  

Step 6: Repeat the identification procedure from step 2 to step 6 until the 

convergence criterion in Eq. (3.9) is satisfied or the predefined maximum iteration 

number is reached. 
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4.3 Numerical examples 

To examine the performance of the proposed strategy in the context of substructural 

identification, two numerical examples are studied: substructural damage detection 

on a simply supported beam shown in Fig. 2.4 and substructural identification on a 

cantilever plate shown in Fig. 2.10, both without the measurements of excitations. 

The same GA parameters of substructural identification of SS3 in Table 2.1 and SS2 

in Table 2.4 are employed in these two examples. 

In both numerical examples, 20 iterations of identification are carried out. The 

tolerance is set as 0.02 in the convergence criterion. The signals from the installed 

strain gauges or strain rosettes and accelerometers are recorded for 0.4 s with a 

sampling rate of 5,000. Noise effects are also investigated by considering polluted 

measurements with 0%, 5% and 10% noise. 

4.3.1 Substructural damage identification on a simply supported beam 

The same substructure SS3 in Fig. 2.5 located in the simply supported beam is 

considered in this numerical simulation. Four strain gauges are installed in element 5 

and 11 at the interface and eight accelerometers are set up at nodes 5-12 in SS3, 

shown in Fig. 4.2. The unmeasured excitation force is applied at the 8th node within 

SS3. Seven flexural rigidities for elements 5-11 in SS3 and two Rayleigh damping 

coefficients result in nine unknown substructural parameters to be identified. With 

the measured strains in elements 5 and 11 as well as translational accelerations at 

nodes 5, 6, 11, and 12, the angular accelerations at these four nodes are computed 

with the recovery method in Chapter 2. The translational acceleration measurements 
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at nodes 6, 8, 10 and 11 are denoted as measurements set 1. Measurements set 2 

consists of the translational acceleration measurements at nodes 7 and 9 as well as 

the recovered angular accelerations at nodes 6 and 11.  

1 5432 6 10987 11 12 16151413 17

F

5 6 987 10 11 12 Accelerometer
Strain gauge

SS3F (unmeasured)

65 7 8 11109

Node

Element

(a)

(b)

(c)

 

Figure 4.2 (a) The simply supported beam, (b) SS3 and the sensor placement and (c) 
Numerical model of SS3  

The proposed strategy is implemented to identify SS3 in undamaged state and 

damaged state separately. The identification results of undamaged and damaged 

states are used to evaluate the damage extent in SS3 with Eq. (2.23). The damage 

identification results of SS3 are plotted in Fig. 4.3, where 0%, 5% and 10% noise 

contaminated measurements are considered. The mean and maximum absolute 

identification errors for undamaged and damaged SS3 are listed in Table 4.1. 
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Figure 4.3 Identified damage extent of SS3 

Table 4.1 Absolute identification errors of undamaged and damaged SS3 after 20 
iterations 

 
Beam state Noise level Mean error 

(%) 
Max error 

(%) 

Undamaged  

0% 0.65 1.38 

5% 3.81 7.01 

10% 7.52 11.56 

Damaged  

0% 0.86 1.51 

5% 3.55 8.52 

10% 6.08 12.63 

The identification results in Fig. 4.3 show that the locations and severities of 

damages in element 6 and 10 of SS3 are identified close to the exact values even for 

10% noise case. Table 4.1 further shows the good performance of the proposed 

strategy with maximum error less than 13%. The identified stiffness for each 

element in undamaged SS3 with respect to the iteration number based on 5% noise 

contaminated measurements is presented in Fig. 4.4. 
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Figure 4.4 Identification results of undamaged SS3, 5% noise  

Figure 4.4 indicates that the identified flexural rigidities converge rapidly to their 

exact values, demonstrating that the proposed strategy is effective in substructural 

identification without excitation force measurements. As an example of illustration, 

the identified flexural rigidity in element 8 with corresponding search limits in each 

iteration are plotted in Fig. 4.5. 
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Figure 4.5 Identified flexural rigidity and its search space of element 8 in each 

iteration, 5% noise 

In Fig. 4.5, a fairly broad search range of [0.5, 2] to its exact value is defined for 

each parameter in the first 5 iterations. For each parameter, from the 6th iteration, the 

search space is updated based on the identified weighted average and standard 

deviation of the previous 5 iterations, which enhances the computational 

convergence and improves the identification accuracy by devoting more 

computational time on evaluation of the candidates near the possible optimal 

solution. To prevent the searching from converging to local optima, especially for 

parameters insensitive to the fitness function, a minimum search space [0.9, 1.1] of 

the currently averaged identified values of each parameter is predefined for 

sufficient exploration in GA. The method in Fig. 3.2 is capable of effectively 

reducing the search space for the unknown parameters during converging to the 

global optimum. 
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4.3.2 Substructural identification on a cantilever plate 

The same substructure SS2 in Fig. 2.11 located within the cantilever plate, meshed 

by 8 × 8 thin plate elements shown in Fig. 4.6 (a), is the second numerical example 

to validate the proposed identification strategy. In SS2, 32 strain gauge rosettes are 

installed in elements 6, 14, 22, 30, 38, 46, 54, and 64 to measure the three plane 

strains including two axial strains and one shear strain. The excitation force is 

applied at node 81, one corner at the free edge. The stiffness values of 24 elements 

in SS2 as well as 2 Rayleigh damping coefficients result in 26 unknown 

substructural parameters to be identified. Prior to substructural identification, with 

the proposed recovery method in Chapter 2, the angular accelerations at nodes 6, 7, 

15, 16, 24, 25, 33, 34, 42, 43, 51, 52, 60, 61, 69, 70, 78 and 79 in SS2 are recovered 

by using the available strain and translational acceleration measurements. 

Measurement set 1 used for force identification and measurement set 2 used for 

parameter identification are listed in Table 4.2. 

