2,302 research outputs found

    Survey on video anomaly detection in dynamic scenes with moving cameras

    Full text link
    The increasing popularity of compact and inexpensive cameras, e.g.~dash cameras, body cameras, and cameras equipped on robots, has sparked a growing interest in detecting anomalies within dynamic scenes recorded by moving cameras. However, existing reviews primarily concentrate on Video Anomaly Detection (VAD) methods assuming static cameras. The VAD literature with moving cameras remains fragmented, lacking comprehensive reviews to date. To address this gap, we endeavor to present the first comprehensive survey on Moving Camera Video Anomaly Detection (MC-VAD). We delve into the research papers related to MC-VAD, critically assessing their limitations and highlighting associated challenges. Our exploration encompasses three application domains: security, urban transportation, and marine environments, which in turn cover six specific tasks. We compile an extensive list of 25 publicly-available datasets spanning four distinct environments: underwater, water surface, ground, and aerial. We summarize the types of anomalies these datasets correspond to or contain, and present five main categories of approaches for detecting such anomalies. Lastly, we identify future research directions and discuss novel contributions that could advance the field of MC-VAD. With this survey, we aim to offer a valuable reference for researchers and practitioners striving to develop and advance state-of-the-art MC-VAD methods.Comment: Under revie

    Urban Anomaly Analytics: Description, Detection, and Prediction

    Get PDF
    Urban anomalies may result in loss of life or property if not handled properly. Automatically alerting anomalies in their early stage or even predicting anomalies before happening is of great value for populations. Recently, data-driven urban anomaly analysis frameworks have been forming, which utilize urban big data and machine learning algorithms to detect and predict urban anomalies automatically. In this survey, we make a comprehensive review of the state-of-the-art research on urban anomaly analytics. We first give an overview of four main types of urban anomalies, traffic anomaly, unexpected crowds, environment anomaly, and individual anomaly. Next, we summarize various types of urban datasets obtained from diverse devices, i.e., trajectory, trip records, CDRs, urban sensors, event records, environment data, social media and surveillance cameras. Subsequently, a comprehensive survey of issues on detecting and predicting techniques for urban anomalies is presented. Finally, research challenges and open problems as discussed.Peer reviewe

    ConvGRU-CNN: Spatiotemporal Deep Learning for Real-World Anomaly Detection in Video Surveillance System

    Get PDF
    Video surveillance for real-world anomaly detection and prevention using deep learning is an important and difficult research area. It is imperative to detect and prevent anomalies to develop a nonviolent society. Realworld video surveillance cameras automate the detection of anomaly activities and enable the law enforcement systems for taking steps toward public safety. However, a human-monitored surveillance system is vulnerable to oversight anomaly activity. In this paper, an automated deep learning model is proposed in order to detect and prevent anomaly activities. The real-world video surveillance system is designed by implementing the ResNet-50, a Convolutional Neural Network (CNN) model, to extract the high-level features from input streams whereas temporal features are extracted by the Convolutional GRU (ConvGRU) from the ResNet-50 extracted features in the time-series dataset. The proposed deep learning video surveillance model (named ConvGRUCNN) can efficiently detect anomaly activities. The UCF-Crime dataset is used to evaluate the proposed deep learning model. We classified normal and abnormal activities, thereby showing the ability of ConvGRU-CNN to find a correct category for each abnormal activity. With the UCF-Crime dataset for the video surveillance-based anomaly detection, ConvGRU-CNN achieved 82.22% accuracy. In addition, the proposed model outperformed the related deep learning models

    Automatic Analysis of People in Thermal Imagery

    Get PDF

    Towards Safe Autonomous Driving

    Get PDF
    Autonomous driving is expected to bring several benefits, in particular regarding safety. This thesis aim to contribute towards two questions concerning safety: "What is the potential safety benefit of autonomous driving?\u27\u27 and "How can we ensure safe operation of such vehicles?\u27\u27.In the first part of the thesis, methods for evaluating the safety benefit are investigated. In particular predictive effectiveness evaluation based on resimulation of accident data, using models to estimate new outcomes in case the safety system had been available. To illustrate the methodology, four examples of gradual increase in model complexity are presented. First, an Autonomous Emergency Braking (AEB) system using a sensor model, decision algorithm, vehicle dynamics model and regression based injury model. This is extended in a Forward Collision Warning (FCW) system which additionally requires a driver model to simulate driver reactions. The third example shows how an active, AEB, and passive, airbag, system can be combined.\ua0Finally the fourth example combines several systems to emulate a highly automated vehicle. Apart from predicting the real world performance, this analysis also identifies current safety gaps by studying the residual of the accident set.Safety benefit estimation using accident data gives an evaluation on the current accident distributions, however, the systems may introduce new accidents if not operated as intended. In the second part of the thesis, safety verification processes with the intent of preventing unsafe operation, are presented. This is particularly challenging for machine learning based components, such as neural networks. In this case, traditional analytical verification approaches are\ua0difficult to apply due to the non-linearity and high dimensional parameter spaces. Similarly, statistical safety arguments often require unfeasible amounts of annotated validation data. Instead, monitor functions are investigated as a complement to increase safety during operation. The method presented estimates the similarity of the driving environment, compared to the training data, where decisions inferred from novel data can be considered less reliable.\ua0Although not providing a complete safety assurance, the methodology show promising initial results for increasing safety. In addition, it could potentially be used to collect novel data and reduce redundancy in training data

    Automatic Fall Risk Detection based on Imbalanced Data

    Get PDF
    In recent years, the declining birthrate and aging population have gradually brought countries into an ageing society. Regarding accidents that occur amongst the elderly, falls are an essential problem that quickly causes indirect physical loss. In this paper, we propose a pose estimation-based fall detection algorithm to detect fall risks. We use body ratio, acceleration and deflection as key features instead of using the body keypoints coordinates. Since fall data is rare in real-world situations, we train and evaluate our approach in a highly imbalanced data setting. We assess not only different imbalanced data handling methods but also different machine learning algorithms. After oversampling on our training data, the K-Nearest Neighbors (KNN) algorithm achieves the best performance. The F1 scores for three different classes, Normal, Fall, and Lying, are 1.00, 0.85 and 0.96, which is comparable to previous research. The experiment shows that our approach is more interpretable with the key feature from skeleton information. Moreover, it can apply in multi-people scenarios and has robustness on medium occlusion
    • …
    corecore