668 research outputs found

    Flexible Authentication in Vehicular Ad hoc Networks

    Full text link
    A Vehicular Ad-Hoc Network (VANET) is a form of Mobile ad-hoc network, to provide communications among nearby vehicles and between vehicles and nearby fixed roadside equipment. The key operation in VANETs is the broadcast of messages. Consequently, the vehicles need to make sure that the information has been sent by an authentic node in the network. VANETs present unique challenges such as high node mobility, real-time constraints, scalability, gradual deployment and privacy. No existent technique addresses all these requirements. In particular, both inter-vehicle and vehicle-to-roadside wireless communications present different characteristics that should be taken into account when defining node authentication services. That is exactly what is done in this paper, where the features of inter-vehicle and vehicle-to-roadside communications are analyzed to propose differentiated services for node authentication, according to privacy and efficiency needs

    Genetic algorithms with immigrants and memory schemes for dynamic shortest path routing problems in mobile ad hoc networks

    Get PDF
    This article is posted here with permission of IEEE - Copyright @ 2010 IEEEIn recent years, the static shortest path (SP) problem has been well addressed using intelligent optimization techniques, e.g., artificial neural networks, genetic algorithms (GAs), particle swarm optimization, etc. However, with the advancement in wireless communications, more and more mobile wireless networks appear, e.g., mobile networks [mobile ad hoc networks (MANETs)], wireless sensor networks, etc. One of the most important characteristics in mobile wireless networks is the topology dynamics, i.e., the network topology changes over time due to energy conservation or node mobility. Therefore, the SP routing problem in MANETs turns out to be a dynamic optimization problem. In this paper, we propose to use GAs with immigrants and memory schemes to solve the dynamic SP routing problem in MANETs. We consider MANETs as target systems because they represent new-generation wireless networks. The experimental results show that these immigrants and memory-based GAs can quickly adapt to environmental changes (i.e., the network topology changes) and produce high-quality solutions after each change.This work was supported by the Engineering and Physical Sciences Research Council of U.K. underGrant EP/E060722/

    Design and development of anonymous location based routing for mobile ad-hoc network

    Get PDF
    Mobile ad-hoc network (MANET) consists of wireless nodes interacting with each other impulsively over the air. MANET network is dynamic in nature because of which there is high risk in security. In MANET keeping node and routing secure is main task. Many proposed methods have tried to clear this issue but unable to fully resolve. The proposed method has strong secure anonymous location based routing (S2ALBR) method for MANET using optimal partitioning and trust inference model. Here initially partitions of network is done into sectors by using optimal tug of war (OTW) algorithm and compute the trustiness of every node by parameters received signal strength, mobility, path loss and co-operation rate. The process of trust computation is optimized by the optimal decided trust inference (ODTI) model, which provides the trustiness of each node, highest trust owned node is done in each sector and intermediate nodes used for transmission. The proposed method is focusing towards optimization with respect to parameter such as energy, delay, network lifetime, and throughput also above parameter is compared with the existing methods like anonymous location-based efficient routing protocol (ALERT), anonymous location-aided routing in suspicious MANET (ALARM) and authenticated anonymous secure routing (AASR)

    The Quest for a Killer App for Opportunistic and Delay Tolerant Networks (Invited Paper)

    Get PDF
    Delay Tolerant Networking (DTN) has attracted a lot of attention from the research community in recent years. Much work have been done regarding network architectures and algorithms for routing and forwarding in such networks. At the same time as many show enthusiasm for this exciting new research area there are also many sceptics, who question the usefulness of research in this area. In the past, we have seen other research areas become over-hyped and later die out as there was no killer app for them that made them useful in real scenarios. Real deployments of DTN systems have so far mostly been limited to a few niche scenarios, where they have been done as proof-of-concept field tests in research projects. In this paper, we embark upon a quest to find out what characterizes a potential killer applications for DTNs. Are there applications and situations where DTNs provide services that could not be achieved otherwise, or have potential to do it in a better way than other techniques? Further, we highlight some of the main challenges that needs to be solved to realize these applications and make DTNs a part of the mainstream network landscape

    A Survey on Anonymous On-Demand Routing Protocols for MANETs

    Get PDF
    At present Mobile ad hoc networks (MANET) is used in many real time applications and hence such networks are vulnerable to different kinds of security threats. MANET networks suffered more from security attacks due to use of free wireless communication frequency spectrum and dynamic topology. Therefore it becomes very tough to provide security to MANET under different adversarial environments like battlefields. For MANET, anonymous communications are vital under the adversarial environments, in which the identification of nodes as well as routes is replaced by pseudonyms or random numbers for the purpose of protection. There are many protocols presented for anonymous communication security for MANET, which hide node identities and routes from exterior observers in order to provide anonymity protection. This paper presents review of various anonymous on demand routing protocols

    Security and pseudo-anonymity with a cluster-based approach for MANET

    Get PDF
    International audienceIn this paper, we propose an anonymous protocol to secure nodes which have important roles in the network. We focus in the clustering approach to secure the mobile ad hoc networks (MANETs). In each cluster, a confident node is selected to ensure the certification authority (CA) roles; however, the cluster security depends in the security of the CA node. Therefore, we present an anonymous dynamic demilitarized zone (ADDMZ) to protect the CA node identity and to avoid the single point of failure in the cluster. ADDMZ is formed by a set of confident nodes which have a high trust level between them and their goal is to filter the communication between the cluster member node and the CA node. Moreover, we draw one's inspiration from military defence mechanisms such as: camouflage and identity change mechanisms. We present protocol to realize these mechanisms by using the identity based cryptographic from bilinear maps. The security analysis is proposed to discuss the proposed protocols
    corecore