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ABSTRACT

Recent trends show how the Internet of Things (IoT) and its services are becoming more

omnipresent and popular. The end-to-end IoT services that are extensively used include

everything from neighborhood discovery to smart home security systems, wearable health

monitors, and connected appliances and vehicles. IoT leverages different kinds of networks

like Location-based social networks, Mobile edge systems, Digital Twin Networks, and many

more to realize these services.

Many of these services rely on a constant feed of user information. Depending on the

network being used, how this data is processed can vary significantly. The key thing to note

is that so much data is collected, and users have little to no control over how extensively

their data is used and what information is being used. This causes many privacy concerns,

especially for a näıve user who does not know the implications and consequences of severe

privacy breaches.

When designing privacy policies, we need to understand the different user data types used

in these networks. This includes user profile information, information from their queries used

to get services (communication privacy), and location information which is much needed in

many on-the-go services. Based on the context of the application, and the service being

provided, the user data at risk and the risks themselves vary. First, we dive deep into the

networks and understand the different aspects of privacy for user data and the issues faced in

each such aspect. We then propose different privacy policies for these networks and focus on

two main aspects of designing privacy mechanisms: The quality of service the user expects



and the private information from the user’s perspective. The novel contribution here is to

focus on what the user thinks and needs instead of fixating on designing privacy policies that

only satisfy the third-party applications’ requirement of quality of service.

INDEX WORDS: User privacy, Location privacy, User check-ins, User motivation, Lo-
cation Based Services, Location-Based Social Networks, Mobile Social
Networks
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CHAPTER 1

Introduction

1.1 Background and Motivation

The past few decades have seen a boom in the development and production of mobile and

smart devices and communication technologies. This has led to a new world of connected

devices called the Internet of Things (IoT). IoT aims to provide users with end-to-end service,

continuous connectivity, lower latency, and an overall better quality of service [1, 2, 3, 4, 5].

Since IoT is so widespread, it needs to leverage several different networks [6, 7] to provide

each service as shown in Figure. 1.1. For example, if Alice wants to let people know where

she is headed while traveling in real-time, she uses location-based social networks and Mobile

Edge Systems (MES) [8]. Similarly, if Alice uses a navigation system to find out the best

way to overcome traffic and reach work soon, she will use just the Mobile Edge System [9].

Therefore, one can say that it is tough to clearly tell where one network ends, and the other

begins in terms of the workflow.

The fuel for all these networks and services is user-generated data. This can be his

location information or his profile information, or even the requests that he generates to

get some results from a search engine [10, 11]. With networks requiring so much user data

constantly, a user, in most cases, is entirely unaware of what data is being used and how it

is being used to provide these said services. This raises many privacy concerns for the user,

especially when they do not understand how a breach of their information may adversely
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Figure 1.1 Different IoT applications

affect their life. Also, as mentioned earlier, since IoT is an amalgamation of several networks,

each modeled quite differently, it poses many challenges in developing comprehensive privacy

policies [12, 13, 14, 15, 16]. A lack of privacy-preserving architectures allows adversaries to

access all of the user’s sensitive data. Following are a few possible privacy threats to users:

1. Identity theft: This includes exploiting a user’s personal information to create im-

personation profiles on social networks or to steal monetary possessions. One such

incident was the data breach occurred in Equifax in 2016 [17], that led to a leak of

user’s sensitive credit card information like their social security number, name, credit

information and much more. This data breach led to a lot of counterfeited transactions

that brought upon losses to both users and the company. In [18], Sweeney, showed

how a released anonymized social data can still be analyzed to trace back to a specific

individual.

2. Location tracking: With a lot of location-based applications that store user location
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information and share them publicly, outsiders can obtain information about a user’s

daily activities and trajectories easily. This can then be further analyzed to profile

users and launch many other attacks [19].

3. Fake profiles: This is a very common occurrence when it comes to platforms like

Facebook or Instagram where a lot of fake profiles are created with the intention to

contact people and lure them into giving away sensitive information [20]. These profiles

sometimes leave back viruses and trojans on the devices that are used to open messages

from the said profile.

4. Malicious links: These links are usually shared through messages and emails, which

leads the recipients to phishing websites and trick them into giving away sensitive

information like passwords or credit card information, or automatically download a

pretend software onto the device which might launch certain background attacks. Most

times the users are completely unaware of these attacks.

5. Hacking: This is the most common and popular issue in social networks, where

adversaries, also known as “Black Hats” [21] can make their way into a user’s account

and procure complete control over it.

1.2 Types of Privacy based on User data

The best way to completely address the different privacy issues is to first completely under-

stand the underlying user data. In all IoT networks, user’s data and their corresponding

privacy can be broadly classified into three categories:
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1. Location Privacy: User’s location is extremely important for many services provided

by an MSN. Preserving user’s location information without affecting the quality of ser-

vice is crucial, and these location privacy-preserving solutions are highly dependent on

the application [22, 23, 24]. A few applications like share rides require a single location

while other applications like navigation systems, require continuous location inputs.

Solutions for location privacy-preservation include perturbation [25], obfuscation [26],

k-anonymity [27], spatial cloaking [28] and temporal cloaking [29] to name a few.

2. User Attribute privacy: Users in an MSN can be considered as nodes of an MSN

graph. Therefore, user information includes both node information and the information

regarding the links they establish within the network [30, 31]. The goal of user privacy-

preservation solutions is to preserve both node and link information connected to the

user [32]. Node and edge perturbation [33], and anonymization [34] are a few common

methods used in designing user privacy-preserving solutions [35].

3. Communication privacy: This mainly focuses on preserving the content and the

context of the information being exchanged in a network or uploaded to the server and

other third-party applications. This information may include message contents, a few

attributes of user’s profile information, queries made to the server that may include

sensitive information like userID or user location, and many more. Most communica-

tion privacy-preserving mechanisms use session key agreements and digital signatures

[36], authentication and verification schemes [37], and different encryption methods

[38, 39].



5

1.3 Organization

The rest of the dissertation is organized as follows: Chapter 2 provides the network model.

Chapter 3 covers the different aspects of user data that can be vulnerable to different privacy

attacks when published online and a literature review of existing research to address these

privacy concerns. Chapter 4 investigates the privacy concerns of check-in data in Location

Based Social Networks and how to address them. Chapter 5 introduces the future research

directions for this work and finally in Chapter 6, we will summarize the proposed research.
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CHAPTER 2

Network Model

This chapter provides a clear understanding of the different components of a Mobile Social

Network (MSN) and how to mathematically formulate these components and the network

features

2.1 MSN Components and Architecture

2.1.1 Components in MSN

A MSN is a dynamic environment, therefore, its components are constantly going through

changes in states and the connections they form. Thus, an MSN at any given point can have

several types of components like users, groups and communities, different mobile infrastruc-

tures like Bluetooth, cellular data, or the basic internet. The main components of an MSN

can be narrowed down to the following:

1. Nodes or Mobile Devices: These include all devices of mobile nature that the end-users

might use to connect to an MSN. It can be a mobile phone, a tablet, laptop, or any

device that can establish a Bluetooth connection and is embedded with sensors.

2. Network: This includes the infrastructure or the framework that is used to establish

connections and serve as a communication medium among end-users and between end-

users and servers. The infrastructure might include servers, routers, access points,

cellular base stations, and also cloud infrastructure if the services being provided are

hosted on the cloud.
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Figure 2.1 MSN Architecture

3. Content Providers and Servers: Content providers include all the servers that the users

may directly or indirectly send requests to and also other third-party servers that make

content available to end-users.

2.1.2 Architecture

Depending on the way the users communicate with each other and with the server, MSNs can

either have a centralized, decentralized, or hybrid architecture. Most MSNs today follow a

hybrid architecture as shown in Fig. 2.1, because they are either mobile versions of older web

applications or they want to exploit the benefits of the hybrid architecture. The centralized

aspect of hybrid architecture provides benefits like simple implementation, reduced hardware,

low maintenance costs, and high efficiency while the decentralized or distributed aspect

provides benefits of low reliability and stability requirements, better traffic load balancing,
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lower latencies and presence of alternate sources of data in case of a server failure.

2.2 MSN as a Graph and Social Features

In order to resolve the different privacy issues, one should clearly understand the structure

of MSN and it’s social aspects from a technical stance. This can be done by formulating

MSN as a graph. For simplicity let’s assume that the graph is undirected, and is denoted as

G = (K,W ). The users of an MSN are denoted by nodes K = {1,2,. . ., i,. . ., k}. The edges

represents connections between two nodes and the weight of each edge can be obtained as

follows,

wij =
Fij

T
(2.1)

where Fij is the frequency of communications between two nodes i and j within a given

time period T . In order to derive the other features, we need an adjacency matrix. This

adjacency matrix will help us describe the nature interactions among users in the network.

As we have an undirected graph, the adjacency matrix A, will be symmetric and it can be

obtained as follows,

Aij =


1, if wij > 0

0, otherwise

(2.2)

We will now define and formulate the social features of an MSN.
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2.2.1 Node Degree

The degree of a node tells us the number of connections the current node (user) has with

other nodes (users) within the graph G (network). The degree of a node i can be obtained

as follows,

di =
k∑

j=1

Aij (2.3)

2.2.2 Node Strength

Node Strength gives information about the frequency of communications between a node

(user) and the other nodes (users) in the graph G (network). The node strength of a node

i can be obtained as follows,

si =
k∑

j=1

Aijwij (2.4)

2.2.3 Clustering Coefficient

This feature of the graph sheds light on how tightly social groups and communities are

connected. Higher the clustering coefficient, greater the aggregation relationship between a

node and its surrounding nodes. This feature further helps us define social groups and virtual

communities. If di is the node degree of node i then the number of edges (Ni), between node

i and the other nodes is given by,

Ni =
di(di − 1)

2
(2.5)
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The local clustering coefficient of node i can be obtained as follows,

Ci =

k∑
j=1

wij

Ni

(2.6)

The global clustering coefficient can be calculated as an average of local clustering coef-

ficients of all nodes and can be obtained as follows,

C =

k∑
i=1

Ci

|K|
(2.7)

2.2.4 Betweeness Centrality

In a network, there is always exchange of information between a source S and destination D.

