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Fault-Tolerant Consensus in Unknown and Anonymous Networks

Carole Delporte-Gallet, Hugues Fauconnier and Andreas Tielmann
LIAFA, University Paris VII, France

{cd,hf,tielmann}@liafa.jussieu.fr

Abstract

This paper investigates under which conditions informa-
tion can be reliably shared and consensus can be solved
in unknown and anonymous message-passing networks that
suffer from crash-failures. We provide algorithms to emulate
registers and solve consensus under different synchrony
assumptions. For this, we introduce a novel pseudo leader-
election approach which allows a leader-based consensus
implementation without breaking symmetry.

1. Introduction

Most of the algorithms for distributed systems consider
that the number of processes in the system is known and
every process has a distinct ID. However, in some networks
such as in wireless sensors networks, this is not necessarily
true. Additionally, such networks are typically not totally
synchronous and processes may suffer from failures such as
crashes.

Designing protocols for such networks is especially in-
tricate, since a process can never know if its messages
have been received by all processes in the system. In this
paper, we investigate under which conditions information
can be reliably shared and consensus can be solved in such
environments.

Typically, in systems where no hardware registers are
available, one makes additional assumptions to be able
to reliably share information, e.g. by assuming a correct
majority of processes. However, these techniques assume
also some knowledge about the total number of processes.
With processes with distinct identities, the requirements
to emulate a register have been precisely determined by
showing that the quorum failure detectorΣ is the weakest
failure detector to simulate registers in asynchronous mes-
sage passing systems [5]. But again, this approach fails due
to the lack of identities in our anonymous environment.

To circumvent these problems, we assume that the system
is not totally asynchronous, but assume the existence of
some partial synchrony. We specify our environments by us-
ing the general round-based algorithm framework (GIRAF)
of [11]. This has two advantages: (i) it is easy to precisely
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specify an environment and (ii) it makes it easy to emulate
environments to show minimality results.

We first define the moving source environment (MS) in
which at every time at least one process (called the source)
sends timely messages to all other processes, but this source
may change over time and infinitely often. Although this
environment is considerably weaker than a total synchronous
environment, we show that it is still sufficient to implement
registers, although it is not possible to implement the con-
sensus abstraction. In fact, it can be emulated by hardware
registers in totally asynchronous “known” networks for
any number of process crashes. Therefore, if we would
be able to implement consensus in this environment, we
could contradict the famous FLP impossibility result [7].
This result states, that consensus cannot be implemented in
asynchronous message passing networks, even if only one
process may crash. Since we can emulate registers if only
one process may crash [2], we can also emulate the MS
environment and therefore cannot be more powerful.

To implement consensus, we consider some additional
stronger synchrony assumptions. Our first consensus algo-
rithm assumes that additionally to the assumptions of the MS
environment, eventually all processes communicate timely.
We call this environment the eventual synchronous (ES)
environment. It resembles Dwork et al. [6]. In our second
consensus algorithm, we consider a weaker environment and
only assume that eventually always the same process is able
to send timely to all other processes. We call it the eventual
stable source environment (ESS). It resembles the model of
[1] in which it is used to elect a leader, a classical approach
to implement in turn consensus.

Due to the indistinguishability of several processes that
behave identical, a true leader election is not possible
in our anonymous environment. Therefore, in our second
algorithm, we take benefit of the fact that it suffices for the
implementation of consensus if all processes that consider
itself as a leader behave the same way. We show how to
eventually guarantee this using the history of the processes
proposal values.

Furthermore, we consider the weak-set data-structure [4].
This data-structure comes along some problems that arise
with registers in unknown and anonymous networks. Every
process can add values to a weak-set and read the values
written before. Contrary to a register, it allows for sharing
information without knowing identities of other processes



and without the risk of an overwritten value due to a concur-
rent write. Furthermore, we show that it precisely captures
the power of the MS environment, i.e. we can show that it
can be implemented in the MS environment and a weak-set
can be used to emulate the MS ennvironment. Interestingly,
in known networks, a weak-set is equivalent to the register
abstraction and can thus be seen as a generalization for
unknown and anonymous networks.