Table 4.2 Measurement set 1 and set 2 

 Measurement set 1 
at nodes 

Measurement set 2  
at nodes 

Translational acceleration w  7, 18, 25, 36, 43, 54, 61, 72, 79 8, 16, 26, 34, 44, 52, 62, 70, 80 

Angular acceleration xθ  16, 34, 52, 70 7, 25, 43, 61, 79 

Angular acceleration yθ  7, 25, 43, 61, 79 16, 34, 52, 70 
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Figure 4.6 (a) The cantilever plate and (b) SS2 and the sensor placement  

The identification results of SS2 after 20 iterations for the 0%, 5% and 10% noise 

cases are plotted in Fig. 4.7 and the identification errors are summarized in Table 

4.3. 
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Figure 4.7 Identification results of SS2 
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Table 4.3 Absolute identification errors of SS2 with respect to noise level  

Noise level 
SS2 in plate 

Mean error 
(%) 

Maximum error 
(%) 

0% 3.68 8.00 
5% 7.54 13.69 

10% 10.34 18.95 

From the identification results in Fig. 4.7, the 24 stiffness of SS2 are reasonably 

identified for 0%, 5% and 10% noise cases. In Table 4.3, in the noise-free case, 

certain deviations in the identification results are mainly caused by the 

differentiation error in the computed angular accelerations at the interface. As 

discussed in Section 2.6.1, the effects of differentiation error on the accuracy of 

identification results are largely alleviated without comparison of the initial part of 

simulated responses and measurements due to the difficulty to accurately compute 

derivatives based on insufficient measurement data at the initial part with Savitzky-

Golay differentiation algorithm. Nevertheless, the accuracy in identified forces is 

inevitably affected by the initial part of inaccurately recovered signals since the 

forces are identified from the first step and measurement set 1 used for force 

identification involves some recovered angular accelerations. Since the unmeasured 

excitation forces and unknown substructural parameters are identified in an iterative 

way, the accuracy of identified parameters are inevitably affected by the imprecisely 

identified excitation forces due to the differentiation error. Although the accuracy of 

identified parameters suffers from the differentiation errors, acceptable identification 

results are still achieved from the practical point of view. 
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4.4 Experimental study 

To validate the applicability of the proposed strategy to substructural identification 

without force measurements, parameter identification in one substructure denoted as 

SS1 in the 10-storey frame in Fig. 3.10 in Chapter 3, is carried out. The 

instrumentation of the experimental work is shown in Fig. 3.14 and Fig. 3.15. SS1 

contains levels 5-10, shown in Fig. 4.8. Level 4 is the interface connecting the 

concerned SS1 to the remaining part of the frame. The excitation is applied at level 

10 within SS1, as indicated in Fig. 4.8. 

Level 10987654321

Accelerometer
F(unmeasured)

SS1

987654321 10Storey

 

Figure 4.8 SS1 and the sensor placement 

The accelerations at level 4 to level 10 are recorded for 2 seconds with a sampling 

rate of 2,000. Six stiffness values for the 5th to 10th storeys and 2 damping 

coefficients result in 8 unknown substructural parameters to be identified. The 

initially lower and upper search limits for the unknown stiffness in SS1 are set to be 

half and double of measured values based on the static test. The search limits for two 

damping coefficients ( oa  and 1a ) are set as 0-4 and 0-0.0002, respectively. The same 

GA parameters for substructural identification in Table 3.1 but with 8 unknown 

parameters are selected to identify SS1. Measurement set 1 includes acceleration 

measurements at levels 6, 8 and 10. Acceleration signals at levels 5, 7, and 9 are 



 Chapter 4. Substructural Identification with Unknown Input 

141 

 

grouped as measurement set 2. 20 iterations are carried out to obtain converged 

identification results. The tolerance in the convergence criterion is set as 0.02. 

Substructural identification of SS1 is conducted with 3 different random forces, as 

shown in Fig. 3.16 in Chapter 3. First, substructural identification of SS1 is carried 

out with force measurements, donated as dynamic test, the results are presented in 

Fig. 4.9.  
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Figure 4.9 Identified stiffness of SS1 with force measurements 

Table 4.4 Identification errors of SS1 with force measurements 

Storey Stiffness (kN/m) 
(static test) 

Stiffness (kN/m) 
(dynamic test ) 

Error 
(%) 

5 267.68 252.81 -5.56 
6 396.09 393.10 -0.75 
7 378.09 391.00 +3.41 
8 263.91 271.99 +3.06 
9 252.09 285.76 +13.36 

10 362.55 402.82 +11.11 
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From Fig. 4.9, the results based on 3 different random forces applied are in good 

agreement with one another. Compared with measured stiffness by static test, very 

good identification results are achieved with mean and maximum absolute errors of 

6.21% and 13.36% shown in Table 4.4. Furthermore, with the proposed strategy, 

substructural identification of SS1 is carried out without measurement of force 

applied at level 10. Compared with measured stiffness from static test, the 

identification results these 3 different unknown forces are presented in Fig. 4.10. 

The corresponding identification errors based on the averaged results are listed in 

Table 4.5. 
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Figure 4.10 Identified stiffness of SS1 without force measurements 
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Table 4.5 Identification errors of SS1 without force measurements 

Storey Stiffness (kN/m) 
(static test) 

Stiffness (kN/m) 
(dynamic test) 

Stiffness (kN/m) 
Identified 

Error (%) 
Compared 

with static test 
Compared 

with dynamic test 
5 267.68 252.81 279.03 +4.24 +10.37 
6 396.09 393.10 386.85 -2.33 -1.59 
7 378.09 391.00 396.41 +4.85 +1.38 
8 263.91 271.99 262.47 -0.55 -3.50 
9 252.09 285.76 269.62 +6.95 -5.65 

10 362.55 402.82 410.89 +13.33 +2.00 

From Fig. 4.10 and Table 4.5, satisfactory identification results of SS1 without force 

measurements are achieved with mean and maximum absolute errors of 5.38% and 

13.33% compared with those from the static test. The identified stiffness values of 

SS1 are in very good agreement with the results from the dynamic test with 4.08% 

mean error and 10.37% maximum error. The accuracy of identification results 

without force measurements in Fig. 4.10 is nothing short of the corresponding 

results in Fig. 4.9 with force measurements. For the case without force 

measurements, the unmeasured force is identified rather than measured, so that it is 

capable of avoiding the error in the force due to measurement noise that would pass 

through the simulation. All these experimental results show that the proposed 

strategy is applicable to substructural identification when the measurements of 

forces located within the substructure are difficult or even impossible to acquire.  

4.5 Summary 

In this chapter, an iterative strategy is developed for substructural identification to 

address the unavailability of force measurements within substructures. First, the 

state space form for substructures is formulated with the concept of ‘quasi-static 

displacement’. The angular accelerations at the interface of beam and plate 
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substructures are computed by means of measured strains and translational 

accelerations, using the recovery method in Chapter 2. In the strategy, Tikhonov 

regularization method is employed for force identification and SSRM is adopted for 

substructural parameter identification.  

To test the effectiveness of the proposed strategy, two numerical examples are 

carried out, including damage detection in a beam substructure and stiffness 

identification in a plate substructure without measurements of force applied within 

these two substructures. The results show that the proposed strategy is able to 

accurately locate and quantify the damages in the beam substructure as well as 

identify the stiffness for the plate substructure even with 10% noise measurements. 

