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Abstract Answer Set Solvers

Yuliya Lierler
University of Texas at Austin
yuliya@cs.utexas.edu

Abstract

Nieuwenhuis, Oliveras, and Tinelli showed how to describe enhancements
of the Davis-Putnam-Logemann-Loveland algorithm using transition systems, in-
stead of pseudocode. We design a similar framework for three algorithms that
generate answer sets for logic programs: SMODELS, ASP-SAT with Backtracking,
and a newly designed and implemented algorithm SUP. This approach to describ-
ing answer set solvers makes it easier to prove their correctness, to compare them,
and to design new systems.

1 Introduction
Most state-of-the-art Satisfiability (SAT) solvers are based on variations of the Davis-
Putnam-Logemann-Loveland (DPLL) procedure [1]. Usually enhancements of DPLL
are described fairly informally with the use of pseudocode. It is often difficult to un-
derstand the precise meaning of these modifications and to prove their properties on
the basis of such informal descriptions. In [2], the authors proposed an alternative
approach to describing DPLL and its enhancements (for instance, backjumping and
learning). They describe each variant of DPLL by means of a transition system that can
be viewed as an abstract framework underlying DPLL computation. The authors fur-
ther extend the framework to the algorithms commonly used in Satisfiability Modulo
Background Theories.
The abstract framework introduced in [2] describes what ”states of computation”

are, and which transitions between states are allowed. In this way, it defines a di-
rected graph such that every execution of the DPLL procedure corresponds to a path in
this graph. Some edges may correspond to unit propagation steps, some to branching,
some to backtracking. This allows the authors to model a DPLL algorithm by a math-
ematically simple and elegant object, graph, rather than a collection of pseudocode
statements. Such an abstract way of presenting DPLL simplifies the analysis of its
correctness and facilitates formal reasoning about its properties. Instead of reasoning
about pseudocode constructs, we can reason about properties of a graph. For instance,
by proving that the graph corresponding to a version of DPLL is acyclic we demon-
strate that the algorithm always terminates. On the other hand, by checking that every
terminal state corresponds to a solution we establish the correctness of the algorithm.
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The graph introduced in [2] is actually an imperfect representation of DPLL in the
sense that some paths in the graph do not correspond to any execution of DPLL (for
example, paths in which branching is used even though unit propagation is applicable).
But this level of detail is irrelevant when we talk about correctness. Furthermore, it
makes our correctness theorems more general. These theorems cover not only execu-
tions of the pseudo-code, but also some computations that are prohibited by its details.
In this paper we take the abstract framework for describing DPLL-like procedures

for SAT solvers as a starting point and design a similar framework for three algo-
rithms that generate answer sets for logic programs. The first one is the SMODELS
algorithm [3], implemented in one of the major answer set solvers1. The other algo-
rithm is called SUP and can be seen as a simplification of SMODELS algorithm.2 We
implemented this algorithm in the new, previously unpublished system SUP3. The last
algorithm that we describe is ASP-SAT with Backtracking4 [4]. It computes models of
the completion of the given program using DPLL and tests them until an answer set is
found.
We start by reviewing the abstract framework for DPLL developed in [2] in a form

convenient for our purposes. We demonstrate how this framework can be modified to
describe an algorithm for computing supported models of a logic program, and then
extend it to the SMODELS algorithm for computing answer sets. We show that for a
large class of programs, called tight, the graph representing SMODELS is closely related
to the graph representing the application of DPLL to the completion of the program.
As a step towards extending these ideas to ASP-SAT with Backtracking, we analyze
a modification of the original DPLL graph that includes testing the models found by
DPLL. We then show how a special case of this construction corresponds to ASP-SAT
with Backtracking.
We hope that the analysis of algorithms for computing answer sets in terms of

transition systems described in this paper will contribute to clarifying computational
principles of answer set programming and to the development of new systems.

2 Review: Abstract DPLL
For a set σ of atoms, a state relative to σ is either a distinguished state FailState or a
list M of literals over σ such that M contains no repetitions, and each literal in M has
an annotation, a bit that marks it as a decision literal or not. For instance, the states
relative to a singleton set {a} of atoms are

FailState, /0, a, ¬a, ad, ¬ad ,a ¬a, ad ¬a,

a ¬ad, ad ¬ad,¬a a, ¬ad a, ¬a ad, ¬ad ad,

1SMODELS: http://www.tcs.hut.fi/Software/smodels .
2The idea of simplifying the SMODELS algorithm in this manner was suggested to us by Mirosław

Truszczyński (August 2, 2007).
3SUP: http://www.cs.utexas.edu/users/tag/sup . In fact, SUP implements a more sophis-

ticated form of the algorithm that is enhanced with learning.
4A more sophisticated form of this algorithm, ASP-SAT with Learning, is implemented in system

CMODELS: http://www.cs.utexas.edu/users/tag/cmodels .
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where by /0 we denote the empty list. The concatenation of two such lists is denoted
by juxtaposition. Frequently, we consider M as a set of literals, ignoring both the
annotations and the order between its elements. We write ld to emphasize that l is a
decision literal. A literal l is unassigned byM if neither l nor l belongs toM.
If C is a disjunction (conjunction) of literals then byC we understand the conjunc-

tion (disjunction) of the complements of the literals occurring inC. We will sometimes
identifyC with the set of its elements.
For any CNF formula F (a set of clauses), we will define its DPLL graph DPF . The

set of nodes of DPF consists of the states relative to the set of atoms occurring in F . We
use the terms “state” and “node” interchangeably. If a state is consistent and complete
then it represents a truth assignment for F .
The set of edges of DPF is described by a set of “transition rules”. Each transition

rule has the formM =⇒ M′ followed by a condition, so that

• M andM′ are symbolic expressions for nodes of DPF , and

• if the condition is satisfied there is an edge between nodeM andM′ in the graph.

