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Abstract

In graph embedding protection, deleting the embedding vector of a node does not com-

pletely disrupt its structural relationships. The embedding model must be retrained over

the network without sensitive nodes, which incurs a waste of computation and offers

no protection for ordinary users. Meanwhile, the edge perturbations do not guarantee

good utility. This work proposed a new privacy protection and utility trade-off method

without retraining. Firstly, since embedding distance reflects the closeness of nodes,

we label and group user nodes into sensitive, near-sensitive, and ordinary regions to

perform different strengths of privacy protection. The near-sensitive region can reduce

the leaking risk of neighbouring nodes connecting to sensitive nodes without sacrificing

all of their utility. Secondly, we use mutual information to measure privacy and util-

ity while adapting a single model-based mutual information neural estimator to vector

pairs to reduce modeling and computational complexity. Thirdly, by keeping adding

different noise to the divided regions and reestimating the mutual information between

the original and noise-perturbed embeddings, our framework achieves a good trade-off

between privacy and utility. Simulation results show that the proposed framework is

superior to state-of-the-art baselines like LPPGE and DPNE.
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utility trade-off.
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1. Introduction

With the increasing prevalence of social media platforms like Facebook and Twitter,

social networks have become vital for people to communicate and access information

daily. Governments and businesses utilize social network data for various purposes in-

cluding advertisement, healthcare, disease control, disaster prevention, and more [1–3].

Typically, social networks are presented in the form of large-scale adjacency matrices

or sparse matrices, and direct analysis requires a vast amount of computation time.

The graph embedding can capture structural information of the graph while reducing

the amount of computation for downstream analysis. However, graph embedding also

aids large-scale privacy leakage where the sensitive structures are extracted from the

data by machine learning to infer the private social relationships of key personnel [4].

Besides, ordinary users may be less concerned about privacy, but their connection with

others could expose the identity of sensitive users via inference attacks. Especially,

the nearer an ordinary node is to a sensitive node, the easier it is to disclose the sen-

sitive node’s information. In addition, previous privacy protection methods achieved

the effect of privacy protection by constantly perturbing the original graph during the

retraining of the embedding process [5]. This, however, would require a largely new

model training overhead for a large network, and there was no guarantee for utility per-

formance. Therefore, an efficient privacy protection method for the entire embedding

matrix while reducing the training workload is crucial.

Graph embedding technology reduces data dimensionality through mapping into

low-dimensional spaces not only simplifies computational tasks but also addresses

challenges related to storage complexity [6]. The embedding algorithm automates the

learning of feature representations for nodes and graph structures, facilitating an im-

proved expression of similarities and relationships between nodes. The adaptability

and generality of graph embedding technology make it an efficient and powerful tool

for handling diverse graph data types. Existing graph embedding algorithms can en-
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capsulate important information on connections and pathways into a tractable problem

with reduced complexity. However, their performance varies. Laplacian Eigenmaps [7]

and Locally Linear Embedding (LLE) [8] aim to uncover the underlying structure of

high-dimension data by emphasizing the preservation of local relationships. Laplacian

Eigenmaps use graph Laplacian matrices and eigenvectors, while LLE focuses on the

local linearity of data points in the embedding space. These techniques are valuable for

nonlinear dimensionality reduction and visualization of complex datasets. However,

scalability remains a significant challenge in these methods. DeepWalk [9] combined

natural language processing with unsupervised feature learning in the context of com-

plex networks. It created a random walk sequence for each node and then fed it into

the SkipGram model [10] to obtain the embedding feature vector for each node. Due

to its online learning approach, DeepWalk could effectively handle large-scale social

networks and update the model in real time.

Since embedding low-dimension representation vectors retains graph topology and

other related information about the graph in coordinates, protecting them using privacy

protection techniques becomes critical. For instance, the author of [11] introduces

a differentially private scheme rooted in the dk-graph model for sharing meaningful

graph datasets, but the generated graph dataset may not fully retain all statistical prop-

erties of the original graph dataset, which may affect the accuracy and effectiveness of

some graph analysis tasks. The work in [12] addresses the issue of preserving differ-

ential privacy during degree correlation-based graph generation, but these methods do

not consider how to balance privacy and utility, thus affecting the quality and usability

of the generated graph data. Pioneering works such as [13] and [14] employ differen-

tially private matrix factorization with stochastic gradient descent (SGD) to alleviate

accumulated noise. The author of [14] uses two differentially private matrices that are

sampled using the exponential mechanism. However, due to the inherent high corre-

lation within graph data, these approaches encounter challenges, especially when ap-

plied to matrix factorization-based graph embedding. This is particularly pronounced

when the input dataset contains a substantial amount of related data, necessitating the

addition of a prohibitive amount of noise. Consequently, the published embedding

matrix becomes nearly impractical, failing to maintain the utility of the graph struc-
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ture. Moreover, adhering to the sequential composition theory of differential privacy,

iterative computations may lead to accumulating errors, resulting in diminished utility

for graph embedding. The work in [15] achieves differential privacy in matrix fac-

torization by employing objective perturbation and working together with k-coRating.

Meanwhile, researchers from [16] utilize the Frank-Wolfe method [17] with differen-

tial privacy as the building block of matrix factorization for tackling matrix comple-

tion. Inspired by [13], study [18] introduces differentially private graph embedding via

objective function perturbation. However, for bounding the global sensitivity of the tar-

get non-private function, they suffer from prohibitively complex analytic calculations,

resulting in poor scalability. Additionally, they can only protect one of the two subma-

trices obtained through matrix factorization, potentially increasing the risk of privacy

breaches. Another perspective, as seen in LPPGE [19], employs adversarial learning

for link privacy-preserving graph embedding. However, the reconstruction of the graph

retains sensitive information about genuine social relationships, posing a potential risk

of sensitive information leakage. Although these investigations deal with the differen-

tially private publication of social graph data, none of them specifically consider the

preservation of the utility of the embedding matrix. The authors of [20] employ a Shan-

non entropy improved method to identify edges within the graph, while the algorithm

put forth by [21] is proficient in extracting topics, connections, and additional associ-

ated resources from the graph, thereby facilitating the creation of interactive dynamic

knowledge graphs.

Within social networks, adversaries can leverage publicly available user data on

these platforms for training. Some users do not care whether their personal connec-

tions are obtained by others but are eager to promote themselves by exposing complete

personal data. Attackers capitalize on this auxiliary vulnerability to train their mod-

els, subsequently utilizing this data to make inferences about sensitive users’ private

information [22]. The closer an ordinary user is to a sensitive user, the higher the

risk of compromising that user’s privacy. Studies such as studies [23, 24] reveal that

through various inference attack techniques, it’s feasible to infer sensitive users’ rel-

evant information based on users’ data surrounding the sensitive ones. Membership

inference attacks are a common means. The objective of such attacks is to ascertain
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whether a specific individual is included in a particular dataset. Through the analysis

of model outputs, attackers can understand the relationship between a specific mem-

ber and particular attributes or behaviors, further revealing the identity of that member.

Furthermore, findings from [25] show that deleting nodes and edges can be inferred

from the privacy-protected published embedding data. This is because, before node

deletion, a graph embedding encoding that satisfies the current relationship is formed.

Even after deletion, this relationship still exists to some extent, meaning that deleting

sensitive nodes does not remove the sensitive relationship. Therefore, it’s possible to

reconstruct the original network of relationships between nodes based on this feature,

meaning the sensitive network of relationships that sensitive nodes always wanted to

protect still exists and does not change due to the deletion of coordinates. Only by

deleting sensitive nodes from the original graph can it be ensured that these nodes and

their surrounding relationships do not participate in training, thus leading to changes in

the topology structure used for training and ensuring that these sensitive relationships

are not leaked after training. However, embedding training again after deleting nodes

requires re-calling the embedding model, which will lead to expensive retraining for a

new embedding model.

