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ABSTRACT

Anomaly or outlier detection problems are of considerable importance, arising frequently

in diverse real-world applications such as finance and cyber-security. Several algorithms

have been formulated for such problems, usually based on formulating a problem-dependent

heuristic or distance metric. This dissertation proposes anomaly detection algorithms that

exploit the notion of “rank," expressing relative outlierness of different points in the rele-

vant space, and exploiting asymmetry in nearest neighbor relations between points: a data

point is “more anomalous" if it is not the nearest neighbor of its nearest neighbors. Al-

though rank is computed using distance, it is a more robust and higher level abstraction

that is particularly helpful in problems characterized by significant variations of data point

density, when distance alone is inadequate.

We begin by proposing a rank-based outlier detection algorithm, and then discuss how

this may be extended by also considering clustering-based approaches. We show that the

use of rank significantly improves anomaly detection performance in a broad range of prob-

lems.

We then consider the problem of identifying the most anomalous among a set of time

series, e.g., the stock price of a company that exhibits significantly different behavior than

its peer group of other companies. In such problems, different characteristics of time series

are captured by different metrics, and we show that the best performance is obtained by

combining several such metrics, along with the use of rank-based algorithms for anomaly

detection.

In practical scenarios, it is of interest to identify when a time series begins to diverge

from the behavior of its peer group. We address this problem as well, using an online

version of the anomaly detection algorithm developed earlier.

Finally, we address the task of detecting the occurrence of anomalous sub-sequences



within a single time series. This is accomplished by refining the multiple-distance combina-

tion approach, which succeeds when other algorithms (based on a single distance measure)

fail.

The algorithms developed in this dissertation can be applied in a large variety of appli-

cation areas, and can assist in solving many practical problems.
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CHAPTER 1

INTRODUCTION

1.1 What are outliers?

Outlier detection techniques attempt to find the objects that are “different" from the rest

of the data objects in a given data set. Usually, outliers are generated from certain sys-

tem mechanisms that are very different from the system mechanism of the rest of data set.

The problem of outlier detection is of considerable importance, arising frequently in many

different domains such as fraud detection, cyber-intrusion detection, medical anomaly de-

tection, image processing and textual anomaly detection [11]. In financial area, banks

spend millions of dollars on detecting credit card fraud and money laundering; using out-

lier detection techniques, they wish to identify abnormal usage patterns as soon as possible

in order to prevent the future loss. In cyber-intrusion field, companies use outlier detec-

tion techniques to identify a hacker’s attacks by analyzing the computer or website log

files, and then attempt to identify abnormal user behaviors. In image processing, users can

take advantage of outlier detection algorithms to identify the image consisting of different

objects.

Many researchers have attempted to describe an anomalous object in a given data set.

For example, Hawkins [29] suggests that "An outlier is an observation that deviates so



2

much from other observations as to arouse suspicion that is was generated by a different

mechanism". Similarly, Chandola et al. [11] say that "Anomalies are patterns in data that

do not conform to a well defined notion of normal behavior". But in real-world applications,

a well defined normal behavior sometimes is hard to identify and it may also dynamically

change. For instance, a normal user’s behavior on a computer may not be the same as

another normal user’s behavior, and all behaviors can change along the time: in the spring

semester, students spend more time on preparing homework, document editing, research,

whereas in the summer, they spend more time on movies, online games and so on.

Knorr and Ng [43] use very specific approach to define an outlier as "An object p in a

data set D is a DB(pct, dmin)-outlier if at least pct percent of the objects in D lie greater

than distance dmin from p." This definition is a typical definition for distance-based outlier

detection algorithms, but it doesn’t capture all kinds of outliers. For instance, in Figure 1.1,

if the object ‘a’ is considered as an DB(pct, dmin)-outlier then according to this definition

all objects in cluster C2 are also considered as DB(pct, dmin)-outliers, which is counter

intuitive; since object ‘a’ looks more suspicious than all objects in cluster C2.