There are four transition rules that characterize the edges of DPF :

Unit Propagate: M =⇒ M l if C∨ l ∈ F and C ⊆M

Decide: M =⇒ M ld if l is unassigned byM

Fail: M =⇒ FailState if
{

M is inconsistent, and
M contains no decision literals

Backtrack: P ld Q =⇒ P l if
{

P ld Q is inconsistent, and
Q contains no decision literals

Note that an edge in the graph may be justified by several transition rules.
This graph can be used for deciding the satisfiability of a formula F simply by con-

structing an arbitrary path leading from node /0 until a terminal nodeM is reached. The
following proposition shows that this process always terminates, that F is unsatisfiable
ifM is FailState, and thatM is a model of F otherwise.

Proposition 1. For any CNF formula F,

(a) graph DPF is finite and acyclic,

(b) any terminal state of DPF other than FailState is a model of F,

(c) FailState is reachable from /0 in DPF if and only if F is unsatisfiable.

For instance, let F be the set consisting of the clauses

a∨b
¬a∨ c.
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Here is a path in DPF with every edge annotated by the name of a transition rule that
justifies the presence of this edge in the graph:

/0 =⇒ (Decide)
ad =⇒ (Unit Propagate)
ad c =⇒ (Decide)
ad c bd

(1)

Since the state ad c bd is terminal, Proposition 1(b) asserts that {a,c,b} is a model of F .
Here is another path in DPF from /0 to the same terminal node:

/0 =⇒ (Decide)
ad =⇒ (Decide)
ad ¬cd =⇒ (Unit Propagate)
ad ¬cd c =⇒ (Backtrack)
ad c =⇒ (Decide)
ad c bd

(2)

Path (1) corresponds to an execution of DPLL; path (2) does not, because it usesDecide
instead of Unit Propagate.
Note that the graph DPF is a modification of the classical DPLL graph defined in [2,

Section 2.3]. It is different in three ways. First, the description of the classical DPLL
graph involves a “PureLiteral” transition rule, which we have dropped. Second, its
states are pairsM ‖ F for all CNF formulas F . For our purposes, it is not necessary to
include F . Third, in the definition of that graph, eachM is required to be consistent. In
case of the DPLL, due to the simple structure of a clause, it is possible to characterize
the applicability of Backtrack in a simple manner: when some of the clauses become
inconsistent with the current partial assignment, Backtrack is applicable. In ASP, it is
not easy to describe the applicability of Backtrack if only consistent states are taken
into account. We introduced inconsistent states in the graph DPF to facilitate our work
on extending this graph to model the SMODELS algorithm.

3 Background: Logic Programs
A (propositional) logic program is a finite set of rules of the form

a0← a1, . . . ,am,not am+1, . . . ,not an, (3)

where each ai is an atom. By Bodies(Π,a) we denote the (multi-)set of the bodies of
all rules of Π with head a. We will identify the body of (3) with the conjunction of
literals

a1∧ . . .∧am∧¬am+1∧ . . .¬an.

and (3) with the implication

a1∧ . . .∧am∧¬am+1∧ . . .¬an→ a0.
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For any set M of literals, by M+ we denote the set of positive literals from M. We
assume that the reader is familiar with the definition of an answer set (stable model) of
a logic program [5]. For any consistent and complete set M of literals (assignment), if
M+ is an answer set for a program Π, then M is a model of Π. Moreover, in this case
M is a supported model of Π, in the sense that for every atom a ∈M, M |= B for some
B ∈ Bodies(Π,a).

4 Generating Supported Models
In the next section we will define, for an arbitrary programΠ, a graph SMΠ representing
the application of the SMODELS algorithm to Π; the terminal nodes of SMΠ are answer
sets ofΠ. As a step in this direction, we describe here a simpler graph ATLEASTΠ. The
terminal nodes of ATLEASTΠ are supported models of Π.
The set of nodes of ATLEASTΠ consists of the states relative to the set of atoms

occurring in Π. The edges of the graph ATLEASTΠ are described by the transition rules
Decide, Fail, Backtrack introduced above in the definition of DPF and the additional
transition rules5:

Unit Propagate LP: M =⇒ M a if a← B ∈Π and B⊆M

All Rules Cancelled: M =⇒ M ¬a if B∩M �= /0 for all B ∈ Bodies(Π,a),

Backchain True: M =⇒ M l if

⎧⎪⎪⎨
⎪⎪⎩

a← B ∈Π,

a ∈M,

B′ ∩M �= /0 for all B′ ∈ Bodies(Π,a)\B ,
l ∈ B

Backchain False: M =⇒ M l if

⎧⎨
⎩

a← l,B ∈ Π,

¬a ∈M, and
B⊆M

Note that each of the rules Unit Propagate LP and Backchain False is similar to Unit
Propagate: the former corresponds to Unit Propagate on C∨ l where l is the head of
the rule, and the latter corresponds to Unit Propagate onC∨ l where l is an element of
the body of the rule.
This graph can be used for deciding whether program Π has a supported model by

constructing a path from /0 to a terminal node:

Proposition 2. For any program Π,

(a) graph ATLEASTΠ is finite and acyclic,

(b) any terminal state of ATLEASTΠ other than FailState is a supported model of Π,

(c) FailState is reachable from /0 in ATLEASTΠ if and only if Π has no supported
models.

