4,810 research outputs found

    Anonymous and fault-tolerant shared-memory computing

    Get PDF
    The vast majority of papers on distributed computing assume that processes are assigned unique identifiers before computation begins. But is this assumption necessary? What if processes do not have unique identifiers or do not wish to divulge them for reasons of privacy? We consider asynchronous shared-memory systems that are anonymous. The shared memory contains only the most common type of shared objects, read/write registers. We investigate, for the first time, what can be implemented deterministically in this model when processes can fail. We give anonymous algorithms for some fundamental problems: time-stamping, snapshots and consensus. Our solutions to the first two are wait-free and the third is obstruction-free. We also show that a shared object has an obstruction-free implementation if and only if it satisfies a simple property called idempotence. To prove the sufficiency of this condition, we give a universal construction that implements any idempotent objec

    Fault-Tolerant Consensus in Unknown and Anonymous Networks

    Get PDF
    This paper investigates under which conditions information can be reliably shared and consensus can be solved in unknown and anonymous message-passing networks that suffer from crash-failures. We provide algorithms to emulate registers and solve consensus under different synchrony assumptions. For this, we introduce a novel pseudo leader-election approach which allows a leader-based consensus implementation without breaking symmetry

    Survey of Distributed Decision

    Get PDF
    We survey the recent distributed computing literature on checking whether a given distributed system configuration satisfies a given boolean predicate, i.e., whether the configuration is legal or illegal w.r.t. that predicate. We consider classical distributed computing environments, including mostly synchronous fault-free network computing (LOCAL and CONGEST models), but also asynchronous crash-prone shared-memory computing (WAIT-FREE model), and mobile computing (FSYNC model)

    The Impact of RDMA on Agreement

    Full text link
    Remote Direct Memory Access (RDMA) is becoming widely available in data centers. This technology allows a process to directly read and write the memory of a remote host, with a mechanism to control access permissions. In this paper, we study the fundamental power of these capabilities. We consider the well-known problem of achieving consensus despite failures, and find that RDMA can improve the inherent trade-off in distributed computing between failure resilience and performance. Specifically, we show that RDMA allows algorithms that simultaneously achieve high resilience and high performance, while traditional algorithms had to choose one or another. With Byzantine failures, we give an algorithm that only requires n≥2fP+1n \geq 2f_P + 1 processes (where fPf_P is the maximum number of faulty processes) and decides in two (network) delays in common executions. With crash failures, we give an algorithm that only requires n≥fP+1n \geq f_P + 1 processes and also decides in two delays. Both algorithms tolerate a minority of memory failures inherent to RDMA, and they provide safety in asynchronous systems and liveness with standard additional assumptions.Comment: Full version of PODC'19 paper, strengthened broadcast algorith

    Covert Quantum Internet

    Full text link
    We apply covert quantum communication based on entanglement generated from the Minkowski vacuum to the setting of quantum computation and quantum networks. Our approach hides the generation and distribution of entanglement in quantum networks by taking advantage of relativistic quantum effects. We devise a suite of covert quantum teleportation protocols that utilize the shared entanglement, local operations, and covert classical communication to transfer or process quantum information in stealth. As an application of our covert suite, we construct two prominent examples of measurement-based quantum computation, namely the teleportation-based quantum computer and the one-way quantum computer. In the latter case we explore the covert generation of graph states, and subsequently outline a protocol for the covert implementation of universal blind quantum computation.Comment: 9 pages, 2 figure

    Randomized protocols for asynchronous consensus

    Full text link
    The famous Fischer, Lynch, and Paterson impossibility proof shows that it is impossible to solve the consensus problem in a natural model of an asynchronous distributed system if even a single process can fail. Since its publication, two decades of work on fault-tolerant asynchronous consensus algorithms have evaded this impossibility result by using extended models that provide (a) randomization, (b) additional timing assumptions, (c) failure detectors, or (d) stronger synchronization mechanisms than are available in the basic model. Concentrating on the first of these approaches, we illustrate the history and structure of randomized asynchronous consensus protocols by giving detailed descriptions of several such protocols.Comment: 29 pages; survey paper written for PODC 20th anniversary issue of Distributed Computin
    • …
    corecore