19 research outputs found

    Privacy Preserving User Data Publication In Social Networks

    Get PDF
    Recent trends show that the popularity of Social Networks (SNs) has been increasing rapidly. From daily communication sites to online communities, an average person\u27s daily life has become dependent on these online networks. Additionally, the number of people using at least one of the social networks have increased drastically over the years. It is estimated that by the end of the year 2020, one-third of the world\u27s population will have social accounts. Hence, user privacy protection has gained wide acclaim in the research community. It has also become evident that protection should be provided to these networks from unwanted intruders. In this dissertation, we consider data privacy on online social networks at the network level and the user level. The network-level privacy helps us to prevent information leakage to third-party users like advertisers. To achieve such privacy, we propose various schemes that combine the privacy of all the elements of a social network: node, edge, and attribute privacy by clustering the users based on their attribute similarity. We combine the concepts of k-anonymity and l-diversity to achieve user privacy. To provide user-level privacy, we consider the scenario of mobile social networks as the user location privacy is the much-compromised problem. We provide a distributed solution where users in an area come together to achieve their desired privacy constraints. We also consider the mobility of the user and the network to provide much better results

    Bibliometric Survey of Privacy of Social Media Network Data Publishing

    Get PDF
    We are witness to see exponential growth of the social media network since the year 2002. Leading social media networking sites used by people are Twitter, Snapchats, Facebook, Google, and Instagram, etc. The latest global digital report (Chaffey and Ellis-Chadwick 2019) states that there exist more than 800 million current online social media users, and the number is still exploding day by day. Users share their day to day activities such as their photos and locations etc. on social media platforms. This information gets consumed by third party users, like marketing companies, researchers, and government firms. Depending upon the purpose, there is a possibility of misuse of the user\u27s personal & sensitive information. Users\u27 sensitive information breaches can further utilized for building a personal profile of individual users and also lead to the unlawful tracing of the individual user, which is a major privacy threat. Thus it is essential to first anonymize users\u27 information before sharing it with any of the third parties. Anonymization helps to prevent exposing sensitive information to the third party and avoids its misuse too. But anonymization leads to information loss, which indirectly affects the utility of data; hence, it is necessary to balance between data privacy and utility of data. This research paper presents a bibliometric analysis of social media privacy and provides the exact scope for future research. The research objective is to analyze different research parameters and get insights into privacy in Social Media Network (OSN). The research paper provides visualization of the big picture of research carried on the privacy of the social media network from the year 2010 to 2019 (covers the span of 19 years). Research data is taken from different online sources such as Google Scholar, Scopus, and Research-gate. Result analysis has been carried out using open source tools such as Gephi and GPS Visualizer. Maximum publications of privacy of the social media network are from articles and conferences affiliated to the Chinese Academy of Science, followed by the Massachusetts Institute of Technology. Social networking is a frequently used keyword by the researchers in the privacy of the online social media network. Major Contribution in this subject area is by the computer science research community, and the least research contribution is from art and science. This study will clearly give an understanding of contributions in the privacy of social media network by different organizations, types of contributions, more cited papers, Authors contributing more in this area, the number of patents in the area, and overall work done in the area of privacy of social media network

    A Comprehensive Bibliometric Analysis on Social Network Anonymization: Current Approaches and Future Directions

    Full text link
    In recent decades, social network anonymization has become a crucial research field due to its pivotal role in preserving users' privacy. However, the high diversity of approaches introduced in relevant studies poses a challenge to gaining a profound understanding of the field. In response to this, the current study presents an exhaustive and well-structured bibliometric analysis of the social network anonymization field. To begin our research, related studies from the period of 2007-2022 were collected from the Scopus Database then pre-processed. Following this, the VOSviewer was used to visualize the network of authors' keywords. Subsequently, extensive statistical and network analyses were performed to identify the most prominent keywords and trending topics. Additionally, the application of co-word analysis through SciMAT and the Alluvial diagram allowed us to explore the themes of social network anonymization and scrutinize their evolution over time. These analyses culminated in an innovative taxonomy of the existing approaches and anticipation of potential trends in this domain. To the best of our knowledge, this is the first bibliometric analysis in the social network anonymization field, which offers a deeper understanding of the current state and an insightful roadmap for future research in this domain.Comment: 73 pages, 28 figure

    User-centric privacy preservation in Internet of Things Networks

    Get PDF
    Recent trends show how the Internet of Things (IoT) and its services are becoming more omnipresent and popular. The end-to-end IoT services that are extensively used include everything from neighborhood discovery to smart home security systems, wearable health monitors, and connected appliances and vehicles. IoT leverages different kinds of networks like Location-based social networks, Mobile edge systems, Digital Twin Networks, and many more to realize these services. Many of these services rely on a constant feed of user information. Depending on the network being used, how this data is processed can vary significantly. The key thing to note is that so much data is collected, and users have little to no control over how extensively their data is used and what information is being used. This causes many privacy concerns, especially for a na ̈ıve user who does not know the implications and consequences of severe privacy breaches. When designing privacy policies, we need to understand the different user data types used in these networks. This includes user profile information, information from their queries used to get services (communication privacy), and location information which is much needed in many on-the-go services. Based on the context of the application, and the service being provided, the user data at risk and the risks themselves vary. First, we dive deep into the networks and understand the different aspects of privacy for user data and the issues faced in each such aspect. We then propose different privacy policies for these networks and focus on two main aspects of designing privacy mechanisms: The quality of service the user expects and the private information from the user’s perspective. The novel contribution here is to focus on what the user thinks and needs instead of fixating on designing privacy policies that only satisfy the third-party applications’ requirement of quality of service