5The names of some of these rules follow [6].
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For instance, let Π be the program

a← not b
b← not a
c← a
d← d.

(4)

Here is a path in ATLEASTΠ:

/0 =⇒ (Decide)
ad =⇒ (Unit Propagate LP)
ad c =⇒ (All Rules Cancelled)
ad c ¬b =⇒ (Decide)
ad c ¬b dd

(5)

Since the state ad c ¬b dd is terminal, Proposition 2(b) asserts that {a,c,¬b,d} is a
supported model of programΠ.
The assertion of Proposition 2 will remain true if we drop the transition rules

Backchain True and Backchain False from the definition of ATLEASTΠ.
The transition rules defining ATLEASTΠ are closely related to procedure Atleast [3,

Sections 4.1], which is one of the core procedures of the SMODELS algorithm.

5 Smodels
Recall that a set U of atoms occurring in a program Π is said to be unfounded [7] on
a consistent set M of literals w.r.t. Π if for every a ∈U and every B ∈ Bodies(Π,a),
M |= ¬B orU ∩B+ �= /0.
We now describe the graph SMΠ that represents the application of the SMODELS

algorithm to programΠ. SMΠ is a graph whose nodes are the same as the nodes of the
graph ATLEASTΠ. The edges of SMΠ are described by the transition rules of ATLEASTΠ
and the additional transition rule:

Unfounded: M =⇒ M ¬a if
{

M is consistent, and
a ∈U for a setU unfounded onM w.r.t. Π

This transition rule of SMΠ is closely related to procedure Atmost [3, Sections 4.2],
which together with the procedure Atleast forms the core of the SMODELS algorithm.
The graph SMΠ can be used for deciding whether program Π has an answer set by

constructing a path from /0 to a terminal node:

Proposition 3. For any program Π,

(a) graph SMΠ is finite and acyclic,

(b) for any terminal state M of SMΠ other than FailState, M+ is an answer set of Π,

(c) FailState is reachable from /0 in SMΠ if and only if Π has no answer sets.
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To illustrate the difference between SMΠ and ATLEASTΠ, assume again that Π
is program (4). Path (5) in the graph ATLEASTΠ is also a path in SMΠ. But state
ad c ¬b dd , which is terminal in ATLEASTΠ, is not terminal in SMΠ. This is not sur-
prising, since the set {a,c,d} of atoms that belongs to this state is not an answer set
of Π. To get to a state that is terminal in SMΠ, we need two more steps:

...
ad c ¬b dd =⇒ (Unfounded, U = {d})
ad c ¬b dd ¬d =⇒ (Backtrack)
ad c ¬b ¬d.

(6)

Proposition 3(b) asserts that {a,c} is an answer set of Π.
The assertion of Proposition 3 will remain true if we drop the transition rules All

Rules Cancelled, Backchain True, and Backchain False from the definition of SMΠ.

6 Sup
In this section we show how to extend the graph ATLEASTΠ by the modification of
transition rule Unfounded so that terminal nodes of the resulting graph correspond to
answer sets of Π.
The graph SUPΠ is the subgraph of SMΠ such that its nodes are the same as the

nodes of the graph SMΠ and its edges are described by the transition rules of ATLEASTΠ
and the following modification of the rule Unfounded of SMΠ:

Unfounded SUP: M =⇒ M ¬a if

⎧⎨
⎩
no literal is unassigned byM,
M is consistent, and
a ∈U for a setU unfounded onM w.r.t. Π

This graph can be used for deciding whether a program Π has an answer set by con-
structing a path from /0: Proposition 3 remains correct after replacing graph SMΠ with
SUPΠ.
The only difference between SUPΠ and SMΠ is due to the additional restriction

in Unfounded SUP: it is applicable only to the states that assign all atoms in Π. To
illustrate the difference between SUPΠ and SMΠ, assume thatΠ is program (4). Path (6)
in SMΠ is also a path in SUPΠ. On the other hand the path

/0 =⇒ (Unfounded, U = {d})
¬d

of SMΠ does not belong to SUPΠ
We can view the graph SUPΠ as a description of a particular strategy for traversing