Finally, an experimental study is conducted for substructural identification on a 10-

storey frame. The stiffness of the substructure is reasonably identified without 

excitation measurements in comparison with those from the static and dynamic tests. 
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Chapter 5. Substructural Identification with 

Incomplete Interface Measurements 

In the previous chapter, substructural parameters and unknown input excitation are 

identified iteratively with complete interface acceleration measurements, while the 

angular accelerations at interface are recovered via measurements of strains and 

translational accelerations. Substructural identification has advantages in terms of 

accuracy and efficiency, but the requirement of complete interface measurements 

brings considerable inconvenience, especially for angular accelerations at interface 

where special sensors are required.  

To avoid complete interface measurements, some efforts have been endeavored on 

development of substructural identification methods. An approach of substructural 

identification in frequency domain was proposed without the need of interface 

measurements (Koh and Shankar, 2003). With sufficient response measurements in 

the substructure of concern, the unknown parameters are identified with GA by 

minimizing the difference between interface forces obtained using 2 different 

measurement sets. A Bayesian frequency domain approach (Yuen and Katafygiotis, 

2006) was proposed for substructural identification without requiring any interface 

and excitation measurements. In their study, the interface effects on the substructure 

of concern were considered as additional unknown forces or support motion. In 

these two studies, a sufficient number of sensors are required to compute the 
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interface forces from two independent internal acceleration measurement sets, which 

is inapplicable for substructures with large number of interface DOFs. Interface 

forces on the substructure of concern were identified by use of damped least-square 

method with acceleration measurements in adjacent healthy substructures (Law et 

al., 2010). Subsequently, damage identification was carried out based on dynamic 

sensitivity analysis. The identification results on a 9-bay 3-dimensional truss 

structure show that the proposed method can accurately detect the location and 

extent of damage. However, their approach is only valid with assumption of 

knowing the health state of substructures around the substructure of concern.  

A substructural identification method in time domain was proposed to 

simultaneously identify substructural parameters and input time history of the 

applied excitation (Sandesh and Shankar, 2009), which was validated by numerical 

examples of a 15-DOF shear building model, a planar truss of 55 members and a 

cantilever beam of 20 elements subjected to harmonic, random and impulse 

excitations. Although interface measurements are unnecessary, the required 

acceleration measurements on each interior DOF cannot be applied to substructures 

with a large number of internal DOFs. To overcome the need of complete internal 

and interface measurements, an innovative strategy, based on limited internal 

measurements, is proposed in this chapter for substructural identification with 

incomplete or even no interface measurements. 

First, with an integration technique, the discrete state space form is developed for the 

substructure model, which facilitates Tikhonov regularization method to directly 

identify interface accelerations and unmeasured excitations with measurement data. 
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Then procedure to implement the identification strategy is presented. Two numerical 

examples of substructural identification and experimental works on a 10-storey 

frame and a small-scale jack-up in laboratory are presented to validate the 

identification strategy. 

5.1 Discrete time state space form for substructure with 

integration technique 

As mentioned in Section 2.1, the equation of motion for a substructure (without 

ignoring the damping forces) is 

[ ] ( ){ } [ ] ( ){ } [ ] ( ){ }
( ){ } ( ){ } ( ){ } ( ){ }

rr r rr r rr r

r rj j rj j rj j

M u t C u t K u t
P t M u t C u t K u t

+ +
     = − − −     

 

 
              (5.1) 

where [ ]rrM , [ ]rrC  and [ ]rrK are mass, damping and stiffness matrices for the 

substructure. Subscripts r  and j  represent internal and interface DOFs of the 

substructure, respectively. From Eq. (5.1), the interface displacement, velocity and 

acceleration are necessary for substructural forward analysis. With trapezoidal rule, 

interface displacement and velocity can be obtained through integration of interface 

acceleration, 

{ } { } { } { }( )

{ } { } { } { }( )

1 1

1 1

2

2

j j j jk k k k

j j j jk k k k

tu u u u

tu u u u

+ +

+ +

∆
= + +

∆
= + +

   

 

                                                                           (5.2) 

where t∆  is time interval. Equation of motion for the substructure can be written in 

discrete state space form as 
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{ } [ ]{ } { } { }* *
1 1 1r rr r rr r rr jk k k k

U A P B U C U
+ + +

   = + +                                                            (5.3) 

where { } { } { } { }{ }1 1

T
r r r rk k

U u u u
+ +
=    and { } { } { } { }{ }1 1

T

j j j jk k
U u u u

+ +
=    represent the 

displacement, velocity and acceleration for internal and interface DOFs at time step 

1k + , respectively. The matrices [ ]rrA , *
rrB   and *

rrC    are 

[ ] [ ] [ ] [ ] 12 *T

rr rrA t I t I I Mα δ
−

   = ∆ ∆                                                                         (5.4) 
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[ ] ( )[ ] [ ] [ ] [ ] [ ] ( )[ ] ( )[ ]
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2
*

1 2
2

0 1 1 1 2
2

0 0 0
rr rr rr rr rr rr rr

tI t I I
tB I t I A K C t K t C K

α

δ δ α

 ∆
∆ − 

   ∆  = ∆ − − + ∆ ∆ − + −    
   
 
  

(5.5) 

[ ]*
rr rr rj rj rjC A K C M        = −                                                                                   (5.6) 

where [ ] [ ] [ ]* 2
rr rr rr rrM M t C t Kδ α  = + ∆ + ∆  . In this study, zero initial conditions are 

assumed for the substructural displacement and velocity responses.  

The mapping matrix [ ]1R  is defined as the relation between measurements and 

substructural internal responses, and then measurements can be expressed in terms 

of interface responses and excitation forces as  
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      (5.7) 

where the matrices [ ] 1*
1 0 0

T

rrA M −   =     and * *
2 1 rj rj rjC A K C M          = −             are 

derived by assuming zero initial conditions for substructural displacement and 

velocity responses. Equation (5.7) can be expressed in short form as 

{ } [ ]{ } { }*
1 2 jy H P H U = +                                                                                           (5.8) 

Substituting Eq. (5.1) into Eq. (5.7) 

{ } [ ]{ } { }*
1 3 jy H P H u = +                                                                                             (5.9) 

where * * *
3 2H H R     =       and *R    represents the transformation matrix from 

acceleration to displacement, velocity and acceleration responses at interface DOFs. 

If some of interface accelerations are measured, *
3H    in Eq. (5.9) is partitioned into 

two sub-matrices according to groups of measured and unmeasured interface 

accelerations. 

{ } [ ]{ } { } { }* *
1 3 3j jm um u

y H P H u H u   = + +                                                                   (5.10) 
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where subscripts m  and u  represent ‘measured’ and ‘unmeasured’, respectively. 

