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Abstract
Autonomous driving is expected to bring several benefits, in particular regard-
ing safety. This thesis aim to contribute towards two questions concerning
safety: “What is the potential safety benefit of autonomous driving?” and
“How can we ensure safe operation of such vehicles?”.

In the first part of the thesis, methods for evaluating the safety benefit
are investigated. In particular predictive effectiveness evaluation based on
resimulation of accident data, using models to estimate new outcomes in case
the safety system had been available. To illustrate the methodology, four
examples of gradual increase in model complexity are presented. First, an
Autonomous Emergency Braking (AEB) system using a sensor model, decision
algorithm, vehicle dynamics model and regression based injury model. This is
extended in a Forward Collision Warning (FCW) system which additionally
requires a driver model to simulate driver reactions. The third example shows
how an active, AEB, and passive, airbag, system can be combined.Finally
the fourth example combines several systems to emulate a highly automated
vehicle. Apart from predicting the real world performance, this analysis also
identifies current safety gaps by studying the residual of the accident set.

Safety benefit estimation using accident data gives an evaluation on the cur-
rent accident distributions, however, the systems may introduce new accidents
if not operated as intended. In the second part of the thesis, safety verifica-
tion processes with the intent of preventing unsafe operation, are presented.
This is particularly challenging for machine learning based components, such
as neural networks. In this case, traditional analytical verification approaches
are difficult to apply due to the non-linearity and high dimensional parameter
spaces. Similarly, statistical safety arguments often require unfeasible amounts
of annotated validation data. Instead, monitor functions are investigated as
a complement to increase safety during operation. The method presented es-
timates the similarity of the driving environment, compared to the training
data, where decisions inferred from novel data can be considered less reliable.
Although not providing a complete safety assurance, the methodology show
promising initial results for increasing safety. In addition, it could potentially
be used to collect novel data and reduce redundancy in training data.

Keywords: Autonomous driving, safety benefit, effectiveness, predictive eval-
uation, verification, monitoring, neural networks.
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CHAPTER 1

Introduction

Road traffic accidents are one of the ten largest global health problems ac-
cording to the World Health Organization (WHO), claiming approximately
1.3 million lives per year, [1]. For young people, aged 15-29, it is the leading
cause of death globally. Although the numbers are high, the rate of death
per traffic participants are decreasing, as seen in Figure 1.1. This can, to a
great extent, be attributed to improvement of infrastructure, building safer
roads and the introduction of passive and active safety systems together with
legislation.

Passive safety systems have been in development from the early stages of
car manufacturing and aim to protect occupants of the vehicle during a crash.
Seat belts were predicted to have an effectiveness of over 60% in reducing
fatalities during the 1970s, [3]. Since then several advancements such as pre-
pretensioner and load limiter have further increased the effectiveness, [4]. The
introduction of the driver airbag showed promising results of preventing fa-
talities by 18%, [5], for frontal crashes. The following development of the pas-
senger airbags, inflatable curtain, knee airbags, windshield airbag and other
types of airbags; together with advancements in airbag fabric and inflation
techniques have further increased the effectiveness, targeting all types of col-
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Chapter 1 Introduction

Figure 1.1: Road traffic fatalities over time for some developed countries, obtained
from [2].

lisions, [6], [7], [8].
During the last decades there has been an acceleration in development of ac-

tive systems, further improving safety by preventing accidents from occurring
or by mitigating consequences, see e.g. [9] and [10] for comprehensive surveys.
One of the first systems introduced under this category is the anti-lock braking
system (ABS). ABS prevents brake lock-up by monitoring rotational speed of
the wheels. By automatically reducing brake force in case the wheels stops
rotating, it allows the vehicle to be steered during hard braking. This may
help preventing certain types of accident scenarios, and studies have showed
a significant statistical decrease in such accidents with the help of ABS, [11].
Several advancements have been made since the ABS was introduced. Elec-
tronic Stability Control (ESC) builds on the concept by implementing sensors
to detect skids, allowing for individual braking of each wheel to regain control.
In this way ESC reduce single-vehicle crash involvement risk by up to 40%,
[12].

More recently several driver assistance systems have been introduced, in
addition to the previously discussed vehicle dynamics based control systems.

4



Adaptive Cruise Control (ACC) helps the driver to maintain distance to ve-
hicles in front, by using a forward looking sensor, [13]. Intelligent Speed
Adaption (ISA) extends to adapt to a safe or legally enforced speed, with
studies showing a reduction in fatal accidents of 37%-59% by using the sys-
tem, [14]. Similarly, Lane Keep Assist (LKA) and Lane Change Assist (LCA)
uses a forward looking sensor to warn the driver of lane departure or unsafe
lane changes; with corresponding fatality reductions of 5%-15% ([10], [15])
and 1%-2% ([10], [16]). Forward Collision Warning (FCW) systems tries to
predict potential collisions, warning the driver to take precaution by braking
or otherwise interact. Such systems have shown great potential in reducing
car-to-car collisions such as front-to-rear end crashes, [17].

An alternative to FCW is to allow the car to automatically brake when
potential collisions are detected with high probability or considered unavoid-
able, using Autonomous Emergency Braking (AEB). Although AEB shows
great safety effectiveness potential in several types of accidents such as rear-
end ([10], [17]), car-to-pedestrian ([18]) and intersection collisions ([19], [20]);
it puts a higher constraint on system verification procedures. A false posi-
tive prediction may no longer be ignored by the driver since the vehicle au-
tonomously react to the trigger, potentially leading to hazardous situations.
To mitigate such risks several verification procedures have been implemented,
such as formal verification of the system, [21], and statistical verification by
real world driving or scenario testing, [22], [23].

The next step, to increase safety, is to fully automate the driving. Studies
have shown that human errors are the cause of up to 90% of all traffic ac-
cidents, [24], [25], [26]; giving such technologies the potential to significantly
reduce the number of accidents and road fatalities. Although some studies
claim the net result of such technology would be a decrease in traffic safety,
in particular during the initial periods of mixed vehicle fleets, [27]; or due to
other factors such as increased travel time [28]; others claim there is a need
for further evaluation to fully understand the extent of the potential safety
benefit, [29], [30]. Due to the limit in data, since no highly automated driving
systems are widely available on the market; such investigations can instead
be done through predictions on current accident data, [31], in a procedure
similar to predicting the effects of single active safety systems.