    Privacy Protection and Utility Trade-Off for Social Graph Embedding

    Get PDF
    In graph embedding protection, deleting the embedding vector of a node does not completelydisrupt its structural relationships. The embedding model must be retrained over the networkwithout sensitive nodes, which incurs a waste of computation and offers no protection forordinary users. Meanwhile, the edge perturbations do not guarantee good utility. This workproposed a new privacy protection and utility trade-off method without retraining. Firstly, sinceembedding distance reflects the closeness of nodes, we label and group user nodes into sensitive,near-sensitive, and ordinary regions to perform different strengths of privacy protection. Thenear-sensitive region can reduce the leaking risk of neighboring nodes connecting to sensitivenodes without sacrificing all of their utility. Secondly, we use mutual information to measureprivacy and utility while adapting a single model-based mutual information neural estimatorto vector pairs to reduce modeling and computational complexity. Thirdly, by keeping addingdifferent noise to the divided regions and reestimating the mutual information between theoriginal and noise-perturbed embeddings, our framework achieves a good trade-off betweenprivacy and utility. Simulation results show that the proposed framework is superior to state-of-the-art baselines like LPPGE and DPNE

    Towards Data Privacy and Utility in the Applications of Graph Neural Networks

    Get PDF
    Graph Neural Networks (GNNs) are essential for handling graph-structured data, often containing sensitive information. It’s vital to maintain a balance between data privacy and usability. To address this, this dissertation introduces three studies aimed at enhancing privacy and utility in GNN applications, particularly in node classification, link prediction, and graph classification. The first work tackles celebrity privacy in social networks. We develop a novel framework using adversarial learning for link-privacy preserved graph embedding, which effectively safeguards sensitive links without compromising the graph’s structure and node attributes. This approach is validated using real social network data. In the second work, we confront challenges in federated graph learning with non-independent and identically distributed (non-IID) data. We introduce PPFL-GNN, a privacy-preserving federated graph neural network framework that mitigates overfitting on the client side and inefficient aggregation on the server side. It leverages local graph data for embeddings and employs embedding alignment techniques for enhanced privacy, addressing the hurdles in federated learning on non-IID graph data. The third work explores Few-Shot graph classification, which aims to classify novel graph types with limited labeled data. We propose a unique framework combining Meta-learning and contrastive learning to better utilize graph structures in molecular and social network datasets. Additionally, we offer benchmark graph datasets with extensive node-attribute dimensions for future research. These studies collectively advance the field of graph-based machine learning by addressing critical issues of data privacy and utility in GNN applications

    Image Based Attack and Protection on Secure-Aware Deep Learning

    Get PDF
    In the era of Deep Learning, users are enjoying remarkably based on image-related services from various providers. However, many security issues also arise along with the ubiquitous usage of image-related deep learning. Nowadays, people rely on image-related deep learning in work and business, thus there are more entries for attackers to wreck the image-related deep learning system. Although many works have been published for defending various attacks, lots of studies have shown that the defense cannot be perfect. In this thesis, one-pixel attack, a kind of extremely concealed attacking method toward deep learning, is analyzed first. Two novel detection methods are proposed for detecting the one-pixel attack. Considering that image tempering mostly happens in image sharing through an unreliable way, next, this dissertation extends the detection against single attack method to a platform for higher level protection. We propose a novel smart contract based image sharing system. The system keeps full track of the shared images and any potential alteration to images will be notified to users. From extensive experiment results, it is observed that the system can effectively detect the changes on the image server even in the circumstance that the attacker erases all the traces from the image-sharing server. Finally, we focus on the attack targeting blockchain-enhanced deep learning. Although blockchain-enhanced federated learning can defend against many attack methods that purely crack the deep learning part, it is still vulnerable to combined attack. A novel attack method that combines attacks on PoS blockchain and attacks on federated learning is proposed. The proposed attack method can bypass the protection from blockchain and poison federated learning. Real experiments are performed to evaluate the proposed methods

    Privacy Preservation & Security Solutions in Blockchain Network

    Get PDF
    Blockchain has seen exponential progress over the past few years, and today its usage extends well beyond cryptocurrencies. Its features, including openness, transparency, secure communication, difficult falsification, and multi-consensus, have made it one of the most valuable technology in the world. In most open blockchain platforms, any node can access the data on the blockchain, which leads to a potential risk of personal information leakage. So the issue of blockchain privacy and security is particularly prominent and has become an important research topic in the field of blockchain. This dissertation mainly summarizes my research on blockchain privacy and security protection issues throughout recent years. We first summarize the security and privacy vulnerabilities in the mining pools of traditional bitcoin networks and some possible protection measures. We then propose a new type of attack: coin hopping attack, in the case of multiple blockchains under an IoT environment. This attack is only feasible in blockchain-based IoT scenarios, and can significantly reduce the operational efficiency of the entire blockchain network in the long run. We demonstrate the feasibility of this attack by theoretical analysis of four different attack models and propose two possible solutions. We also propose an innovative hybrid blockchain crowdsourcing platform solution to settle the performance bottlenecks and various challenges caused by privacy, scalability, and verification efficiency problems of current blockchain-based crowdsourcing systems. We offer flexible task-based permission control and a zero-knowledge proof mechanism in the implementation of smart contracts to flexibly obtain different levels of privacy protection. By performing several tests on Ethereum and Hyperledger Fabric, EoS.io blockchains, the performance of the proposed platform consensus under different transaction volumes is verified. At last, we also propose further investigation on the topics of the privacy issues when combining AI with blockchain and propose some defense strategies
    corecore