Furthermore, we show that although it is possible to
emulate registers in our MS environment, it is not possible to
emulateΣ [5], the weakest failure detector for registers. And
this result is not only due to the anonymity of the processes,
it holds even if the number of processes and their identities
are known. Note that this is not a contradiction, since the
result in [5] means only thatΣ is the weakest of all failure
detectors with which a register can be implemented and we
have exhibited synchrony assumptions where the existence
of a failure detector is not necessary at all.

1.1. Related work

There have been several approaches to solve fault-tolerant
consensus in anonymous networks deterministically. In [4],
fault-tolerant consensus is solved under the assumption that
failure detectorΩ [3] exists, i.e. exactly one correct process
eventually knows forever that it is the leader. In [9], fault-
tolerant and obstruction-free1 consensus is solved if registers
are available.

There has also been some research on systems where IDs
are known but the number of processes is not. In [8], it
is assumed that processes may crash, but furthermore that
it is possible to detect the participants initially. In [12], a
leader election algorithm for a system where infinitely many
processes may join the system is presented if the number of
processes simultaneously up is bounded.

To the best of our knowledge, this paper presents com-
pletely new approaches to emulate registers and solve the
consensus problem in unknown and anonymous environ-
ments with partial synchrony.

2. Model and Definitions

We assume a network with an unknown (but finite) num-
ber of processes where the processes have no IDs (i.e. they
are totally anonymous) and communicate using a broadcast
primitive. The set of processes is denotedΠ. We assume
that the broadcast primitive is reliable, although it may not
always deliver messages on time. Furthermore, any number
of processes may crash and the processes do not recover.
Processes that do not crash are called correct.

1. For obstruction-free consensus, termination is only guaranteed if
a process can take enough steps without beeing interrupted by other
processes.

We model an algorithmA as a set of deterministic
automata, one for every process in the system. We assume
only fair runs, i.e. every correct process executes infinitely
many steps.

2.1. Consensus

In the consensus problem, the processes try to decide on
one of some proposed values. Three properties have to be
satisfied:

Validity: Every decided value has to be a proposed
value.

Termination: Eventually, every correct process decides.
Agreement: No two processes decide different values.

2.2. An extension to GIRAF

Algorithm 1 presents an extension to the generic round-
based algorithm framework of [11] (GIRAF). It is extended
to deal with the particularities of our model, namely the
anonymity and unknown number of the processes. The
framework is modeled as an I/O automaton. To implement
a specific algorithm, the framework is instantiated with two
functions: initialize() and compute(). The compute() func-
tion takes the round number and the messages received so far
as parameters. We omit to specify a failure detector output
as parameter (as in [11]), because we are not interested
in failure detectors here. Both functions are non-blocking,
i.e. they are not allowed to wait for any other event.

Our extension lies in the way we model the received
messages. Since the processes have no IDs, we represent
the messages that are received during one round as a set
instead of an array.

The communication between the processes proceeds in
rounds and the advancement of the rounds is controlled by
the environment via thereceivei andend-of-roundi input ac-
tions. These actions may occur separately at each processpi

and therefore rounds are not necessarily synchronized among
processes. The framework can capture any asynchronous
message passing algorithm (see [11]).

Environments are specified using round-based properties,
restricting the message arrivals in each round.

2.3. Environments

We say that a processpi is in roundk, if there have beenk
invocations ofend-of-roundi. A processpi has atimely link
in round k, if end-of-roundi occurs in roundk and every
correct processpj receives the roundk message ofpi in
roundk.

In this paper, we consider three different environments:

• In the first one, which we call the moving-source (MS)
environment, we assume that in every roundk, there



Algorithm 1 : Extended GIRAF generic algorithm for
processpi.

States:1
ki ∈ N, initially 0;2
Mi[N] ⊆ Messages, initially∀k ∈ N : Mi[k] = ∅;3

Actions and Transitions:4
input end-of-roundi5

if (ki = 0) then6
m := initialize();7

else8
m := compute(ki, Mi);9

Mi[ki + 1] := Mi[ki + 1] ∪ {m};10
ki := ki + 1;11

output send(〈Mi[ki], ki〉)i;12
input receive(〈M, k〉)i13

Mi[k] := Mi[k] ∪ M ;14

exists a processps (a source) that has a timely link in
roundk.