The unmeasured input excitations and interface accelerations are treated as 

unknowns, which are both identified with Tikhonov regularization method by 

{ } { } [ ]
{ }
{ }

* *
3 1 3j mm u

j u

P
y H u H H

u

      − =         



                                                         (5.11) 

If the excitation force is applied outside the substructure, then Eq. (5.11) can be 

simplified as 

{ } { } { }* *
3 3j jm um u

y H u H u   − =                                                                                  (5.12) 

5.2 Identification strategy 

In this chapter, the unknown forces and unmeasured interface accelerations are 

identified with Tikhonov regularization method based on the substructure model in 

discrete space form with integration technique. Although the substructure model 

with the concept of ‘quasi-static displacement’ has proved successful (Koh et al., 

2003), the inaccuracy could result from computing relative acceleration by 

employing inversion of internal stiffness matrix and neglecting velocity-dependent 

component (damping forces) in the interface forces. To accurately estimate interface 

forces in terms of displacement, velocity and acceleration responses at interface 

DOFs, Thanh et al. (2010) proposed to directly integrate interface acceleration 

responses to acquire displacement and velocity. It is found that a small drift error 

will appear in the interface forces due to accumulated noise error upon numerical 

integration of contaminated acceleration measurements to obtain displacement and 
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velocity. Nevertheless, in a frequency domain analysis, this drift can be regarded as 

a low-frequency force component which has negligible effect in determining the 

substructural responses due to high natural frequencies of the substructure compared 

with the global structure (Thanh et al., 2010). The accuracy of identification results 

can be improved with this approach, demonstrated by numerical studies on a 20-

DOF known-mass system and a 100-DOF unknown-mass system as well as 

experimental studies on a 10-storey frame. Therefore, in this chapter, the discrete 

time state space form is developed with integration technique at interface DOFs. 

Prior to substructural identification, the measurements are grouped into two 

measurements sets, denoted as set 1 and set 2. The number of measurements in set 1 

is equal to or larger than the combined number of unknown applied excitations and 

unmeasured interface responses. In this strategy, the unmeasured interface 

accelerations are treated in a similar way to the unknown input forces within 

substructure, which are identified with Tikhonov regularization method based on 

measurement set 1. It is assumed that the locations of applied excitations within 

substructure are known. The flowchart of the proposed strategy is presented in Fig. 

5.1. 
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Figure 5.1 Flowchart of the proposed strategy for substructural identification with 
incomplete interface measurements 

The numerical procedure for implementation of this strategy is as follows. 

Step 1: Initialization of the unknown substructural parameters in a random way 

within their search space. 
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Step 2: Computation of [ ]1H  and *
3H    in Eq. (5.9) from the FE model of the 

substructure according to measurement set 1. 

Step 3: Partitioning of *
3H   into *

3 m
H    and *

3 u
H   , according to the corresponding 

measured and unmeasured interface accelerations. 

Step 4: Identification of unknown input forces and unmeasured interface 

accelerations by solving Eq. (5.10) with Tikhonov regularization method. 

Step 5: Identification of unknown substructural parameters with SSRM, based on the 

identified excitation forces as well as interface accelerations from step 4. 

Step 6: Replacement of substructural parameters with results from step 5. Then go to 

step 2. 

Step 7: Repetition of step 2 to step 6 until the convergence criterion in Eq. (3.9) is 

satisfied or the predefined maximum iteration number is reached.   

5.3 Numerical examples 

Parameter identification is carried out for substructures in Fig. 5.2 and Fig. 5.6 to 

examine the performance of the proposed strategy with incomplete interface 

measurements as well as without measurements of excitations. In these two 

numerical examples, the unknown substructural parameters include the flexural 

rigidity or Young’s modulus and the two damping coefficients. A broad search space 

for these substructural parameters is initially defined as [0.5, 2] of their exact values. 

The same GA parameters as in Table 2.1 are adopted herein. It is assumed that 
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location of the applied unknown excitation and mass matrix are known. 20 iterations 

of identification are implemented and the tolerance is set as 0.02. The noise effect is 

also investigated by introducing 0%, 5% and 10% noise into the measurements.  

5.3.1 Damage identification on a simply supported beam 

The same simply supported beam as in Fig. 2.5 is considered in this numerical 

example. An unknown excitation force is applied at node 8, shown in Fig 5.2. SS3 

indicated in Fig. 5.2, is selected as the substructure of concern, containing elements 

5-11 and resulting in 9 unknown substructural parameters inclusive of the flexural 

rigidities for 7 elements and two damping coefficients. There are 8 accelerometers 

installed on SS3 and each measured signal is of 0.4 s duration with sampling rate of 

5,000. 

1 5432 6 10987 11 12 16151413 17

F(t)

5 6 987 10 11 12 Linear accelerometer

SS3F(unmeasured)

65 7 8 11109

Node

Element

(a)

(b)

(c)

 
Figure 5.2 (a) Numerical model of the simply supported beam, (b) SS3 and the 

sensor placement and (c) Numerical model of SS3 

From Fig. 5.2, complete interface measurements are not available because angular 

accelerations are not measured at nodes 5 and 12, located at the interface of SS3. To 

identify the unknown angular accelerations at interface nodes as well as the 

unmeasured excitation at node 8, Tikhonov regularization method is employed with 

measurement set 1 including the translational acceleration responses at nodes 6, 8, 

10 and 11. SSRM is employed to identify the 9 unknown substructural parameters 
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with measurement set 2 including the linear acceleration data at nodes 7, 9 and 10. 

The damage identification results of SS3 for 0%, 5% and 10% noise cases are 

plotted in Fig. 5.3, and the substructural identification errors of undamaged and 

damaged SS3 are summarized in Table 5.1. 
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Figure 5.3 Identified damage extent of SS3  

Table 5.1 Absolute identification errors of undamaged and damaged SS3  

Beam state Noise level Mean error 
(%) 

Max error 
(%) 

Undamaged  

0% 0.32 0.65 

5% 3.80 7.01 

10% 8.65 14.49 

Damaged  

0% 0.45 0.81 

5% 2.68 6.34 

10% 7.95 15.04 
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As seen in Fig. 5.3, for 0%, 5% and 10% noise cases, damage in element 6 is 

identified as 52.19%, 52.16% and 50.31% reduction in the flexural rigidity, very 

close to the exact value 52%. Similarly, for the damaged element 10, with 0%, 5% 

and 10% noise contaminated measurements, the detected 52.03%, 51.90% and 53.34% 

reduction of the flexural rigidity are also in very good agreement with the exact 

solution 52%. In addition, the maximum false identified damages are less than 13% 

for the 10% noise case. As shown in Table.5.1, satisfactory identification results are 

achieved for both undamaged and damaged SS3 even with noisy measurements. The 

results in Fig. 5.3 and Table 5.1 demonstrate the excellent performance of the 

strategy in terms of accuracy. The identification results of undamaged SS3 for each 

iteration with 10% noise polluted measurements are presented in Fig. 5.4. The 

identified flexural rigidity in element 8 with corresponding search limits in every 

iteration is plotted in Fig. 5.5. 
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Figure 5.4 Identification results of undamaged SS3, 10% noise  
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Figure 5.5 Identified flexural rigidity and its search space of element 8 in each 
iteration, 10% noise  

From Fig. 5.4 and Fig. 5.5, the proposed strategy yields stable and converged 

solution after 20 iterations with 10% noise polluted measurements, which 

demonstrates excellent performance of the proposed strategy in achieving the 

converged results. 