To ensure that social network data effectively serves diverse downstream tasks, one

must not only consider the effectiveness of privacy protection but also prioritize data

utility [26, 27]. Unfortunately, there is currently no privacy protection method that of-

fers an effective trade-off between privacy and utility. Recent works, such as [28], have

introduced a privacy funnel utilizing a mutual information neural estimator (MINE)

[29] to optimize the balance between privacy and utility through mutual information

estimation. This model is characterized by its simplicity, effectiveness, and stability.

The studies from [30, 31] demonstrate the possibility of embedding private information

into images using steganography, These advancements pose novel challenges for ensur-

ing privacy in graph data. Notably, MINE is capable of calculating mutual information

when the data distribution is unknown. Nevertheless, the precise impact and suitability

of this approach in graph embedding scenarios require further investigation and assess-

ment. This is not trivial because a graph consists of multiple variables. Training MINE

in pairs would require a huge amount of computation for each pair and may require
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an independent model. And, the studies on the mathematical properties and stability

conditions of neural networks can be supported by the related works in [32] and [33].

It can be observed that previous privacy protection methods often adopt the same

privacy protection strength for all nodes. They did not consider that the nodes may

have different privacy requirements. Adopting the same privacy protection policy for

all nodes will result in insufficient privacy protection for nodes with high sensitivity,

and nodes with low sensitivity cannot have the desired data utility. Meanwhile, the

studies of [12, 13, 15] employed privacy protection without considering to balance it

with the utility. In order to limit the global sensitivity of the target non-private function,

the authors of [18] conducted complex analytical calculations with poor scalability.

The authors of [14, 16, 17] used the matrix decomposition method to achieve privacy

protection by making one of the result matrices satisfy differential privacy. This only

protects one of the matrices, which may result in a certain degree of privacy leakage

and scalability issues. Additionally, none of these methods provide an effective means

of measuring the degree of privacy protection, resulting in a lack of a viable trade-off

method.

Motivation:This research proposes a new privacy-preserving and utility trade-off

method for graph embeddings that does not require retraining embedding, and we

take into account the privacy of all users, not just sensitive users. Moreover, our ap-

proach addresses the issue of high computational costs in traditional privacy protection

methods by achieving a balance between privacy and utility with relatively low time

expenses, so that the relationship network of sensitive nodes can be protected while

providing balanced utility to downstream tasks.

The contributions of this work are given as follows:

• We opted for a fixed embedding model to process the graph and divided privacy

protection based on nodes’ embedding closeness to sensitive ones. Subsequently,

we proposed a region division algorithm to divide nodes into sensitive, near-

sensitive, and ordinary matrices by calculating and sorting in Euclidean distance.

It has a small time cost due to its simplicity while still serving the purpose of

capturing the closeness of nodes in the embedding space.
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• We used mutual information to assess both privacy and utility and proposed a

MINE-GE that is suitable for processing the graph embedding vectors, where

each element is considered as i.i.d. so that only one model is needed instead

of multiple models to calculate mutual information. It reduces the complexity

of the model, simplifies the estimation of high-dimensional mutual information,

and captures graph relationships.

• Aiming at privacy protection and utility trade-off in graph embedding, we pro-

posed a new privacy and utility trade-off framework. This framework achieves a

trade-off between privacy and utility by selecting a fixed embedding matrix with-

out retraining the embedding, dividing different regions, and estimating mutual

information. Comparing with existing retraining privacy protection methods, it

greatly reduces the time cost of privacy protection operations.

• We substantiated the efficacy of our region division through rigorous experimen-

tation. Compared to conventional baseline techniques, our framework exhibits a

distinct superiority in safeguarding the relationship network of sensitive nodes.

The results of the membership inference attack and multi-label classification task

show that our framework effectively obtains stronger sensitive node privacy and

better data utility.

The remainder of our work is organized as follows: Section 2 introduces our system

model. Section 3 introduces related techniques. Section 4 introduces the our privacy

protection framework in detail. Section 5 provides a detailed account of the simulation

results and demonstrates the effectiveness of our method. Finally, Section 6 summa-

rizes the paper and looks toward future work. Notations and Acronyms is shown in

Table 1.

7



Table 1: Notations and Acronyms

Symbol Meaning

Mn Embedding matrix
M̂n Label and group matrix
M̂p Privacy utility trade-off achieved matrix

Ni(0,σ2I) Gaussian noise with mean 0 and variance σ2

ε Privacy threshold
G(V,E) A graph with V nodes and E edges

R Real number space
vi Low-dimension embedding representation of node i
d Embedding dimension

I(·; ·) Mutual information of two random variables
Îθ (·̂; ·̂) Estimated mutual information

Itotal(·; ·) Total vector mutual information
θ Deep neural network parameter
k Mini-batch size
η Learning rate

M̂sensitive Sensitive nodes sets
M̂near Near-sensitive nodes sets

M̂ordinary Ordinary nodes sets
α Number of near-sensitive node

D(·, ·) Euclidean distance between two vectors
SNR Signal-to-noise ratio
PS Signal power
σ2 Noise power
ai Privacy protection level

∆ai Updating steps
aUB

i Upper bound
aLB

i Low bound
w Window length
β Walks per vertex
t Walk length
Y Set of labels
|·| Number of elements in a set
⌈·⌉ The ceiling function

i.i.d. Independent and identically distributed
MINE Mutual information neural estimator

MINE-GE MINE based on Graph Embedding
8
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Figure 1: Privacy and utility trade-off system model.

2. System Model

As shown in Fig. 1, we consider that directly publishing embedded matrix data

faces the risk of privacy leakage while excessive protection will cause data to fail to

serve downstream tasks. Traditional privacy protection methods achieve privacy by

deleting nodes. However, in the embedding space, simply removing nodes from the

embedding matrix is not effective in safeguarding the relationship network of nodes.

To ensure that relevant relationship networks are not leaked, it was necessary to delete

corresponding nodes from the original graph and retrain a new model. This is a pro-

cess that demands significant computational resources. Therefore, it is desirable to

have a privacy protection framework to protect privacy and ensure data utility based on

embedding results without retraining the embedding model.

According to the characteristics of social networks and the actual situation of each

node, the consisting nodes can be divided into sensitive and ordinary regions. How-

ever, when the adversary obtains the information of ordinary nodes around the sensitive

nodes, it can infer the topology information and relationship information of the sensi-

tive nodes. Therefore, it is necessary to offer stronger protection on these near-sensitive

nodes than the rest of the ordinary nodes. We use mutual information to measure the

data utility after privacy-preserving operations, but the direct computation of mutual

information is difficult. MINE has been proven effective in estimating mutual informa-

tion, but multiple MINEs are computationally expensive for graph embedding scenar-

ios with multiple variables.

Under the aforementioned considerations, we proposed a privacy-preserving and
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utility trade-off framework for graph embedding. As shown in the figure, we employ

a random walk based graph embedding method to transform the adjacency matrices

into low-dimension vectors, resulting in the creation of the embedding matrix Mn, and

we execute the embedding algorithm only once without the need for repetitive embed-

dings. This would be a huge time saving since one embedding training can take hours

for a large network. Euclidean distance due to its simplicity can effectively measure

the proximity between two nodes in space. It is used to determine the neighbor nodes

around sensitive nodes. We labeled and grouped them into sensitive, near-sensitive, and

ordinary nodes according to the distance, obtaining the set M̂n. Subsequently, accord-

ing to the privacy requirements of different nodes, different levels of Gaussian noise

are sampled, and different levels of privacy protection operations are performed on dif-

ferent nodes. Thereby, we can obtain a privacy-protecting embedded node set M̂p. This

allows sensitive nodes to obtain better privacy protection, near-sensitive nodes to pro-

tect the sensitive node relationship network without completely losing effectiveness,

and ordinary nodes to better serve downstream tasks. The MINE needs to calculate the

mutual information between each pair of separately, which requires a lot of computing

resources and time, when calculating high-dimensional data. We optimize the calcula-

tion of the MINE, using a single model to estimate the mutual information Îθ (M̂n,M̂p)

as a measure of the correlation between the sets before and after the privacy protection.