• In the second environment, which we call the eventual
synchronous (ES) environment, we demand the same
as in the MS environment, but additionally require that
there is some roundk such that in every roundk′ ≥ k,
all correct processes have timely links in roundk′.

• In the third environment, which we call the eventually
stable source (ESS) environment, we demand the same
as in the MS environment, but additionally require that
eventually the source processps is always the same in
every round. This means, that there is some roundk

such that in every roundk′ ≥ k, the same processps

has a timely link in roundk′.

3. Implementing consensus in ES

Algorithm 2 : A consensus algorithm in ES for process
pi.
on initialization do1

VAL := initial value;2
WRITTEN := WRITTENOLD := PROPOSED:= ∅;3
return PROPOSED;4

on compute(ki, Mi) do5

WRITTEN :=
T

m∈Mi[ki]
m;6

PROPOSED:= (
S

m∈Mi[ki]
m) ∪ PROPOSED;7

if (ki mod 2 = 0) then8
if (PROPOSED= WRITTENOLD = {VAL }) then9

decide VAL ; halt10
else if (WRITTEN 6= ∅) then11

VAL := max(WRITTEN);12

PROPOSED:= {VAL};13

WRITTENOLD := WRITTEN;14
return PROPOSED;15

Algorithm 2 implements consensus in the ES environ-
ment. The idea of the algorithm is to ensure safety by waiting
until a value is contained in every message received in a
round. In this way, one can ensure that a value has also
been relayed by the current source and is therefore known
by everybody (we say that the value is written). If a process
evaluates Line 9 to true, thenVAL is known by everybody
(because it was written in the last round) and no other
process will consider another value as written, because only
a value which has also been relayed by a source can be in
WRITTEN. But the relayed value of a source would also be
in PROPOSEDat every process.

To guarantee the liveness of the consensus algorithm,
we use the fact that eventually, all proposal values in the
system are received in every even round by everybody
and everybody will select the same maximum in Line 12.
Therefore, everybody will propose the same value in the
next round and the algorithm will terminate.

3.1. Analysis

For all local variablesVAR, we denote byVARi the local
variable of processpi (e.g.,PROPOSEDi). For every variable
VARi, VARk

i is the value of this variable after processpi

has executed Line 7 whencomputehas been invoked with
parameterk (i.e. in roundk).

Lemma 1. If no process has decided yet and for somepi,
v ∈ WRITTENk

i , then every processpj that enters roundk
hasv ∈ PROPOSEDkj .

Proof: If a processpi has a valuev in WRITTENk
i ,

thenv has been contained in every message, whichpi has
received in roundk (Line 6). This includes the message
of the source, since by assumption the source has not yet
terminated. But by definition, every other processpj that
enters roundk also has received the message of this source
in this round and added it to its setPROPOSEDkj (Line 7).
Therefore,v is in PROPOSEDkj .

Lemma 2. If no process has decided yet andpi has v ∈
WRITTENOLDk

i in an even roundk, then every other process
pj that enters roundk hasv ∈ WRITTENk

j .
Proof: If a processpi has a valuev in WRITTENOLDk

i ,
then it has hadv in WRITTENk−1

i . Therefore, every other
processpj that enters roundk − 1 hasv in PROPOSEDk−1

j

in the same odd roundk − 1 (Lemma 1). Since no value
is removed from a setPROPOSED in odd rounds,v will
be contained in every setPROPOSEDbroadcast at the end
of round k − 1 and therefore get intoWRITTENk

j at every
processpj that enters roundk.

Theorem 1. Algorithm 2 implements consensus in the ES
environment.

Proof: We have to prove the 3 properties of consensus.
Validity is immediately clear, becauseVAL is always an
initial value.



To prove termination, assume that the system has stabi-
lized, i.e. all faulty processes have crashed and all messages
are received in the round after which they have been sent.
Then, all processes receive the same set of messages in every
round. Therefore, the setPROPOSEDand thusWRITTEN is
the same at all correct processes and everybody will always
select the same maximum in Line 12. In the next round all
processes start with the same proposal value and this value
will be written in every future round. Thus, everybody will
evaluate Line 9 to true in the next round.