In the absence of a direct path between S and D, the information passes through some node

i. A few nodes always act as intermediate nodes and few would never be an intermediate

node. This feature helps us compare the importance of a few nodes over the others in an

MSN. A greater betweeness centrality implies that more available paths between any source

and destination are passing through node i. The betweeness centrality of a node i can be

obtained as follows,

bi =
σi

2σS,D

(2.8)

where σi is the number of paths that pass through i and σS,D is the number of paths between

source S and destination D.
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2.2.5 Closeness Centrality

This feature indicates the amount of interaction of a node with the other connected nodes

in the network. A greater value indicates higher number of interactions and more frequent

communications among the nodes. For node i, the closeness centrality can be calculated

as follows,

Cc(i) =
k − 1∑k
j=1 d(ij)

(2.9)

where d(ij) is the length of the path between node i and node j.
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CHAPTER 3

Analysis of User Privacy issues in MSN

In this chapter we will go over the threats and the privacy preserving solutions for different

user data mentioned in Section 1.2.

3.1 Known Threats to User data in MSN

Advancements in MSN technology have made more resources available to adversaries to

design attacks that pose threats to different aspects of an MSN. It is vital to understand

the nature of these attacks and their underlying mechanism to design privacy-preserving

solutions. In this section, we categorize the threats to location, user, and communication

privacy in MSNs.

Figure 3.1 Threats to privacy in MSNs
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3.1.1 Threats to Location data

1. Direct sharing attacks: These attacks happen when users share their location di-

rectly on social platforms like Facebook and Foursquare as check-ins or Geo-tagging.

On these platforms, attackers have direct access to user’s check-in history, therefore,

they need not build a model to extract users’ location information. For this reason,

these attacks are passive in nature. Due to the availability of original location data, the

attack models, in these cases are easy to build and are very effective. [40][41] describe

extracting location information and launching location-based attacks.

2. Continuous tracking: This is a more active approach compared to direct sharing

attacks. These attacks are designed to geo-locate a user without any prior information

and they are based on indirectly shared locations like the obfuscated location[42, 43].

Sharing obfuscated locations is very popular in Facebook Marketplace and Wechat [41].

As these are popular applications, the amount of obfuscation used is publicly available.

This allows attackers to create a model to reverse engineer the exact location and study

the user’s movement patterns. These are known as spatial knowledge attacks [44].

Another type of continuous tracking happens in neighborhood-discovery services, where

the users might want to explore places or events in the neighborhood. Here, the user’s

location is sent to the LBS (Location based server) as part of a search query. This

location can then be inferred either by direct query sampling [45] or by sending

multiple queries to identify the exact location of the user [19].

3. Inference attacks: Inference attacks are defined as the analysis of data to gain
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knowledge of the subject unlawfully. These attacks are more common as most mobile

applications have location sharing capabilities and do not impose strong privacy mech-

anisms to protect this information [46]. In [47, 48], the authors were able to perform

an inference attack on GPS data gathered from their volunteers. They were able to

exactly identify and locate the homes of these volunteers by analyzing the GPS data

and segmenting it into discrete trips. They then implemented four heuristic algorithms

to identify the exact location of the subject’s home.

4. Spoofing: One of the most common types of spoofing is geo-location spoofing [49],

where a user fakes his location with malicious intent and is primarily done by either

using VPNs or a DNS Proxy. GPS spoofing is another type of spoofing that aims

at deceiving users by broadcasting incorrect GPS signals, delaying GPS signals, or

re-sending these signals in a different zone.

3.1.2 Threats to User attribute data

1. Re-identification attacks: These attacks use multiple data sources and common

“quasi-identifiers” in these sources to uniquely identify a user [50]. Several studies

show how public anonymized medical data can be used to uniquely identify patients

[51]. For example, in [18], the author was able to uniquely identify about 87% of

users by combining the medical and voter registration data and just three identifiers.

Similarly, authors in [52] were able to identify users from four spatio-temporal points.

In [53], the authors designed a re-identification attack which uses points of a user’s

mobility trace obtained from a trace dataset like GeoLife and Cabspotting, to form a
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heat-map structure. From the GeoLife trace set, they were able to uniquely identify

about 80% of the users.

2. User profiling: In MSNs, users are either matched to other users or events based

on the attributes they share, like user location or interests. This matching process

sometimes requires users to publish their information, which may include sensitive

data. The attackers can also study user behaviors online, from their check-in data,

posts, and many more [54]. All the leaked information combined with the availability

of powerful data mining and analysis techniques allows attackers to profile users or

gather their information [55, 16]. The most common way of misusing user information

is the creation of fake profiles, impersonation and identity theft, which by extension

can contribute towards launching targeted attacks [56].

3. Spam and Phishing attacks: Spam and phishing attacks work together and are

a common way of obtaining user’s confidential information. These attacks work by

sending legitimate looking emails or messages that lead users to a website with some

embedded logic to extract all the information entered. While spam directs users to a

third-party website, phishing attacks directs users to an almost perfect looking website.

These attacks have become increasingly common in MSNs like WhatsApp, LinkedIn,

Facebook, Twitter, and many more. On platforms like Facebook and Twitter, attackers

impersonate famous brands, celebrities, and sometimes customer support. All of these

pages lead users to a legitimate looking official website and either ask users to answer

a few questions or to enter their information in a form on the website [57]. Another
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famous spam was on WhatsApp, where a message was circulated about ‘offering a free

pair of Adidas trainers to celebrate their 93rd anniversary’. Similar to the previous

case, the message had a link that directed the users to legitimate looking Adidas

webpage where they were asked to enter their credit card information [58][59].

3.1.3 Threats to Communication data

1. Eavesdropping and wormholes: Eavesdropping is when an attacker intercepts the

communication between two parties without their knowledge. In wired communications

this attack happens over the network but, when it comes to MSNs to launch this

attack, a malicious code is embedded into the application. There are several social

networks and other applications on App Store and Google Play like Facebook that

is programmed to listen to audio through the mobile device’s microphone. These

apps listen to the audio from television shows or ads and mine the audio data to send

targeted advertisements to the users [60][61]. Sometimes, social networks like Facebook

also listen to users’ conversations as part of social media monitoring and send targeted

advertisements to them [62].

A wormhole attack, on the other hand, is where an attacker gets packets from one

point, tunnels them to another point and either replays them later or directs them to

a different location. These attacks make use of users’ network IDs and can further lead

other attacks like Man-in-the-middle (MITM), where the recorded packet information

may be changed and forwarded or to replay attacks. These attacks are designed to

disrupt routing protocols or other security protocols being used in MSNs [63]
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2. Service attacks: These attacks aim at making a resource unavailable or disrupting

the service. Denial of Service (DoS) and Replay Attacks are examples of such attacks.

DoS or DDoS (Distributed Denial of Service) is a cyber-attack that infects multiple

devices by injecting malware to attack servers. Several MSN applications like Face-

book, LinkedIn, Uber, Airbnb, banking applications, and e-commerce applications are

vulnerable to this attack due to the ease with which an attacker can profile a user.

A Dos attack on a mobile phone happens through an application that is downloaded

onto the device. This application either directly performs a DDoS attack or opens up

a security loophole in the way that the attacker has complete control over the device.

This attack primarily reduces revenue to companies by blocking network traffic and

incurs additional costs to them to overcome the issue. WireX botnet [64] is one such

application that was dubbed as an ”Android Clicker” and, affected over 120,000 An-

droid devices and conducted massive DDoS attacks in the application layer. Another

application, Mirai botnet affected a lot of social networks like Amazon and Twitter

[65]. A replay attack is a network attack where valid communication information is

collected and then replayed or delayed. It is a version of the Man-in-the-middle attack.

3. Malware: In these attacks, users are directed to a website that either automatically

downloads malicious code or requests users to download a supporting media player or

an application or enable access to cookies to continue viewing the page. This in fact

is some malicious code that when downloaded and/or installed allows the attackers

to control mouse and keyboard activities of the infected device. The distribution of
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malware in MSNs happens through fake profiles [66, 67] or broadcasted messages that

show up directly in the user’s inbox [68].

4. Sybil Attacks: In this type of attack, a malicious user also known as Sybil may create

several fake identities to gather information about users and attack the communication

network itself. These attacks are particularly prevalent in MSNs due to its open and

distributed architecture. Sybils are then used to launch phishing and DoS attacks

to distribute malware. One of the major attacks by sybils is on routing protocols,

where the sybils place themselves in a way, such that several individual paths between

different sources and destination pass through them [69]. In another attack, Sybils

establish connections with other Sybils and honest nodes and then start disseminating

spam, advertisements, and malware to violate user privacy. Additionally, sybils can

generate different reviews to favor their services or undermine other services, and this

is done by focusing on some specific behaviors and repeating them at high frequency

[70][71, 72].

3.2 Proposed Solutions

Extensive research has been conducted in recent years to address and resolve privacy issues

in MSNs Ṫhese solutions have a few similarities with respect to concept, technique or the

feature of MSN being preserved. To carry out further research in this field, it is imperative to

have a clear understanding of the work done so far. Therefore, in this section, we provide an

elaborate classification of privacy-preserving solutions as shown in Fig. 3.2 and summarize

them.
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Figure 3.2 Privacy Solutions in MSNs

3.2.1 Location Privacy

Based on the technique used in location privacy-preserving mechanism, the solutions can be

categorized into :

1. K-anonymity based schemes

2. Obfuscation based schemes

3. Differential privacy based schemes

3.2.1.1 K-anonymity based schemes

K-anonymity is a popular technique that is used in several privacy solutions and was first

proposed in [18]. According to [18], a scheme is k-anonymous if the probability of uniquely

identifying a particular entity from k entities is at most 1/k. Several solutions in this area

that use k-anonymity have been proposed and they either considered Online Social Networks
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(OSNs) or involved trusted third parties (TTP). Also, most MSNs store the user information

and location information on separate servers, which then requires some sort of encryption

to safely link the two servers and provide accurate query results. This type of distributed

architecture increases the risk of information leakage [73].