By estimating mutual information, we can effectively judge whether the correlation de-

gree between data before and after privacy protection exceeds the privacy threshold ε .

Then, the framework adjusts the privacy protection degree of different nodes accord-

ing to the mutual information, and re-evaluates the mutual information with the newly

perturbed data, to obtain the trade-off between privacy and utility. Finally, when ε is

satisfied, the protected embedding matrix M̂p is obtained.

3. Preliminaries

In this section, we first review the graph embedding algorithm DeepWalk, which

generates high-quality node representations in a compressed Euclidean space for var-

ious social network analysis tasks. Then, we introduce the mutual information neural
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network estimator, which is employed to estimate mutual information when dealing

with an unknown data distribution.

3.1. DeepWalk

A crucial element of DeepWalk involves utilizing the local neighbourhood structure

of nodes to comprehend their relationships [9]. In the graph G(V,E), where vertices

V represent users and edges E denote relationship links between users. The gener-

ator selects a random node as the starting point of the random walk by performing

uniform sampling while considering neighbouring nodes of the selected node as con-

text. Subsequently, it learns the vector representation of the node by maximizing the

co-occurrence probability between the context and the target node.

In detail, each node in G is embedded by the DeepWalk into a vector space, where

each dimension corresponds to a feature of the node, which is denoted as vi ∈ Rd . The

i-th row of Mn represents the d-dimensional embedding of the node vi, which is written

as [9]

Mn ∈ R|V |×d ,d≪ |V | . (1)

Since grouping similar nodes in embedding can help learning algorithms achieve

better performance in graph processing tasks, it is recommended to adopt the embed-

ding algorithms like DeepWalk that have such grouping characteristics. Although node

embedding is typically trained on a social network G, it encapsulates extensive struc-

tural information between nodes. An attacker may exploit this information to infer

the network of relationships between sensitive nodes in G via membership inference

attacks.

3.2. Mutual Information Neural Network Estimator(MINE)

Mutual information is a measure based on Shannon entropy that gauges the inter-

dependence of two random variables. The mutual information between X and Y can be

expressed as [29]

I(X;Y) := H(X)−H(X|Y), (2)

where H(X) represents the entropy of X, and H(X|Y) is the conditional entropy of X

given Y.
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When the data distribution is unknown, MINE selects a function that satisfies the

integrability constraint: Tθ : X×Y→ R, parameterized by a deep neural network, and

estimates the mutual information between two random variables using the following

formula [29]

Îθ (X;Y) =
1
k

k

∑
i=1

Tθ

(
x(i),y(i)

)
− log2

(
1
k

k

∑
i=1

eTθ (x(i),y(i))

)
, (3)

where k represents the extraction of k mini-batch samples per batch from the sample.

It has been shown effective in previous research [28] for random datasets, but to

estimate joint mutual information of multiple random variables, multiple models need

to be trained. However, multiple Tθ will cause a large amount of data calculation,

resulting in a giant and inefficient model.

4. Proposed Privacy and Utility Methods

In this section, we first provide a detailed explanation of how to label and group

near-sensitive regions and ordinary regions by identifying sensitive nodes based on the

characteristics of social networks after obtaining the embedding matrix. Next, we de-

scribe the modifications made to MINE to make it applicable to the graph embedding

scenario, highlighting the key changes or adaptations. Finally, we introduce a privacy

protection and utility trade-off algorithm that effectively safeguards the privacy of so-

cial network data while ensuring data utility. This algorithm eliminates the need for

training multiple models, offering a more convenient and effective to privacy preserva-

tion. Finally, we discussed the time complexity of this framework.

4.1. Region Divisions Based on DeepWalk

After inputting the graph G(V,E) adjacency matrix into the DeepWalk model, the

network embedding matrix Mn is obtained, where row i can be denoted as vn
i . Then, a

set of all vn
i can be represented as

M̂n = {vn
1,v

n
2, . . . ,v

n
i }. (4)
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Algorithm 1 RegionsDivide (M̂n,M̂sensitive,α)

Input: embedding set M̂n, assigned sensitive node set M̂sensitive, number of near-

sensitive node α .

Output: near-sensitive node set M̂near, ordinary node set M̂ordinary.

1: Initialize M̂near,M̂ordinary as empty set

2: // Calculate the pairwise Euclidean distance between the sensitive node and all

other nodes:

3: for vs ∈ M̂sensitive

4: for v j ∈ M̂n where v j is a node

5: Put D(vs,v j) = ∥vs− v j∥ into Dtemp

6: end for

7: M̂′near← top α of Sort(Dtemp) in ascending order

8: end for

9: M̂′ordinary← M̂n\{M̂sensitive,M̂′near}

10: // Identify multi-privacy level nodes

11: for vi ∈ M̂n

12: if vi ∈ M̂sensitive

13: M̂near← M̂′near\vi

14: M̂ordinary← M̂′ordinary\vi

15: else if vi ∈ M̂′near

16: M̂ordinary← M̂′ordinary\vi

17: end if

18: end for

19: return M̂near,M̂ordinary

Given that the embedding model projects the graph into a low-dimensional space

where the distance between nodes reflects their closeness in the original graph, we pro-

pose achieving privacy protection by perturbing distances rather than deleting nodes.

However, the relationship networks of surrounding nodes to sensitive nodes could also

reveal sensitive information. Therefore, determining the neighboring nodes around
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sensitive nodes and perturbing them is equally important. This approach ensures that

nodes with higher privacy requirements receive better privacy protection, while all

nodes better serve the purpose of data analysis. The embedding distance is expressed

as

D(vn
i ,v

n
j) = ∥vn

i − vn
j∥, (5)

where vn
i ,v

n
j ∈ M̂n, represented calculates the distance between the node and other

nodes. Due to the uncertainty of the location of sensitive nodes in the social network,

given a set of sensitive nodes M̂sensitive, we calculate the Euclidean distance between

each sensitive node and other nodes, and the results are stored in Dtemp. Given the

number of near-sensitive node α , the α nodes closest to the sensitive nodes are se-

lected as near-sensitive nodes through calculation. If α is too large, data utility will be

lost. If α is too small, it will result in insufficient protection of sensitive nodes, so the

size of α is crucial. We sort Dtemp in ascending order by Sort(Dtemp), label the top α

nodes as closer to near-sensitive nodes, and store them into M̂′near. Then, we remove

the given sensitive node set M̂sensitive and the near-sensitive node set M̂′near that meet

the conditions from M̂n to get M̂′ordinary

M̂′ordinary = M̂n\{M̂sensitive,M̂′near}. (6)

However, there may be situations where a node has three sensitivity levels simul-

taneously, for instance, if node 1 is a sensitive node itself and is also a near-sensitive

node of node 2, and an ordinary node of node 3. In such cases, we consider the worst-

case scenario, classifying it as a sensitive node based on its highest privacy level and

removing it from other regions. Similarly, if a node is both near-sensitive and ordinary,

we categorize it as a near-sensitive node. To address this situation, we divide the nodes

with multiple privacy levels and remove the duplicate nodes to obtain the node set M̂n

after region division. The implementation is provided by Algorithm 1.