To prove agreement, assumepi is the first process that
decides a valuev in a round k. This means, thatpi

has evaluated Line 9 to true. If some other value thanv

would have been written anywhere in the system, this would
contradict PROPOSED= {v} (Lemma 1), sincepi is the
first process that decides. Furthermore,v is in WRITTEN at
every process in the system in roundk, since it is also in
WRITTENOLD (Lemma 2). Therefore, every other process
decidesv in the same round, or it will evaluate Line 11 to
true and selectv as newVAL . Thus, no other value will ever
get into PROPOSEDanywhere in the system, no other value
will ever be written and no other value will ever be selected
as VAL .

4. Implementing consensus in ESS

Algorithm 3 implements consensus in the ESS environ-
ment. For the safety part, the algorithm is very close to
algorithm 2 (see Section 3).

To guarantee liveness, we use the fact that we have at
least one process which is eventually a source forever. We
use the idea of the construction of the leader failure detector
Ω [3]. It elects a leader among the processes which is
eventually stable. In “known” networks, with some eventual
synchrony,Ω can be implemented by counting heartbeats
of processes (e.g. in [1]). But we are not able to count
heartbeats of different processes here, because in our model
the processes have no IDs. To circumvent this problem, we
identify processes with the history of their proposal values. If
several processes have the same history, they either propose
the same value, or their histories diverge and will never
become identical again. Eventually, all processes will select
the same history as maximal history and the processes with
this history will propose in every round the same values.

4.1. Implementation

Every process maintains a list of the values it broadcasts
in every round (specifically, its proposal values). This list is
denoted by the variableHISTORY. In this way, two processes
that propose in the same round different values will eventu-
ally have differentHISTORY variables. Note that, although
the space required by the variables may be unbounded, in

every round they require only finite space. Thus, if we
could ensure that eventually all processes that propose have
in every round the same history (and at least one process
proposes infinitely often), then the proposal values sent
are indistinguishable from the proposal values of a single
“classical” leader.

However, the history of a process permanently grows.
Therefore, every process includes its current history in every
message it broadcasts. Furthermore, it maintains a counter
C for every history it has yet heard of (in such a way that
no memory is allocated for histories it has not yet heard
of). Then, it compares the histories it receives with the ones
it has received in previous rounds. If some old history is a
prefix of a new history, it assigns the counter of the new
history the value of the counter of the old one, increased by
one. Thus, the counter of a history that corresponds to an
eventual source is eventually increased in every round.

In this way, it is possible to ensure that eventually only
eventual sources that converge to the same infinite history
consider itself as leader. In a classical approach, eventually
only these leaders would propose values. But to meet our
safety requirements, it is crucial to ensure that all processes
propose in every round at least something to make sure that
the value of the current source is received by everybody.
Therefore, we let processes that do not consider itself as a
leader propose the special value⊥.

4.2. Analysis

Similarly to Section 3, for every variableVARi, VARk
i is

the value of this variable after processpi has executed Line
9 in roundk.

Definition 1. We say, thatpi has heard ofpj ’s round k

message (mk
j ), if pi has receivedmk

j in roundk, or if there
exists another processpl such thatpi has heard ofpl’s round
k′ message for somek′ > k andpl has heard ofpj ’s round
k message.

Let processps be an eventual source. We then identify
three groups of processes:

out-connected: The processes, the eventual sourceps has
infinitely often heard of.

⋄-silent: The processes that are notout-connected.
⋄-proposer: The out-connectedprocesses that have

eventually in every round timely links to-
wards all otherout-connectedprocesses.2

leader: We say that a processpi is a leader
in some roundk (pi ∈ leader(k)), iff
∀H, Ck

i [HISTORYk
i ] ≥ Ck

i [H].
If processpi is eventually a leader for-
ever, i.e. there exists ak, such that for

2. Note that it is possible that the message anout-connectedprocess
actually has received is not the message that a⋄-proposerhas sent. It is
sufficient if it receives an identical message from another process.