As for active systems such as the AEB, an autonomous vehicle would require
even more comprehensive verification procedures to ensure safe operation. The
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safety assurance and verification is one of the key challenges to get autonomous
vehicles on the road [30], [32], [33]. The difficulty can be attributed to several
sources: infeasibility of complete testing, a fleet of 100 autonomous vehicles
would require more than 500 years of driving to demonstrate the failure rate is
20% better than the human driver, with 95% confidence, [34]; controllability
challenges, since no driver can be used as backup the software needs to handle
all failures and exceptions requiring even higher safety integrity levels, leading
to architectural challenges, [35]; non-deterministic and statistical algorithms,
and in particular black-box machine learning based systems, [32]; among other
things, see e.g. [32] for a detailed survey.

This thesis concern the challenges discussed in the last two paragraphs:
evaluating the safety benefit of a highly automated vehicle; and contributing
to the safety assurance, with a focus on machine learning based components.

1.1 Problem Formulation

The aim of the work presented in this thesis is to contribute to the answers
and methods for answering the following questions:

• What is the safety benefit of a driving function or safety system, and in
particular a highly automated vehicle?

• How can we ensure safe driving, i.e. not introduce new accidents, with
highly automated vehicles?

The answers to the first question not only provide information on the use-
fulness of a particular system, assisting regulations and planning research; it
may also help directing ongoing development. This can be done by analysing
the residuals of the accident scenario coverage, identifying gaps and their cor-
responding sources. Covering potential gaps combined with ensuring no new
accidents are caused by the system, as treated by the second question; both
current and potential new accident scenarios are covered. Thereby the second
question also helps guiding towards achieving the potential safety benefit and
safe autonomous driving.

6



1.1 Problem Formulation

Delimitations
Due to the difficulty of statistically testing the safety benefit of a highly auto-
mated vehicle, as discussed in the introduction, and the lack of available data;
the first question is addressed by trying to predict the safety benefit. This
is done through the use of accident databases, in particular German accident
data; together with approximating models for each subsystem. In particular
Paper B and Paper C presents effectiveness estimations of a car-to-pedestrian
FCW and AEB, and AEB combined with airbags for car-to-bicyclist accidents;
to present typical methodology for such evaluations. While not contributing
directly to the first question they provide estimations of potential subsystems
of a highly automated vehicle. Paper D directly address the first question,
but limits the study to model several safety systems which combined emulate
a highly automated car, through a rule based algorithm. Such evaluation only
provide a rough estimate to the potential safety benefit, and is only valid for
the region represented by the data, although the methodology is generaliz-
able. In addition, due to the use of accident data, no consideration is made
towards potential new accidents not yet available. One of the aims of the
second question is to minimize the risk of introducing such accidents.

For the second question, this thesis is primarily looking in to ensuring safety
of black box machine learning techniques, in particular neural networks, com-
monly used in many sub-systems of highly automated vehicles. It is further
delimited to investigate the potential of using monitoring techniques for this
purpose. An elaboration on the choice of methodology can be found in Chap-
ter 3.

Contributions
In relation to the first question, this thesis presents methods for incorporating
accident data into the development of safety systems (Paper A) and estimating
the potential safety benefit of active safety systems. First for a single active
system, which also involves driver interactions (Paper B). Then it is shown
how an active and passive system can be combined (Paper C), in order to
finally combine several systems to emulate a highly automated vehicle (Paper
D). The latter puts an estimate on the potential of reducing road fatalities
and also analyses the unresolved scenarios for possible improvements of the
system. Chapter 2 of the thesis also provides a formalization of the general
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Chapter 1 Introduction

methodology applied in these studies.
Approaching the second question, a method to monitor machine learning

based black box methods is developed, based on estimating the novelty of the
current driving environment compared to the training data (Paper E & F).
Finally, the methodology is also used to retrieve driving scenes from unlabeled
data, helping debias and remove redundant data (Paper G).

1.2 Thesis outline
The thesis consists of two parts. Part I serves as a general introduction to
Part II and has the following structure. The first chapter contains an introduc-
tion and background to safety systems in road vehicles, problem formulation
and outline. The second chapter provides a brief introduction to accident
databases and safety benefit estimations. This puts the first four appended
papers in context and the build up to answering the first question. The third
chapter gives an introduction to verification of automated driving functions,
and in particular monitoring. This puts the last three papers into the context
of contributing to the second question of the problem formulation. Chapter
four contains a brief summary of each paper and their findings, with a corre-
sponding discussion in the fourth chapter. Part II presents the main part of
the thesis, consisting of the seven papers.
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CHAPTER 2

Safety Evaluation

As discussed in the previous chapter, extensive research has shown that pas-
sive and active safety systems significantly improved road traffic safety. This
chapter will give a brief introduction to different evaluation methods. In par-
ticular how accident data can be used for system design (as in Paper A) and
predictive assessment of safety systems and highly automated driving (as in
Paper B-D). To illustrate the methodology three examples will be given eval-
uating a single active safety system, a combination of an active and passive
system and finally several systems together emulating highly automated driv-
ing.

2.1 Methods

Experimental testing
The introduction of passive safety systems brought the need for evaluation
methods, both for regulatory purposes and independent rating for consumers.
The first evaluations were carried out through experimental testing. Today
such experiments involve crash tests performed on dedicated test tracks, using
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Chapter 2 Safety Evaluation

standardized crash dummies modeling humans. For passive safety systems
this allow for measurements of reductions in forces on different body parts; or
specially designed quantities such as the Neck Injury Criterion, [36]; through
the crash dummies. In Europe experimental testing has been carried out by
EuroNCAP on consumer vehicles since 1997, [37].

From 2009 EuroNCAP started to rate ESC, as the first active safety system
evaluated through testing. Since then, speed assistance systems and AEB
for vulnerable road users are also included in the test protocol, [38]. Such
testing is done through a set of exemplary scenarios meant to cover a large
proportion of typical accidents, similar to using different load cases in the
testing of passive safety. The effectiveness is then measured in the ability of
handling each test scenario.

The challenge of experimental testing lies in producing test scenarios repre-
sentative for typical operation and exposure of traffic situations. For in-crash
passive systems this amounts to typical load and acceleration in collisions.
However, for active safety the possible configurations and parameter space
of pre-crash scenarios is much larger. Typically testing scenarios are derived
through the use of statistical methods applied on accident data, [39], further
explored in section 2.2.