4.2. Regional Privacy Protection

Based on the sensitivity of each region, we apply different levels of privacy protec-

tion to achieve the goal of privacy protection. The Signal-to-Noise Ratio (SNR) [34] is
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used to measure the relative intensity between signal and noise, defined as follows

SNR =
PS

σ2 , (7)

where PS is the signal power of the data, and σ2 is the noise power. We define three

privacy protection levels corresponding to different ranges of SNR values: sensitive

region nodes are in the 1 to 3, near-sensitive region nodes are in the 4 to 6, and ordinary

region nodes are in the 7 to 10.

For given SNR, we can calculate the PS of the specific embedding matrix and obtain

the σ2
i of Gaussian noise for each region for privacy protection, as follows

M̂p =


M̂sensitive +N (0,σ2

0 I),

M̂near +N (0,σ2
1 I),

M̂ordinary +N (0,σ2
2 I)

 , (8)

where N (0,σ2
i I) represents Gaussian noise with mean 0 and σ2

i , and I is the identity

matrix of size d× d. It mean adding noise to each element in the three regions. The

specific value of σ2
i is determined by SNR of the whole embedding matrix. After the

SNR is determined, signal power PS is calculated through the following formula

PS =
1
V

V

∑
i=1

d

∑
d=1

∣∣∣vd
i

∣∣∣2 , (9)

where V is the number of vectors in the embedding matrix, and vd
i represents d-th

element in embedding vector i. Then, we can set the accurate σ2
i , accordingly based

on subsequent Algorithm 3. The SNR for the specific region is determined based on

privacy requirements ε in Section 4.4. Conducting distinct levels of privacy protection

operations in each region yields the privacy-protected embedding matrix.

4.3. MINE for Embedding Vectors

Following the privacy protection procedure, it becomes essential to assess both

data utility and privacy protection. Mutual information is a measure that gauges the

interdependence of two random variables and serves as our means to quantify both

privacy and utility.
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The embedding matrix is a multi-dimensional feature matrix and can be viewed

as multiple variables. However, calculating the mutual information of N variables re-

quires evaluating the mutual information of each variable separately using (2), and then

adding them up to obtain the final mutual information, as follows

Itotal(X;Y) :=
N

∑
n=1
{H(Xn)−H(Xn|Yn)} , (10)

where (X;Y) represents N pairs of random variables, and Xn and Yn represent the N-

th pair of random variables. H(Xn) represents the entropy of Xn, and H(Xn|Yn) is

the conditional entropy of Xn given Yn. In other words, we first calculate the mutual

information between each pair of random variables and then sum them to obtain the

total mutual information.

Algorithm 2 MINE based on Graph Embedding: MINE-GE (M̂n,M̂p,k,η)

Input: original embedding M̂n, privacy embedding M̂p, batch size k, learning rate η .

Output: Îθ (M̂n;M̂p)

1: repeat

2: Sample k rows of vector
(

m(1)
n , ...,m(k)

n

)
and vector

(
m(1)

p , ...,m(k)
p

)
of the same

nodes from M̂n and M̂p concatenate to ln and lp.

3: Compute mutual information using (12)

4: Calculate gradients with moving averages corrected for bias: Ĝ(θ) ←

∇̃θ Îθ (M̂n;M̂p)

5: Update system parameters: θ ← θ +ηĜ(θ)

6: until convergence

Therefore, we can only calculate the mutual information of each variable individu-

ally through (3) and then accumulate them, as follows

Îtotal(X;Y) =
N

∑
n=1

Îθ (Xn;Yn). (11)

This requires at least N neural network models to calculate and will generate N

groups of different neural network parameters Tθ . This will cause a lot of waste of

computing resources and time. In order to reduce the computational complexity, we
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Figure 2: Neural network representation of our approximation function Tθ . The red dashed line ellipses

represent unprocessed data and the blue solid line ellipses represent privacy-protected data. where ln and lp

are a batch of data composed of corresponding the same k-row vector representations of k nodes in M̂n and

M̂p respectively, as input to the model.

make MINE suitable for embedding matrices, which is called MINE-GE. By reason-

able assumptions, we assume that each element of the embedding vector is i.i.d., be-

cause one dimension in the embedding space should not be correlated with another for

a typical embedding algorithm. Otherwise, there is a waste in using extra dimensions.

Therefore, we propose that each element be considered as a sample from the same

distribution. We preprocess the embedding matrix by concatenating each embedded

vector, forming a new embedding representation, and using this combination as the

input for the neural network model. A direct benefit is that there will be one model

to obtain the total mutual information of different random variables, speeding up the

training. The mutual information estimation formula between M̂n and M̂p is

Îθ (M̂n;M̂p) =
1

k×d

k×d

∑
i=1

Tθ

(
l(i)n , l(i)p

)
− log2

(
1

k×d

k×d

∑
i=1

eTθ

(
l(i)n ,l(i)p

))
, (12)

where k represents the batched k-row node vectorized representation, d represents the

dimension of the vector, and we concatenate multiple vectors into two streams of sam-

ples ln and lp as the input for the neural network in Fig. 2. Here, we treat each di-

mension of the embedded vector as a sample. Subsequently, we input the samples one

by one into MINE-GE and estimate their mutual information. The implementation is
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Figure 3: Proposed privacy and utility trade-off framework.

shown in Algorithm 2.

4.4. Privacy Utility Trade-off

Previous privacy protection methods retrain the embedding process by constantly

perturbing the original graph, resulting in repeated computations to obtain a new em-

bedding matrix. We proposed a privacy-utility trade-off framework that avoids disturb-

ing the original graph and considers the privacy of all nodes, as shown in Fig. 3. This

avoids repeated training of the embedding process and greatly reduces computational

overhead.

Mutual information serves as an effective measure for quantifying both privacy pro-

tection and data utility. When estimating mutual information, it is essential to consider

both the extent of privacy protection and the utility of the data. We adjust the privacy

protection level through (12) estimated mutual information to ensure maximum data

utility while maintaining privacy. Therefore, the optimization problem related to the

trade-off between privacy and utility is defined as follows

max
Îθ (M̂n;M̂p)≤ε

Îθ (M̂n;M̂p), (13)

where Î(M̂n;M̂p) is the estimated mutual information, and ε denotes the privacy thresh-

old. This represents the calculation of mutual information between the privacy-preserving

operation embedding matrices, maximizing mutual information while ensuring it is less

than ε .
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The privacy and utility trade-off, incorporating a privacy threshold, offers a solu-

tion to the optimization problem described in (13). We have proposed the trade-off

between privacy and utility framework, which is essentially a process of re-sampling

noise matrices in different regions based on mutual information. We estimate the mu-

tual information Îθ (M̂n;M̂p) using MINE-GE and adjust the noise level of each region

based on mutual information to achieve a balance between privacy and utility.

The Algorithm 3 consists of three main parts: Firstly, the graph embedding algo-

rithm is used to process the social network, and the low-dimension embedding matrix

is obtained. Secondly, it identifies sensitive nodes based on the specific application

scenario and labels and groups the graph into the sensitive region, near-sensitive re-

gion, and ordinary region based on Euclidean distance. Privacy protection operations

are then applied to each region separately. Thirdly, it estimates the mutual information

between M̂n and M̂p using MINE-GE and optimizes the privacy protection level using

mutual information, achieving a trade-off between the privacy of the embedding matrix

and the utility.