Algorithm 3 : The consensus algorithm in ESS for
processpi.

on initialization do1
VAL := initial value; ∀H, C[H] := 0; HISTORY := VAL ;2
WRITTEN := WRITTENOLD := PROPOSED:= ∅;3
return m = 〈PROPOSED, HISTORY, C〉;4

on compute(ki, Mi) do5
WRITTEN :=

T

m∈Mi[ki]
m.PROPOSED;6

PROPOSED:= (
S

m∈Mi[ki]

m.PROPOSED) ∪ PROPOSED;
7

∀H, C[H] := minm∈Mi[ki](m.C[H]);8
∀m ∈ Mi[ki], C[m.HISTORY] := 1 +9
max{ C[H] | H is a prefix ofm.HISTORY};
if (ki mod 2 = 0) then10

if (WRITTENOLD = {VAL }) ∧ (PROPOSED⊆11
{VAL ,⊥}) then

decide VAL ; halt;12
else if (WRITTEN \ {⊥} 6= ∅) then13

VAL := max(WRITTEN \ {⊥});14

if15
(∀H, C[HISTORY] ≥ C[H])∨(PROPOSED⊆ {VAL ,⊥})
then

PROPOSED:= {VAL};16
else17

PROPOSED:= {⊥};18

WRITTENOLD := WRITTEN;19
WRITTEN := PROPOSED;20
appendVAL to HISTORY;21
return m = 〈PROPOSED, HISTORY, C〉;22

all k′ ≥ k, pi ∈ leader(k′), then we
simply write thatpi ∈ leader. Note that
it may be possible that there are several
processes inleader.

The sets relate to each other in the following way:

{ps} ⊆ ⋄-proposer⊆ out-connected⊆ correct

and ⋄-silent∩ out-connected= ∅

We will later show thatleader⊆ ⋄-proposer(Lemma 6).

Lemma 3. Eventually, in every odd roundk, for every
⋄-proposerpi, the setPROPOSEDin mk

i is a subset of the
setWRITTEN at all out-connected processes in roundk +1.
More formally:

∃k, ∀k′ ≥ k with k′ mod 2 = 1,

∀pi ∈ ⋄-proposer, ∀pj ∈ out-connected:

mk′

i = 〈PROPOSED,−,−〉

→ PROPOSED⊆ WRITTENk′+1
j

Proof: Follows directly from the definition of⋄-
proposers and the fact that out-connected processes even-
tually do not receive any timely messages from⋄-silent
processes.

Lemma 4. Eventually, at all out-connected processes, the
counters that correspond to histories of⋄-proposers increase
in every round by one. More formally:

∃k, ∀k′ ≥ k, ∀pi ∈ ⋄-proposer, ∀pj ∈ out-connected,

Ck′+1
j [HISTORYk′+1

i ] = Ck′

j [HISTORYk′

i ] + 1

Proof: Assume a time when the system has stabilized.
This means, that all⋄-proposers send timely messages
to all out-connected processes in every round and no
out-connected process receives timely messages from⋄-silent
processes. Then, letk be the number of the current round
and for every⋄-proposer pi let pj be an out-connected
process, such that the counterCk

j [HISTORYk
i ] is minimal

among all out-connected processes in roundk. Then, the
counter forpi’s history at pj will never decrease, because
pj will never receive a message with a lower counter from
any other process.

Since pi is a ⋄-proposer, the counter forpi’s history
will increase by one atpj in every round. For every other
out-connected process, since it receives also a message from
pi in every round and it can only finitely often receive a
lower counter corresponding topi’s history (the lowest one
is pj ’s), the counter ofpi’s history eventually increases in
every round by one.

Lemma 5. If a history of a processpj infinitely often
corresponds to a maximal counter at a⋄-proposerpi, then
pj is a leader forever. More formally:

∀pi ∈ ⋄-proposer, ∀pj ∈ Π :

(∀k, ∃k′ > k, ∀h, (Ck′

i [HISTORYk′

j ] ≥ Ck′

i [h]))

→ pj ∈ leader

Proof: We first show thatpj ∈ ⋄-proposer. Assume
that it is not. Sincepi ∈ ⋄-proposer, eventually the counter
that corresponds topi’s history is increased by one at every
out-connected process (Lemma 4). Sincepj 6∈ ⋄-proposer,
some out-connected processpl does not receivemk

j in round
k for infinitely many roundsk. Therefore, the counter at
pl that corresponds topj ’s history is not increased by one
in these rounds and is eventually strictly lower than the
one that corresponds topi’s history. Since every time some
out-connected process has a lower counter than the others,
eventually this counter propagates to all other out-connected
processes,pi’s history will eventually be higher thanpj ’s at
all out-connected processes. A contradiction.