SMΠ, i.e., an edge corresponding to an application of Unfounded to a state in SMΠ is
considered only if a transition rule Decide is not applicable in this state. Note that
system SMODELS implements the opposite strategy, i.e., an edge corresponding to an
application of Decide is considered only if Unfounded is not applicable. Nevertheless,
the strategy described by SUPΠ may be reasonable for many problems. For instance,
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it is easy to see that transition rule Unfounded is redundant for tight programs. Fur-
thermore, the analogous strategy has been successfully used in SAT-based answer set
solvers ASSAT6 [8] and CMODELS (see Footnote 4) [4]. These systems first compute
the completion of a program and then test each model of the completion whether it
is an answer set (this can be done by testing whether it contains unfounded sets). In
fact, the work on ASSAT and CMODELS inspired the development of system SUP. Un-
like ASSAT and CMODELS, SUP does not compute the completion of a program but
performs its inference directly on the the program by means of transition rules of the
graph SUPΠ.
We have implemented system SUP (see Footnote 3), whose underlying algorithm is

modelled by the graph SUPΠ. In the implementation, we used

• the interface of SAT-solver MINISAT7 (v1.12b) that supports non-clausal con-
straints [9] in order to implement inferences described by Unit Propagate LP,
All Rules Cancelled, Backchain True, Backchain False, Decide, and Fail,

• parts of the CMODELS code that support transition rule Unfounded SUP.

Note that system SUP also implements conflict-driven backjumping and learning.
Preliminary results available at SUP web site (see Footnote 3) comparing SUP with
other answer set solvers are promising.
The implementation of SUP proofs that the abstract framework for answer set solvers

introduced in this work may suggest new designs for solvers.

7 Tight Programs
We now recall the definitions of the positive dependency graph and a tight program.
The positive dependency graph of a programΠ is the directed graph G such that

• the nodes of G are the atoms occurring in Π, and

• G contains the edges from a0 to ai (1≤ i≤ m) for each rule (3) in Π.

A program is tight if its positive dependency graph is acyclic. For instance, program (4)
is not tight since its positive dependency graph has a cycle due to the rule d← d. On
the other hand, the program constructed from (4) by removing this rule is tight.
Recall that for any program Π and any assignmentM, if M+ is an answer set of Π

then M is a supported model of Π. For the case of tight programs, the converse holds
also:M+ is an answer set for Π if and only if M is a supported model of Π [10].
It is also well known that the supported models of a program can be characterized

as models of its completion in the sense of [11]. It turns out that for tight programs the
graph SMΠ is “almost identical” to the graph DPF , where F is the (clausified) comple-
tion of Π. To make this claim precise, we need the following terminology.
We say that an edgeM =⇒ M′ in the graph SMΠ is singular if

• the only transition rule justifying this edge is Unfounded, and
6ASSAT: http://assat.cs.ust.hk/ .
7MINISAT: http://minisat.se/ .
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• some edgeM =⇒ M′′ can be justified by a transition rule other thanUnfounded.

For instance, let Π be the program

a← b
b← c.

The edge
ad bd ¬cd =⇒ (Unfounded, U = {a,b})
ad bd ¬cd ¬a

in the graph SMΠ is singular, because the edge

ad bd ¬cd =⇒ (All Rules Cancelled)
ad bd ¬cd ¬b

belongs to SMΠ also.
From the point of view of actual execution of the SMODELS algorithm, singular

edges of the graph SMΠ are inessential: SMODELS never follows a singular edge. By
SM−Π we denote the graph obtained from SMΠ by removing all singular edges.
Recall that for any program Π, its completion consists of Π and the formulas that

can be written as
¬a∨

∨
B∈Bodies(Π,a)

B (7)

for every atom a in Π. CNF-Comp(Π) is the completion converted to CNF using
straightforward equivalent transformations. In other words, CNF-Comp(Π) consists of
clauses of two kinds:

1. the rules a← B of the program written as clauses

a∨B, (8)

2. formulas (7) converted to CNF using the distributivity of disjunction over con-
junction8.

Proposition 4. For any tight program Π, the graph SM−Π is equal to each of the graphs
ATLEASTΠ and DPCNF-Comp(Π).

For instance, let Π be the program

a← b, not c
b.

This program is tight. Its completion is

(a↔ b∧¬c)∧b∧¬c,
8It is essential that repetitions are not removed in the process of clausification. For instance,

CNF-Comp(a← not a) is the formula (a∨a)∧ (¬a∨¬a).
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and CNF-Comp(Π) is

(a∨¬b∨ c)∧ (¬a∨b)∧ (¬a∨¬c)∧b∧¬c.

Proposition 4 asserts that, for this formulaF , SM−Π coincideswith DPF and with ATLEASTΠ.
From Proposition 4, it follows that applying the SMODELS algorithm to a tight pro-

gram essentially amounts to applying DPLL to its completion. A similar relationship,
in terms of pseudocode representations of SMODELS and DPLL, is established in [12].

8 Generate and Test
In this section, we present a modification of the graph DPF that includes testing the
models of F found by DPLL. Let F be a CNF formula, and let X be a set of models
of F . The terminal nodes of the graph GTF,X defined below are models of F that belong
to X .
The nodes of the graph GTF,X are the same as the nodes of the graph DPF . The edges

of GTF,X are described by the transition rules of DPF and the additional transition rules:

Fail GT: M =⇒ FailState if

⎧⎨
⎩
no literal is unassigned byM,

M �∈ X ,

M contains no decision literals

Backtrack GT: P ld Q =⇒ P l if

⎧⎨
⎩
no literal is unassigned by P ld Q,

P ld Q �∈ X ,

Q contains no decision literals.