Our method enables the publication of graph data with privacy protection. After ob-

taining the published data, illegal data recipients cannot determine the sensitive, near-

sensitive, and ordinary regions within the graph. Consequently, it becomes infeasible to

extract a relationship network of sensitive nodes from the graph through simple denois-

ing or inference attacks. Various privacy protection operations are carried out based on

different regions, which can ensure the data utility of the graph-embedded data to a

certain extent. Compared to conventional baseline techniques, our framework exhibits

a distinct superiority in safeguarding the relationship network of sensitive nodes. The

results of the multi-label classification task show that our framework effectively pro-

tects the privacy of the relationship network of sensitive nodes and the utility of the

overall data.
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Algorithm 3 DeepWalk assisted Regions Division and MINE-GE controlled Noise

Addition
Input: graph G(V,E), window length w, embedding dimension d, walks per vertex β ,

walk length t, sensitive node set M̂sensitive, number of near-sensitive node α , signal

power PS, Signal power of noise σ2
i , SNR ai, updating steps ∆ai, lower bound

aLB
i and upper bound aUB

i for region i, near-sensitive region M̂near, ordinary region

M̂ordinary, mini-batch size k, learning rate η , privacy threshold ε .

Output: M̂p

1: M̂n← DeepWalk(G,w,β ,d, t)

2: // Calculate the signal power of M̂n

3: PS =
1
V ∑

V
i=1 ∑

d
d=1

∣∣vd
i

∣∣2 based on (9)

4: M̂near,M̂ordinary← RegionsDivide(M̂n,M̂sensitive,α)

5: // Calculate the noise power σ2
i in different regions, sample different Gaussian

noise, and add them to three regions:

6: σ2
0 = PS/a0, σ2

1 = PS/a1, σ2
2 = PS/a2

7: while Îθ (M̂n;M̂p)≤ ε do

8: Add noise of M̂p based on (8)

9: Îθ (M̂n;M̂p)←MINE-GE(M̂n,M̂p,k,η)

10: if aLB
2 ≤ a2 ≤ aUB

2 then

11: a2 = a2 +∆a2

12: σ2
2 = PS/a2

13: else if aLB
1 ≤ a1 ≤ aUB

1 then

14: a1 = a1 +∆a1

15: σ2
1 = PS/a1

16: else if aLB
0 ≤ a0 ≤ aUB

0 then

17: a0 = a0 +∆a0

18: σ2
0 = PS/a0

19: end if

20: end while

21: return M̂p
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5. Simulation Results

In this section, we present our simulation datasets, including BlogCatalog and

Flickr, alongside other baseline methods. We then delve into the significance of the

number of sensitive nodes within our methodology. To comprehensively understand

the impact of different proportions of sensitive and near-sensitive regions on the over-

all partition, we conduct a simulation. Following this, we evaluate the effectiveness

of privacy protection in our framework and other baseline methods by assessing the

accuracy of membership inference attacks. In Algorithm 3, according to the privacy

requirements of different regions, Gaussian noise with a mean value of 0 and different

variance is added to each region for privacy protection. When we set ε = 1, we get

the SNR = 1 of the sensitive region, the SNR = 4 of the near-sensitive region, and the

SNR of ordinary nodes to be 10. Therefore, in order to better compare the privacy

protection effect of each area, we set GN-1 to be the Gaussian noise when SNR = 1,

GN-4 to be the Gaussian noise when SNR = 4, and GN-10 to be the Gaussian noise

when SNR = 10. Subsequently, we adopted the same dataset and simulation proce-

dure utilized by DeepWalk to perform a comparative analysis of our approach against

other methods. Multi-label classification tasks serve as an effective means to validate

the utility of data, with accuracy being a key metric. In certain scenarios, such as so-

cial media recommendation systems, user satisfaction with recommended content is

directly influenced by the accuracy of the system in predicting node labels. Accurate

label predictions enhance user experience and improve the practicality of the system.

We conducted a comprehensive evaluation through a multi-label classification task and

the AUC to validate the effectiveness of our method. We conducted a statistical analy-

sis of the computational overhead of the experiment and the time of the algorithm. As

shown in Table 2, we list all simulation parameters in our simulation.

5.1. Datasets, Baselines Methods and Attack Model

5.1.1. Datasets

In order to facilitate the comparison of our methods, we use the same parameters

and datasets as DeepWalk.
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Method Parameters

DeepWalk w = 10 d = 128 β = 80 t= 40

MINE-GE η = 0.01 k = 4 – –

RegionsDivide α = 50 M̂sensitive = ⌈V ×1%⌉ – –

DPNE ε = 1 d=128 – –

Ours ε = 1 a0 =1 a1 = 4 a2 = 10

Ours1 ε = 1 a0 =2 a1 = 5 a2 = 9

Ours2 ε = 1 a0 =3 a1 = 6 a2 = 7

Table 2: Simulation parameters details

Name |V | |E| |Y | Labels

BlogCatalog 10,312 333,983 39 Interests

Flickr 80,513 5,899,882 195 Groups

Table 3: Datasets details

• BlogCatalog is a social networks provided by bloggers. Tags represent the sub-

ject categories provided by the author.

• Flickr is a contact network between users of photo sharing websites. These tags

represent user interest groups.

5.1.2. Baselines Methods

In order to facilitate the comparison of our methods, we use the same parameters,

datasets, and multi-label classification experiments as DeepWalk.

• LPPGE [19] is a link-privacy preserved graph embedding method using adver-

sarial learning, through related technologies, we reproduce LPPGE.

• DPNE [18] is a differentially private network embedding method based on Deep-

Walk as matrix factorization.

• GN-1 is N (0,PS), that is Gaussian noise when SNR = 1. GN-4 is N (0,PS/4),

that is Gaussian noise when SNR = 4. GN-10 is N (0,PS/10), that is Gaussian
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noise when SNR = 10. Verify the impact of noise size on privacy protection and

data utility.

5.1.3. Attack Model

In order to verify the effectiveness of privacy protection, we use the accuracy of

membership inference attacks to evaluate the privacy protection effect.

• Membership Inference Attack is a privacy attack that seeks to determine whether

a specific data point was included in the model’s training set by analyzing the

output of a machine learning model.

5.2. Performance of Region Divisions
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Figure 4: When the number of near-sensitive nodes ranges from 20 to 200 with an interval of 20 the number

of nodes in the sensitive and ordinary region when the number of sensitive nodes is 1% in BLogCatalog and

Flickr.

In our approach, the proportion of sensitive nodes significantly influences overall

data utility. While a higher proportion of sensitive and near-sensitive nodes improves

privacy protection, it may compromise data utility. Therefore, determining the appro-

priate proportion of sensitive nodes is crucial. To investigate the impact of the ratio

of near-sensitive nodes on the overall data, we set the ratio of sensitive regions to 1%

of the total nodes and systematically expanded the scope of near-sensitive nodes. The

results, depicted in Fig. 4, reveal that as the number of near-sensitive nodes increases,

the corresponding nodes in the near-sensitive region also increase, while those in the

ordinary region decrease. As a result, in the RegionDivide algorithm, we fix the sensi-

tive region at 1%, and the number of near-sensitive nodes, denoted as α , is set to 50.
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In practical scenarios, adjusting the proportion of the near-sensitive region according

to specific circumstances allows RegionDivide to optimize its effectiveness.