In [74] authors proposed a mechanism called CenLocShare to address the above men-

tioned issues. Firstly, to overcome the issues caused by having two different servers was

solved by combining the Social Network Server (SNS), and Location Based Server (LBS),

into a single server called Location Storing Social Network Server (LSSNS). Then, the au-

thors identify scenarios where the user might send his location data to LSSNS For each

scenario, the user submits a query to LSSNS, during which he sends his location along with

(k-1) dummy locations, thus using k-anonymity. The main contributions of this work are; it

provides a centralized scheme by using a single server, which reduces the risk of information

leakage, it designed a scenario-specific LBS query processing instead of a generalized solution,

uses “Sequence ID” in queries to prevent replay and tampering attacks and finally, reduces

the storage requirement and the time needed to process queries compared to other mech-

anisms. Although the scheme provides several benefits, the centralized approach increases

the computation complexity as the network increases. Also, the scheme only preserves the

privacy of a single location. If the user submits continuous queries it might be relatively easy

for an attacker to map the trajectory of the user, as the radius within which the dummy

locations are generated is fixed.

As mentioned in the previous solution, queries sent to the server may increase the risk
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of information leakage. Therefore, in situations where the user sends continuous queries to

the server, there is an increased risk to the location information. To address this, a solution

called Collaborative trajectory privacy-preserving scheme was proposed in [75]. The

basic idea of the scheme is to preserve location privacy by reducing the number of queries

being made to the LBS by exploiting the caching ability of the user devices in the network.

The scheme contains two algorithms :

1. Multi-hop caching aware cloaking: This allows the user to communicate within

a Hmax (maximum hop distance) by sending a collaboration request. The users who

respond to this request share their cached information. Based on this information,

users can create a k-anonymous cloaking region and also locally obtain query results

for what should be the next location, instead of sending a query to the LBS. The

scheme provides different versions of this algorithm for the requestor and receiver of

the “collaboration request”.

2. Collaborative privacy-preserving querying: This allows users to obtain informa-

tion locally from the data cached and shared by other users, or it can send a query to a

remote LSP. In order to obtain accurate results, the algorithm checks for the freshness

of cached data. It also allows users to send fake queries to the LBS with the farthest

location in its cloaking region, to introduce confusion.

The scheme can be used in both static and continuous querying scenarios. The k-

anonymity in creating the cloaking regions and the confusion introduced by the fake queries

provide two-fold privacy preservation. But, the major disadvantage of this scheme is that
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the algorithms are computationally intensive, and may not be feasible for a mobile device in

MSNs due to their limited computation capacities.

In [27], a solution similar to [75] called Privacy Preserving System (PPS) was proposed.

This solution overcomes the computation challenges faced in [75]. To minimize queries being

made to the LBS, PPS is used to maintain a single cache instead of multiple caches, with all

the frequent location requests and their corresponding results. When a user makes an LBS

request, the PPS checks if the location in the query meets either of the following conditions

and then returns the result from the cache :

• A request is being made within a small acceptable distance or,

• A request is being made from a place that is a subarea of already cached locations.

If none of the above conditions are met by the location, the PPS directs the request to LSP

by obfuscating the user’s location. The obfuscation radius is selected in a way that the

region is k-anonymous. If the region has sparse users, then dummy users are added to make

it k-anonymous. Compared to all the other solutions, this scheme, firstly, provides privacy

to continuous queries, thus preserving the trajectory of the user. Secondly, it overcomes the

computation issues presented by the previous two schemes, by using a single cache to store all

the results. This not only reduces the amount of data that needs protection but also reduces

the number of communication exchanges and requests between users, resulting in less power

consumption. Finally, the solution provided is more practical as it considers real-world user

distributions, and how it is not always possible to have enough users to provide k-anonymity

and proposes a way to overcome this obstacle as well.
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Figure 3.3 DQE Mechanism

In the recent years, the number of users using MSNs has increased, therefore, when

solutions based on k-anonymity are implemented in practical scenarios, if the cloaking re-

gion is small, then the tendency of disclosing location information is more. Therefore, we

need solutions based on other techniques like obfuscation which are not subject to user

distribution.

3.2.1.2 Obfuscation based schemes:

In [76], the authors proposed a privacy preserving scheme called Deviation based Query

Exchange (DQE) to preserve the user’s trajectory data. The scheme preserves privacy at

the user level and has the following steps.

1. Step 1: Finding the Best Matching User (BMU).

2. Step 2: Deviation based Query Exchange (DQE).
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In Step 1 user U is matched with other users and the best match possible is identified.

During this step, to ensure user privacy, private matching [Section 3.2.2.2 ], is performed

by introducing confusion to the user’s original information (x, y,movement direction). A

similarity value is calculated to see how similar a user is to others, and the user who is the

least similar to U is selected as the BMU. In Step 2 shown in Fig. 3.3, U exchanges his ID

with the BMU. The BMU will then forward U’s location query to the LSP by obfuscating

the location and the obtained results are exchanged later. This solution is extremely well

rounded and thought through because, firstly, the obfuscation happens at the user level,

instead of at a central point, thus avoiding having a single point of failure/attack. Secondly,

even if an attacker gets the ID, it is difficult to link a user to the ID because the BMUs keep

changing as the user’s moves. Thirdly, the solution provides an additional level of privacy by

obfuscating the location before submitting the query to the LSP. Finally, the query results

are encrypted using asymmetric encryption making it resistant to eavesdropping attacks.

Fig. 3.4 shows how DQE preserves a user’s location trajectory. But, the authors do not

consider the varying speeds of the users, making it difficult to apply this solution to a more

practical scenario, and they do not discuss how often the scheme finds BMUs. Finally, as

the solution is carried out at the user level, these calculations and multiple communication

exchanges may drain the limited power capacity of the mobile devices.

To overcome the drawbacks of the DQE scheme, [77] proposed a model called Smart-

MASK which machine learning to build a fine-grained location privacy system. The model

works as follows :
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Figure 3.4 BMU Selection in DQE

1. A clustering algorithm is used to generate the user’s location profile by using the user’s

mobility history and location profiles.

2. Each check-in in mobility history has a different sensitivity level. Based on this, a

trained Classification and Regression Tree (CART) model assigns a privacy level ( low,

medium or high) to the check-in.

3. The users choose their location sharing preference (coarse or fine-grained location).

4. Based obfuscation level and the user’s preference, the obfuscation engine performs a

hybrid obfuscation technique that includes the obfuscation operators: radius enlarge-

ment, radius reduction, and center shifting. When the predicted privacy level is ”high”,

a simple cloaking is applied along with hybrid obfuscation.

Unlike the previous solution, SmartMASK is centralized and thus, more capable of han-
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dling intense computations due to more available resources. Only privacy-level prediction

and application of the obfuscation level is done for each new location which is much less

intensive. But, as the model performs hybrid obfuscation on the location, the utility of

location data may be decreased considerably.

To reduce the utility loss from obfuscation, authors in [78] propose an ML-based model to

learn the user motivation behind a location check-in. The proposed method, firstly, takes the

location check-ins and already available user motivation to train a model that predicts future

motivation. Then, users then provide information on the effect of different obfuscation level

on their check-in utility. Based on these responses and the predicted motivation labels, a

cost-sensitive decision tree model (J48) is trained to predict the user’s perceived privacy level.

This solution is the first of its kind as it considers user-specific utility while designing the

model that does not use differential privacy. Firstly, it addresses the effect of obfuscation on

utility and specifically trains models to predict a privacy level that retains the highest amount

of utility. Secondly, designing such intelligent models relieves users from making sensitive

and critical privacy decisions. The major drawback here would be the unavailability of these

types datasets for future researchers.

3.2.1.3 Differential Privacy based schemes:

Differential privacy (DP) has become the gold standard in privacy. Unlike most other

privacy-preserving solutions, differential privacy based solutions’ main aim to retain data

utility, they also assume that the attacker has complete knowledge of the users and the

network, and finally these schemes can also quantify the level of privacy they provide [79].
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Differential privacy based solutions can be successfully applied in places where aggregate

information is published [80], and DP would require that the changes made one location of a

user should have a negligible impact on the final output making it impossible to send useful

information to the LBS.

To address this issue, Dewri proposed a method that uses both k-anonymity and dif-

ferential privacy to preserve location information [81]. In this method, the author fixes an

anonymity set consisting of k locations where the probability of reporting the same ob-

fuscated location x from these k locations is the same. To achieve this, the author adds

Laplacian noise [82] to each Cartesian coordinate of the location. Though the choice of

Laplacian noise is better to retain utility and has been extensively proved in the work, one

of the major issues with this scheme is the selection of anonymity set that greatly affects

privacy.

Another differential privacy based solution for preserving location privacy is LPT-DPk

[83]. In this work, Yin et.al. focus on persevering frequent location patterns. The authors

first create a frequent pattern tree called the Location Information tree based on the fre-

quency of location check-ins. Once the tree is generated, the top-k frequent patterns are

selected by using weighted selection based on Exponential mechanism [84] and a Laplacian

noise [82] is added to the top-k frequent location patterns set to preserve privacy. The

method is then evaluated against another top-k mechanism for the utility of the location

data. The LPT-DPk Scheme retains more utility of the data and has a relatively low and

stable error compared to the other previously proposed DP based schemes, but, it does not
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discuss how the initial frequent patterns are derived, as this greatly impacts the effectiveness

of the mechanism.