It is easy to see that the graph DPF is a subgraph of GTF,X . Furthermore, when the set X
coincides with the set of all models of F the graphs are identical. This graph can be
used for deciding whether a formula F has a model that belongs to X by constructing a
path from /0 to a terminal node:

Proposition 5. For any CNF formula F and any set X of models of F,

(a) graph GTF,X is finite and acyclic,

(b) any terminal state of GTF,X other than FailState belongs to X,

(c) FailState is reachable from /0 in GTF,X if and only if X is empty.

Note that to verify the applicability of the new transition rules Fail GT and Back-
track GT we need a procedure for testing whether a set of literals belongs to X , but
there is no need to have the elements of X explicitly listed.

ASP-SAT with Backtracking [4] is a procedure that computes models of the com-
pletion of the given program using DPLL, and tests them until an answer set is found.
The application of the ASP-SAT with Backtracking algorithm to a program Π can be
viewed as constructing a path from /0 to a terminal node in the graph GTF,X , where

• F is the completion of Π converted to conjunctive normal form, and

• X is the set of all assignments corresponding to answer sets of Π.
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9 Related Work
Simons [3] described the SMODELS algorithm by means of a pseudocode and demon-
strated its correctness. Gebser and Schaub [13] provided a deductive system for de-
scribing inferences involved in computing answer sets by tableaux methods. The ab-
stract framework presented in this paper can be viewed as a deductive system also, but
it is a very different system. For instance, we describe backtracking by an inference
rule, and the Gebser-Schaub system doesn’t. Accordingly, the derivations considered in
this paper describe search process, and derivations in the Gebser-Schaub system don’t.
Also, the abstract framework discussed here doesn’t have any inference rule similar to
Cut; this is why its derivations are paths, rather than trees.

10 Proofs
Lemma 1. For any CNF formula F and a path from /0 to a state l1 . . . ln in DPF , every
model X of F satisfies li if it satisfies all decision literals ldj with j ≤ i.

Proof. By induction on the length of a path. Since the property trivially holds in the
initial state /0, we only need to prove that all transition rules of DPF preserve it.
Consider an edgeM =⇒M′ whereM is a sequence l1 . . . lk such that every model

X of F satisfies li if it satisfies all decision literals ldj with j ≤ i.
Unit Propagate: M′ is M lk+1. Take any model X of F such that X satisfies all

decision literals ldj with j ≤ k + 1. By the inductive hypothesis, X |= M. From the
definition of Unit Propagate, for some clause C∨ lk+1 ∈ F , C ⊆ M. Consequently,
M |= ¬C. It follows that X |= lk+1.

Decide: M′ is M ldk+1. Obvious.
Fail: Obvious.
Backtrack: M has the form P ldi Q where Q contains no decision literals. M′ is

P li. Take any model X of F such that X satisfies all decision literals ldj with j ≤ i.
We need to show that X |= li. By contradiction. Assume that X |= li. Since Q does
not contain decision literals, X satisfies all decision literals in P ldi Q. By the inductive
hypothesis, it follows that X satisfies P ldi Q, that is, M. This is impossible because M
is inconsistent.

Proposition 1. For any CNF formula F ,

(a) graph DPF is finite and acyclic,

(b) any terminal state of DPF other than FailState is a model of F ,

(c) FailState is reachable from /0 in DPF if and only if F is unsatisfiable.

Proof. (a) The finiteness of DPF is obvious. For any list N of literals by |N| we denote
the length of N. Any state M, other than FailState, has the form M0 l1 M1 . . . lp Mp,
where l1 . . . lp are all desicion literals of M; we define α(M) as the sequence of non-
negative integers |M0|, |M1|, . . . , |Mp|, and α(FailState) = ∞. For any states M and M′
of DPF , we understand α(M) < α(M′) as the lexicographical order. By the definition
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of the transition rules defining the edges of DPF , if there is an edge from a state M
to M′ in DPF , then α(M) < α(M′). It follows that if a state M′ is reachable from M
then α(M) < α(M′). Consequently, the graph is acyclic.
(b) Consider any terminal stateM other than FailState. From the fact that Decide is not
applicable, we derive that M assigns all literals. Similarly, since neither Backtrack nor
Fail is applicable, M is consistent. Consequently, M is an assignment. Consider any
clauseC∨ l in F . It follows that ifC �⊆M thenC∩M �= /0. Since Unit Propagate is not
applicable, it follows that ifC ⊆M then l ∈M. We derive thatM |= C∨ l. Hence,M is
a model of F .
(c) Left-to-right: Since FailState is reachable from /0, there is an inconsistent state M
without decision literals such that there exists a path from /0 to M. By Lemma 1, any
model of F satisfies M. SinceM is inconsistent we conclude that F has no models.
Right-to-left: From (a) it follows that there is a path from /0 to some terminal state.

By (b), this state cannot be different from FailState, because F is unsatisfiable.

Lemma 2. For any program Π and a path from /0 to a state l1 . . . ln in ATLEASTΠ,
every supported model X for Π satisfies li if it satisfies all decision literals ldj with j≤ i.

Proof. By induction on the length of the path. Similar to the proof of Lemma 1. We
will show that the property in question is preserved by the four new rules.