5.3. Performance of Privacy Protection

As shown in Fig. 5, Gaussian noise N (0,PS/SNR), where SNR = 1 to 10 is added

to the data processed by DeepWalk, and the mutual information value between this per-

turbed data and the original graph-embedded data is calculated using MINE-GE. Ac-

cording to the formula’s definition, when the PS value is fixed, a larger SNR corresponds

to a smaller σ2 value. Therefore, The smaller the added Gaussian noise, the lower the

degree of privacy protection. The greater the added Gaussian noise, the higher the

degree of privacy protection, but the data utility will not be guaranteed. Simulations

reveal that when the mutual information between processed data and graph-embedded

data exceeds 1, data utility can be assured, yet it might lead to privacy leakage. We fur-

ther compare the privacy protection effects of our method with other baseline methods

in membership inference attacks.
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Figure 5: Mutual information between DeepWalk and the results of the privacy protection method of adding

Gaussian noise N (0,PS/M), where M = 1 to 10, that is Gaussian noise when SNR = 1 to 10.
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Figure 6: The accuracy of membership inference attack on BlogCatalog and Flickr.

Through membership inference attacks on privacy-protected data, the results are

shown in Fig. 6. It can be observed that the accuracy of the attack model against GN-1,

GN-4, and DPNE is significantly lower, indicating a good privacy protection effect.

However, under privacy protection with high noise levels, data utility cannot be guar-

anteed. GN-10 ensures the utility of data, but the privacy of data is not guaranteed.

LPPGE is even better than DeepWalk in accuracy, which verifies that the method of

reconstructing the graph for privacy protection retains the relevant information of the

original graph, which leaks the privacy of the original graph to a certain extent, and the

availability of the data is not guaranteed. Our method provides high-level privacy pro-

tection for the relational network of sensitive nodes, reduces the accuracy of the attack

model, and proves its success in privacy protection while ensuring data utility. The ver-

ification of data utility is described in detail in the subsequent multi-label classification

task.

From Fig. 6, it can be observed that the accuracy of our method in the membership

inference attack model is only slightly higher than GN-4 and DPNE. However, due to

Algorithm 3 performing different levels of privacy protection operations in different

regions, it has a privacy protection advantage in the relational network concerning sen-

sitive nodes. This is because it introduces larger Gaussian noise in the near-sensitive

region and smaller Gaussian noise in the ordinary region. This targeted privacy pro-

tection can make the need to protect the relationship between the network to get better

privacy protection.
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Figure 7: The accuracy of membership inference attack.

We found that when we set ε = 1, different privacy protection scenarios can be

applied to three regions. For example, in the first scenario, we get SNR = 1 of the sen-

sitive region, the SNR = 4 of the near-sensitive region, and the SNR = 10 of the ordinary

region, recorded as Ours. In the second scenario, we get SNR = 2 of the sensitive re-

gion, the SNR = 5 of the near-sensitive region, and the SNR = 9 of the ordinary region,

recorded as Ours1. In the third scenario, we get SNR = 3 of the sensitive region, the

SNR = 6 of the near-sensitive region, and the SNR = 7 of the ordinary region, recorded

as Ours2. As shown in Fig. 7, when we set the privacy threshold ε = 1, the mem-

bership inference attack accuracy of the three situations are (0.349, 0.358, 0.341) in

the BlogCatalog datasets and (0.255, 0.256, 0.253) in the Flickr datasets. The element

difference of each tuple does not exceed 0.02, this shows that three different privacy

protection levels can achieve privacy protection effects.
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5.4. Performance of Privacy and Utility Trade-off

In the multi-label classification tasks, we randomly select a portion (TR) of labeled

nodes as the training datasets, while the remaining nodes serve as the testing dataset.

We perform this process ten times and present the preliminary results directly, showing

the average performance of both Macro-F1 and Micro-F1 scores.

Table 4: Multi-label classification results in BlogCatalog.

Method 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 %

Micro-F1(%)

DeepWalk 36.09 38.87 40.30 41.16 41.68 42.11 42.32 42.64 42.97

Ours 33.68 36.42 37.99 38.69 39.28 39.58 39.81 40.26 40.84

Ours1 34.15 36.66 38.00 39.03 39.64 40.16 40.52 40.77 40.95

Ours2 33.48 36.19 37.47 38.54 39.22 39.66 39.96 40.28 40.89

LPPGE 31.44 34.27 35.82 36.50 37.17 37.56 37.80 37.88 38.40

DPNE 27.96 30.95 32.77 33.73 34.53 35.10 35.49 35.84 36.67

GN-10 34.63 36.87 38.26 39.01 39.61 39.90 40.35 40.46 40.83

GN-4 31.46 34.29 35.87 36.36 36.91 37.48 37.99 38.47 38.79

GN-1 25.52 28.82 30.40 31.61 32.26 32.86 33.27 34.09 34.25

Macro-F1(%)

DeepWalk 21.04 24.27 25.94 26.92 27.67 28.23 28.49 28.55 28.56

Ours 19.48 22.48 23.98 24.94 25.64 26.05 26.27 26.36 26.70

Ours1 19.54 22.23 23.90 25.04 26.05 26.68 27.03 27.34 27.63

Ours2 19.01 22.07 23.53 24.67 25.30 25.91 26.47 27.08 27.82

LPPGE 16.81 19.77 21.20 22.30 22.88 23.28 23.69 23.52 23.74

DPNE 15.33 17.90 19.20 20.09 20.65 21.18 21.36 21.74 22.21

GN-10 20.08 22.59 24.22 24.96 25.56 25.89 26.18 26.36 26.83

GN-4 17.53 20.56 22.09 22.73 23.29 23.64 23.95 24.73 25.06

GN-1 13.85 16.47 17.61 18.57 19.01 19.77 20.26 20.62 20.71

Table 4 and Table 5 lists the simulation results of multi-label classification after

privacy protection on BlogCatalog and Flickr datasets. In the GN-1 privacy-preserving

method, the recognition rate in the multi-label classification task is significantly re-

duced by nearly 11% compared with the DeepWalk, which the privacy of the embed-

ding matrix is protected, the loss of data utility is significant. In the GN-10 privacy-

preserving method, the recognition rate in the multi-label classification task is only re-

duced by about 2% compared with DeepWalk, which could potentially lead to privacy

breaches despite improved data utility. In the multi-label classification task, DPNE is

reduced by almost 8% on Micro-F1 and 6% on Macro-F1 compared to the DeepWalk

embedding matrix, which is because DPNE prioritizes privacy protection, resulting in
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Table 5: Multi-label classification results in Flickr.

Method 1 % 2 % 3 % 4 % 5 % 6 % 7 % 8 % 9 %

Micro-F1(%)

DeepWalk 32.23 34.63 35.96 36.83 37.40 37.84 38.25 38.58 38.86

Ours 30.19 32.89 34.21 35.02 35.58 36.08 36.44 36.77 37.05

Ours1 30.51 32.82 34.12 35.02 35.67 36.17 36.64 36.93 37.16

Ours2 30.26 32.72 34.16 35.04 35.69 36.21 36.54 36.92 37.19

LPPGE 27.56 29.83 31.21 32.11 32.71 33.24 33.60 33.90 34.18

DPNE 26.53 28.94 30.38 31.28 31.90 32.46 32.92 33.32 33.62

GN-10 31.36 34.18 35.57 36.48 36.97 37.48 37.97 38.25 38.59

GN-4 29.09 31.67 33.03 33.94 34.62 35.10 35.50 35.85 36.29

GN-1 23.46 25.80 27.41 28.42 29.20 29.80 30.29 30.72 31.07

Macro-F1(%)

DeepWalk 13.06 16.72 19.13 20.84 21.93 22.78 23.62 24.28 24.86

Ours 11.99 15.75 17.91 19.56 20.63 21.58 22.31 22.90 23.43

Ours1 12.28 15.75 17.98 19.62 20.71 21.57 22.42 23.04 23.42

Ours2 11.91 15.61 17.92 19.50 20.80 21.76 22.33 23.03 23.56

LPPGE 9.39 11.97 13.88 15.13 16.22 17.08 17.75 18.23 18.75

DPNE 9.74 12.94 14.92 16.27 17.33 18.17 18.94 19.54 19.98

GN-10 12.86 16.49 18.81 20.44 21.54 22.36 23.19 24.03 24.27

GN-4 11.49 14.83 17.01 18.64 19.73 20.64 21.31 21.89 22.72

GN-1 8.29 10.62 12.59 13.87 14.95 15.80 16.48 17.09 17.55

some loss of data utility. LPPGE is nearly 6% lower than the DeepWalk embedding

matrix on Micro-F1 and approximately 4% lower on Macro-F1. In the multi-label clas-

sification task, our method is only approximately 2% lower than DeepWalk on Micro-

F1 and Macro-F1. And as we can see, the results of the multi-label classification task

for the three privacy protection schemes Ours, Ours1 and Ours2 added through our

framework are essentially consistent. This also validates that our framework can adjust

the degree of privacy protection based on the actual situation of nodes and the privacy

requirements of user nodes, thereby meeting the practical needs of various scenarios.