5.3.2 Substructural identification on a cantilever plate 

The same substructure SS2 as in Fig. 4.6 is considered as the second numerical 

study to investigate the effectiveness of the proposed identification strategy. The 

substructure model and sensor placement is shown in Fig. 5.6.  
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Figure 5.6 (a) The cantilever plate and (b) SS2 and the sensor placement 

As shown in Fig. 5.6 (b), there are 24 elements in SS2 and 26 unknowns need to be 

identified including the unknown Young’s modulus of each element and the two 

Rayleigh damping coefficients. Nine nodes at interface result in 27 interface DOFs 

in consideration of two translations and one rotation at each node. If there are a large 

number of unmeasured accelerations at the interface, a considerable number of 

internal acceleration measurements are necessary for identifying the unmeasured 

interface responses and excitation forces since the required number of internal 

measurements should be equal to or larger than the number of absent measurements, 

namely the unmeasured interface accelerations and excitation forces. In this study, 

for the purpose of validating the effectiveness of the proposed strategy with 

incomplete interface measurements, it is assumed that some but not all angular 

acceleration measurements are available at the interface of SS2, illustrated in Table 

5.2. 
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Table 5.2 Measurements of SS2 

 
Available  interface 

measurements 
at nodes 

Available internal measurements  
at nodes 

Translational 
acceleration w  6, 15, 24, 33, 42, 51, 60, 69, 78 

7, 8, 9, 16, 17, 18, 25, 26, 27, 34, 
35, 36, 43, 44, 45, 52, 53, 54, 61, 
62, 63, 70, 71, 72, 79, 78 

Angular acceleration 
xθ  6, 24, 42, 60, 78  

Angular acceleration 
yθ  15, 33, 51, 69  

As demonstrated in Fig. 5.6 and Table 5.2, there are 44 available measurements, 

namely 35 translational accelerations and 9 interface angular accelerations. For 

different purposes of force identification and parameter identification, the available 

26 internal acceleration measurements are grouped into set 1 and set 2, tabulated in 

Table 5.3. 

Table 5.3 Measurement set 1 and set 2 

 Measurement set 1 
at nodes 

Measurement set 2  
at nodes 

Translational acceleration w  
7, 8, 9, 17, 18, 25, 26, 27, 34, 
36, 43, 44, 45, 52, 53, 62, 63, 

70, 71, 72, 79, 80 

8, 16, 18 ,26, 34, 35, 46, 45, 
52, 54, 61, 63, 71, 79 

The remaining 9 unmeasured accelerations at the interface and the unmeasured 

excitation force at node 81 are identified with measurement set 1, listed in Table 5.3. 

The measurement set 2 is used for fitness function evaluation with the purpose of 

identifying the 26 unknown substructural parameters. The identified stiffness for the 

24 elements in SS2 are presented for the cases of 0%, 5% and 10% noise in Fig. 5.7. 

The absolute maximum and mean error for the identification results are summarized 

in Table 5.4. 
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Figure 5.7 Identification results of SS2 

Table 5.4 Absolute identification errors of SS2 with respect to noise level  

Noise level 
SS2 in plate 

Mean error 
(%) 

Maximum error 
(%) 

0% 2.44 4.76 
5% 6.22 11.91 

10% 9.48 17.47 

From the identification results in Fig. 5.7 and Table 5.4, reasonably accurate results 

are obtained for the estimated stiffness values of the 24 elements within SS2 with 

0%, 5% and 10% noise polluted measurements, which demonstrates the good 

performance of the proposed strategy for substructural identification with 

incomplete interface measurements as well as unmeasured excitation forces. 

5.4 Experimental study  

To verify the effectiveness of the proposed strategies for substructural identification 

without measurements of interface acceleration and excitation located within the 
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substructure, an experimental study is conducted on a laboratory fabricated small-

scale10-storey frame with the same measurement data as Section 3.5. 

5.4.1 Substructural identification on frame without interface acceleration and 

excitation force 

The same substructure SS1 as in Fig. 4.8, located in the 10-storey frame in Fig 3.10 

is considered in this experiment. The identified stiffness of SS1 by static and 

dynamic test in this substructure are summarized in Table 5.5. 

Table 5.5 Stiffness of SS1 by static test and dynamic test  

Storey Stiffness (kN/m) 
(static test) 

Stiffness (kN/m) 
(dynamic test ) 

5 267.68 252.81 
6 396.09 393.10 
7 378.09 391.00 
8 263.91 271.99 
9 252.09 285.76 

10 362.55 402.82 

SS1 contains storeys 5-10, as shown in Fig. 5.8. Level 4 is the interface of SS1. To 

investigate the performance of the proposed strategy in substructural identification 

without complete interface measurements and excitation forces, only the 

acceleration responses at the 5th, 6th, 7th, 8th, 9th and 10th levels are measured for 2 s 

at a sampling rate of 2,000. These six measurements are divided into two groups, 

namely set 1 and set 2. Measurement set 1 consists of acceleration measurements at 

levels 6, 8 and 10 for the purpose of identifying the unmeasured acceleration at level 

4 and the unknown excitation force applied at level 10. Measurement set 2 includes 

acceleration measurement data at levels 5, 7 and 9 for identifying 8 unknown 

substructural parameters of SS1, namely the stiffness of storeys 5-10 and the two 

damping coefficients. The search space for these six unknown stiffness values is 
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defined as half to double of measured values based on static test, demonstrated in 

Table 5.5. For the two damping parameters, 0-4 and 0-0.0002 are set as their search 

spaces, respectively. In the proposed identification strategy, the maximum number 

of iteration and the tolerance of the stopping criterion are set as 20 and 0.02. 