In [85], the authors propose a novel DP method that implements Reinforcement learning

(RL) to preserve a node’s semantic trajectory. The scheme is designed using game model as

well, with the nodes and adversary as players. RL is implemented to selected the optimal

privacy budget ϵ for the DP scheme. The obtained optimal budget is used to generate the

“gamma noise” which will then be added to the location. This obfuscated location is then

forwarded to the LBS and the results obtained as returned to the user. The implementation

of RL in Location privacy is a relatively new concept and this paper effectively makes use

of both RL and game model. Also, the optimal budget (strategy) is selected in a dynamic

environment, unlike most other DP schemes, which on static location instances.

3.2.2 User Attribute Privacy

User privacy aims at preserving a user’s profile information while communicating with other

users or servers in an MSN [86, 87]. User privacy-preserving solutions can be broadly cate-

gorised into :

1. Clustering and K-anonymity

2. Private Matching

3. Dynamic Pseudonymity
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3.2.2.1 Clustering and K-anonymity

In these schemes similar users are grouped together and privacy is provided at a group level

to reduce information loss that might occur when techniques like Naive Anonymization are

applied. SANGEERA [88] is one such clustering algorithm with the following procedure:

1. Nodes are partitioned into different clusters based on their quasi-identifiers and neigh-

borhood information.

2. The quasi-identifier attributes are anonymized for each cluster to achieve k-anonymity.

3. All users in a cluster are collapsed to one node to prevent the revelation of intra-cluster

nodes and edges.

4. Multiple relationships (edges) between two clusters are collapsed into one edge, to

provide anonymity.

Previous anonymization solutions resulted in a significant information loss, whereas in SANGEERA,

as edge generalization is adopted over perturbation, the structural information loss is reduced

to a great extent. But, the major drawback of this scheme occurs when the clusters are very

small or dense. In this situation even if the quasi-identifiers are anonymized the adver-

sary can easily identify users based on other sources of user information. The algorithm

does not consider the mobility and the dynamic nature of MSNs, where neighborhoods and

communities change constantly making it inapplicable for more real-world MSNs.
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To address drawbacks in solutions like SANGEERA, a new algorithm called Equicar-

dinal Clustering was proposed in [89]. In this work, the user information is preserved at

the network level. The algorithm can be summarized as follows:

1. Similar users are clustered using k-means.

2. To achieve k-anonymity in each cluster, the users are reclustered as follows :

(a) Distance between the users and each cluster centroid is measured.

(b) Based on the distances, users are assigned new clusters.

(c) This is repeated until there are no more than n/k users are present in each cluster.

3. Users in a single cluster are represented by a cluster head.

4. All the links between two clusters are replaced by a single weighted edge. This weight

represents the number of links between the two clusters.

This solution firstly reduces the information loss greatly compared to other schemes that

use traditional clustering algorithms. As the neighborhood of the user is not considered

for clustering, the privacy provided is not subject to user location, making the solution

applicable to both OSNs and MSNs.

As most clustering algorithms used in these solutions are NP-hard, the solutions only

provide sub-optimal results, therefore, cluster independent schemes like Private Matching

need to be considered that utilize social features of an MSN to design a solution.
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3.2.2.2 Private Matching

Friend Matching is a core feature of MSNs. MSNs allow users to connect with people in

their neighborhood or network based on shared interests. To match users, they have to

share sensitive information with the network which poses a serious threat to user privacy.

To solve the above issue a privacy-preserving profile matching scheme for MSNs called

FindU was proposed in [90]. In FindU three privacy levels are implemented for private

matching between P1 and Pi, where 2 ≤ i ≤ N:

1. PL-1 : P1 and Pi will know the common attribute set.

2. PL-2 : P1 and Pi will only know the size m1,i of the the common attribute set.

3. PL-3 : P1 and Pi will only know the rank of each value m1,i.

These privacy levels can be personalized by users, and the adversary can only obtain the

output and the private inputs, thus, decreasing the amount of information he can obtain

with each increasing level of privacy. In order to attain privacy levels, they designed two

schemes :

1. Basic Scheme: This is defined to realize PL-1. In this scheme, a technique called

Private Set Intersection (PSI) is used, where the attributes are encoded using hashing

before the users share them.

2. Advanced Scheme: This is defined to realize PL-2 and PL-3. In this scheme, they use

both PSI with BP (Blind-and-permute), where the user’s attributes are encoded and
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the shared attribute sets are permuted so the link between the ranks and the attributes

is broken. In this scheme, each sharing is then encoded using homomorphic encryption.

Once the protocol ends, P1, ranks m1,i locally to identify its best match, and then sends a

connection request. This scheme takes into consideration every possible step at which the

adversary may try to obtain information, and then designs schemes to make sure that the

matching is resistant to active attacks. Also, the information of the user is being encrypted

instead of being generalized, thus retaining the complete utility of the data. Though FindU

provides several benefits compared to state-of-the-art privacy schemes in MSN like FNP and

FC-10, it has higher communication costs as the encryptions are done on each communication

between P1 and Pi at every step in the matching process.

In order to overcome the issues in solutions like FindU, a privacy-preserving profile match-

ing mechanism called POSTER, was proposed in [91]. In POSTER, the secure matching is

done by using perturbation.

1. All user attributes are converted to binary values to create profile vectors.

2. Mixed vectors for secure sharing are generated by adding noise to the profile vectors

and performing a secure dot product of profile vectors of A and B who have to be

matched.

After these initial steps are carried out, the authors created the following two schemes :

Basic Scheme: The secure dot product computations occur on the receiver end and in the

presence of other users called Helpers. If the helper has both noise and the mixed vector, he



33

might be able to obtain the user’s private information, thus this is collusion.

Collusion Resistant Scheme: To avoid collusions, the scheme divides noise or perturba-

tion into chunks and send it to multiple helpers. They compute the dot product and sends

it to B. B, then computes the final dot product to check its similarity with A.

This paper firstly does both secure friend matching as well as authentication by using a

Verification scheme, to make sure that valid users are exchanging information. Also, as the

mechanism does not use the computation heavy operations like Homomorphic encryption, it

reduces the computation complexity and communication cost. The major drawback is that

it does not focus on “helpers” selection which makes it vulnerable to Sybil attacks because

when an adversary can act as multiple users, a few such profiles can be selected as helpers for

the same communication allowing the adversary to obtain information even in the Collusion

Resistant scheme of POSTER.

To avoid depending on other users, as in POSTER for private matching, Li et.al in [20]

proposed a scheme called Match-MORE. This scheme was designed for users to securely

match with friend-of-friends. The complete mechanism lies in the Matching degree func-

tion which uses Katz Score and Dice similarity coefficient to calculate the social strength of

two users, and the similarity score between two users, respectively. The matching happens

in two phases :

1. Friend Discovery Phase: In this phase, A discovers new friends by broadcasting

a connection request. Each responder sends their similarity score as a reply. A then

selects the responder with the best score as the ‘friend’.
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2. Friend Recommendation Phase: In this phase, the new friend goes through his

friend list and calculates the similarity between A and all his friends, and then recom-

mends a friend with the best similarity score to A.

In both phases, the similarity calculation is done using the Matching degree function and

all the communications implement bloom filters. Unlike the schemes mentioned earlier,

this paper quantifies the privacy provided by the scheme by using Shannon entropy and

theoretically proves the accuracy, effectiveness, and efficiency of the scheme. Also, Match-

More is lightweight as it completely avoids the use of Homomorphic encryption. Finally,

unlike other schemes that share actual attributes (true or perturbed) for matching, this

scheme avoids that and just does matching using scores, therefore, reducing the risk of

information leakage to the minimum.

3.2.2.3 Dynamic Pseudonymity:

Dynamic Pseudonymity Mechanism (DPP) proposed in [37] aims at providing both

user and location information privacy. To protect the user’s identity, the scheme uses multiple

anonymizers. The DPP scheme divides the user’s LBS queries into chunks, where each

chunk is forwarded to a different anonymizer. While forwarding the query chunks belonging

to the same user are assigned different pseudo-identities while interacting with different

anonymizers. This makes sure that the adversary can not link user information to a query

result or obtain a true User ID from any one of the anonymizers. The anonymizers also have

a k-anonymity function to ensure user’s location privacy in the query. The paper discusses

two threat models, “weak adversary” and “strong adversary” based on the locations of attack
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which are: 1) the wireless channel between the user and the LBS and 2) the anonymizer

itself. The scheme was then designed to address these threats. The major advantages of this

scheme are the fact the authors considered different levels of threats making the solution

well-rounded. The use of hash trees and a single k-anonymity operation greatly reduces the

computation time compared to other dynamic pseudonymity solutions. Also, the privacy

that this scheme provides is two-fold privacy as it ensures both user and location privacy.

Another Dynamic Pseudonymity based scheme was proposed in [92] which focuses on

understanding the context behind an LBS request to ensure user privacy. To impede the

adversary from linking user ID to his true location, an identity management system is used.

To make the system more secure, a hashing over pseudoID is performed, where the hash

key is combined. The method proposed in paper [92] enhances user privacy at two levels:

1) The identity management system replaces user identities with pseudo identities and this

pseudoID is retained until the service request is fulfilled, thus for each service request, a

new pseudoID is assigned to the user. 2) Hashing over user’s pseudo IDs by using userID +

Service time as the hash key, to securely share the pseudo IDs. One of the main benefits of

this scheme is that it has multiple levels at which privacy is ensured. Also, as the pseudo

ID is hashed, this not provides user data privacy but also ensures communication privacy

to a certain extent, as the pseudo ID is a part of the query packet being forwarded to the

LBS. But, as the scheme generates new IDs and performs hashing for every query, and the

computation is performed on the user-end, it might deplete the limited resources available

on the mobile device [93].
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3.2.3 Communication Privacy

Depending on how a communication privacy-preserving mechanism is carried out, the solu-

tions can be classified into :

1. Privacy enhancing schemes

2. Privacy-Aware Routing mechanisms

3.2.3.1 Privacy enhancing schemes

These schemes are designed to work alongside already implemented security protocols in

MSNs and they heavily depend on Digital Signatures, Key Agreements, and certificates.