If pi and pj are both ⋄-proposers, then eventually they
receive their messages timely in every roundk. Sincepj ’s
history increases at all out-connected processes by one
(Lemma 4), eventuallyCk

j [HISTORYk
j ] = Ck

i [HISTORYk
j ].

Since by our assumption, in some future roundk′, pj ’s
history is maximal atpi and a counter can increase by
at most one and the counters that correspond topj ’s



history increase always by one (Lemma 4),Ck
j [HISTORYk

j ]
is maximal forever and thereforepj is a leader forever.

Lemma 6. Eventually, there exists a processpi ∈ leader
and every leader is a⋄-proposer. More formally:

∃k, ∃pi ∈ Π, ∀k′ ≥ k : pi ∈ leader(k′) (1)

and ∀pi ∈ Π : (∀k, ∃k′, k′ > k, pi ∈ leader(k′))

→ pi ∈ ⋄-proposer (2)

Proof: The eventual sourceps is a ⋄-proposer. There-
fore, there exists at least one⋄-proposer. Eitherps is also
a leader forever, or there is another process whose history
infinitely often corresponds to a higher counter atps than
ps’s history. Then, with Lemma 5 this process is a leader
forever. This implies (1).

Assume a processpi is not a ⋄-proposer. Then,pi’s
counter is increased by less than one in infinitely many
rounds at some processes. Because eventually these counters
propagate to all out-connected processes and the values of
⋄-proposers are increased in every round by at least one
(Lemma 4), eventually the history of some⋄-proposer is
higher than that ofpi. Therefore,pi cannot be a leader
forever. This implies (2).

Lemma 7. If no process has decided yet, then eventually
only values of leaders and⊥ get into a setWRITTEN

anywhere. More formally:

∃k, ∀k′ ≥ k, ∀pi ∈ Π :

WRITTENk′

i ⊆ ∪pj∈leader(k′)VAL k′

j ∪ {⊥}

Proof: There is a time after which there exists at least
one leader and all leaders are⋄-proposers (Lemma 6) and
since leaders propose their values always, all their values
get into every setWRITTEN at all out-connected processes
in every even round (Lemma 3).

Therefore, every setPROPOSEDcontains a value of a
leader (compare Lemma 1) and no process that considers
itself not as leader and has a value different from a leader
will evaluate line 15 to true and add a different value to its
set PROPOSED.

Theorem 2. Algorithm 3 implements consensus in ESS.
Proof: We have to prove the 3 properties of consensus.

Validity is clear, sinceVAL is always an initial value.
To prove termination, assume there exists a run where no

process ever decides. Then, eventually only non-⊥ values
of leaders will get into a setWRITTEN anywhere (Lemma
7) and they will get intoWRITTEN always in every even
round (Lemma 3) and all out-connected processes select the
same value (the maximum in Line 14). Therefore, only this
value and⊥ will be written in subsequent rounds and every
out-connected process will select this value as value for
PROPOSEDin Line 16 (i.e., no out-connected process will

select⊥) and everybody will evaluate Line 11 to true in the
next round. Therefore, eventually, every correct process will
decide.

To prove agreement, assumepi is the first process that
decides a valuev in a round k. This means, thatpi has
evaluated Line 11 to true. Then, asPROPOSED⊆ {v,⊥}, no
other value different from⊥ is in a setWRITTEN anywhere
in the system (compare Lemma 1) andv is in WRITTEN at
every process in the system in roundk, since it is also in
WRITTENOLD (compare Lemma 2). Therefore, every other
process decidesv in the same round, or it will evaluate
Line 13 to true and selectv as newVAL and no other value
different from⊥ will ever get intoPROPOSEDanywhere in
the system and therefore, no other value will ever be selected
as VAL .