Unit Propagate LP: M′ is M a. Take any model X of Π such that X satisfies all
decision literals ldj with j ≤ k. From the inductive hypothesis it follows that X |= M.
By the definition of Unit Propagate LP, B ⊆M for some rule a← B. Consequently,
M |= B. Since X is a model of Π we derive that X |= a.

All Rules Cancelled: M′ isM ¬a, such that B∩M �= /0 for every B ∈ Bodies(Π,a).
Consequently, M |= ¬B for every B ∈ Bodies(Π,a). Take any model X of Π such
that X satisfies all decision literals ldj with j ≤ k. We need to show that X |= ¬a. By
contradiction. Assume that X |= a. By the inductive hypothesis, X |= M. Therefore,
X |= ¬B for every B ∈ Bodies(Π,a). We derive that X is not a supported model of Π.

Backchain True: M′ isM l. Take any supported model X of Π such that X satisfies
all decision literals ldj with j ≤ k. We need to show that X |= l. By contradiction.
Assume X |= l. Consider the rule a←B corresponding to this application of Backchain
True. Since l ∈B, X |=¬B. By the definition of Backchain True, B′ ∩M �= /0 for everyB′
in Bodies(Π,a)\ B. Consequently, M |= ¬B′ for every B′ in Bodies(Π,a)\ B. By the
inductive hypothesis, X |= M. It follows that X |= ¬B′ for every B′ in Bodies(Π,a)\ B.

Hence X is not supported by Π.
Backchain False: M′ is M l. Take any model X of Π such that X satisfies all

decision literals ldj with j ≤ k. We need to show that X |= l. By contradiction. Assume
that X |= l. By the definition of Backchain False there exists a rule a← l,B in Π
such that ¬a ∈ M and B ⊆M. Consequently, M |= ¬a and M |= B. By the inductive
hypothesis, X |= M. It follows that X |=¬a and X |= B. Since X |= l, X does not satisfy
the rule a← l,B, so that it is not a model of Π.

Proposition 2. For any program Π,

(a) graph ATLEASTΠ is finite and acyclic,

(b) any terminal state of ATLEASTΠ other than FailState is a supported model of Π,
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(c) FailState is reachable from /0 in ATLEASTΠ if and only if Π has no supported
models.

Proof. Parts (a) and (c) are proved as in the proof of Proposition 1, using Lemma 2.
(b) LetM be a terminal state. It follows that none of the rules are applicable. From the
fact that Decide is not applicable, we derive that M assigns all literals. Since neither
Backtrack nor Fail is applicable, M is consistent. Since Unit Propagate LP is not
applicable, it follows that for every rule a←B∈Π, if B⊆M then a∈M. Consequently,
if M |= B then M |= a. We derive that M is a model of Π. We now show that M is a
supported model of Π. By contradiction. Suppose that M is not a supported model.
Then, there is an atom a ∈M such that M �|= B for every B ∈ Bodies(Π,a). Since M is
consistent, B∩M �= /0 for every B ∈ Bodies(Π,a). Consequently, All Rules Cancelled
is applicable. This contradicts the assumption thatM is terminal.

We say that a model X of a programΠ is unfounded-free if no non-empty subset of
X is an unfounded set on X w.r.t. Π.

Lemma 3 (Theorem 4.6 [14]). For any model X of a program Π, X+ is an answer set
for Π if and only if X is unfounded-free.

Lemma 4. For any unfounded set U on a consistent set Y of literals w.r.t. a program Π,
and any assignment X, if X |= Y and X ∩U �= /0, then X+ is not an answer set for Π.

Proof. Assume that X+ is an answer set for Π. Then X is a model of Π. By Lemma 3,
it follows that X+ is unfounded-free. Since X ∩U �= /0 it follows that X ∩U is not
unfounded on X . This means that for some rule a← B in Π such that a ∈ X ∩U ,
X �|=¬B and X ∩U ∩B+ = /0. Since X |=Y , it follows thatY �|=¬B. Since X satisfies B,
B+ ⊆ X and consequently U ∩B+ = X ∩U ∩B+ = /0. It follows that set U is not an
unfounded set on Y .

Lemma 5. For any program Π and a path from /0 to a state l1 . . . ln in SMΠ, and any
assignment X, if X+ is an answer set for Π then X satisfies li if it satisfies all decision
literals ldj with j ≤ i.

Proof. By induction on the length of a path. Recall that for any assignment X , if
X+ is an answer set for Π, then X is a supported model of Π, and that the transition
system SMΠ extends ATLEASTΠ by the transition rule Unfounded. Given our proof of
Lemma 2, we only need to demonstrate that application of Unfounded preserves the
property.
Consider a transition M =⇒Unfounded M′, where M is a sequence l1 . . . lk. M′ is

M ¬a, such that a ∈U , where U is an unfounded set on M w.r.t Π. Take any assign-
ment X such that X+ is an answer set for Π and X satisfies all decision literals ldj with
j ≤ k. By the inductive hypothesis, X |= M. Then X |= ¬a. Indeed, otherwise a would
be a common element of X andU , and X ∩U would be non-empty, which contradicts
Lemma 4 with M as Y .

Since the graph SUPΠ is a subgraph of SMΠ, Lemma 5 immediately holds for SUPΠ.