PRIF, proposed in [94] is an improved version of the forwarding scheme that is prevalent

in MSNs today. The forwarding scheme proposed revolves around the concept of common

interest-based communities formed in MSNs and, it preserves communication privacy by

ensuring the privacy of the interacting parties. This is done by hiding the user’s interests

and other information before he joins a community or interacts with anyone from the com-

munity. This privacy-preserving authentication protocol uses Schroff signatures and Group

certificates handled by a central trusted authority TA. Though the scheme uses strong au-

thentication protocols to ensure the privacy of the communicating entities, the use of central

authority for the token generation is not ideal as it becomes a single point of failure for this

scheme. Instead, if the scheme provides a way to improve trust between the communicating

entities, it eliminates the need for central authorities and also adds a distributed aspect to

the scheme.
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Privacy Preserving Authentication Scheme (PPAS) [36] is a scheme based on

group signatures. Group signatures are primarily used to provide user anonymity and un-

linkability. This scheme ensures user legitimacy by generating an unlinkability token by

using the group’s public key parameters. To ensure integrity and confidentiality during com-

munications the scheme uses signing and verification algorithms and session key agreement

for every communication. This mechanism reduces the overload that the above-mentioned

scheme suffers from, by reducing the number of tokens generated and considering group

signatures instead. Unlike other schemes, it also considers the mobility of the user as part

of the scheme, instead of a snapshot of the MSN. But, similar to the previous scheme, this

solution also depends on a single trusted authority to carry out the token generation.

As most privacy-enhancing schemes rely on trusted authorities to function which may

be vulnerable to serious breaches, it is necessary to consider routing protocols that enhance

privacy because they are more widespread in terms of the aspects they include and effect.

3.2.3.2 Privacy-Aware Routing mechanisms

Onion routing [95] is one of the first strategies proposed to preserve communication privacy.

This strategy ensures data integrity in both connection and connection-less systems. It uses

mixers or onions, which store, encrypt, and forward data to the next node in random order.

Generally, multiple mixers are used to ensure that communication is protected against traffic

analysis. Though this strategy ensures anonymous communication, the major drawback is

the uni-directional feature of mixers or onions. This means that the mixers can only carry

operations for one-way communication. To make it bi-directional a set of reply onions
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needs to be deployed. The second drawback of onion routing is that it focuses on a single

communication. An improvement over this method is proposed in [96]. This method extends

onion routing to a multi-casting scenario and uses “Bloom filters” to enhance communication

anonymity by obscuring the routing list of communication packets. It is one of the first works

to use the concept of bloom filters in a privacy setup, and it also overcomes the disadvantages

of the one-way privacy enhancement present in older solutions.

3PR [97], is a communication privacy-preserving scheme that uses machine learning

techniques to learn user’s mobility patterns to predict their future routes and uses those

predicted routes to route message. This is done by calculating the maximum likelihood of a

node encountering the destination, and then, these likelihood values are hidden from other

nodes within and outside the community. As part of the scheme, privacy-preserving functions

like ”max probability” and ”partial sum” that make use of random number generators are

proposed. This work uses the idea of “route-recommendations” in a communication setup

which is novel and first of its kind. One major drawback of this solution is that preserves

only the information related to the packet’s possible destination and fails to preserve the

privacy of the packet’s content (message), which may hold sensitive information.

3.3 Online resources and Databases

In this section, we will be listing and summarizing a few data sets and data generating tools

available online that are used extensively in research on privacy in MSNs and LBSNs.

The most popular datasets are the Facebook [98] and Twitter[99] that available as part
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Name Domain Dataset information

Facebook user profiles and friend lists Ego-networks:10 Nodes: 4,039 Edges: 88,234

Twitter user friend lists and ego-networks Ego-networks:973 Nodes: 81,306 Edges: 768,149

Deezer

Romania Nodes: 41,773 Edges: 125,826

Croatia friend network with liked music and genres Nodes: 54,573 Edges: 498,202

Hungary Nodes: 47,538 Edges: 222,887

Brightkite dataset check-ins and friendship network Check-ins: 4,491,143 Nodes: 58,228 Edges: 214,078

Gowalla user profiles, location profiles and location check-ins Check-ins: 36,001,959 Users: 319,063 Locations: 2,844,076

Weeplace check-ins, profiles and location information Check-ins: 7,658,368 Users: 15,799 Locations: 971,309

Foursquare location based friendship network Nodes: 106,218 Edges: 3,473,834

GeoLife user GPS trajectory Users: 182 Trajectories: 17,621 Timespan: 3 years

LifeMap user location monitoring, user trajectories Users: 8 Nodes: 9681 Edges: 1717 Wi-Fi APIS: 52,510

T-drive taxi GPS traceset Users: 10,000 Timespan: 1 week

Cabspotting taxi GPS raceset Users: 500 Timespan: 30 days

Manhattan Taxi taxi GPS traceset Trajectories: 1000 Timespan: 1 year

Table 3.1 Summary of MSN and LBSN datasets

of SNAP (Stanford Network Analysis Project) by Stanford University [100]. The Facebook

dataset [98] consists of users, their friend lists and ego networks. It was collected from the

Facebook apps of survey participants and has 10 ego networks with a total of 4039 nodes and

88234 edges. Each user is represented by 25 features like location, education degree, job start

date, and end date, employer information, workplace, and several others. These networks

are represented by undirected graphs. The Twitter dataset [99] like the Facebook dataset,

consists of friendship circles (lists) and ego networks, but the network here is represented as

a directed graph with about 973 ego networks and a total of 81306 nodes and 768149 edges.

Another friendship dataset from SNAP [100] isDeezer[101, 102]. The dataset has friend-

ship networks of users from 3 different European countries and contains three sub-networks
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represented by directed graphs for Romania, Croatia, and Hungary. The number of nodes

and edges in each of these sub-networks are mentioned in Table 3.1. The dataset also pro-

vides user’s preferred genres preferred which have been compiled based on the songs users

liked in a music network.

Brightkite [103] is an LBSN dataset that consists of user’s location check-ins and their

friendship relationships. The data-set includes user check-ins and friendship networks of

users within the social network. It has more than 4 million check-ins with 58,228 nodes

(users) and 214,078 edges. Each check-in includes user id, check-in time stamp, latitude and

longitude readings, and location id. This dataset has been specifically used to study user

friendships and mobility patterns in MSNs [104]. This particular dataset is sparser than

other mobility datasets because we only have places at which users checked-in deliberately.

Gowalla [105] is a popular LBSN dataset collected using Gowalla API. For each user, the

dataset has user profiles, their friendships, and location check-in history and each location

an attached location profile. Based on these profiles, the locations are categorized into 7

subcategories like community, nightlife, entertainment and many more. Over the years, the

data collected from the API comprises 36 million check-ins with 319,063 users and over

2,844,076 locations. This dataset has been mainly used in location recommendation systems

[106], but can also be used to generate privacy models based on the location predictions.

The Foursquare dataset [107] is another LBSN dataset that is a part of the Social

Computing Data Repository at Arizona State University and provides a friendship network

among users of the Foursquare network. The social network was available to users with
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GPS enabled mobile devices and the data was collected through software installed on their

respective devices. This dataset consists of 106,218 nodes and 3,473,834 edges.

Weeplaces [108] is another dataset obtained from a website. The website that was

used to collect this dataset is now integrated into other social network applications like

Facebook Places, Foursquare and Gowalla. The website was used to visualize user check-

ins and the dataset generated includes user’s friends who use Weeplaces, location check-ins

and additional information about the locations. This dataset contains 7,658,368 check-ins

generated by 15,799 users over 971,309 locations. It is similar to the Brightkite and Gowalla

datasets but provides additional information about the location like locationID, city, and

location category.

GeoLife GPS Trajectories [109, 110] is a trajectory dataset collected by Microsoft Re-

search Asia, Geolife project. It contains GPS trajectories of 182 users collected over three

years (from April 2007 to August 2012). It has a total of 17,621 trajectories with location

co-ordinates and the altitude of users’ locations and the locations were updated every 1 to

5 seconds. Datasets like these can be used to understand user’s mobility patterns [111] and

design privacy models based on it. GeoLife has been used extensively to provide location

privacy in Mobile Crowd Sensing (MCS) systems.

LifeMap Mobility data [112] is a dataset generated by a mobility monitoring system

called LifeMap at Yonsei University in Seoul. The dataset contains fine-grained mobility

data of 8 users collected over two months in Seoul, Korea. The dataset includes location

coordinates, Wi-Fi fingerprints and user-defined places. The locations were collected by the
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system every 2 to 5 minutes. The data were collected from users’ mobile devices and has

9861 nodes on 1717 paths and 52510 Wi-Fi APIs. This dataset was used in research on

mobility learning and movement predictions of an MSN user [113, 114, 115].

T-drive [116], Cabspotting [117], and Manhattan Taxi trajectory [118][119] are a

few taxi trajectory datasets. Manhattan taxi trajectory has 1000 taxi trajectories collected

over one year in the city of Manhattan [120]. Cabspotting is a traceset of mobility data of

taxi cabs in San Francisco. It contains GPS coordinates of 500 taxi cabs collected over 30

days. T-Drive is a dataset collected as part of Microsoft Research, featuring taxi drivers in

Beijing and has over 10,000 users with data collected over one week.

Apart from the datasets mentioned so far, there are also ways to generate synthetic

data using online data generators. These tools provide users with several options and fields

to generate custom datasets. Mackaroo [121] is one such website that lets us generate

mock data with user profiles and a variety of other fields like location, occupation and so

on. Generatedata [122] is another online data generator similar to Mackaroo. It lets us

generate random users with a variety of fields along with their location data. The data

can be generated in a plethora of formats like Excel, HTML, JSON, SQL, and XML. DTM

Generator [123] is another popular data generator that produces data rows and schema

objects and also other optional schema objects like views, triggers and many more. It is

highly compatible with most popular database systems like MySQL, Oracle and Microsoft

SQL server. Several other data generators have been mentioned and summarized in [123].
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CHAPTER 4

User Privacy in LBSNs based on User Motivation

4.1 Motivation

In recent years, mobile technology has seen a great deal of development on both hardware and

communication fronts, and better internet availability has made mobile devices omnipresent.