5. Weak-Sets

The weak-set data structure has been introduced by
Delporte-Gallet and Fauconnier in [4].

A weak-setS is a shared data structure that contains a
set of values. It is defined by two operations: theaddS(v)
operation to add a valuev to the set and thegetS operation
which returns a subset of the values contained in the weak-
set. Note that we do not consider operations to remove values
from the set. EverygetS operation returns all valuesv where
the correspondingaddS(v) operation has completed before
the beginning of thegetS operation. Furthermore, no valuev′

where noaddS(v′) has started before the termination of the
getS operation is returned. ForaddS operations concurrent
with thegetS operation, it may or may not return the values.
Therefore, weak-sets are not necessarily linearizable3.

5.1. Weak-Sets and registers

A weak-set is clearly stronger than a (regular) register:

Proposition 1. A weak-set implements a (regular) multiple-
writer multiple-reader register.

Proof: To write a value, every process reads the weak-
set and stores the content in a variableHISTORY. Then,
every process adds the value to be written together with
HISTORY to the weak-set.

To read a value, a process reads the weak-set and returns
the highest value among all values accompanied by a
HISTORY with maximal length.

This transformation satisfies the two properties of regu-
lar registers, namely termination and validity. Termination
follows directly from the termination property of weak-sets.

If several processes write at the same time, two reads at
two different processes may return different values, but after

3. A weak object is linearizable (also called atomic) if all of its operations
appear to take effect instantaneously [10].



all writes have completed, the return value will be the same
at all processes. To see that also validity holds, consider the
value returned by a read. If there is no concurrent write,
then the value returned is the last value written (i.e. the
maximal value of all values concurrently written).

In [4], a weak-set is implemented using (atomic) registers
in the following two cases:

Proposition 2. If the set of processes using the weak set is
known (i.e. the IDs and the quantity), then weak-sets can be
implemented with single-writer multiple-reader registers.

Proposition 3. If the set of possible values for the weak set
is finite, then weak-sets can be implemented with multiple-
writer multiple-reader registers.

5.2. Weak-Sets and the MS environment

Algorithm 4 shows how to implement a weak-set in the
MS environment. Similarly to Section 3, for every variable
VARi, VARk

i is the value of this variable after processpi has
executed Line 15 in roundk (i.e. after computeis called
with parameterk).

Algorithm 4 : A weak-set algorithm in the MS environ-
ment for processpi.

on initialization do1
VAL := ⊥; PROPOSED:= WRITTEN := ∅;2
BLOCK := false;3
return PROPOSED;4

on get do5
return PROPOSED;6

on add(v) do7
PROPOSED:= PROPOSED∪ {v};8
VAL := v;9
BLOCK := true;10
wait until (BLOCK = false);11
return ack;12

on compute(ki, Mi) do13
WRITTEN :=

T

m∈Mi[ki]
m;14

PROPOSED:= (
S

m∈Mi[k
′],1≤k′≤ki

m) ∪ PROPOSED;15
if (VAL ∈ WRITTEN) then BLOCK := false;16
return PROPOSED;17

Lemma 8. If for some pi, v ∈ WRITTENk
i , then every

processpj that enters roundk hasv ∈ PROPOSEDkj .
Proof: The proof is analogous to Lemma 1.

Lemma 9. If some value is inWRITTEN at some process,
then this value will be forever inPROPOSEDat all processes.

Proof: Since it is never a value removed from any set
PROPOSED, this follows immediately from Lemma 8.

Theorem 3. Algorithm 4 implements a weak-set.

Proof: We have to show that all operations terminate
at all correct processes and that every get operation returns
all values which have been added before.

The only position where an operation may be blocked is in
Line 11. But since eventually all messages will be received
by all correct processes, every value will eventually be in
every setPROPOSEDand therefore eventually be in every
set WRITTEN. Thus, no correct process will block in Line
11 forever.

To show that every get operation returns all values which
have been added before, see that an add(v) operation only
terminates ifv is in WRITTEN at some process. Together
with Lemma 9, this means that this value will be returned
by every process in Line 6.

5.3. Emulation of the MS environment with weak-
sets

Algorithm 5 emulates the MS environment using a weak-
setS and the correspondingaddS andgetS methods.