Proposition 3. For any program Π,
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(a) graph SMΠ [SUPΠ] is finite and acyclic.

(b) for any terminal state M of SMΠ [SUPΠ] other than FailState, M+ is an answer
set of Π.

(c) FailState is reachable from /0 in SMΠ [SUPΠ] if and only if Π has no answer sets.

Proof. Parts (a) and (c) are proved as in the proof of Proposition 1, using Lemma 5.
(b) As in the proof of Proposition 2(b) we derive that M is a model of Π. Assume
that M+ is not an answer set. Then, by Lemma 3, there is a non-empty unfounded
set U on M w.r.t. Π such that U ⊆M. It follows that Unfounded [Unfounded SUP] is
applicable (with an arbitrary a∈U). This contradicts the assumption thatM is terminal.

Lemma 6. For any program Π, the graphs ATLEASTΠ and DPCNF-Comp(Π) are equal.

Proof. It is easy to see that the states of the graphs ATLEASTΠ and DPCNF-Comp(Π)

coincide. We will now show that the edges of ATLEASTΠ and DPCNF-Comp(Π) coincide
also.
It is clear that there is an edgeM =⇒ M′ in ATLEASTΠ justified by the ruleDecide

if and only if there is an edge M =⇒ M′ in DPCNF-Comp(Π) justified by Decide. The
same holds for the transition rules Fail and Backtrack.
We will now show that if there is an edge from a state M to a state M′ in the

graph DPCNF-Comp(Π) justified by the transition rule Unit Propagate then there is an
edge fromM to M′ in ATLEASTΠ. Consider a clause C∨ l ∈ CNF-Comp(Π) such that
M |= ¬C. We will consider two cases, depending on whether C∨ l comes from (8) or
from the CNF of (7).
Case 1: C∨ l is a∨B corresponding to a rule a← B.
Case 1.1: l is a. Then there is an edge fromM to M′ in ATLEASTΠ justified by the

transition rule Unit Propagate LP.
Case 1.2: l is an element of B. Then B has the form l,D and C is a∨D. From

C⊆M, we derive that D⊆M and ¬a ∈M. There is an edge fromM toM′ in the graph
ATLEASTΠ justified by the following instance of Backchain False

M =⇒ M l if

⎧⎨
⎩

a← l,D ∈ Π,

¬a ∈M, and
D⊆M

Case 2: C∨ l has the form ¬a∨D, where D is one of the clauses of the CNF of
∨

B∈Bodies(Π,a)

B.

Then D has the form ∨
B∈Bodies(Π,a)

f (B)

where f is a function that maps every B ∈ Bodies(Π,a) to an element of B.
Case 2.1: l is ¬a. ThenC is D, so that D⊆M. Consequently, B∩M �= /0 for every

B ∈ Bodies(Π,a). There is an edge from M to M′ in ATLEASTΠ justified by All Rules
Cancelled.
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Case 2.2: l is an element of D. From the construction of D, it follows that l =
f (B) ∈ B for some rule a← B. ThenC is

¬a∨
∨

B′∈Bodies(Π,a)\B
f (B′).

FromC ⊆M we derive that a ∈M and that f (B′) ∈M for every B′ ∈ Bodies(Π,a)\B.
Since f (B′) is a conjunctive term of B′, it follows that B′ ∩M �= /0. Then there is an
edge fromM toM′ in ATLEASTΠ justified by Backchain True.
We will now show that if there is an edge from a state M to a state M′ in the

graph ATLEASTΠ justified by one of the transition rules Unit Propagate LP, All Rules
Cancelled, Backchain True, and Backchain False then there is an edge from M to M′
in DPCNF-Comp(Π).
Case 1: The edge is justified by Unit Propagate LP. Then there is a rule a←

B ∈ Π where B ⊆ M, and M′ is M a. By the construction of CNF-Comp(Π), a∨
B ∈ CNF-Comp(Π). There is an edge from M to M′ in DPCNF-Comp(Π) justified by the
following instance of Unit Propagate:

M =⇒ M a if
{

B∨a ∈ CNF-Comp(Π) and
B⊆M.

Case 2: The edge is justified by All Rules Cancelled. By the definition of All Rules
Cancelled, there is an atom a such that for all B ∈ Bodies(Π,a), B∩M �= /0; and M′
is M ¬a. Consequently, M contains the complement of some literal in B. Denote that
literal by f (B), so that f (B) ∈M. From the construction of CNF-Comp(Π),

¬a∨
∨

B∈Bodies(Π,a)

f (B)

belongs to CNF-Comp(Π). By the choice of f ,
∨

B∈Bodies(Π,a)

f (B) ⊆M.

There is an edge from M to M′ in DPCNF-Comp(Π) justified by the following instance of
Unit Propagate:

M =⇒ M ¬a if

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∨
B∈Bodies(Π,a)

f (B)∨¬a ∈ CNF-Comp(Π),

∨
B∈Bodies(Π,a)

f (B)⊆M.