Simulation
For faster iteration and testing without physical damage, virtual models have
been developed for evaluation. For passive safety this include Finite Element
(FE) models of hardware, including crash dummies used in the physical ex-
periments. In addition, full human body models have been developed for FE
simulations allowing for more accurate modeling of injuries in collisions, [40].

Similarly scenario testing for active safety systems can be done through
simulations, requiring environment-, vehicle-, system- and driver models. En-
vironment models are used to simulate a dynamic traffic environment and
may be constructed with different levels of detail depending on the system
specifications. In case low level sensor models are used a higher constraint is
put on the fidelity of the graphical representations. In addition the environ-
ment model need to accurately model each traffic participant apart from the
host, which may include other drivers and vehicles as well as pedestrians. A
variety of simulation environments have been developed with different fidelity
for various applications, see e.g. CARLA, [41], and PreScan, [42].
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Vehicle models describe the vehicle dynamics of the host car. Depending
on the evaluated system a range from bicycle model to advanced approaches
including two-track models with non-linear tire-models, see e.g. [43]. System
models are used to describe the safety system, which in turn may consist of
several subsystems depending on setup; such as sensor models and collision
prediction algorithms, see e.g. [43] and [44]. Finally, the driver model is
used to emulate driver behaviour in case the system require input, such as for
warning based systems. The behaviour may depend on various parameters,
for instance distraction and type of Human Machine Interface (HMI), [45],
[46].

Statistical Evaluation
Statistical evaluation use accident data to quantify and statistically derive
effectiveness of systems. In passive safety, analysis may be carried out by
analyzing individual crashes, comparing occupants affected and unaffected by
a system; such as belted and unbelted passengers of the same car, [47]; or
with and without airbag, [48].

Another statistical technique, suitable for active safety, is evaluating preva-
lence of cars with and without a system in a specific type of accident. The
challenge with this method lies in the statistical ground work, using control
groups and corrections to account for different types of driver behaviours etc.
In addition, it is most suitable for systems already available in the market
where extensive data is obtainable, as for the ESC, [49]. However, as more
and more systems get added to the vehicles, the causality in between a specific
system and reduction in accident frequency may be harder to derive.

Predictive Assessment
The aim of predictive assessment is to allow for effectiveness evaluations of
systems not yet available for the consumer. This can be done through a
combination of statistical and simulation evaluation methods, where scenarios
from accident databases are resimulated with models for the system under
consideration. Such evaluations have been made for systems like AEB, [18],
[20]; and other recent technologies where data is too limited to have statistical
significance or to establish causality, [29]; making it suitable for the evaluation
of highly automated driving.
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Chapter 2 Safety Evaluation

In the following sections the use of accident data to design and perform
predictive assessment will be discussed.

2.2 Accident Statistics
On a fundamental level, consider the set of all traffic scenarios T . In general,
when developing a safety system, we are interested in a particular subset of
traffic scenarios that lead into accidents A ⊂ T , for example car-to-pedestrian
accidents, or car-to-car collisions in intersections etc. Properties or outcomes
of these accidents can be represented by ξm : T → Im for some set of values Im,
for example the impact speed ξv : A → R or whether a particular participant
received a severe injury or not ξSI : T → {0, 1}.

In reality, the challenge lies in getting accurate representations of the acci-
dent sets A, or samples of the corresponding properties, ξ; as with all statis-
tical studies. The following sections will discuss the use of accident databases
and how such data can be used for system development.

Accident databases
During the last decades there has been a significant increase in the use of
accident data when designing automotive safety systems. Most European
countries collect some form of accident data, see e.g. LAB [50] in France,
German national road traffic accident statistics [51], BRON Netherlands na-
tional road crash register [52], Swedish Traffic Accident Data Acquisition [53]
and STATS19 Road Accident dataset [54] in UK among others. Most of these
databases rely on police reports to extract data regarding each accident and/or
incident. To increase the information available for each accident as well as in-
creasing the accuracy and depth, some regions have started separate research
teams with the purpose of investigating accidents to store in databases. One
of the most detailed databases of this kind is the German In-Depth Accident
Study (GIDAS), [55].

GIDAS started in 1999 with the goal of collecting at least 2000 accidents
per year. The data collection team operates within two areas in Germany,
Hanover and Dresden, and operates under a strict sampling plan such that
the distribution of the collected accidents accurately represents Germany. This
includes the choice of areas which covers both cities, rural areas and different
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types of roads. Every time an accident occurs within these regions and the
responding police suspects that at least one person is injured, they contact the
GIDAS team. The team, consisting of two technicians, a physician and a co-
ordinator; then immediately travel to the accident site to gather information.
The data collected are later stored in the database and contains information
about the environment, accident events, information about the vehicles and
even reconstructions providing impact speeds and geometrical configurations
when possible. It also contains detailed information about all participants,
particularly all injuries reported through the Abbreviated Injury Scale (AIS);
which is a 6 point scale of severity, [56].

In addition, GIDAS carries out further reconstruction on a subset of the
accidents including trajectories of the participants (and stationary objects)
enabling resimulation off accidents. This information is provided through an
extension of the database called the Pre-Crash Matrix (PCM).[57]

System design
Having access to detailed accident databases can greatly assist in developing
safety systems. By understanding the context in which the addressed type of
accident occur, a more efficient system can be designed. The accident data can
be divided into pre-crash, in-crash and post-crash variables. Since the goal of
a passive system is to mitigate the effects of a crash, the in-crash and post-
crash information is of greatest use. While for active systems, trying to prevent
accidents from occurring, the pre-crash information is of most importance.