Subsequently, we plotted the AUC for the multi-label classification task. As shown

in Fig. 8, the AUC of the three types of privacy protection through our framework

is 0.6884, which is higher than other baseline methods and only slightly lower than

DeepWalk and LPPGE that do not perform privacy protection operations. However,

the LPPGE method performs much worse than our method in membership inference

attacks. It can be seen that when the greater the noise is added, the AUC is lower, and

GN-1 is only 0.6455, which shows that its privacy protection effect is very good. It
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Figure 8: AUC for multi-label classification tasks.

also indirectly shows that our privacy protection method performs well in protecting

sensitive nodes. This shows that our privacy-preserving framework protects privacy

while ensuring data utility.

The simulation results of multi-label classification tasks demonstrate that our method

outperforms other methods in terms of data utility while only slightly lagging behind

GN-10. However, it’s important to note that GN-10 sacrifices a significant amount

of privacy protection for the sake of data utility. Given the unique label and group

approach used in our method, it incorporates a higher level of privacy protection in

near-sensitive regions. Therefore, compared to other privacy protection methods, our

method excels in safeguarding the relevant information and actual social relationships

of sensitive nodes, providing advantages in privacy protection while ensuring the over-

all utility of the dataset.

Although the framework achieves good performance in the multi-label classifica-

tion tasks, still it has some limitations. Firstly, the fixed approach may not be suitable

for cases where groups have different sensitivities. Secondly, Gaussian noise was used

in the perturbation process, which may not be appropriate for all the cases. Thirdly,

there is a performance gap between our trade-off framework and the original Deep-

Walk that does not involve protection. It would be desirable to achieve an embedding

that has the classification performance as closest to DeepWalk while still offering pro-

tection.
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5.5. Time Cost

To compare the time spent between our framework and other baseline methods,

we conducted all simulation methods on the same platform in Table 6. For datasets

BlogCatalog and Flickr, each algorithm was executed ten times on each dataset, or

the middle results. The average in Table 7 reveals that the graph embedding process

in DeepWalk is notably time-consuming. It has an increasing time as the graph size

increases. Embedding the Flickr takes up to seven times longer than the BlogCata-

log. This also illustrates that the traditional privacy protection method of deleting the

original nodes in the graph and then retraining the embedding model is very time-

consuming. For instance, retraining these two datasets merely twice would demand

nearly doubled time if the graph is very large.

Name Version

Operating System Windows 11

CPU Intel(R) Core(TM) i7-12700F

GPU NVIDIA RTX 3070 8GB

RAM 16GB

Python 3.6.2

Table 6: Platform details

Datasets DeepWalk RegionsDivide MINE-GE Total

BlogCatalog 415.05s 3.75s 38.53s 495.84s

Flickr 2868.24s 204.81s 358.45s 3789.83s

Table 7: Time cost

Meanwhile, the RegionsDivide algorithm only needs to run once after obtaining the

embedding matrix through the embedding algorithm. Throughout the privacy-utility

trade-off process, we repetitively compute the mutual information between the privacy-

protected data and the original embedding data. For each MINE-GE training, it takes

38.53s and 358.45s for the two datasets, respectively. Although the computation time
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scales with the dataset size, it remains significantly smaller than the time cost of re-

training the embedding model. Notably, for ε = 1, the total time required to execute

the entire framework is 495.84s and 3789.83s, respectively. This includes one-time

DeepWalk training and RegionsDivide as well as multiple rounds of MINE-GE.

Compared with the previous privacy protection method of deleting nodes and re-

training of embedding, it takes a corresponding amount of time to execute the embed-

ding algorithm once, so k times of re-training in the privacy utility trade-off process

requires k× 415.05s and k× 2868.24s respectively. For any k ≥ 2, k× 415.05s≫

495.84s, and k× 2868.24s≫ 3789.83s, the time cost of our framework investment is

considerably less than the time cost associated with retraining the embedding model

after removing original nodes.

6. Conclusion and Future Work

In this paper, we present an innovative approach to tackle the privacy protection

challenges associated with graph embedding. This method targets all nodes for privacy

protection while balancing utility without retraining embeddings, dividing the embed-

ding data into three different parts: sensitive, near-sensitive, and ordinary regions. This

partitioning method allows us to provide higher privacy protection for sensitive nodes

while retaining higher data utility for ordinary nodes. Leveraging this concept, We

propose a privacy protection and utility trade-off framework for social networks based

on DeepWalk-assisted regionalization and MINE-GE controlled noise addition. Near-

sensitive and ordinary regions are determined by defining sensitive nodes and calculat-

ing the Euclidean distance between sensitive nodes and other nodes. Different noises

are added to sensitive, near-sensitive, and ordinary regions to protect privacy. Using

mutual information to quantify privacy and utility, we employ MINE-GE to calculate

the mutual information between these regions to optimize our method’s privacy pro-

tection effect. This ensures the privacy of sensitive and near-sensitive regions in graph

embedding and the overall utility of embedded data. Finally, through membership

inference attacks comparing the privacy protection effectiveness of our method with

other baseline methods, we verify that our method has superiority in protecting the

31



relational network concerning sensitive nodes. By comparing the multi-label classifi-

cation results of our method, DPNE, LPPGE, and other methods through multi-label

classification tasks, we demonstrate that our method can achieve a trade-off between

the privacy and utility of data.

To achieve a protected embedding performance near DeepWalk in future work, we

can try to identify near-sensitive nodes by varying distances to dynamically incorpo-

rate group differences in protection strength, and privacy-preserving operations may

be improved by performing more time-consuming optimizations over continuous SNR

rather than discrete ones. Furthermore, different noise distributions as well as their

mixtures may be used by the noise perturbations in future work to achieve better pro-

tection while having the same utility performance. Meanwhile, when the embedding

variable is correlated in some embedding algorithms, future work may need to resort

to multi-model-based MINE for more detailed and reliable information on the node

relationship. But still, our single model can capture the typicality of the relationships

of the nodes.

Acknowledgement

This work was supported by Guizhou University through the project of Secure

Encryption Mechanisms of Spatially Embedded Networks under Guizhou University

Natural Science Special Grant No. (2021) 30.

References

[1] J. S. He, M. Han, S. Ji, T. Du, Z. Li, Spreading social influence with both positive

and negative opinions in online networks, Big Data Mining and Analytics 2 (2)

(2019) 100–117. doi:10.26599/BDMA.2018.9020034.

[2] X. Zheng, G. Luo, Z. Cai, A fair mechanism for private data publication in online

social networks, IEEE Transactions on Network Science and Engineering 7 (2)

(2020) 880–891. doi:10.1109/TNSE.2018.2801798.