This evolution encouraged several web-based applications to migrate to their mobile versions

to provide better reach and experience to their users [124]. Moving to a mobile platform

has opened up several opportunities for these applications to provide different location-

based services to their user base. For example, Facebook alone has several services that

were either improved or introduced after moving to an almost complete mobile operation

of their application. One such service is check-ins, which was an already existing feature

on Facebook. Now, users can post places they visit on the go and attach pictures or maps

pointing to their exact location with their check-in. Another such service is Facebook

Marketplace [125], which is relatively new to the platform and allows people to use their

location for advertising items for sale or discover sales nearby, find apartments, and many

more. Facebook Places [126], is another new service, which is similar to Foursquare [107],

allowing people to use their location to explore their neighborhood. This shows that many

social networks today use user’s location information in most of their services, thus qualifying

them as Location-based Social Networks (LBSNs).

Given the popularity of these networks, it is expected that we have more users signing up

for these platforms and taking advantage of their services and features. The most commonly
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used feature on these platforms is ‘posts’, also popularly known as ‘check-ins’. In these posts,

the users share locations that they are visiting with their friends. This is done to get some

recommendations about the place or make themselves perceive as interesting, thus helping

them make better connections with their social circle [127].

While checking in on LBSNs, the users release a lot of information like the geographical

coordinates of the location, the location type (restaurant, stadium, movie theatre), time, if

they are already at the place, or are heading towards the location and several other things

as shown in Figure 4.1. Therefore, a simple check-in might release a lot more information

than the user has intended to. The released information, combined with other sources, can

be used to devise and launch strong inference attacks [128, 129, 130, 131? ]. Also, if the user

check-ins are frequent, the attacker can collect all such check-ins and launch re-identification

attacks (to infer places like Home and Workplace of the user) [132], profile users’ daily

activities or identify commonly taken routes [133]. Therefore, there is a high privacy risk

associated with location check-ins, irrespective of the frequency of check-ins for a particular

user.

For example, let us assume that Alice goes to Georgia State University, and on most

days, she shares a Facebook post in the morning saying she has reached the university. On

another day, she posts about a basketball game she is attending at the university. This

particular post also has a few friends tagged in it, and many others were seen making similar

posts around the same time. In the former case, the check-ins happen more regularly or

consistently in the morning, so one might infer that she is heading to “Work”. However, in
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Figure 4.1 Example check-in on an LBSN

the latter case, though the check-in location is the same as the former check-in’s location,

it has a social aspect to it, with tagged friends and many others making similar check-ins

simultaneously. The first type of check-in has a more personal intention, like keeping track

of her university visits. As this check-in lacks social nature and is more regular, releasing

this information over a prolonged period will lead to the attacker inferring her activity or

the type of location as ‘Work’; therefore, it makes more sense to provide stronger privacy

for all such check-ins. The second kind of check-in has a social intention behind it, given the

number of people making similar check-ins simultaneously, the check-in time, and the tagged

friends. In this case, if we provide strong privacy, we will have a higher information loss and
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may not meet Alice’s social needs any longer. Therefore, we can relax the privacy policy

(apply a lesser amount of privacy) to retain the ‘motivation’ behind the check-in [134].

Several privacy policies are available on social networking applications or proposed as part

of research to prevent inference attacks and sensitive information disclosure while releasing

the said social network data to third-party applications. The major drawback with the former

is that the settings are either so deeply nested in the application that the user might not be

able to navigate to them [135] or are complicated for a naive user to understand. Another

thing to note is the motivation behind the check-ins. Users check-in with some form of social

intention, in which case, applying any privacy policy might lead to information (intention)

loss and therefore reducing the service quality when the obfuscated information is released.

Stemming from the lack of a clear understanding of privacy and privacy settings and the

need to satisfy their social needs, the users either opt for complete disclosure (complete

location information) or complete non-disclosure (no location information). These extreme

settings either have very high privacy risks or very low utility. In privacy-preserving solutions

like[136, 137, 138, 139], all the locations are treated similarly, and the same level of privacy is

provided. In these cases, with sufficient knowledge of the user’s connections and the network

itself, the attacker can back-engineer the policy to obtain the different parameters of the

model [140]. Therefore, there is a need for privacy models that take the user’s intention

(motivation) behind a check-in into consideration to meet both their social and privacy

needs and introduce some inconsistency, making it difficult for the attacker to back-engineer

the policy.
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In this chapter, we provide a user motivation-based privacy policy to bridge the gap

between user psychology and privacy policies. The model preserves location check-ins based

on the motivation (intention) behind a particular check-in. To our knowledge, this is the

first work that has designed a privacy policy centered on user motivation. We consider

each check-in individually; therefore, the same user’s check-ins might have different policies

applied to preserve the information, thus introducing a lot more variation than most other

works.

4.2 Problem Statement

4.2.1 Components

Definition 1. Location based social network (LBSN): LBSN can be defined as an

undirected graph G = {V,E,C}, consisting of a set of LBSN users V = {v1, v2, . . . , vn}. The

friendship relations among the users are represented by the edge set E, of the social network,

where e(vi, vj) ∈ E, indicates that a friendship relation exists between users vi and vj, and

vi, vj ∈ V . C represents the set of check-ins made by the users on the LBSN.

Definition 2. check-ins: A set of check-ins made on a LBSN can be represented as

C = {c1, c2, . . . , cj}. Each check-in ci consists of user identifier, location information and

the time stamp and can be denoted as ci =< vi, li, ti >, and all the locations belong

to a location universe L = {l1, l2, . . . lp}. Each location li can be represented as li =

{lidi, latitudei, longitudei, typei}
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4.2.2 Characterizing User Motivation

It is crucial to obtain more information about a check-in and understand it better before

designing the privacy policies. We can extract meta attributes, otherwise known as context

features, by using both the check-in features and the social network. In this work, the

following context features were considered: weekday, time of day, user check-in frequency,

location check-in frequency, and co-location.

Weekday: The “weekday” context-feature tells us if a particular check-in has been made

during the weekdays (Monday to Friday) or on weekends (Saturday and Sunday). We use

the ’timestamp‘ of the check-in to obtain this information. This is a binary feature, which

can be represented as follows:

weekday =


1, if day ∈ {Saturday, Sunday}

0, otherwise

(4.1)

Time of day: This particular feature tells us if a check-in was made in the morning,

afternoon or evening. The check-in’s timestamp is used to compute this feature. It can be

denoted as follows:

time of day =



0, if Morning

1, if Afternoon

2, otherwise

(4.2)

Location frequency: This particular context feature provides an insight into the activ-

ity of a particular location. We compute it by calculating the frequency of a location in all
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the check-ins made on the system. It can be denoted using Iversion bracket notation [141]

as follows :

location frequency(l) =

|C|∑
i=1

[li = l] (4.3)

User frequency: This particular context feature provides us an insight into a particular

user’s activity. We compute this by calculating the frequency of occurrences of a user v, in

all the check-ins made on the system. It can be denoted using Iversion bracket notation as

:

user frequency(v) =

|C|∑
i=1

[vi = v] (4.4)

where Ci is the set of all the check-ins made by user vi.

Figure 4.2 Structure of UMPP model

Co-location: Consider two check-ins ci =< vi, li, ti > and cj =< vj, lj, tj >. If li = lj

(same location), |ti − tj| <= τ (check-ins occurring within a threshold), where τ is the

temporal threshold and e(vi, vj) exists (vi and vj are friends), it is called a co-location. For

each check-in, we consider the total number of such co-locations. Algorithm 1, provides the

steps for calculating the co-location.
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Algorithm 1 Computing co-location of the check-ins

Input: G = (V,E,C): the location based social network

C: the set of check-ins

τ : user-defined time difference

Output: the co-locations for all check-ins

1: for each check-in ci ∈ C do

2: Initial ci[co− location] = 0

3: for each check-in cj ∈ C (i ̸= j) do

4: m = ci[vi], n = cj[vj]

5: if |ci[timestamp]− cj[timestamp]| ≤ τ and ci[li] == cj[lj] and emn ∈ E then

6: ci[co− location] = ci[co− location]+1

7: end if

8: end for

9: Save ci[co− location] as the co-location for check-in ci

10: end for

11: return the co-locations for all check-ins

4.2.3 User Motivation

As explained in Section 4.1, every check-in made on an LBSN has an intention or user

motivation associated with it. To identify the motivation behind a check-in, we first compute

all the context features mentioned in Section. 4.2.2, and then cluster the check-ins based

on this data. In [142], it is explained how certain features of the check-in can indicate the
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intention behind a check-in; therefore, we apply this idea in our labeling. For each cluster,

we analyze trends of the computed context features and proceed with labeling the cluster

with either of the following two labels:

• Social motivation: A check-in is said to have social motivation if the check-in is made

with an intention to communicate a person’s whereabouts with others in the network.

We apply this label to the check-ins where the location is very active (has high location

frequency), the user is active (high user frequency), the check-in has high co-location

values ( user’s friends have also checked in into the same location in the same time),

when the check-ins happen in the evenings and/or weekends and finally, when the type

of the location is a public place like restaurant, cinema, museum, etc.

• Private motivation: A check-in is said to have a private motivation if the user makes

the check-ins for a personal reason. As mentioned in [143], sometimes users check-in

only to keep track of their activities. In such cases, the check-ins are more frequent and

happen in similar locations over time. We apply this label to check-ins that have less

active (less location frequency), the user is active (high user frequency), the check-ins

has a less or no co-location and happen on mornings and evenings and/or weekdays

and finally when the type of the location indicates home or office.

4.2.4 Problem Definition

Given a LBSN network G, as defined in Definition. 1, location check-ins C, as defined in

Definition. 2, and user motivation um of the check-in. This paper aims to preserve the

privacy of the check-ins in C, based on user motivation um, with the following objectives:
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• Minimize re-identification of user motivation behind check-ins C.