To illustrate the usefulness of such data an example of an AEB system tar-
geting car-to-bicyclist accidents will be discussed (based on Paper A). One of
the first steps in the development chain is to understand the pre-crash sce-
nario of the targeted accidents. Such information determines the required
sensor setup, requirements on tracking and prediction collision algorithms
etc. Typically there is an infinite amount of pre-crash scenarios with respect
to geometrical configuration, road setups and environmental conditions. By
defining a set of finite accident classes, the infinite number of setups can be
reduced to this finite set of configurations, and their corresponding frequen-
cies can be quantified. A simple way to construct such classes, uniquely as-
signing one class for every scenario, is illustrated in Figure 2.1. Querying the
database with this classification, in this example GIDAS, shows that over 80%
of severe injuries and fatalities can be prevented by addressing the scenarios
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Figure 2.1: Collision classification based on the action of the car and location of
the bicyclist pre-collision. The 12 scenario classes are illustrated to
the left and the result of the classification can be seen to the right.
Each bar correspond to the car turning left, moving straight forward
and turning right in that order. Each group of bars corresponds to
accidents resulting in a particular AIS injury level.

where the car is going straight, [58]. To expand the contextual understand-
ing, additional information can be added such as weather condition, impact
speeds, road type and other environmental variables. Although it is desirable
to prevent all accidents, the largest clusters can be addressed first, adding
incremental complexity to the system (such as more sensors) to eventually
reach full coverage.

2.3 Predictive Safety Benefit Analysis

In the previous section it was shown how accident data can be included in the
development of safety systems.This section will present how accident data can
be used to predict the real world performance of such a system, by resimulating
accidents and evaluating new outcomes.

Introducing a safety system C : T → T we alter the accidents where the
system is applied, resulting in new outcomes. For a particular safety system
C, the effectiveness in reducing a binary property ξ, is defined as the relative
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proportion of ξ with and without the system,

E = 1 − Ea∈A[ξ(C(a))]
Ea∈A[ξ(a)] , (2.1)

assuming ξ(C(a)) ≤ ξ(a) for all a ∈ T . i.e. that the system does not introduce
new accidents or make the situation worse with respect to the desired property.
Typically ξ is defined as whether a participant of the traffic situation received
a (fatal) injury or not.

Again the challenge with this setup is to have an accurate representation of
the accident set, while also being able to model the changes in the outcome
when applying the safety system. To illustrate the methodology, three exam-
ples will be given estimating the safety benefit of one active safety system,
an active system together with a passive system and finally several systems
together emulating a highly automated vehicle, corresponding to Paper B, C
and D.

Safety benefit of an active safety system
In this example the methodology of evaluating the safety benefit of an AEB,
CAEB, and FCW, CFCW, system for car-to-pedestrian accidents will be dis-
cussed. In particular the effectiveness in reducing severe injuries,ξSI, of the
pedestrians in such collisions.

Again GIDAS will be considered as a sample for the accident set, A =
{a1, a2, ..., an}. To increase the accuracy of the sample it can further be
debiased by looking into German national road traffic accidents. Since the
GIDAS investigation team is contacted only when the police suspect that at
least one involved participant is injured, there is a slight overrepresentation of
accidents with severe injuries. Comparing the severity, weight factors, {wi}
can be derived to accurately estimate the effectiveness in equation (2.1) using
weighted expected value.

Autonomous Emergency Braking

As discussed in section 2.1, simulation of accident scenario require a set of
models for the environment, vehicle dynamics, safety system and; in the case
of FCW, a driver model. The environmental model in this case simply consists
of geometrical representations in a two dimensional overview of the accident.
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Figure 2.2: Probability of AIS3+ injuries being sustained by the pedestrian with
respect to the impact speed of the car.

This allow for a high level model of the sensor to determine whether objects
are within field of view of a forward looking sensor, and not obstructed. As
vehicle model, a simple bicycle model provide accurate enough results in this
particular example. Finally, the AEB system is modeled through a vision sys-
tem capable of tracking non-occluded pedestrians, visible within at least three
consecutive frames (running at 20 Hz). In addition, the decision algorithm
consists of a simple geometrical deterministic algorithm predicting collision by
extrapolation of travel path. If the car is on a collision path with a pedestrian
and reaches a particular time to collision, a decision to brake is made. Using
the bicycle model a new trajectory is calculated, using brake profile curves to
calculate brake force, to determine new impact speeds, vAEB = ξ̂v.

The impact speed is of particular interest since it is the main contributing
factor to severe injuries in these types of collisions, [59]. By using GIDAS
and logistic regression, a model can be derived estimating the probability of
receiving a severe injury given the impact speed, P(ξSI = 1|ξv), as seen in
Figure 2.2. Combining this estimate with equation (2.1), the effectiveness of
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the AEB in reducing severe injuries can be estimated through,

Ê = 1 −
∑n

i=1 wiξ̂SI(vAEB
i )∑n

i=1 wiξ̂SI(vi)
(2.2)

where vi is the original impact speed from the GIDAS reconstruction.

Forward Collision Warning

The benefits of using an FCW instead is the possibility of relaxing the trigger
requirements. Using more conservative values on the bounding boxes of the
traffic participants and greater values for TTC thresholds. Such calculations
lead to a greater number of false positives, which is less of a concern when
warning the driver rather than emergency braking. In addition the warning
system has the possibility of generating brake pressure when the warning is
issued, applying full brake force immediately when the driver brakes. A driver
model presented in [46] gives different reaction times of a driver depending on
attentiveness and HMI. Each scenario is resimulated using different conditions
of attentiveness, and the effectiveness is evaluated with the different impact
speeds weighted against the probability of the attentiveness,

Ê = 1 − 1∑n
i=1 wiξ̂SI(vi)

n∑
i=1

wi

(
P(attentive)ξ̂SI(vattentive

i )+

P(distracted)
(
P(brake)ξ̂SI(vbrake

i ) +P(nobrake)ξ̂SI(vnobrake
i )

))
.

Safety benefit of an active + passive system
In this example an active and passive safety system is combined, in particular
an AEB for car-to-bicyclist accidents combined with a windshield airbag, pro-
tecting the bicyclist in case of collision, C = CAEB ◦ Cairbag. Since the active
system only affect the pre-crash scenario while the passive system affect the
in-crash scenario, they can be modelled separately. New impact speeds, vi,
can be estimated as in the AEB simulation in the previous example, but this
time with car-to-bicyclist data from GIDAS. This gives us the probability of
receiving a severe injury without any passive system, x̂iSI(v) (see Figure 2.3).

Through empirical derived risk reduction curves, we get the probability
that the passive system will prevent a severe injury given the impact speed,
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Figure 2.3: Risk reduction of head AIS3+ injury as function of impact speed, for
active hood (top left) and windshield airbag in A-pillar (below left)
and lower windshield (below right). Probability of AIS3+ head injury
given impact speed without passive system (top right).

ppassive(v) (see Figure 2.3), [60]. This finally gives the combined probability
of receiving a severe injury for the bicyclist of ξ̂total

SI = (1 − ppassive(v))ξ̂SI(v),
and the effectiveness can be estimated through equation (2.2).