32

https://doi.org/10.26599/BDMA.2018.9020034
https://doi.org/10.1109/TNSE.2018.2801798


[3] X. Zheng, Z. Cai, G. Luo, L. Tian, X. Bai, Privacy-preserved community discov-

ery in online social networks, Future Generation Computer Systems 93 (2019)

1002–1009. doi:https://doi.org/10.1016/j.future.2018.04.020.

[4] M. Adams, Big data and individual privacy in the age of the internet of things,

Technology Innovation Management Review 7 (2017) 12–24. doi:http://

doi.org/10.22215/timreview/1067.

[5] X. Han, Y. Yang, L. Wang, J. Wu, Privacy-preserving network embedding against

private link inference attacks, IEEE Transactions on Dependable and Secure

Computing (2023) 1–13doi:10.1109/TDSC.2023.3264110.

[6] M. Siddula, Y. Li, X. Cheng, Z. Tian, Z. Cai, Anonymization in online social net-

works based on enhanced equi-cardinal clustering, IEEE Transactions on Com-

putational Social Systems 6 (4) (2019) 809–820. doi:10.1109/TCSS.2019.

2928324.

[7] M. Belkin, P. Niyogi, Laplacian eigenmaps and spectral techniques for embed-

ding and clustering, Vol. 14, 2001.

[8] S. T. Roweis, L. K. Saul, Nonlinear dimensionality reduction by locally linear

embedding, Science 290 (5500) (2000) 2323–2326. doi:10.1126/science.

290.5500.2323.

[9] B. Perozzi, R. Al-Rfou, S. Skiena, Deepwalk: Online learning of social represen-

tations, in: Proc. of the 20th ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining, Association for Computing Machinery, New

York, NY, 2014, p. 701–710. doi:10.1145/2623330.2623732.

[10] T. Mikolov, K. Chen, G. S. Corrado, J. Dean, Efficient estimation of word repre-

sentations in vector space, in: International Conference on Learning Representa-

tions, Scottsdale, AZ, USA, 2013.

[11] A. Sala, X. Zhao, C. Wilson, H. Zheng, B. Y. Zhao, Sharing graphs using differ-

entially private graph models, in: Proc. of the 2011 ACM SIGCOMM Confer-

33

https://doi.org/https://doi.org/10.1016/j.future.2018.04.020
https://doi.org/http://doi.org/10.22215/timreview/1067
https://doi.org/http://doi.org/10.22215/timreview/1067
https://doi.org/10.1109/TDSC.2023.3264110
https://doi.org/10.1109/TCSS.2019.2928324
https://doi.org/10.1109/TCSS.2019.2928324
https://doi.org/10.1126/science.290.5500.2323
https://doi.org/10.1126/science.290.5500.2323
https://doi.org/10.1145/2623330.2623732


ence on Internet Measurement Conference, Association for Computing Machin-

ery, Berlin, Germany, 2011, p. 81–98. doi:10.1145/2068816.2068825.

[12] Y. Wang, X. Wu, Preserving differential privacy in degree-correlation based graph

generation, Transactions on Data Privacy 6 (2) (2013) 127–145.

[13] J. Hua, C. Xia, S. Zhong, Differentially private matrix factorization, in: Proc. of

the 24th International Conference on Artificial Intelligence, Buenos Aires, Ar-

gentina, 2015, p. 1763–1770.

[14] Z. Liu, Y.-X. Wang, A. Smola, Fast differentially private matrix factorization, in:

Proc. of the 9th ACM Conference on Recommender Systems, Vienna Austria,

2015, p. 171–178. doi:10.1145/2792838.2800191.

[15] F. Zhang, V. E. Lee, K.-K. Raymond Choo, Jo-dpmf: Differentially private ma-

trix factorization learning through joint optimization, Information Sciences 467

(2018) 271–281. doi:https://doi.org/10.1016/j.ins.2018.07.070.

[16] P. Jain, O. D. Thakkar, A. Thakurta, Differentially private matrix completion re-

visited, in: Proc. 35th International Conference on Machine Learning (ICML),

PMLR, Stockholm, SWEDEN, 2018, pp. 2215–2224.

[17] M. Jaggi, M. Sulovsk, et al., A simple algorithm for nuclear norm regularized

problems, in: Proc. of the 27th international conference on machine learning

(ICML-10), Haifa Israel, 2010, pp. 471–478.

[18] D. Xu, S. Yuan, X. Wu, H. Phan, DPNE: Differentially private network embed-

ding, in: Proc. Advances in Knowledge Discovery and Data Mining:Advances in

Knowledge Discovery and Data Mining: 22nd Pacific-Asia Conference, Springer,

Deakin Univ, Melbourne, Australia, 2018, pp. 235–246.

[19] K. Zhang, Z. Tian, Z. Cai, D. Seo, Link-privacy preserving graph embedding data

publication with adversarial learning, Tsinghua Science and Technology 27 (2)

(2022) 244–256. doi:10.26599/TST.2021.9010015.

34

https://doi.org/10.1145/2068816.2068825
https://doi.org/10.1145/2792838.2800191
https://doi.org/https://doi.org/10.1016/j.ins.2018.07.070
https://doi.org/10.26599/TST.2021.9010015


[20] M. A. El-Sayed, T. A.-E. Hafeez, New edge detection technique based on

the shannon entropy in gray level images, arXiv preprint arXiv:1211.2502 (12

November 2012).

[21] A. Badawy, J. A. Fisteus, T. M. Mahmoud, T. Abd El-Hafeez, Topic extraction

and interactive knowledge graphs for learning resources, Sustainability 14 (1)

(2021) 226.

[22] I.-C. Hsieh, C.-T. Li, Netfense: Adversarial defenses against privacy attacks on

neural networks for graph data, IEEE Transactions on Knowledge and Data En-

gineering 35 (1) (2023) 796–809. doi:10.1109/TKDE.2021.3087515.

[23] X. He, R. Wen, Y. Wu, M. Backes, Y. Shen, Y. Zhang, Node-level membership

inference attacks against graph neural networks, arXiv preprint arXiv:2102.05429

(10 February 2021).

[24] P. Liao, H. Zhao, K. Xu, T. Jaakkola, G. J. Gordon, S. Jegelka, R. Salakhutdi-

nov, Information obfuscation of graph neural networks, in: Proc. International

Conference on Machine Learning, PMLR, Virtual, 2021, pp. 6600–6610.

[25] M. Ellers, M. Cochez, T. Schumacher, M. Strohmaier, F. Lemmerich, Privacy

attacks on network embeddings, ArXiv abs/1912.10979 (23 December 2019).

[26] J. McAuley, J. Leskovec, Hidden factors and hidden topics: understanding rating

dimensions with review text, in: Proc. of the 7th ACM conference on Recom-

mender systems, Hong Kong, China, 2013, pp. 165–172.

[27] M. De Choudhury, S. Counts, E. Horvitz, Social media as a measurement tool of

depression in populations, in: Proc. of the 5th annual ACM web science confer-

ence, New York, NY, USA, 2013, pp. 47–56.

[28] Q. Wu, J. Tang, S. Dang, G. Chen, Data privacy and utility trade-off based on mu-

tual information neural estimator, Expert Systems with Applications 207 (2022)

118012. doi:https://doi.org/10.1016/j.eswa.2022.118012.

35

https://doi.org/10.1109/TKDE.2021.3087515
https://doi.org/https://doi.org/10.1016/j.eswa.2022.118012


[29] M. I. Belghazi, A. Baratin, S. Rajeswar, S. Ozair, Y. Bengio, R. D. Hjelm, A. C.

Courville, MINE: Mutual information neural estimation, in: 35th International

Conference on Machine Learning (ICML), Vol. 80, PMLR, Stockholmsmässan,
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