Level 10987654321

Accelerometer
F(unmeasured)

SS1

987654321 10Storey

 

Figure 5.8 SS1 and the sensor placement 

Measured acceleration data under three random forces in Fig. 3.17 are employed for 

stiffness identification of SS1. The corresponding identified stiffness of SS1 

compared with the measured values by static test is presented in Fig. 5.9. The 

identified stiffness of SS1 and the corresponding identification errors are listed in 

Table 5.6. 
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Figure 5.9 Identified stiffness of SS1 with unknown forces and interface 

accelerations 

Table 5.6 Identification errors of SS1 with unknown forces and interface 
accelerations 

Storey Stiffness (kN/m) 
(static test) 

Stiffness (kN/m) 
(dynamic test ) 

Stiffness (kN/m) 
Identified 

Error (%) 
Compared  

with static test 
Compared  

with dynamic test 
5 267.68 252.81 269.57 +0.71 +6.63 
6 396.09 393.10 347.62 -12.24 -11.57 
7 378.09 391.00 337.38 -10.77 -13.71 
8 263.91 271.99 250.10 -5.23 -8.05 
9 252.09 285.76 260.71 +3.42 -8.77 

10 362.55 402.82 420.33 +15.94 +4.35 

As shown in Fig. 5.9, reasonably satisfactory identified stiffness values of storeys 5-

10 are achieved without interface measurements and excitation force measurements. 

From Table 5.6, the stiffness of elements in SS1 is accurately identified with 

absolute mean and maximum error of 8.05% and 15.94% compared with the static 

test, 8.85% and 13.71% compared with the dynamic test. All these results 

experimentally validate the effectiveness of the proposed strategy for substructural 

identification without the measurements of interface accelerations and excitations. 
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5.4.2 Substructural identification on a small-scale jack-up without interface 

angular accelerations 

The second experimental study was carried out on a jack-up, which was designed 

and tested by Wang (2012), as shown in Fig. 5.10. 

Hull

Leg

Flexible 
support C

Flexible 
support A

Flexible 
support B

 

Fig. 5.10 Experiment model for the jack-up  

Three legs of the jack-up are made of aluminum tube of the same size, whose length, 

outer diameter and thickness are 571 mm, 22.2 mm and 1.5 mm, respectively. The 

hull representing the platform, made with aluminum of approximate density 2,786 

kg/m3, weighs 4.84 kg. The layout of the experimental jack-up is shown in Fig. 5.11. 
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Figure 5.11 Illustration of the experimental jack-up model (Wang, 2012) 
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Two static tests, respectively measuring the rotational stiffness of three flexible 

supports and the flexural rigidity of the legs, were conducted by Wang (2012). The 

main structural parameters for the experimental model are listed in Table 5.7.  

Table 5.7 Structural parameters for the experimental model 

Structural parameters of built jack-up model  

Length of leg  L  (m) 0.571 

Young's modulus of leg E  (MPa) 68670 

Cross-sectional area moments of inertia for single leg I   (m4) 5.271×10-9 

Cross-sectional area of single leg A  (m2) 9.766×10-5 

Measured rotational stiffness Kθ  at flexible support A  (N∙m/rad) 550 

Measured rotational stiffness Kθ  at flexible support B  (N∙m/rad) 584 

Measured rotational stiffness Kθ  at flexible support C  (N∙m/rad) 574 

Measured flexural rigidity for single leg EI (N∙m2) 253.67 

In this experimental study, one substructure donated as SS1 within one of the 

flexible legs, shown in Fig. 5.12, is selected to validate the effectiveness of the 

proposed strategy for substructural identification without angular acceleration 

measurements at interface. The shaker, shown in Fig. 5.12, is horizontally mounted 

to the supporting plate. A random force with bandwidth of (0, 1000 Hz) is generated 

numerically and then applied to one side of the hull to excite the structure. Three 

accelerometers are installed in SS1 with specifications listed in Table 5.8. The 

numerical model of SS1 is shown in Fig. 5.13.  
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Figure 5.12 Installed accelerometers in SS1 

Table 5.8 Specifications of the installed accelerometers on the jack-up 

Model Node Measurement Range Sensitivity Frequency Range 
Dytran-3293A (X) 4 ±7 g 524.8 mV/g 1-4,000 Hz 
Dytran-3293A (Z) 4 ±7 g 529.3 mV/g 1-4,000 Hz 

Dytran-3055B3 3 ±10 g 494.0 mV/g 1-10,000 Hz 
Dytran-3055B3 2 ±10 g 505.5 mV/g 1-10,000 Hz 
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Figure 5.13 Substructure model of SS1 and the sensor placement 

As shown in Fig. 5.13, node 4 is the interface between SS1 and the remaining part of 

the structure. A tri-axial linear accelerometer (Model Dytran-3293A) is installed at 

node 4 to collect acceleration measurements in x and z directions. Two uni-axial 

accelerometers (Model Dytran-3055B3) are installed at node 2 and 3 to record 

acceleration signals in horizontal x direction. All measurements data are recorded at 

a sampling rate of 2,000 and 4,000 data points of each signal are acquired, and then 

filtered with frequency band 200-500 Hz for substructural identification.  

The flexural rigidities of 3 elements in SS1 are the target parameters of the 

substructural identification, while FE model of SS1 is established with known 

rotational stiffness at node 1 by the measured values from static test. The flexural 
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rigidities of the 3 elements in SS1 and the two damping coefficients are treated as 

unknown variables in GA. The search limits of these unknown parameters are 

initially taken as half to double of measured values. In Fig. 5.13, the requirement of 

complete interface measurements is unsatisfied due to the absence of angular 

acceleration at node 4. Measurement set 1, involving the horizontal acceleration 

response at node 3, is employed to identify the angular acceleration at node 4 with 

Tikhonov regularization method. Measurement set 2, containing the acceleration 

data at node 2 and 3, is used for substructural parameter identification with SSRM. 

The maximum number of iterations and tolerance are adopted as 20 and 0.02. The 

identified flexural rigidities of the 3 elements in SS1 for ten different force signals 

are compared with measured values from the static test, shown in Fig. 5.14. The 

corresponding identification errors are tabulated in Table 5.9. 
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Figure 5.14 Identified flexural rigidities of SS1  
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Table 5.9 Absolute errors (%) of the identification results of SS1 

Element Force 1 Force 2 Force 3 Force 4 Force 5  
1 13.92 13.77 4.30 5.94 0.04  
2 11.20 7.45 14.48 22.20 1.06  
3 0.76 4.92 8.58 14.55 16.37  
 Force 6 Force 7 Force 8 Force 9 Force 10 Mean error 
1 8.17 2.57 13.39 23.01 0.80 8.59 
2 12.11 12.09 4.18 5.57 0.86 9.12 
3 5.23 0.95 3.05 9.12 8.65 7.22 

As shown in Fig 5.14, the identified flexural rigidities of the 3 elements in SS1 are 

close to the measured values from the static test. Reasonable identification results 

are achieved with less than 10% mean error, as shown in Table 5.9, which  validates 

that the proposed strategy is effective without requirement of complete interface 

measurements experimentally.  