Safety benefit of highly automated driving
In this example the avoidability of accidents using a highly automated vehicle
will be considered. In general, highly automated driving can be seen as a com-
bination of several active and passive systems, C = C1 ◦ ... ◦ Ck. Resimulation
of accident scenarios drastically increase in complexity with the number of
subsystems involved. In addition, combined effects such as in the previous ex-
ample are much harder to derive when several systems are interacting. When
combining a single active and passive system, only one system is engaged at
a time, the active system during the pre-crash and the passive system during
in-crash, C(a) = CAEB ◦ Cairbag(a) = Cairbag(CAEB(a)). For this case, several
systems are engaged at the same time.

Rather than relying on resimulation using dynamic models, each system
can instead be represented by a set of simple deterministic logical rules. Each
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Figure 2.4: Example of rulesets for three different systems. The first column con-
tains the name of the system, the second the actual GIDAS queries
and the third the corresponding rules under which the system could
avoid the accident.

ruleset correspond to conditions under which a particular system theoretically
could avoid an accident, ξ̂Ci

collision. Applying each ruleset to the accident set
we get an underapproximation for the effectiveness in avoiding accidents with
the system.

Discussion
In section 2.1 different methods of evaluation are introduced, in particular
experimental, simulation based, statistical and predictive. For highly au-
tomated driving, experimental evaluation is unfeasible for a large scenario
coverage. On the other hand, there is insufficient data available to perform
retrospective statistical analysis; due to the limited number of highly auto-
mated vehicles in regular traffic. Consequently predictive statistical analysis is
performed to evaluate highly automated driving, however, such analysis have
several limitations. Errors may arise from uncertainties in accident data, due
to the reconstruction or collection procedure; uncertainties in environmental,
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vehicle, system or driver models and errors from outcome estimations.
Apart from data uncertainties or model errors, predictive analysis focuses

on the current set of accident distributions, provided by a snapshot of the
current or historical situation. Any shift in transportation modalities, or
other trends skewing the distribution, cannot be accounted for. This include
the possibility of the system introducing new types of accidents, currently not
present in the accident data. This is particularly true for highly automated
driving where many of the subsystems are still not available in the market.
The next chapter will discuss how to verify new systems, to ensure that they
will operate as intended and not cause new accidents; in order to achieve the
potential safety benefit.
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CHAPTER 3

Safety Assurance

Chapter 2 gave an introduction to safety benefit estimation and a way of
estimating the potential of reducing road fatalities with highly automated
vehicles. This however assumes that the system operates safely, i.e. be able
to handle complex traffic scenarios and not introduce any new accidents. In
this chapter a brief introduction to verification of automated driving functions
will be given. First presenting some of the most common techniques, and then
their applicability to black box machine learning based driving functions such
as neural networks.

3.1 Verification
One of the greatest challenges in the development of fully automated vehicles
is to ensure safe operation. This proves to be difficult since it needs to hold for
every potential scenario, while being subject to noisy sensor measurements,
uncertainty in intentions of other traffic participants and false ego-state per-
ception etc. To simplify the process the vehicle is often divided into different
subsystems, each verified individually to comply with the intended function-
ality. A common division is between perception, using sensors to build a
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model of the surroundings, see e.g. [61] and [62]; planning, constructing both
long term and short term trajectories for the vehicle to follow, see e.g. [63];
and control, executing the commands necessary for the vehicle to follow the
plan, see e.g. [64]. Other examples include division between driving modes or
operational design domains, see e.g. [65]. In the following subsections differ-
ent evaluation methods based on analytical and statistical approaches will be
discussed.

Analytical Methods
Analytical methods are based on mathematically proving safety constraints.
Such methods demands accurate mathematical models, describing the cor-
responding systems. To be computationally viable such models are often
required to be simple, i.e. linear and few state variables, limiting the appli-
cability to subsystems where such limitations are viable. For example, formal
methods define the evaluated system with the help of formal language based
on logical rules, in order to logically conclude no failure states are possible,
[66], [67], [68].

Statistical Methods and Testing
Data driven, learning based or other high complexity systems i.e. highly non-
linear and with state spaces order of magnitudes higher than the previously
discussed subsystems, are challenging to simplify to the level where analytical
methods are applicable. The same is true in systems with hidden information
and random processes. Instead testing and verification can be done using
statistical approaches, based on stochastic modelling and often extensive data
collections and annotations.

Example of statistical methods include real world driving, where a certain
mileage have to be covered to ensure the failure rate is below the required
level with high enough confidence. This in particular is regulated in the ISO
26262 standard [69], which puts a very low limit on the failure rate, requiring
a very high mileage to satisfy the requirements, [34]. In addition different
methods have been developed to get a statistical representative sampling of
traffic scenarios, [23], [70]. Other techniques aim to reduce the amount of test
data required by using statistical tools such as extreme value theory, [71].

As a complementary some techniques involve adding additional test cases
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artificially. Either through directed testing on a test track [70], by augmenting
data [72] or through simulation. Directed testing allows to test the whole vehi-
cle and real system under worst case scenarios, such as extreme environmental
conditions or otherwise dangerous situations; or rare case scenarios not com-
monly encountered in real traffic. However, these methods again suffer from
the difficulty in creating scenarios representative for real world driving, cover-
ing a meaningful amount of situations, [73]. Augmentation and simulation on
the other hand allows for faster testing on larger amounts of scenarios, either
running with parts of the software (SIL) or model (MIL) in the loop, as in
[70], [74], [75]; or parts of hardware in the loop (HIL) as in [76]. While being
faster, these types of evaluation still suffer from the same challenge that all
possible configurations of traffic scenarios can never be captured. In addition
the simulation models and environments needs to be validated.

Monitoring
To increase safety it is sometimes possible to add online methods of verifi-
cation, running in parallel to the driving functions, a so called monitoring
systems. In reachability analysis the ego states of the vehicle is monitored
together with the environment and surrounding traffic participants, continu-
ously propagated forward in time in order to ensure no set of unsafe states
is reachable, see e.g. [77] and [78]; or rejecting trajectories during high levels
of input noise and uncertainty, [79]. The next section will discuss how online
techniques are applicable in machine learning, and particular neural network
based methods, rejecting predictions inferred from data of unfavorable condi-
tions.