To overcome the deficiency of the above definition, Breunig et al. [5] suggest to use lo-

cal outlier factor (LOF) to capture the degree of an outlier, which is essentially the average

of the ratio of the local reachability density of an object and those of the object’s k nearest

neighbors (kNN). The value of LOF indicates the degree of the oulierness of an object;

LOF > 1 generally indicates that the object is an outlier, whereas if LOF is1 or less than the

object is a non-outlier. LOF is also one of density-based outlier detection algorithms. Tang

et al. [59] obtain the connectivity-based outlier factor (COF) to capture the outlierness of an

object. Jin et al. [36] assign to each object the degree of being influenced outlierness (IN-

FLO) and introduce a new idea called ‘reverse neighbors’ of a data point when estimating

its density distribution. The common theme among these algorithms is that they all assign

outlierness to each object in the data set and an object will be considered as an outlier if its

outlierness is greater than a pre-defined threshold (usually the threshold is determined by
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Fig. 1.1: A case that DB(pct, dmin)-outlier definition and distance-based method
doesn’t work. - There are two different clusters C1 and C2, and one isolated data object
‘a’ in this data set. The distance from object ‘b’ to its nearest neighbor, d2 , is larger than d1,
the distance from object ‘a’ to its nearest neighbor, which makes ‘a’ unable to be identified.

users or domain experts). The density-based definition seems to work better, but it also has

deficiencies. For example, if an outlier has neighbors from different density clusters, then

its outlierness is measured incorrectly, as seen in Figure 1.2.

So, in order to capture the real anomalousness of a true outlier, more precise and rea-

sonable definitions and algorithms for outlier detection are developed in this dissertation.

This chapter is organized as follows: Section 1.2 introduces the types of outliers and

Section 1.3 shows our general goals. Sections 1.4, 1.5 and 1.6 present existing point outliers

detection techniques, time series outlier detection techniques and existing online detection

techniques respectively.

1.2 Types of Outliers Detection Problems

There are many outlier problems in real world applications; Chandola et al. [11] group

them into three categories:
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Fig. 1.2: Illustration of a case that density-based algorithm would not work. - Red
dash circles contain the k nearest neighborhood of ‘A’ and ‘B’ when k=7.

• Point outliers – Individual data objects that are distinct with respect to the rest of

data set.

• Contextual outliers – If data objects are considered as anomalous in a specific con-

text but not in other situations, then they are called contextual outliers.

• Collective outliers – If a set of data objects is considered as anomalous with respect

to the entire data set, then members of the set are called collective outliers.

These three types cover many types of outliers, however, they cannot precisely cover

all. The types of data set must be first introduced. Based on data set’s characteristics,

there are two types of datasets: set of static data points and time series dataset. The key

difference between these two types is time stamp. Both are multi-dimensional; both have

dependencies but in time series the same feature is time stamp.

• Static data set simply means a collection of data objects (real-valued) without any

time feature or any order by time. In other words, in static dataset the data set doesn’t
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change with time. Static dataset could be multivariate (multiple attributes) or univari-

ate (single attribute).

• Time series data set represents a collection of data objects with time feature or or-

dered by timestamps. In this dissertation, we only consider real-valued time series.

In this thesis, we address three specific types of outlier detection problems.

• Point Outliers Detection. For static data set, point outlier detection is our focus.

Note that a data set may contain more than one outlier. For example, in Figure 1.3,

data objects "A, B, C and D" are considered as point outliers since they are not in any

cluster and are far away from the majority of the data objects. So they are different

from the rest of data objects using the ‘neighborhood’ aspect. Point outliers detec-

tion has attracted much attention in practical applications such as detecting criminal

activities, fraud detection, and exceptional cases. In these areas, rare cases may be

more interesting and meaningful than normal cases.

• Contextual Abnormal Subsequence Detection. If a collection of data objects of a

series is considered as anomalous with respect to the entire single series, then it is

called contextual abnormal subsequence. This anomaly is for a time series data set.

For instance, in Figure 6.4, the subsequence highlighted by red is obviously anoma-

lous compared with all other subsequences in the series. For contextual abnormal

subsequences, we are more interested in detecting the positions of anomalies as soon

as possible. Contextual abnormal subsequence detection is a very interesting prob-

lem for detecting hacker attacks for computers, or detecting a premature ventricular

contraction (PVC) in ECG (electrocardiograms) series.

