9 research outputs found

    Introduction to the 28th International Conference on Logic Programming Special Issue

    Full text link
    We are proud to introduce this special issue of the Journal of Theory and Practice of Logic Programming (TPLP), dedicated to the full papers accepted for the 28th International Conference on Logic Programming (ICLP). The ICLP meetings started in Marseille in 1982 and since then constitute the main venue for presenting and discussing work in the area of logic programming

    Theory Solving Made Easy with Clingo 5

    Get PDF
    Answer Set Programming (ASP) is a model, ground, and solve paradigm. The integration of application- or theory-specific reasoning into ASP systems thus impacts on many if not all elements of its workflow, viz. input language, grounding, intermediate language, solving, and output format. We address this challenge with the fifth generation of the ASP system clingo and its grounding and solving components by equipping them with well-defined generic interfaces facilitating the manifold integration efforts. On the grounder\u27s side, we introduce a generic way of specifying language extensions and propose an intermediate format accommodating their ground representation. At the solver end, this is accompanied by high-level interfaces easing the integration of theory propagators dealing with these extensions

    Lazy Model Expansion: Interleaving Grounding with Search

    Full text link
    Finding satisfying assignments for the variables involved in a set of constraints can be cast as a (bounded) model generation problem: search for (bounded) models of a theory in some logic. The state-of-the-art approach for bounded model generation for rich knowledge representation languages, like ASP, FO(.) and Zinc, is ground-and-solve: reduce the theory to a ground or propositional one and apply a search algorithm to the resulting theory. An important bottleneck is the blowup of the size of the theory caused by the reduction phase. Lazily grounding the theory during search is a way to overcome this bottleneck. We present a theoretical framework and an implementation in the context of the FO(.) knowledge representation language. Instead of grounding all parts of a theory, justifications are derived for some parts of it. Given a partial assignment for the grounded part of the theory and valid justifications for the formulas of the non-grounded part, the justifications provide a recipe to construct a complete assignment that satisfies the non-grounded part. When a justification for a particular formula becomes invalid during search, a new one is derived; if that fails, the formula is split in a part to be grounded and a part that can be justified. The theoretical framework captures existing approaches for tackling the grounding bottleneck such as lazy clause generation and grounding-on-the-fly, and presents a generalization of the 2-watched literal scheme. We present an algorithm for lazy model expansion and integrate it in a model generator for FO(ID), a language extending first-order logic with inductive definitions. The algorithm is implemented as part of the state-of-the-art FO(ID) Knowledge-Base System IDP. Experimental results illustrate the power and generality of the approach

    Boosting Answer Set Optimization with Weighted Comparator Networks

    Get PDF
    Answer set programming (ASP) is a paradigm for modeling knowledge intensive domains and solving challenging reasoning problems. In ASP solving, a typical strategy is to preprocess problem instances by rewriting complex rules into simpler ones. Normalization is a rewriting process that removes extended rule types altogether in favor of normal rules. Recently, such techniques led to optimization rewriting in ASP, where the goal is to boost answer set optimization by refactoring the optimization criteria of interest. In this paper, we present a novel, general, and effective technique for optimization rewriting based on comparator networks, which are specific kinds of circuits for reordering the elements of vectors. The idea is to connect an ASP encoding of a comparator network to the literals being optimized and to redistribute the weights of these literals over the structure of the network. The encoding captures information about the weight of an answer set in auxiliary atoms in a structured way that is proven to yield exponential improvements during branch-and-bound optimization on an infinite family of example programs. The used comparator network can be tuned freely, e.g., to find the best size for a given benchmark class. Experiments show accelerated optimization performance on several benchmark problems.Comment: 36 page

    Answer Set Solving with Lazy Nogood Generation

    Get PDF
    Although Answer Set Programming (ASP) systems are highly optimised, their performance is sensitive to the size of problem encodings. We address this deficiency by introducing a new extension to ASP solving. The idea is to integrate external propagators to represent parts of the encoding implicitly, rather than generating it a-priori. To match the state-of-the-art in conflict-driven solving, however, external propagators can generate an encoding of their inference on demand. We demonstrate the applicability of our approach in a novel Constraint Answer Set Programming system that can seamlessly integrate Constraint Programming techniques without sacrificing the advantages of conflict-driven techniques. Experiments provide evidence for computational impact

    Conflict-Driven Constraint Answer Set Solving with Lazy Nogood Generation

    No full text
    We present a new approach to enhancing answer set programming (ASP) with constraint programming (CP) techniques based on conflict-driven learning and lazy nogood generation
    corecore