3.2 Neural networks
Verification of neural networks pose several challenges due to their nonlinear-
ity and high dimensional parameter space, often described as being black-box
models. Attempts of using formal verification on neural networks have been
made, but they are typically done for simple models with a few parameters,
few layers and in other ways limited architectures, [80]. Instead safety ar-
guments rely on extensive statistical testing, using test data sets to show
performance fulfill a certain statistical limit. As previously discussed such
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testing is hard to perform up to the level of safety required for an automated
vehicle, due to the infinite amount of possible driving scenarios. Studies have
also shown that neural networks may give false results with high confidence
even in environments or domains they were not trained or designed for, [81].

Several attempts have been made on architectural changes in order to im-
prove the confidence estimations of the networks using the available data, such
as Bayesian neural networks [82] and ensemble networks [83]; or changes to
the training procedure such as the us of re-sampled training datasets, [84].
However, these methods still operate within the training domain. Statistical
tools have also been applied to detect adversarial changes to input data, which
may lead to false results. Successful attempts such as using influence func-
tions, [85], are able to trace predictions back to the training data, detecting
errors and weak predictions.

Instead of doing architectural changes monitoring techniques aim to reject
predictions considered to be erroneous or of low confidence. Attempts on
monitoring neural networks were made already in the 90s, using input re-
construction reliability estimation, [86]. As the name suggest, features from
a driving network are used together with a decoder reconstructing the in-
put data, using the reconstruction error as a measure of confidence. Due to
the computational limits at the time, this is done for low resolution images
with a network using few parameters. Later on similar methodologies have
been reinvestigated and extended using autoencoders. Autoencoders consist
of an encoder and a decoder, where the encoder compresses the input data
and the decoder tries to reconstruct the original input from the compression.
Again the reconstruction error can be used as an indication on the novelty
of the input data, compared to the training data. This provides a monitor-
ing function independent of the underlying driving task, where predictions on
novel environments are assumed to be of lower quality, [87]. In the following
section different methods for developing such a monitoring function will be
investigated.

Novelty Estimation
Extensive research have been made in the field of unsupervised anomaly de-
tection, with the potential of being applicable to novelty estimation. In the
following sections three widely applied techniques will be presented and dis-
cussed.
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Autoencoders

As previously mentioned, autoencoders consist of an encoder compressing in-
put data and a decoder with the task of reconstructing the original input
data. Although a simple autoencoder with only three fully connected layers
showed success in the automotive setting, [87], it was applied to a very simple
constructed environment using low resolution input.

Several modifications have been made to autoencoders in order to improve
performance for anomaly detection on image data. For higher resolution im-
ages, convolutional layers have been implemented as in [88] and [89]. Others
have suggested using density estimation in the latent space, using a Gaussian
mixture model [90], or autoregressive model [91], instead of using reconstruc-
tion error as novelty measurement.

GANs

Another technique commonly used in anomaly detection is Generative Adver-
sarial Networks (GANs). Instead of an encoder and a decoder, a GAN consists
of a generator and discriminator as antagonists to generate input candidates
with the former and judge them with the latter, [92]. Either the generator
or discriminator can then be used for anomaly detection depending on the
training procedure and underlying architectural design. The generator by its
ability to represent a particular test image, by for example finding the optimal
feature representation in the corresponding latent space as in [93].

Metric Learning

Metric learning distinguishes from the previous methods in that it learns a
metric in between data points, rather than generating or reconstructing data.
In [94] a neural network is learned, mapping the training data into a feature
space with the goal of enclosing the feature within a minimal hyper-sphere,
considering test input maped outside of the sphere as anomalies.

Lately advances within metric learning have led to significant improvements
on tasks such as image classification, [95]. In [96] a CNN-backbone is trained
using a non-parametric softmax for unsupervised image classification, reaching
close to supervised performance.
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3.3 Discussion
In this chapter a brief introduction to commonly used techniques of safety
verification have been presented, broadly categorised under analytical and
statistical methods. In particular the strengths and weaknesses and how online
monitoring as a complement may help covering up for some of their limitations.

For neural networks novelty estimation of input data seem to show promis-
ing results as an unsupervised confidence measurement. Although most tech-
niques so far have been using autoencoders or GANs, metric learning has the
added benefit of intrinsically providing a metric between training and test in-
stances. This metric could in theory improve novelty measurements, as seen
in Paper E and F; while also providing deeper insights into the training data
allowing for data retrieval and filtering, as seen in Paper G.

In the end a combination of all methods are most likely needed, to ensure
safe operation of a neural network, and especially to verify a highly automated
vehicle.
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CHAPTER 4

Summary of included papers

This chapter provides a summary of the included papers.

4.1 Paper A
Olaf Op den Camp, Arian Ranjbar, Jeroen Uittenbogaard, Erik Rosen,
Stefanie de Hair-Buijssen
Overview of main accident scenarios in car-to-cyclist accidents for use
in AEB-system test protocol
Published in Proceedings of International Cycling Safety Conference,
Nov. 2014. .

At the time of publishing this paper the general trend of road traffic accidents
resulting in fatalities was decreasing, however not for bicyclists. The auto-
motive industry thus made significant efforts to mitigate such accidents by
introducing active safety systems, in particular AEB; previously implemented
for other vulnerable road users such as pedestrians.

This paper introduce a way of classifying car-to-bicyclist accidents in order
to quantify different types of configurations. The classification procedure is
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applied to several accident databases around Europe, presenting statistics in
order to help the development of AEB systems. In particular the aggregated
data show the most typical scenarios involve crossing or longitudinal configu-
rations, covering 63% of all accidents resulting in severe injuries and 78% of
all accidents resulting in fatalities.

The thesis author contributed with the problem formulation; statistics method-
ology, i.e. classification procedure; implementation, in particular for the Ger-
man accident data but also compiling statistics from all databases; analysis
and parts of the writing.

4.2 Paper B
Arian Ranjbar, Nils Lubbe, Erik Rosen, Jonas Fredriksson
Car-to pedestrian forward collision warning revisited: A safety benefit
estimation
November 2021. Submitted for review in journal publication .