• Anomalous Series Detection (Collective Outliers). If a single time series is anoma-

lous with respect to the other series in a given data set, then it is called an anomalous
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Fig. 1.3: Outliers and a static data set - Data point "A,B,C and D" are outliers with
respect to the rest of data objects in this two dimensional data set.

Table 1.1: Outlier Problems and Corresponding Data sets

Outlier Types Data set Types
Point Outliers Static

Contextual Abnormal Subsequences Time Series
Anomalous Series Time Series

series. Anomalous series may also contain point outliers and contextual abnormal

subsequences. Two anomalous series are shown in Figure 1.5. Anomalous series

detection can be applied for detecting unusual patterns or special events within time

series data set such as detecting financial fraud in credit card dataset [23], and detect-

ing light curves’ outliers within astronomical data [53].

Table 1.1 shows the types of outliers and their corresponding data sets.
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Fig. 1.4: Illustration of contextual abnormal subsequence. - A subset of ECG data.
Red line represents abnormal signal sequence.

Fig. 1.5: Examples of anomalous time series - Red dash represents anomalous series.
(Left) Anomalous time series with abnormal subsequences, red circles show the abnormal
subsequences. (Right) Another example of anomalous time series.
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1.3 Our Goals

Our main research will focus on the three outlier detection problems just discussed and our

goal is to develop algorithms which have the following characteristics:

1. Normal behaviors have to be dynamically defined. No prior training data set or

reference data set for normal behavior is needed.

2. Outliers can be effectively detected even if the distribution of data is unknown.

3. Be adaptive. It can be applied or modified for outlier detection in different domains.

4. Less domain knowledge required of users.

By following above targets, we propose a series of rank based algorithms including

rank based detection algorithms, clustering and rank based detection algorithms, multiple

measures based anomalous series detection algorithms, and its extended version for online

detection. We also propose an algorithm for abnormal subsequence detection.

.

1.4 Point Outlier Detection for Static data set

Point outliers in the static data set usually have abnormal attributes with respect to the rest

of data set. Formally, given a data set D, p ∈ D, our goal is to find O(p), outlierness of p,

for each object and Othreshold, such that if O(p) ≥ Othreshold, then p is an outlier, otherwise

not.

For static dataset, the most important task is to identify one or more individual anoma-

lies within a given data set. For example, in Figure 1.3, four isolated data points "A,B,C

and D" are far away from the rest of data points, hence, are point outliers.

Unlike supervised data mining techniques, outlier detection is typically an unsuper-

vised learning problem because the behaviors or patterns of outliers are unknown. In some
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real world application domains, algorithms may need domain expert’s help to decide the

optimized parameters, but in most cases this is not possible. Thus, practical applications

require outlier detection techniques to make as few assumptions as possible and have to be

adaptive to the varieties of anomalies.

1.4.1 Existing Approaches

In recent decades, researchers have proposed different approaches to detect anomalies.

Statistics-based approaches (see [30, 51]) were first used for outlier detection based on

the assumption that the distributions of datasets are known, e.g., Gaussian distribution or

Uniform distribution. A data point was defined as an outlier if it deviates from the existing

distribution over a threshold such as three standard deviations. With sufficient knowledge

about the dataset, statistics-based methods work effectively. But in the real world, distribu-

tions of the data are unknown or arbitrary, significantly impacting the performance of such

methods. To overcome this obstacle, clustering-based algorithms have been proposed to

detect outliers [27, 69]. The basic idea is that a data point is an outlier if it does not be-

long to any cluster. First, these methods build up the clusters by using different algorithms

and criteria, then outliers can be found by removing all points that belong to clusters. The

effectiveness of this approach depends on the clustering algorithm. Unfortunately, most

clustering algorithms are designed for detecting clusters instead of outliers, so the selection

performances varies for different data sets.

