1,195 research outputs found

    Detection of abnormal behavior in trade data using Wavelets, Kalman Filter and Forward Search

    Get PDF
    In this paper we address the issue of the automatic detection of abnormal behavior in time series extracted from international trade data. We motivate, review and use three specific methods, based on solid frameworks: Wavelets, Kalman Filter and Forward Search. These methods have been successfully applied to an important EU policy issue: the analysis of trade data for antifraud and antimoney-laundering, fields in which specialists are often confronted with massive datasets. Our contribution consists in an in-depth study of these approaches to assess their performance, qualitatively and quantitatively. On the one hand, we present these three approaches, underline their specific aspects and detail the used algorithms. On the other hand, we put forward a rigorous assessment methodology. We use this methodology to evaluate each method and also to compare them, on simulated time series and also on real datasets. Results show each method has its specific advantages. Their joint use could be of a high operational impact for our applications, to deal with the variety of patterns occurring in trade data.JRC.G.2-Global security and crisis managemen

    Stateless Puzzles for Real Time Online Fraud Preemption

    Full text link
    The profitability of fraud in online systems such as app markets and social networks marks the failure of existing defense mechanisms. In this paper, we propose FraudSys, a real-time fraud preemption approach that imposes Bitcoin-inspired computational puzzles on the devices that post online system activities, such as reviews and likes. We introduce and leverage several novel concepts that include (i) stateless, verifiable computational puzzles, that impose minimal performance overhead, but enable the efficient verification of their authenticity, (ii) a real-time, graph-based solution to assign fraud scores to user activities, and (iii) mechanisms to dynamically adjust puzzle difficulty levels based on fraud scores and the computational capabilities of devices. FraudSys does not alter the experience of users in online systems, but delays fraudulent actions and consumes significant computational resources of the fraudsters. Using real datasets from Google Play and Facebook, we demonstrate the feasibility of FraudSys by showing that the devices of honest users are minimally impacted, while fraudster controlled devices receive daily computational penalties of up to 3,079 hours. In addition, we show that with FraudSys, fraud does not pay off, as a user equipped with mining hardware (e.g., AntMiner S7) will earn less than half through fraud than from honest Bitcoin mining

    Dutkat: A Privacy-Preserving System for Automatic Catch Documentation and Illegal Activity Detection in the Fishing Industry

    Get PDF
    United Nations' Sustainable Development Goal 14 aims to conserve and sustainably use the oceans and their resources for the benefit of people and the planet. This includes protecting marine ecosystems, preventing pollution, and overfishing, and increasing scientific understanding of the oceans. Achieving this goal will help ensure the health and well-being of marine life and the millions of people who rely on the oceans for their livelihoods. In order to ensure sustainable fishing practices, it is important to have a system in place for automatic catch documentation. This thesis presents our research on the design and development of Dutkat, a privacy-preserving, edge-based system for catch documentation and detection of illegal activities in the fishing industry. Utilising machine learning techniques, Dutkat can analyse large amounts of data and identify patterns that may indicate illegal activities such as overfishing or illegal discard of catch. Additionally, the system can assist in catch documentation by automating the process of identifying and counting fish species, thus reducing potential human error and increasing efficiency. Specifically, our research has consisted of the development of various components of the Dutkat system, evaluation through experimentation, exploration of existing data, and organization of machine learning competitions. We have also implemented it from a compliance-by-design perspective to ensure that the system is in compliance with data protection laws and regulations such as GDPR. Our goal with Dutkat is to promote sustainable fishing practices, which aligns with the Sustainable Development Goal 14, while simultaneously protecting the privacy and rights of fishing crews

    Rank Based Anomaly Detection Algorithms

    Get PDF
    Anomaly or outlier detection problems are of considerable importance, arising frequently in diverse real-world applications such as finance and cyber-security. Several algorithms have been formulated for such problems, usually based on formulating a problem-dependent heuristic or distance metric. This dissertation proposes anomaly detection algorithms that exploit the notion of ``rank, expressing relative outlierness of different points in the relevant space, and exploiting asymmetry in nearest neighbor relations between points: a data point is ``more anomalous if it is not the nearest neighbor of its nearest neighbors. Although rank is computed using distance, it is a more robust and higher level abstraction that is particularly helpful in problems characterized by significant variations of data point density, when distance alone is inadequate. We begin by proposing a rank-based outlier detection algorithm, and then discuss how this may be extended by also considering clustering-based approaches. We show that the use of rank significantly improves anomaly detection performance in a broad range of problems. We then consider the problem of identifying the most anomalous among a set of time series, e.g., the stock price of a company that exhibits significantly different behavior than its peer group of other companies. In such problems, different characteristics of time series are captured by different metrics, and we show that the best performance is obtained by combining several such metrics, along with the use of rank-based algorithms for anomaly detection. In practical scenarios, it is of interest to identify when a time series begins to diverge from the behavior of its peer group. We address this problem as well, using an online version of the anomaly detection algorithm developed earlier. Finally, we address the task of detecting the occurrence of anomalous sub-sequences within a single time series. This is accomplished by refining the multiple-distance combination approach, which succeeds when other algorithms (based on a single distance measure) fail. The algorithms developed in this dissertation can be applied in a large variety of application areas, and can assist in solving many practical problems

    Exploiting cloud utility models for profit and ruin

    Get PDF
    A key characteristic that has led to the early adoption of public cloud computing is the utility pricing model that governs the cost of compute resources consumed. Similar to public utilities like gas and electricity, cloud consumers only pay for the resources they consume and only for the time they are utilized. As a result and pursuant to a Cloud Service Provider\u27s (CSP) Terms of Agreement, cloud consumers are responsible for all computational costs incurred within and in support of their rented computing environments whether these resources were consumed in good faith or not. While initial threat modeling and security research on the public cloud model has primarily focused on the confidentiality and integrity of data transferred, processed, and stored in the cloud, little attention has been paid to the external threat sources that have the capability to affect the financial viability of cloud-hosted services. Bounded by a utility pricing model, Internet-facing web resources hosted in the cloud are vulnerable to Fraudulent Resource Consumption (FRC) attacks. Unlike an application-layer DDoS attack that consumes resources with the goal of disrupting short-term availability, a FRC attack is a considerably more subtle attack that instead targets the utility model over an extended time period. By fraudulently consuming web resources in sufficient volume (i.e. data transferred out of the cloud), an attacker is able to inflict significant fraudulent charges to the victim. This work introduces and thoroughly describes the FRC attack and discusses why current application-layer DDoS mitigation schemes are not applicable to a more subtle attack. The work goes on to propose three detection metrics that together form the criteria for detecting a FRC attack from that of normal web activity and an attribution methodology capable of accurately identifying FRC attack clients. Experimental results based on plausible and challenging attack scenarios show that an attacker, without knowledge of the training web log, has a difficult time mimicking the self-similar and consistent request semantics of normal web activity necessary to carryout a successful FRC attack
    corecore