This paper presents a predictive safety benefit analysis on a Forward Collision
Warning (FCW) system for car-to-pedestrian accidents, in terms of mitigating
severe injuries. In addition, it is compared against an Autonomous Emergency
Braking (AEB) system addressing the same type of accidents. The evaluation
is made through resimulations of accidents from the German In-Depth Acci-
dent Study (GIDAS) database. As discussed in section 2.3, the modelling is
done using a simple environmental model, bicycle model for vehicle dynam-
ics, collision prediction algorithm and driver behavior model (handling the
reaction time and response of the driver). Utilizing the new impact speeds
between the car and pedestrian, the probability of severe injuries are esti-
mated through a logistic regression model. Comparing the injury estimates
from impact speeds with and without the system provides the effectiveness in
terms of mitigating severe injuries.

The study shows that FCW may serve as a great alternative or comple-
ment to AEB, providing efficiency of 34%-54% compared to 43% for the AEB.
However, as the results indicate, FCW is heavily dependent on designing an
effective HMI to be competitive.

The thesis author contributed with problem formulation, implementation,
analysis and writing the paper.
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4.3 Paper C
Rikard Fredriksson, Arian Ranjbar, Erik Rosen
Integrated Bicyclist Protection Systems-Potential of Head Injury Re-
duction Combining Passive and Active Protection Systems
Published in 24th International Technical Conference on the
Enhanced Safety of Vehicles,
2015. .

This paper expands on the idea of predictive safety benefit evaluation of an
active safety system, by combination with a passive system. In particular an
AEB for car-to-bicyclist accidents together with a windshield airbag or de-
ployable hood system, is investigated. As discussed in section 2.3, a similar
model as in the previous paper is used for the evaluation, with the addition
of risk reduction curves modeling the passive system.

The evaluation show that the AEB have an effectiveness of 26%-48% in-
dependently, depending on system configuration. The passive systems an ef-
fectiveness in reducing severe head injuries of 21%-38% independently, again
depending on system configuration. Combining the systems has an effective-
ness of 38%-62%, showing there is a potential safety benefit in combining such
systems.

The thesis author contributed with problem formulation, methodology, anal-
ysis and parts of the writing. In particular the development of the injury risk
model, both for the active system and the combination with the pre-developed
passive injury risk reduction functions; implementation of the active safety
system simulations and effectiveness evaluation, with and without the passive
system.

4.4 Paper D
Nils Lubbe, Hanna Jeppsson, Arian Ranjbar, Jonas Fredriksson, Jonas
Bärgman, Martin Östling
Predicted road traffic fatalities in Germany: The potential and limita-
tions of vehicle safety technologies from passive safety to highly auto-
mated driving
Published in Proceedings of IRCOBI conference,
Sept. 2018. .
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The aim of this paper is to evaluate the safety benefit of a highly automated
driving in terms of preventing fatalities, through predictive assessment. As
with the previous studies, the data used is from GIDAS. The highly auto-
mated vehicle is emulated through all potential safety subsystems which may
be included. In particular a rule based approach is implemented, modelling
the capabilities of each subsystem according to their specification. The spec-
ifications used are a combination of EU regulations and previous literature;
verified by in-depth studies on randomly selected accidents in GIDAS, effec-
tiveness comparisons against previous research and sensitivity analysis. Two
rule sets are derived corresponding to an optimistic and conservative view of
the systems potential. In addition the effectiveness analysis is done by adding
more advanced systems in five steps, where the last step correspond to au-
tonomous driving.

The results show a potential of reducing road fatalities by 45%-63%. The
remaining accidents can mainly be explained by the study focusing on pas-
senger cars, defined as m1-vehicles. Most remaining fatalities were caused in
accidents not involving passenger cars.

The thesis author contributed with problem formulation, derivation of the
rule sets with complementary literature review and case study, implementa-
tion of the rule set methodology and database management, statistical analysis
including sensitivity and a significant part of the writing.

4.5 Paper E
Arian Ranjbar, Chun-Hsiao Yeh, Sascha Hornauer, Stella X. Yu, Ching-
Yao Chan
Scene Novelty Prediction from Unsupervised Discriminative Feature Learn-
ing
Published in IEEE 23rd International Conference on Intelligent Trans-
portation Systems,
Sept. 2020. .

The previous paper presented methods for evaluating new systems using acci-
dent data. This paper instead aim to prevent new types of accident caused by
such systems, in particular machine learning based subsystems. By estimating
the novelty of incoming sensor data in relation to training data, a measure
of confidence can be introduced. The approach is build up on unsupervised
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4.6 Paper F

feature learning, mapping training instances onto a feature space most dis-
criminative among them. In this feature space, the training set is modeled
through a Gaussian distribution. The confidence can then be set in relation to
the probability of new input data being sampled from the same distribution;
or equivalently the Mahalanobis distance between the input features and the
Gaussian distribution.

Previous such techniques often rely on other unsupervised methods such as
autoencoders. The presented approach outperforms state of the art, both on
anomaly detection on typical image benchmark datasets; but in particular for
autonomous driving based datasets such as BDD100k and KITTI. In addition
an experiment is presented predicting the performance degradation in a image
segmentation network, to illustrate a typical use case for autonomous driving.

The thesis author contributed with problem formulation, implementation,
analysis and writing the paper.

4.6 Paper F
Arian Ranjbar, Sascha Hornauer, Jonas Fredriksson, Stella X. Yu,
Ching-Yao Chan
Safety Monitoring of Neural Networks Using Unsupervised Feature Learn-
ing and Novelty Estimation
June 2021. Submitted for review in journal publication
October 2021. Major revision submitted for potential journal publica-
tion.

This paper expands upon the concepts from the previous paper, providing
a theoretical foundation for the novelty estimation of test data. To improve
the performance, the unsupervised feature learning is instead implemented on
a spherical feature space, where von Mises-Fisher distributions are used to
model the training dataset. In addition the training methodology is expanded
upon, allowing for additional information to be incorporated into a train-
ing instance, such as several consecutive frames and driving actions. Driving
actions in particular can be used to improve the training procedure, where
action prediction may be used as a proxy task for model evaluation. Finally,
a method for evaluating what segments of a test instance contribute to the
novelty is presented, through the use of unsupervised segmentation.

The experiments presented show state of the art performance, both on gen-
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Chapter 4 Summary of included papers

eral image benchmarking datasets for anomaly detection, such as CIFAR100;
and autonomous driving datasets, such as BDD100k. For the driving datasets
more challenging experiments are performed by omitting smaller objects in
the training data.