Knorr and Ng [43] propose to detect an outlier based on its distances from neighboring

data points; many other variations of distance-based approaches have been discussed in

the literature[19, 20, 70]. The main deficiency found in distance-based approaches is the

assumption that the distance from an outlier to its neighbors exceeds the distance from a

non-outlier to its neighbors, which is not always true. For example, in Figure 1.1, there are

two clusters C1 and C2 of different size. The distance from object ‘b’ to its neighboring

objects is apparently greater than the distance from ‘a’ to its neighboring objects which
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leads to a wrong conclusion that ‘b’ is more suspicious of an outlier than ‘a’. Obviously,

‘a’ is more suspicious of an outlier than ‘b’ since ‘a’ is far away from all its neighbors and

‘b’ is closer to its neighbors. The closeness cannot be simply measured by distance alone.

In order to overcome the deficiencies of distance-based methods, Breunig et al. [5]

proposed that each data point of the given data set should be assigned a degree of outlier-

ness. In their view, as in other recent studies, a data point’s degree of outlierness should be

measured relative to its neighbors; hence they refer to it as the “local outlier factor" (LOF)

of the data point. Tang et al. [59] argued that an outlier doesn’t always have to be of lower

density and lower density is not a necessary condition to be an outlier. They modified LOF

to obtain the “connectivity-based outlier factor" (COF) which they argued is more effec-

tive when a cluster and a neighboring outlier have similar neighborhood densities. Local

density is generally measured in terms of k nearest neighbors; LOF and COF both exploit

properties associated with k nearest neighbors of a given object in the data set. However,

it is possible that an outlier lies in a location between objects from a sparse and a denser

cluster. To account for such possibilities, Jin et al. [36] proposed another modification,

called INFLO, which is based on a symmetric neighborhood relationship. That is, their

proposed modification considers neighbors and ‘reverse neighbors’ of a data point when

estimating its density distribution. Tao and Pi [60] have proposed a density-based clus-

tering and outlier detection (DBCOD) algorithm, which also belongs to the density-based

algorithms.

These density-based outlier detection algorithms, such as LOF, COF and INFLO, use

the following methodology:

• Define the concept of density of a data point; using the notion of neighborhood (or

some variation of it); and

• Calculate the “outlierness” of an object; usually defined as the ratio of a data point’s

density with the density in the region surrounding the data point.
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1.4.2 Drawbacks in Density-based Approaches

Density-based methodology that exploits k-neighborhood of a data point has many good

features. For instance, it is independent of the distribution of the data and is capable of

detecting isolated objects. However it also has some shortcomings:

• Density-based algorithms assume that all neighborhoods of a data point have similar

density. If some neighbors of the point are located in one cluster, and the other

neighbors are located in another cluster and the two clusters have different densities,

then comparing the density of the data point with all of its neighbors may lead to a

wrong conclusion and the recognition of real outliers may fail, an example is shown

in Figure 1.2.

• The notion of density does not work well for sparse data sets such as a cluster of

points on a single straight line. Even if each point in the set has equal distances

between itself with its closest neighbors, it may still have different density depending

on its position in the dataset.

1.4.3 Our Solution

Before proposing a solution for anomaly detection problem, let us consider a concrete ex-

ample. Consider the case where a financial institution wishes to find anomalous behavior

of its customers. It is obvious that all normal customers are not alike – depending upon

their needs and nature all have different ‘normal’ behavior. Individuals with multiple ac-

counts and large investments tend to have deposit and withdrawal patterns much different

compared to the individuals with small amounts. Consequently, collection of data associ-

ated with all users is likely to form multiple clusters with variable number of data points

in each cluster, variable densities, etc. In this data set no two clusters look alike, although

they consist of ‘normal’ behavior.

In such situations, to find anomalous observations, the ideal solution is to transform the
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data so that in the transformed space all data points have the same statistical distributions.

In this dissertation we have attempted to achieve this goal via ‘ranks’ and ‘modified ranks’.

In using rank based approach (especially local to the object of interest) we manage to

diminish the effect of inter-object distances; and in using ‘modified-ranks’ we diminish the

effect of the size of the local cluster(s).

We propose several new approaches [31, 32] for outlier detection, based on a ranking

measure and clustering that focuses on the question of whether a point is “interior" for its

nearest neighbors. Using our methods, low cumulative rank implies the point is central.