Case 3: The edge is justified by Backchain True. By the definition of Backchain
True, there is a rule a←B∈Π and a literal l such that a∈M; for all B′ ∈Bodies(Π,a) \B,
B′ ∩M �= /0; l ∈ B; and M′ is M l. Let f (B′) be an element of B′ such that f (B′) ∈M.
From the construction of CNF-Comp(Π),

¬a∨ l∨
∨

B′∈Bodies(Π,a)\B
f (B′)
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belongs to CNF-Comp(Π). By the choice of f ,
∨

B′∈Bodies(Π,a)\B
f (B′)⊆M.

There is an edge from M to M′ in DPCNF-Comp(Π) justified by the following instance of
Unit Propagate:

M =⇒ M l if

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

¬a∨ l∨
∨

B′∈Bodies(Π,a)\B
f (B′) ∈ CNF-Comp(Π),

(¬a∨
∨

B′∈Bodies(Π,a)\B
f (B′))⊆M.

Case 4: The edge is justified by Backchain False. By the definition of Backchain
False, there is a rule a← l,B ∈ Π such that ¬a ∈ M, B ⊆M, and M′ is M l. By the
construction of CNF-Comp(Π), a∨B∨ l ∈ CNF-Comp(Π). There is an edge from M
toM′ in DPCNF-Comp(Π) justified by the following instance of Unit Propagate:

M =⇒ M l if
{

a∨B∨ l ∈ CNF-Comp(Π) and
a∨B⊆M.

Lemma 7. For any tight program Π and any non-empty unfounded set U on Π w.r.t.
a consistent set X of literals there is an atom a such that a ∈ U and for every B ∈
Bodies(Π,a), B∩X �= /0.

Proof. By contradiction. Assume that, for every a ∈U there exists B ∈ Bodies(Π,a)
such that B∩X = /0. Consequently, X �|= ¬B. By the definition of an unfounded set
it follows that for every atom a ∈U there is B ∈ Bodies(B,a) such that U ∩B+ �= /0.
Consequently the subgraph of the positive dependency graph of Π induced by U has
no terminal nodes. Then, the program Π is not tight.

Proposition 4. For any tight program Π, the graph SM−Π is equal to each of the graphs
ATLEASTΠ and DPCNF-Comp(Π).
Proof. In view of Lemma 6, it is sufficient to prove that SM−Π equals ATLEASTΠ; or, in
other words, that every edge of SMΠ justified by the rule Unfounded only is singular.
Consider such an edge M =⇒ M′. We need to show that some transition rule other
than Unfounded is applicable to M. By the definition of Unfounded, M is consistent
and there exists a non-empty setU unfounded on M w.r.t. Π. By Lemma 7, it follows
that there is an atom a∈U such that for every B∈ Bodies(Π,a), B∩M �= /0. Therefore,
the transition rule All Rules Cancelled is applicable toM.

Lemma 8. For any CNF formula F and a set X of models of F, and a path from /0 to a
state l1 . . . ln in GTF,X , any model Y ∈ X satisfies li if it satisfies all decision literals ldj
with j ≤ i.

Proof. Similar to the proof of Lemma 1. There are two more rules to consider:
Fail GT: Obvious.
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Backtrack GT:M has the form P ldi Q whereQ contains no decision literals,M �∈ X .
Then, M′ is P li. Take any model E of F in X such that E satisfies all decision literals
ldj with j ≤ i. We need to show that E |= li. By contradiction. Assume E |= li. By
the inductive hypothesis, and the fact that M′ is P ldi Q where Q contains no decision
literals, it follows that E |= M. Since M has no unassigned literals, E = M. This
contradicts the assumption thatM �∈ X .

Proposition 5. For any CNF formula F and a set X of models of F ,

(a) graph GTF,X is finite and acyclic,

(b) any terminal state of GTF,X other than FailState belongs to X ,

(c) FailState is reachable from /0 in GTF,X if and only if X is empty.

Proof. Part (a) and part (c) right-to-left are proved as in the proof of Proposition 1.
(b) LetM be any terminal state other than FailState. As in the proof of Proposition 1(b)
it follows that M is a model of F . Neither Fail GT nor Backtrack GT is applicable.
Then,M belongs to X .
(c) Left-to-right: Since FailState is reachable from /0, there is a stateM without decision
literals such that it is reachable from /0 and either transition rule Fail or Fail GT is
applicable.
Case 1. Fail is applicable. Then, M is inconsistent. By Lemma 8, any model of F

in X satisfies M. SinceM is inconsistent we conclude that X is empty.
Case 2. Fail GT is applicable. Then, M assigns all literals and M �∈ X . From

Lemma 8, it follows that for any Y ∈ X , Y = M. Since M �∈ X , we conclude that X is
empty.

11 Conclusions
In this paper we showed how to model algorithms for computing answer sets of a
program by means of simple mathematical objects, graphs. This approach simplifies
the analysis of the correctness of algorithms and allows us to study the relationship
between various algorithms using the structure of the corresponding graphs. For exam-
ple, we used this method to establish that applying the SMODELS algorithm to a tight
program essentially amounts to applying DPLL to its completion. It also suggests new
designs for answer set solvers, as can be seen from our work on SUP. In the future we
will investigate the generalization of this framework to backjumping and learning per-
formed by the SMODELScc algorithm [6], to SUP with Learning, and to ASP-SAT with
Learning [4]. We also would like to generalize this approach to the algorithms used in
disjunctive answer set solvers.
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