5.5 Estimation of interface acceleration 

The proposed strategy is capable of identifying not only the substructural parameters 

but also the unmeasured interface accelerations and the unknown forces as the by-

products. Similar conclusions to Section 3.6 on the identified forces applied in 

undamaged SS3 shown in Fig.5.2 are reached. With polluted measurements, the 

strategy yields a ‘drift’ in the identified force as demonstrated earlier in Fig. 3.24 

and Fig. 3.25. As shown in Fig. 3.26 and Fig. 3.27, it is also found that the ‘drift’ 

only contributes to low frequency components of identified forces in frequency 

domain. The time history of unmeasured excitations can be acquired by filtering out 

the low frequency components, shown in Fig. 3.28. 
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The unmeasured interface accelerations are also identified with the presented 

strategy. With unpolluted measurements, the identified interface angular 

acceleration at node 12 in undamaged SS3 in Fig.5.2 after 1, 5 and 20 iterations are 

shown in Fig. 5.15 through Fig. 5.17. 
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Figure 5.15 Identified angular acceleration at node 12 after 1 iteration, 0% noise 
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Figure 5.16 Identified angular acceleration at node 12 after 5 iterations, 0% noise 
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Figure 5.17 Identified angular acceleration at node 12 after 20 iterations, 0% noise 

In Fig. 5.15, fairly large identification errors are found in the identified interface 

angular acceleration after the first iteration due to the inexact estimated substructural 

parameters. In Fig. 5.16, the identification errors of identified angular acceleration 

after 5 iterations are significantly reduced and the identified time history is in 

excellent agreement with their exactness after 20 iterations, shown in Fig. 5.17. 

These results indicate that the identified angular accelerations at node 12 at the 

interface of SS3 converge rapidly to the exact values.  
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Figure 5.18 Identified angular acceleration at node 12, 5% noise 
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Figure 5.19 Identified angular acceleration at node 12, 10% noise 

The noise effect on the identified interface acceleration at the interface is also 

investigated, shown in Fig. 5.18 and Fig. 5.19. The interface angular acceleration at 
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node 12 is accurately identified even with 10% noise polluted measurements. In 

addition to parameter identification of substructures, the proposed strategy is able to 

directly and accurately identify the unmeasured accelerations at interface. 

5.6 Summary 

In this chapter, an innovative iterative strategy is proposed for substructural 

identification without complete interface measurements as well as excitation 

measurements. First, to facilitate force identification with Tikhonov regularization 

method, the equation of motion for the substructure is derived in a discrete time state 

space form with the trapezoidal rule. Then unmeasured accelerations at the interface 

of substructures are treated in a similar way to the unknown excitations which are 

iteratively identified together with substructural parameters by employing Tikhonov 

regularization method and SSRM. 

The effectiveness of the proposed strategy is validated by damage detection and 

parameter identification for substructures on a simply supported beam and a 

cantilever plate. Numerical results show that the location and severity of damages in 

the beam are accurately identified and the identified stiffness of the plate is in good 

agreement with their exact values. Furthermore, two experimental studies are carried 

out: substructural stiffness identification on a 10-storey frame without measurements 

of forces and interface responses data, flexural rigidity identification of a 

substructure in one leg of a small-scale jack-up. The identified parameters of the 

experiments are in good agreement with the measured values from static test. In 
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addition, the proposed strategy is also able to accurately identify the unmeasured 

accelerations at the interface of substructures. 
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Chapter 6. Conclusions and Recommendations 

6.1 Conclusions 

Structural health monitoring and damage detection of civil infrastructure systems are 

very important in evaluating their health status with identified key parameters 

through structural identification based on observed structural responses and 

excitation forces. In practice, excitation forces are difficult to be accurately 

measured or in some cases even immeasurable. The unavailability of excitation 

force measurements is a big challenge in structural identification since the unknowns 

include not only structural parameters but also input forces. 

Compared with global structural identification, substructural identification is a 

powerful way to improve accuracy and efficiency due to fewer DOFs and unknown 

parameters involved. Nevertheless, the required complete measurements at interface 

largely limit its application, particularly for beam and plate substructures where a 

considerable number of angular accelerations are required. The incompleteness of 

interface measurements introduces another challenge in achieving good 

identification results.  

To address these two challenges, the following three novel strategies have been 

proposed in this thesis. 
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(1) A substructural identification strategy is proposed with measurements of 

strains and translational accelerations, which are more easily and economically 

acquired than angular acceleration measurements in practice. In this strategy, a 

recovery method is developed to compute angular accelerations based on the 

measurements of strains and translational accelerations. An improved GA 

called the search space reduction method (SSRM) is employed as the search 

engine for substructural identification. Numerical studies of damage detection 

on a beam substructure and stiffness identification on a plate substructure are 

carried out to examine the performance of the proposed strategy. The results 

show that the strategy is able to accurately locate and quantify the damage and 

stiffness values. The recovery method not only recovers angular accelerations 

at the interface DOFs but also at some internal DOFs. The accuracy of 

identification results can be significantly improved by including these 

recovered internal angular accelerations in the fitness function since internal 

angular accelerations are more sensitive to change in substructural parameters 

than internal translational accelerations. Savitzky-Golay differentiation 

algorithm is employed for the required differentiation of strains. Nevertheless, 

due to the difficulty of accurately computing derivatives at the beginning and 

ending parts of signals based on insufficient measurement data, differentiation 

error will inevitably affect the accuracy of identification results. This problem 

is overcome by excluding the initial and ending part of simulated and 

measured signals in fitness function. 
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(2) To address the challenge posed by lack of excitation force measurement, an 

iterative identification strategy is proposed, which involves the use of 

Tikhonov regularization method for force identification and SSRM for 

parameter identification. The proposed strategy is tested through global 

structural identification on the same two numerical examples of beam and 

plate. Numerical studies show that satisfactory identification results are 

achieved after 20 iterations. To substantiate the numerical findings, an 

experimental study of global structural identification of a laboratory fabricated 

10-storey frame is carried out without measurement of applied force. 

Acceptable stiffness values of the experimental frame are identified when 

compared with the benchmark values obtained from static and dynamic tests. 

The iterative strategy is then developed for substructural identification without 

measurement of excitation force if there is any within the substructure. Two 

numerical studies of parameter identification of beam and plate substructures 

validate the effectiveness of the proposed identification strategy, followed by 

an experimental study on substructural identification of a 10-storey frame 

without force measurements. 

 

(3) An iterative strategy is developed for dealing with both issues of incomplete 

interface measurements and unknown excitations in substructural identification. 