As a weak-set is implementable by only using registers
(see Proposition 2) and the FLP impossibility result [7] states
that consensus is not implementable using only registers, this
implies, that it is not possible to implement consensus in the
MS environment (without any additional assumptions like in
ES).

Algorithm 5 : Emulating the MS environment for process
pi using a weak-setS.

on initialization do1
DELIVERED := ∅;2
trigger end-of-roundi;3

on send(mi, ki)i do4
addS(〈mi, ki〉);5
forall 〈m, k〉 ∈ getS \ DELIVERED do6

DELIVERED := DELIVERED∪ {〈m, k〉};7
trigger receive(m,k)i;8

trigger end-of-roundi;9

Theorem 4. Algorithm 5 emulates the MS environment.
Proof: Clearly, eventually all messages get delivered

and all correct processes execute an infinite number of
rounds.

It remains to show, that in every roundk, there exists
a processsk such that for every processpi at which
end-of-roundi occurs in roundk, pi receives the roundk
message ofsk in round k.

Let pi be the first process that finishes to add the value
of a roundk. If several processes finish to add their values
at exactly the same time, choose one.

Claim: Every process at which end-of-round is triggered
in round k has receivedpi’s round k value.



The proof is by contradiction. Assume that a processpj

triggers end-of-round in roundk without having received
pi’s round k value. By the definition of a weak-set, this
means thatpj ’s getS begun beforepi’s addS was completed.
But a process will only start a getS after it has finished to
add its own value. A contradiction to the fact thatpi was
the first process that has completed its addS .

6. The MS-environment and theΣ failure de-
tector

The quorum failure detectorΣ [5] outputs lists of IDs of
trusted processes (i.e. it is not well-defined in our anonymous
model) and it satisfies the following properties:

Intersection: Given any two lists of trusted processes,
possibly at different times and by different
processes, at least one process belongs to
both lists.

Completeness: Eventually at all correct processes, every
trusted process is correct.

Σ has been shown to be the weakest failure detector to
emulate registers in totally asynchronous message-passing
systems [5] (with known IDs). This means, thatΣ is
sufficient to emulate registers in such systems and with
any failure detector which is also sufficient to implement
registers in such a system, it is possible to emulateΣ.
Interestingly, although it is possible to implement a register
in the MS environment (via weak-sets), we show that even
if we assume that the number of processes and their IDs
are known, it is not possible to emulateΣ. Note that this is
no contradiction, since in our model no failure detector is
necessary for the emulation.

Proposition 4. It is not possible to emulateΣ in the MS-
environment, even if the number of processes and their IDs
are known.

Proof: Assume there exists such an algorithm and con-
sider a runr1 where processp1 is the only correct process,
p1 is always the source, andp1 receives no messages from
other processes. Then, by the completeness property ofΣ,
there exists some timet after which the output ofΣ is {p1}.

Similarly, consider a runr2 where processp2 is the
only correct process andp1 crashes after timet. Again,
p1 is the source until timet and receives no messages from
other processes (this is possible, since the messages from
p2 may be arbitrary delayed). Forp1, run r1 and r2 are
indistinguishable up to timet and consequently theΣ at p1

will output {p1} at p1 at time t. But since eventually, the
output atp2 has to be{p2} forever, this contradicts to the
intersection property ofΣ.

7. Conclusions

This paper has provided algorithms to emulate registers
and solve consensus under different synchrony assumptions
in unknown and anonymous message-passing networks that
suffer from crash-failures. One of these algorithms uses a
novel pseudo leader election primitive.

Furthermore, we have shown that the MS environment
(i.e. a system with a moving timely source) is equivalent
to weak-sets, a generalization of registers for unknown and
anonymous systems. In some sense, this indicates that the
synchrony assumptions in this environment are necessary to
implement basic safety primitives.

Additionally, we have shown that in the MS environment,
it is not possible to emulateΣ, the weakest failure detector
to emulate registers [5], even if we assume the existence
of IDs and a bound on the number of processes. To the
best of our knowledge, we found for the first time a
partially synchronous environment in which registers are
implementable andΣ is not.
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