The thesis author contributed with problem formulation, implementation,
analysis and writing the paper.

4.7 Paper G
Sascha Hornauer, Baladitya Yellapragada, Arian Ranjbar, Stella X. Yu
Driving Scene Retrieval by Example from Large-Scale Data
Published in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops,
2019.
.

This paper investigates the possibility of retrieving driving scenes from unla-
beled driving datasets, by querying examples. As in the previous paper, data
can be mapped onto a spherical feature space using discriminative feature
learning; providing a metric of similarity in between instances. Retrieving
driving scenes with desired properties can be done without labels, by map-
ping an example query into the feature space and find nearest neighbours.
The same technique can also be used to filter or remove bias and removing
redundant data.

The thesis author contributed with the problem formulation, in particular
the use of unsupervised methods as in the previous papers for the use in data
retrieval or filtering purposes; implementation of the unsupervised training
using unsupervised feature learning; analysis, for both parts but in particular
for the section without action inclusion; and parts of the writing, in particular
parts of the related works and method sections.
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CHAPTER 5

Conclusion and Discussion

This thesis presents work towards the safety evaluation and safety assurance of
highly automated driving. Paper A-C contribute with safety benefit estimates
for subsystems of a highly automated vehicle while providing methodology
development. Paper D tries to directly provide an estimate of the effectiveness
of HAD in reducing fatalities, which corresponds to the first research question
presented in section 1.1. Although providing initial estimates the accuracy
may be improved in the future by implementing more advanced models and
simulation environments.

Paper E and F contribute towards the second question in the problem formu-
lation. While not ensuring safe driving for a complete system, they investigate
the possibility of increasing the safety when using machine learning. Paper G
uses the same methodology for data retrieval, filtering and collection; which
may help increase performance and thereby also contribute to the safety of
the system.
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Chapter 5 Conclusion and Discussion

5.1 Safety Evaluation

In this section a brief discussion regarding the first four papers is presented.
Paper A, as discussed in section 2.2, provides classification and frequency of
car-to-bicyclist accident scenarios, showing potential coverage depending on
system setup. The results later on served as input for the development of
the EuroNCAP test protocol for car-to-bicyclist AEB, [97]. Paper C puts
the potential in relation to the predicted real world performance, showing
effectiveness in reducing severe head injuries with AEB and AEB together
with a passive system. Since then effectiveness for car-to-bicyclist AEB in
particular have been further evaluated using various methods, see e.g. [98]
and [99]. In [99], data reconstructed from dash cameras is used with a similar
assessment method, showing consistent results with the results presented in
this thesis. In addition, they concluded that the effectiveness is highly sensitive
to system configuration, in particular field of view of the sensor, due to the
high amount of crossing accidents; consistent with both Paper A and C.

Papers A-C also helps putting the methodology of Paper D in relation
to more advanced modelling techniques for e.g. AEB, which is one of the
subsystems. Not only confirming the accuracy of the individual performance
predictions, by for example combining the AEB performance from Paper B
and C; but also illustrating the limitations since no combinatorial effects are
taken into account. Paper D directly aim to contribute towards answering the
first question stated in section 1.1, providing initial estimates of the potential
safety benefit. In addition to the limitations discussed above, Paper D include
uncertainties in the system modeling. In particular the ruleset is only defined
to define an accident as avoidable or unavoidable, i.e. no consideration is taken
to whether the active systems are able to lower impact speeds or in other ways
mitigate injuries. As previously discussed, new accidents scenarios introduced
by the systems are not covered either; since they are not represented in the
accident data.

Recently HAD have been further evaluated using more advanced models,
either for the systems or environment, to overcome some of the limitations and
increase accuracy. Notably [100] evaluate an autonomous driving system with
software in the loop in a high fidelity simulation environment, using recon-
structed severe injuries from police reports. This study showed an effective-
ness, even higher than the results of Paper D, between 82%-100% depending
on whether the crash initiator or responder were host for the system.
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5.2 Safety Assurance

5.2 Safety Assurance

The last two papers present a method of increasing safety, by using a monitor-
ing framework for machine learning based subsystems in an automated vehicle.
Although not providing a complete answer to the second research question of
section 1.1, it shows promising performance on benchmarking datasets and in
finding novel scenes from driving data; contributing to the safety assurance of
the full system.

One of the main limitations in the current framework is the ability of ex-
plaining what contributes to the novelty. Although Paper F include initial
tries of solving the problem, the difficulty lies in benchmarking the methods.
Attempts have been made to construct such datasets by using ground truth
segmentation labels, [101]. However, it is targeted towards supervised learning
settings. On the other hand pure segmentation performance, using metrics
such as Intersection-Over-Union, [102]; may not necessarily be optimal for
understanding the context of a novelty.

The last paper show the applicability of using the monitor framework for
data retrieval and filtering. In the same way the monitoring framework could
potentially be used for data collection. Since most data collected is redundant,
novel scenes could automatically be flagged for labeling. This is similar to
the development of active learning, which finds optimal data for training a
particular network, [103].

5.3 Future Work

As the limitation in current methods indicate, there is a need for better evalu-
ation and verification methods. Here are some topics inspired from this work:

Models for safety benefit evaluation

As previously discussed, the safety benefit estimation of Paper D provide quite
limited models. And although [100] show great advances in the modelling, all
the data and models used are company internal. As open source models like
CARLA gets widely available, more replicable alternatives could be investi-
gated.
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Chapter 5 Conclusion and Discussion

Dedicated benchmarks for novelty estimation in autonomous driving

The current method for benchmarking novelty estimation in autonomous driv-
ing, rely on artificially creating datasets by omitting certain labeled objects.
The labeling of the original datasets are often done with other tasks in mind,
e.g. only the largest object is annotated, or the other way around; a small
driving related object is annotated where a larger important anomaly is un-
labeled. Developing new datasets would also allow for ground truth labeling
with respect to testing novelty estimation.

Advanced novelty detection

Paper F presents an extension of the methodology to work on segments of im-
ages, to find novel objects or segments particularly contributing to the novelty.
At the current stage, this needs further development to be used in addition to
monitoring. In particular, by developing specific datasets for the task,better
quantitative studies could be performed, speeding up the development towards
safe autonomous driving.
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