Essentially the unmeasured interface accelerations are identified together with 

the unknown excitations by Tikhonov regularization method. Numerical study 

for damage detection on a beam substructure shows that the location and 

severity of damages in a beam substructure are accurately identified without 
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measurements of interface angular accelerations and excitation forces. The 

strategy is also successfully applied for parameter identification of a plate 

substructure with incomplete interface measurements as well as without force 

measurements. The performance of the proposed strategy is further 

demonstrated through two experimental studies, i.e., substructural stiffness 

identification on a 10-storey frame without interface measurements and force 

measurements as well as substructural identification on a small-scale jack-up 

without measurements of angular acceleration at the interface. 

6.2 Recommendations for future study 

Based on the numerical and experimental findings obtained in this thesis, some 

recommendations for further investigation are suggested as follows. 

(1) The identification strategy proposed in Chapter 2 is applied for beam and plate 

substructures, which are modeled by Euler beam and Kirchhoff plate element, 

respectively. This strategy can be extended to substructural identification of 

thick beams and thick plates accounting for shear strains.  

 

(2) The study assumes that the locations of unmeasured applied forces are 

stationary. In cases of moving loads such as bridges with traffic load, it is 

suggested to further develop the proposed identification strategies for 

identifying structures and substructures subjected to unknown moving forces.  
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(3) In Chapter 5, a considerable number of internal measurements are required if a 

large number of unmeasured responses at the interface are encountered. It is 

beneficial to introduce some condensation methods, such as Guyan reduction 

(Guyan, 1965), dynamic condensation (Paz, 1984, 1989) and iterated improved 

reduced system (Friswell et al., 1995, 1998) to reduce the required number of 

internal measurements. 

 

(4) The performance of SSRM can be significantly improved by incorporating 

initial sampling, such as random uniform distribution, Latin hypercube, 

orthogonal array and Hammersley sequence sampling (Zhang et al., 2010a) as 

well as local search such as conjugate gradient method, Broyden-Fletcher-

Goldfarb-Shanno method and simulated annealing (Zhang et al., 2010b). It is 

recommended to include some appropriate initial sampling methods and local 

search methods in the proposed identification strategies to further improve the 

identification accuracy and computational efficiency. 
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Appendix A Tikhonov Regularization Method with L-curve 

for Determination of Regularization Parameter  

Consider a linear system as follows 

y Ax=                                                                                                                      (A.1) 

When A  is severely ill-conditioned and the data y  is contaminated by noise, it is not 

easy to obtain a stable solution. The direct solution of least-square method leads to 

unbound solution x that is severely contaminated by noise. Tikhonov regularization 

method (Tikhonov et al., 1995) is one of the most popular approaches to solve 

discrete ill-posed problems with error-contaminated data by  

2 22min Ax y Lxλ− +                                                                                          (A.2) 

where λ and L are regularization parameter and regularization operator, respectively. 

2Ax y−  and 22 Lxλ  in Eq. (A.2) are least square or residual norm and regularized 

norm. The solution of Eq. (A.2) is  

( ) 12ˆ T T Tx A A L L A yλ
−

= +                                                                                             (A.3) 

Based on the fact that log-log parametric plot of the residual norm 
2Ax y− to 

regularized norm 2Lx often has a distinct L-shape. L-curve method (Hansen, 1992; 

Hansen and O´leary, 1993) is to find the value of regularization parameter between 
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2log Ax y−  and 2log Lx by plotting their relationship in the graph. They found that 

the corner point of the L-curve corresponds to a good balance between the residual 

norm and the regularized norm. Therefore, the optimal regularization parameter λ  is 

characterized at the corner of L-curve in the graph by seeking the point with the 

maximum curvature, while the curvature is defined as (Hansen and O´leary, 1993) 

( ) ( )( )
' '' '' '

3/222' '
2c ρ ξ ρ ξ

ρ ξ

−
=

+

  



                                                                                               (A.4) 

where '  denotes the differentiation with respect to the regularization parameter λ ;

2log Lxξ =


 and 
2log Ax yρ = − .  

 

 

 

 

 

 

 

 

 

  



Appendix B Strain-to-Displacement Relation in Beam Element 

201 

 

Appendix B Strain-to-Displacement Relation in Beam 

Element 

For a plane beam element based on Euler-Bernoulli formulation, the bending strain 

at the top is expressed as 

1
2

1

2

2

2 3 3 3 3,
2 2 2 4 4 2 4 4

w
h h L L L L

wL
θ

ε ξ ξ ξ ξ ξ

θ

 
 
      = − − + − +              
  

                        (B.1)

 

where L  and h  are the length and thickness of beam element. { }1 1 2 2
Tw wθ θ is 

the nodal displacement while [ ]1 1ξ ∈ −  specifies the location of installed strain 

gauges. As shown in the numerical study in Section 2.5.1, there are two strain 

gauges ( 1 1/ 3ξ = − , 2 1/ 3ξ = ) settled in each element, therefore 

1
1

1
2

2
1

2

1 3 3, 3 323 2 2 2 2
1 3 3, 3 3

23 2 2 2 2

wh L LL Lh
wLh L LL L

ε ξ
θ

ε ξ
θ

      = − − − − −          = −   
     = − + − +          

             (B.2)

 where 

[ ] 2

3 33 3
2 2 2 2

3 33 3
2 2 2 2

L LL LhS
L L LL L

 
− − − − 
 = −
 

− + − + 
 

                                                 (B.3) 
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According to Eq. (2.16) 

[ ] ( )
( ) ( )

( ) ( )

2 2

2

2 2

2 3 2 3

12 3 3 12 3 3

6 4 2 3 2 3

12 3 3 12 3 3

s

L L

L LL
h L L L

L L

 −
 
 + + − − +
 Φ =
 + −
 
 − + − + − − + 

 

The elemental rigid-body modes consist of one translation and one rotation, which 

are 

1 0 1 0
2 2

T

L Lα
 

Φ =  − 
                                                                                            (B.4) 

Therefore, the nodal displacement can be represented as  

( )
( ) ( )

( ) ( )

1
2 2 1

1
2

2
1

2 22

1

2

2 3 2 3
1 ,12 3 3 12 3 3 23

6 4 12 3 2 3 ,
2312 3 3 12 3 3

1
0 2
1
0 2

L Lw h
L LL

w h L hL L

L L

L

L

ε ξ
θ

ε ξ
θ

α
α

 −
      = −     + + − − +     =   

 +  −   =           − + − + − − + 
− 

    +     
 
 

   (B.5) 

Therefore, the rigid-body amplitudes and the rotational displacements can be 

computed through the measurements of strains and translational displacements 
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( ) ( ) ( )
( ) ( )
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