180,144 research outputs found

    Applying Answer Set Programming in Game Level Design

    Get PDF
    Automated content generation is used in game industry to reduce costs and improve replayability of games. Many classic and modern games have their levels, terrains, quests, and items procedurally generated. Answer set programming is a declarative problem solving paradigm which can be used for generating game content. In answer set programming, the problem is modeled as a set of rules. This encoding is fed to the solver program, which traverses the search space and outputs answer sets complying with all the given rules. The resulting answer sets are finally interpreted as solutions to the problem. In this thesis, answer set programming techniques are applied to design and implement a level generator for Portal, a series of 3D puzzle games where the player solves each level by using objects in a certain order. All the levels in Portal games are built by human level designers. In this work, the main aspects of Portal physics and several basic game objects are modeled using answer set programming. Two alternative encoding are provided. The full encoding of the generator tracks reachability of the objects and provides a solution plan for the level. In the simplified encoding the reachability concept and the solution plan are omitted, making the generator less reliable but more efficient at creating larger levels. Both of the encodings are able to make different looking puzzles by utilizing randomization and controlling the search for answer sets via parameters such as the amount of elevations and objects in the level or the minimum and maximum number of timesteps for solving the puzzle. The effects of varying these and other parameters and changing the frequency for randomized choices in the solver program \emph{clingo} are studied. One of the generated levels was reviewed and tested by several Portal players, receiving mostly positive ratings

    Interpretable task planning and learning for autonomous robotic surgery with logic programming

    Get PDF
    This thesis addresses the long-term goal of full (supervised) autonomy in surgery, characterized by dynamic environmental (anatomical) conditions, unpredictable workflow of execution and workspace constraints. The scope is to reach autonomy at the level of sub-tasks of a surgical procedure, i.e. repetitive, yet tedious operations (e.g., dexterous manipulation of small objects in a constrained environment, as needle and wire for suturing). This will help reducing time of execution, hospital costs and fatigue of surgeons during the whole procedure, while further improving the recovery time for the patients. A novel framework for autonomous surgical task execution is presented in the first part of this thesis, based on answer set programming (ASP), a logic programming paradigm, for task planning (i.e., coordination of elementary actions and motions). Logic programming allows to directly encode surgical task knowledge, representing emph{plan reasoning methodology} rather than a set of pre-defined plans. This solution introduces several key advantages, as reliable human-like interpretable plan generation, real-time monitoring of the environment and the workflow for ready adaptation and failure recovery. Moreover, an extended review of logic programming for robotics is presented, motivating the choice of ASP for surgery and providing an useful guide for robotic designers. In the second part of the thesis, a novel framework based on inductive logic programming (ILP) is presented for surgical task knowledge learning and refinement. ILP guarantees fast learning from very few examples, a common drawback of surgery. Also, a novel action identification algorithm is proposed based on automatic environmental feature extraction from videos, dealing for the first time with small and noisy datasets collecting different workflows of executions under environmental variations. This allows to define a systematic methodology for unsupervised ILP. All the results in this thesis are validated on a non-standard version of the benchmark training ring transfer task for surgeons, which mimics some of the challenges of real surgery, e.g. constrained bimanual motion in small space

    Plan-based delivery composition in intelligent tutoring systems for introductory computer programming

    Get PDF
    In a shell system for the generation of intelligent tutoring systems, the instructional model that one applies should be variable independent of the content of instruction. In this article, a taxonomy of content elements is presented in order to define a relatively content-independent instructional planner for introductory programming ITS's; the taxonomy is based on the concepts of programming goals and programming plans. Deliveries may be composed by the instantiation of delivery templates with the content elements. Examples from two different instructional models illustrate the flexibility of this approach. All content in the examples is taken from a course in COMAL-80 turtle graphics

    KR3^3: An Architecture for Knowledge Representation and Reasoning in Robotics

    Get PDF
    This paper describes an architecture that combines the complementary strengths of declarative programming and probabilistic graphical models to enable robots to represent, reason with, and learn from, qualitative and quantitative descriptions of uncertainty and knowledge. An action language is used for the low-level (LL) and high-level (HL) system descriptions in the architecture, and the definition of recorded histories in the HL is expanded to allow prioritized defaults. For any given goal, tentative plans created in the HL using default knowledge and commonsense reasoning are implemented in the LL using probabilistic algorithms, with the corresponding observations used to update the HL history. Tight coupling between the two levels enables automatic selection of relevant variables and generation of suitable action policies in the LL for each HL action, and supports reasoning with violation of defaults, noisy observations and unreliable actions in large and complex domains. The architecture is evaluated in simulation and on physical robots transporting objects in indoor domains; the benefit on robots is a reduction in task execution time of 39% compared with a purely probabilistic, but still hierarchical, approach.Comment: The paper appears in the Proceedings of the 15th International Workshop on Non-Monotonic Reasoning (NMR 2014

    A review of Australasian investigations into problem solving and the novice programmer

    Get PDF
    This Australasian focused review compares a number of recent studies that have identified difficulties encountered by novices while learning programming and problem solving. These studies have shown that novices are not performing at expected levels and many novices have only a fragile knowledge of programming, which may prevent them from learning and applying problem solving strategies. The review goes on to explore proposals for explicitly incorporating problem solving strategy instruction into introductory programming curricula and assessment, in an attempt to produce improved learning outcomes for novices. Finally, directions suggested by the reviewed studies are gathered and some unanswered questions are raised

    Narrative based Postdictive Reasoning for Cognitive Robotics

    Full text link
    Making sense of incomplete and conflicting narrative knowledge in the presence of abnormalities, unobservable processes, and other real world considerations is a challenge and crucial requirement for cognitive robotics systems. An added challenge, even when suitably specialised action languages and reasoning systems exist, is practical integration and application within large-scale robot control frameworks. In the backdrop of an autonomous wheelchair robot control task, we report on application-driven work to realise postdiction triggered abnormality detection and re-planning for real-time robot control: (a) Narrative-based knowledge about the environment is obtained via a larger smart environment framework; and (b) abnormalities are postdicted from stable-models of an answer-set program corresponding to the robot's epistemic model. The overall reasoning is performed in the context of an approximate epistemic action theory based planner implemented via a translation to answer-set programming.Comment: Commonsense Reasoning Symposium, Ayia Napa, Cyprus, 201
    • …
    corecore