• Minimize the information loss for social check-ins, while maximizing privacy.

4.3 User Motivation Based privacy preservation

The basic structure of the UMPP model is shown in Figure 4.2. Each location check-in has

three different types of obfuscation applied to it.

• Timestamp obfuscation

• Semantic Location context obfuscation

• Semantic Location obfuscation

Each of these obfuscation techniques effect multiple context features, thus providing a much

better chance against re-identification. Following is the detailed explanation of these obfus-

cation techniques.

4.3.1 Timestamp obfuscation

Timestamp obfuscation is the most commonly used technique used in privacy policies to

prevent reidentification and user profiling and tracking. In our model, we adopt a Reverse

kNN approach to obfuscate the timestamp. As shown in Lines 2 - 5 of Algorithm 2, we

take an individual check-in ci and generate a nearest neighbor check-in set Cj, containing k

nearest check-ins with respect to the timestamp ti of check-in ci. We then randomly select

one of the nearest neighbor check-ins (cji) and use the timestamp of that check-in as the new

timestamp t′i of ci.
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Algorithm 2 User Motivation based Privacy Preservation

Input: C = {c1, c2, . . . , ci}: original check-ins set
ci =< vi, li, ti >: the original check-in
vi: user identifier for check-in ci
li = {lidi, latitudei, longitudei, typei}: the location information of ci with id, latitude,
longitude, and location type
ti: the timestamp of ci
umi: the user motivation label of ci

Output: C ′ = {c′1, c′2, . . . , c′i} : obfuscated check-ins set
c′i =< vi, l

′
i, t

′
i >: obfuscated check-in

l′i = {lidi, latitude′i, longitude′i, type′i}: obfuscated location information with processed
latitude, longitude, and location type
t′i: obfuscated timestamp

1: for each check-in ci ∈ C do
2: Timestamp obfuscation:
3: Using k-nearest-neighbor algorithm with ti to obtain a check-ins set Cj =

{cj1 , cj2 , ..., cjk} of closest neighbors
4: Randomly select check-in cji from Cj

5: t′i = tji (the timestamp of cji)
6:

7: Semantic Location context obfuscation:
8: Generate the lexical location context tree CTi of li over typei
9: if umi == social then
10: type′i= 1st level ancestor of typei in CTi

11: else if umi == private then
12: type′i= 2nd level ancestor of typei in CTi

13: end if
14:

15: Semantic Location obfuscation:
16: Generate semantic location tree LTi of li over latitudei, longitudei
17: if umi == social then
18: latitude′i= latitude of 1st level semantic location in LTi

19: longitude′i= longitude of 1st level semantic location in LTi

20: else if umi == private then
21: latitude′i= latitude of 2nd level semantic location in LTi

22: longitude′i= longitude of 2nd level semantic location in LTi

23: end if
24: end for
25: return obfuscated check-ins C ′ = {c′1, c′2, . . . , c′i}
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4.3.2 Semantic Location Context Obfuscation

A location context is the ‘type’ or ‘nature’ of the location like a restaurant, a religious place,

cafe, airport, and many more. In most LBSNs, this location type or context information is

either directly posted or hidden as metadata when a user checks in; therefore, it can be easily

extracted. Given that the context of a location is easily available, even if a privacy policy is

applied to the geographical data, one can mine the exact location by checking out how many

places within the area share the same context and/or obtain the data from other tagged

users. Therefore, it is crucial to consider preserving this information as well in check-ins.

In the UMPP model, we preserve this data by applying semantic obfuscation at the lexical

level.

For example, let us consider a location which is a “Sushi bar”. This is a very specific

context for a location. Now if we want to preserve this information, we can move one level

up on the lexical tree as shown in Figure. 4.3, and generalize the location to a “Japanese

Restaurant”. Furthermore, if we want to preserve more location context information, we

generalize it further to “Food/Restaurant”. As shown in Lines 7-13 of Algorithm 2, in our

model, we move up to different levels in the lexical context tree of location type typei, based

on the user motivation umi of check-in ci.

4.3.3 Semantic Location Obfuscation

Semantic Location Obfuscation is a way of generalizing the level of a location’s address. As

we move up the semantic obfuscation scale, more and more parts of the address are omitted,
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Figure 4.3 Lexical tree of location context or types

thus greatly reducing the granularity of the location, and this technique has been found to

provide much better preserving preservation compared to simple geographical obfuscation

[144]. Figure. 4.4 shows the levels of semantic information of a sample address format.

Therefore, if one needs to preserve more privacy, a higher-level semantic obfuscation can be

applied to the location address. In our model, we move up to different levels in the semantics

of the address based on the user motivation umi of check-in ci, as shown in Lines 15-23 of

Algorithm 2, and then we obtain the co-ordinates of that semantic level component (either

city or state) as the new co-ordinates of ci.

Figure 4.4 Semantic levels of location information
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4.4 Performance Validation

4.4.1 Datasets

The proposed model is evaluated two real-world datasets: Gowalla [105] and Brightkite [104].

Both of these are Location-based social networks that allow users to share their locations in

the check-ins. In both datasets, we use the check-ins made in the United States over a time

frame of 30 days. Table 4.1 shows the details of the selected check-ins in both the datatsets.

Gowalla Brightkite

Check-ins 35,000 30,000

Users 1900 1794

Locations 498 347

Table 4.1 Dataset Statistics

4.4.2 Evaluation Metrics

To evaluate the performance of our proposed model, we measure the performance based on

two metrics: Re-identification accuracy and Information loss.

4.4.2.1 Re-identification accuracy (RAC)

It is essential to note that a check-in’s motivation should not be accurately identified af-

ter privacy preservation. To measure the re-identification accuracy, we first train a

classification model that can accurately predict the user motivation. Then, we measure

how accurately the classification model can predict the user motivation of the obfuscated

check-ins. The lower the re-identification accuracy, the higher is the privacy provided. The
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re-identification accuracy can be calculated as :

RAC =
correctly predicted motivation labels

Total number of check − ins
(4.5)

4.4.2.2 Information Loss (IL)

To calculate the information loss, we use the Average of Sum of Squared Errors (Avg.SSE)

metric. The error is calculated between the original check-in ci and the obfuscated check-in

c′i. Avg.SSE can be calculated as follows:

Avg.SSE =

∑n
i=1

∑m
j=1

(
cij − c′ij

)2
n

(4.6)

where,

n is the number of check-ins, and

m is the number of features in the check-in

4.4.3 Results

We evaluate our model’s performance against another location check-in privacy preserving

model PrivCheck [145]. We implement the historical check-in privacy model of PrivCheck

for comparison. This model takes user-specified private data and then clusters the check-ins

based on the activity/ location type and then applies privacy. To apply the model to the

scenario presented in our work, we take all the check-in features as user-specified private

features. The results provided are averages over 10 runs of the experiments.
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4.4.3.1 Affect on Social Motivation check-ins

The model aims to preserve the social motivation check-ins to some extent while minimizing

information loss. Figure. 4.5 shows that the social motivation check-ins preserved using

the UMPP model can be reidentified more than the check-ins preserved using PrivCheck.

Furthermore, the information loss of the UMPP model, as shown in Figure. 4.6, is much

lesser than the PrivCheck model. Though the UMPP model provides 9% less privacy over

both datasets than PrivCheck, the information loss is almost 20% lower than the PrivCheck

model. Therefore, our goal to reduce information loss in “social motivation” check-ins is met

by a much higher margin when compared to the baseline, at a very small privacy price.

Gowalla Brightkite

number of check-ins RAC IL (102) RAC IL (102)

5k 0.800 3.248 0.817 2.940

10k 0.732 3.903 0.769 3.438

20k 0.701 4.532 0.756 4.041

Table 4.2 UMPP on Social motivation check-ins

Gowalla Brightkite

number of check-ins RAC IL (102) RAC IL (102)

5k 0.703 3.893 0.725 3.386

10k 0.667 4.621 0.708 4.076

20k 0.646 5.384 0.681 4.790

Table 4.3 PrivCheck on Social motivation check-ins
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(a) Gowalla (b) Brightkite

Figure 4.5 RAC on Social Motivation check-ins

(a) Gowalla (b) Brightkite

Figure 4.6 IL on Social Motivation check-ins

4.4.3.2 Affect on Private Motivation check-ins

Our model aims to provide more privacy for private motivation check-ins, which is clearly

shown in Figure. 4.7. The UMPPmodel reduces the reidentification of the private motivation

labels by 6% compared to the PrivCheck model. If we observe the information loss on the

private motivation check-ins in both models on the datasets in Figure. 4.8, we can see that

the information loss is almost the same. Therefore, the UMPP model provides an average



60

of 6% more privacy than the PrivCheck model for the same amount of information loss on

both datasets.

Gowalla Brightkite

number of check-ins RAC IL (102) RAC IL (102)

5k 0.555 6.953 0.563 6.516

10k 0.542 7.396 0.533 7.176

20k 0.526 7.827 0.521 7.335

Table 4.4 UMPP on Private motivation check-ins

Gowalla Brightkite

number of check-ins RAC IL (102) RAC IL (102)

5k 0.603 6.365 0.626 6.921

10k 0.581 7.065 0.573 7.743

20k 0.548 7.633 0.532 7.951

Table 4.5 PrivCheck on Private motivation check-ins

(a) Gowalla (b) Brightkite

Figure 4.7 RAC on Private Motivation check-ins



61

(a) Gowalla (b) Brightkite

Figure 4.8 IL on Private Motivation check-ins

4.5 Summary

Mobile devices and their usage have become the norm in today’s world. To cater to the

users of these mobile devices, many applications in use today have some or all services that

LBSNs provide. Therefore, each user is a part of several different LBSNs at any given time.

Given the universal nature of LBSNs, the user’s data is constantly being used to provide

better services. Therefore, information leakage in LBSNs is a major threat to the user.

