18 research outputs found

    Automatic Music Composition using Answer Set Programming

    Get PDF
    Music composition used to be a pen and paper activity. These these days music is often composed with the aid of computer software, even to the point where the computer compose parts of the score autonomously. The composition of most styles of music is governed by rules. We show that by approaching the automation, analysis and verification of composition as a knowledge representation task and formalising these rules in a suitable logical language, powerful and expressive intelligent composition tools can be easily built. This application paper describes the use of answer set programming to construct an automated system, named ANTON, that can compose melodic, harmonic and rhythmic music, diagnose errors in human compositions and serve as a computer-aided composition tool. The combination of harmonic, rhythmic and melodic composition in a single framework makes ANTON unique in the growing area of algorithmic composition. With near real-time composition, ANTON reaches the point where it can not only be used as a component in an interactive composition tool but also has the potential for live performances and concerts or automatically generated background music in a variety of applications. With the use of a fully declarative language and an "off-the-shelf" reasoning engine, ANTON provides the human composer a tool which is significantly simpler, more compact and more versatile than other existing systems. This paper has been accepted for publication in Theory and Practice of Logic Programming (TPLP).Comment: 31 pages, 10 figures. Extended version of our ICLP2008 paper. Formatted following TPLP guideline

    Transition Systems for Model Generators - A Unifying Approach

    Get PDF
    A fundamental task for propositional logic is to compute models of propositional formulas. Programs developed for this task are called satisfiability solvers. We show that transition systems introduced by Nieuwenhuis, Oliveras, and Tinelli to model and analyze satisfiability solvers can be adapted for solvers developed for two other propositional formalisms: logic programming under the answer-set semantics, and the logic PC(ID). We show that in each case the task of computing models can be seen as "satisfiability modulo answer-set programming," where the goal is to find a model of a theory that also is an answer set of a certain program. The unifying perspective we develop shows, in particular, that solvers CLASP and MINISATID are closely related despite being developed for different formalisms, one for answer-set programming and the latter for the logic PC(ID).Comment: 30 pages; Accepted for presentation at ICLP 2011 and for publication in Theory and Practice of Logic Programming; contains the appendix with proof

    Experiments with SAT-based Answer Set Programming

    Get PDF
    Answer Set Programming (ASP) emerged in the late 1990s as a new logic programming paradigm which has been successfully applied in various application domains. Propositional satisfiability (SAT) is one of the most studied problems in Computer Science. ASP and SAT are closely related: Recent works have studied their relation, and efficient SAT-based ASP solvers (like assat and Cmodels) exist. In this paper we report about (i) the extension of the basic procedures in Cmodels in order to incorporate the most popular SAT reasoning strategies, and (ii) an extensive comparative analysis involving also other state-of-the-art answer set solvers. The experimental analysis points out, besides the fact that Cmodels is highly competitive, that the reasoning strategies that work best on “small but hard” problems are ineffective on “big but easy” problems and vice-versa

    Abstract Answer Set Solvers

    Get PDF
    Nieuwenhuis, Oliveras, and Tinelli showed how to describe enhancements of the Davis-Putnam-Logemann-Loveland algorithm using transition systems, instead of pseudocode. We design a similar framework for three algorithms that generate answer sets for logic programs: SMODELS, ASP-SAT with Backtracking, and a newly designed and implemented algorithm SUP. This approach to describing answer set solvers makes it easier to prove their correctness, to compare them, and to design new systems

    Abstract Answer Set Solvers with Backjumping and Learning

    Get PDF
    Nieuwenhuis et al. (2006. Solving SAT and SAT modulo theories: From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). Journal of the ACM 53(6), 937977 showed how to describe enhancements of the Davis–Putnam–Logemann–Loveland algorithm using transition systems, instead of pseudocode. We design a similar framework for several algorithms that generate answer sets for logic programs: SMODELS, SMODELScc, asp-sat with Learning (CMODELS), and a newly designed and implemented algorithm sup. This approach to describe answer set solvers makes it easier to prove their correctness, to compare them, and to design new systems
    corecore