In our paper, we focus on one such service on LBSNs called check-ins. In most current

applications, when a user’s check-in is preserved, it does not consider the intention or the

motivation behind the check-in. This results in losing the meaning of the check-in and,

by extension, the utility. Therefore, there is a need to develop privacy policies that take

the user’s motivation behind a particular check-in into consideration. This work proposes

a model that divides the check-ins into two categories and applies different privacy policies

based on the categories’ requirements.

Experimental results show that the model effectively reduces the information loss by
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about 20% for the ‘social motivation’ check-ins, at a very small privacy price, as compared

to the baseline model. The results also indicate that for the ‘private motivation’ check-

ins, the model provides 6% privacy than the baseline model for almost the same amount

of information loss. Therefore, achieving the goals of retaining more information for social

check-ins and providing more privacy for private check-ins.
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CHAPTER 5

Future Work

5.1 Future Work 1: User-centric privacy of continuous queries in Mobile Edge
Systems

5.1.1 Introduction

In autonomous driving applications like that in Tesla, when a driver chooses to use auto-

driving mode, the vehicle needs to process different information like lane condition, traffic,

signs and make decisions like changing lanes, slowing down, changing routes, and many more

within a very short time.A few of these operations like initial image processing might happen

on the vehicle, but other intensive operations need to be forwarded to a server. If only one

server is responsible for all the vehicles, it might cause delays in responses, which might fail

the autodriving application. To avoid this situation, smaller servers called Edge Servers (ES)

are deployed on the edge of the network, as shown in Figure 1. These servers only handle the

cars (or other mobile devices) that are geographically closer to them, thus taking off much

load of the core server and providing sooner results and better services.

As the ESs only handle vehicles/nodes within their range when the car moves. In this

case, the private information might be available to multiple ESs simultaneously during com-

munication exchanges and handovers [146, 147, 13]. Also, one must consider that several

other MES mobile devices like navigation systems and mobile phones can simultaneously

communicate with these servers. Coming up with privacy solutions in this scenario will be

difficult as:
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1. Different devices use different communication technologies. Therefore, it is challenging

to develop an efficient and well-rounded privacy policy that handles discrepancies in

multiple communication formats.

2. The presence of several ESs and the possibility of private information being available

on multiples ESs at the same time might attract attackers to eavesdrop and cause

breaches at the edge server level.

In [148], Mao et al. provide a very detailed account of the different privacy issues that arise

from the heterogeneity of MES. They also list the different possible attacks on the various

user information at the user level, the edge server level, and at the core server. The authors

in [149] discuss the privacy concerns for each kind of application and the effect on the party

involved. They also focus on other security concerns like Authentication issues, Denial of

Service for different MES applications. Zhang et al. [150], provide a detailed account of

the security threats to each component of an MES, the current research on handling these

threats. They also emphasize that the privacy and security requirements of an MES keep

evolving, and to this end, they list gaps in the current privacy preservation research and

weak links of MES. In [151], the authors provide a simple noise addition model to preserve

location privacy in an MES. They consider the scenarios of single LBS query and continuous

LBS query (trajectory). This work evaluates the proposed model only in terms of the privacy

reserved and the computation costs and overlooks utility which is crucial to be retained for

any service. In [152], the authors propose a differential privacy-based method to preserve

the location information of location data streams (continuous requests). Though differential
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privacy methods have been proven to provide good utility [153], the query that is changed

the most in a cluster of queries might result in temporary deviation of results provided,

which might be undesirable in many services.

5.1.2 Goal

As evident from the literature, there are definitely some major gaps in location privacy

research in MES, and it is necessary to address these issues to provide complete and balanced

privacy to user’s location. The goal of this project is to propose a privacy policy that

addresses these gaps.

To address the privacy gaps, we will be considering multiple communication scenarios

among different components of an MES and design separate mechanisms for each such sce-

nario. This makes sure that the same privacy is not applied to the queries, which will avoid

an attacker from back engineering the policy, based on the final results.

5.2 Future Work 2: Comprehensive analysis of user privacy issues in Digital
Twin Networks

5.2.1 Introduction

Digital twins and digital twin networks have been gaining a lot of traction in the last few

years from both industry and academia [154, 155]. Do the idea of digital twins might seem

like something new and more recent, it was first introduced by Michael Greives in 2002 [156]

at the University of Michigan. He defined the digital twin as “As a set of virtual information

constructs that fully describes a potential or natural physical manufactured product from
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the micro atomic level to the macro geometric level”. Therefore, digital twins can be as

descriptive as possible or as high level as possible based on the application scenario.

Most research focuses on DTs and pays less attention to the network that actually helps

realize these digital twins. Digital Twin Networks (DTNs) provide the backbone architec-

ture to establish and maintain DTs and provide DT services. It provides a communication

network to gather new physical twin data, allowing DT to evolve. DTNs also allow net-

work operators to design network optimization solutions, perform troubleshooting, or plan

network upgrades taking into account the network’s expected user growth. The key thing

to notice is that all the DTN communications happen over ubiquitous networks, and due to

the kind of services in use today,these communications are more frequent (frequent sampling

of the PT to maintain DT’s freshness) and involve a lot of rather sensitive information (to

provide specific services). Therefore, many privacy concerns come into the picture as DTs

and DTNs become more widespread, mainly because, in most cases, the data is directly

collected from the end- users, who are naive and might not understand the nature and impli-

cations of privacy breaches. For example, a breach in the data collected by a fitness tracker

or smartwatch might reveal a user’s personal information like gender, daily activities, and

health data. Similarly, a breach in the supply chain DTNs can disrupt the entire supply

chain by allowing the attackers to directly manipulate the state of the respective physical

components. Currently, there are not many research works that cover digital twin networks

as a whole and even fewer that actually talk about the privacy issues that are introduced

with the widespread implementation of DTNs
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5.2.2 Goal

The goal is to address this gap in literature. Following are the things we plan on handling

as part of this survey:

1. Provide a general formulation of DTNs, that can be adapted for most DTN appli-

cations, irrespective of the applied use case, and provide commonly used metrics in

DTNs.

2. Investigate DTN applications in vehicular and aviation networks, 6G networks, health-

care, and manufacturing and supply chain management.

3. Emphasize on the privacy issues introduced by DTNs in the applications mentioned

earlier and also how they mitigate pre-existing privacy issues.

4. Finally, suggest techniques and tools like federated learning [157] and blockchain [158],

that can help overcome the said privacy issues in the DTN setting.

5.3 Future Work 3: User privacy in Federated Learning aided DTN

5.3.1 Introduction

With the development of Industrial IoT (IIoT) applications like IoV, smart cities, smart

grids, and many more, companies are turning towards crowdsourcing to incentivize global

communities to work for a common goal [159, 160, 161]. This enables support for advanced

collaboration among smart products, services, users, and service providers. Since these

services have complex hierarchies and deal with multimodal data types like queries, and
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sensor readings spanning long periods, the operations require many computation resources

[162]. DTNs have become an important way of realizing these services, as one can tap into

digital resources, train accurate models, and aid in the co-evolution of the physical and

virtual space. One major disadvantage of DTNs is that they rely on constant data streams

to support the DT mapping, the level of interaction, and the amount of user information

involved, which discourages users due to the privacy implications [163, 164]. A Federated

Learning (FL) platform is a data science system developed for dispersed and non-centralized

data. FL approaches enable enterprises to utilize their data together to cooperatively train

models without explicitly sharing or centralizing their data, most introduced and used by

Google in 2016; subsequently, it has been widely used in different research fields. Several

research articles have already studied and addressed privacy issues introduced by a Federated

learning approach in different applications [165]; therefore, a Federated learning added DTN

has been gaining much traction for IIoT applications recently.

5.3.2 Goal

The goal of our research is to devise comprehensive solutions that focus on addressing user

privacy at the following two levels:

1. Intra-twin : Intra twin communications refers to a communication between a physical

twin and its corresponding digital twin. Data breaches in this communication im-

pacts the safe operation of the DT. The adversary can manipulate the information, to

maliciously influence the workflow.
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2. Inter-twin communication : This includes communications among the DTs. Since there

is a lot mutual information sharing among DTs, there is a chance of exposing a sensitive

user information. As DT reside in the virtual space, the security and privacy of DTs,

heavily relies on the cloud security. Cloud platforms are known to be vulnerable to

attacks like Sybil attack, where the adversary can manipulate the DT to provide a

user’s location for example, and also DDoS attacks, resulting in service paralysis.
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CHAPTER 6

Conclusion

This dissertation conducts research on the problem of user privacy in different IoT networks.

Concerning this problem, we focus on the different kinds of user data being used in the

respective application services and its utilization and what are the privacy threats that are

posed by this kind of usage.

First, we identify or categorize the most common types of user data that a lot of the IoT

services utilize, and then we conduct an in-depth analysis of the different privacy threats that

are associated with each of these categories. We then provide a very extensive categorization

of the different kinds of solutions in already existing research that address the said privacy

concerns. The aim is to provide a comprehensive understanding of general user privacy in

IoT networks, which is crucial to designing sound privacy mechanisms.

In this process, we identified a gap in research where privacy mechanisms only consider

satisfying the third-party application and not necessarily the network users. To address

this issue, we propose a privacy model that is based on user motivation for preserving the

user check-in data on social networks. As part of this model, our primary focus was to

mathematically characterize what user motivation is concerning check-ins and then create

an adaptive privacy policy that considers each check-in as its own and applies different

privacy to each check-in instead of considering all the check-ins of a user with similar level

of importance, which is the norm in most user check-in privacy models. The comprehensive

experimental results show that our model outperforms the other baseline models in terms of
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user satisfaction-based utility metrics and, at the same time, preserves enough privacy for

those check-ins that the user might seem highly private.

The proposed models are evaluated on real-world datasets and against other baselines

models. We also discuss some future directions for privacy analysis in other IoT networks like

Mobile Edge Systems and Digital Twin Networks. This dissertation, on the whole, provides

a very comprehensive understanding on existing privacy issues, concerning user data, and

some solutions to address them from a unique user perspective.
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