For instance, a point centrally located in a cluster has a relatively low cumulative sum of

ranks because it is among the nearest neighbors of its own closest neighbors; however a

point at the periphery of a cluster has a high cumulative sum of ranks because its nearest

neighbors are closer to each other than the point. Use of ranks eliminates the problem of

density calculation in the neighborhood of the point, and this improves performance. Our

method performs better than several density-based methods, on some synthetic data set as

well as on some real data set. More details will be discussed in the following chapters.

1.4.4 Our Contributions

We have implemented novel algorithms based on ranks. Although based on distance, ranks

work better than distance and our method captures the anomalousness of an object more

precisely in most cases; and it can be applied in broad practical domains.

Rank based clustering algorithm can be used for detecting tight and sparse clusters

easily using only one parameter. Based on ranks, it forms clusters with higher accuracy.

By combining it with ranks, we show that better performance can be achieved than most of

algorithms we have compared with.
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1.5 Outlier Detection for Time Series Data Sets

Anomalous series detection and contextual abnormal subsequence detection are both ap-

plicable for time series data set. In the current research, only real-valued time series are

considered, categorical-valued time series are out of the scope of this investigation. Anoma-

lous series detection only focuses on identifying anomalous series whereas the contextual

abnormal subsequence problem requires that we detect abnormal subsequence within a sin-

gle series, and it requires the comparison between subsequences and the rest of the series.

The main difference between these two techniques is: the first one tries to find out which

series is anomalous while the latter one tries to find out when abnormal behaviors occur.

These two problems are far more complicated than the algorithms for point outlier

detection because of the following challenges:

• Historical information of a series must be considered, but how to summarize the

useful historical information is a tough problem.

• Defining a “normal series" is difficult. Since the data in each time series is changing

with time, so a normal series at t = 1 may become anomalous at t = 2 which makes

finding normal series more difficult.

• The behavior of outliers is different for different applications, and it makes detecting

abnormal behavior a tough task.

• The noise in the normal series may also cause misleading answers.

• Even in a single application domain, the outlier is also changing with time, so it

requires any effective algorithms or techniques to be very adaptive and flexible to deal

with dynamic detection. The algorithm must be sensitive to dynamically changing

outliers.

.
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On-line detection is another important problem. When time series data is huge, getting

useful results in a short time using large amount of data is really a big challenge.

These are challenging problems that researchers have to deal with. In the last decade,

researchers have proposed different procedures to deal with these issues. Precise problem

definitions and associated existing techniques will be discussed in the following sections,

along with a brief introduction to our approaches.

1.5.1 Anomalous Time Series Detection

Anomalous time series detection, or outlier time series detection, is an important task in

data mining for time series data set, especially for detecting unusual patterns or special

events within time series data set Examples include detecting financial fraud in credit card

dataset [23], detecting light curves’ outliers within astronomical data [53], and detecting

shape anomalies [47] [62].

The problem can be formulated as follows. Given a time series data setD = {xi(t)|1 ≤

t ≤ n; i = 1, 2, . . . ,m}, where xi(t) represents the data object of the ith time series at time

t, n is the length of series and m is the number of time series in the dataset, the goal is to

find the outlierness of a series xi, O(xi), and the threshold Othreshold such that if xi is an

anomalous series, then O(xi) ≥ Othreshold; otherwise not. Given D, the algorithms should

be able to calculate the O(xi) and Othreshold for D automatically. Here, the meaning of

“difference" between anomalous series and normal series is determined by Othreshold, and

it may change from one domain to another, in other words Othreshold should not be a fixed

value, instead, it needs to be dynamically adjusted for different domains. For example,

a threshold to detect a hacker’s attacks is obviously different from a threshold to detect

a shape anomaly. Sometimes, the same external cause may result in abrupt changes in

most of the time series being considered, e.g., increases in stock prices of most defense

contractors as a result of an announcement of impending military conflict. This should

not be considered as a case of one time series being anomalous with respect to other time
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series. The algorithm should able to distinguish this from real anomalous series.

1.5.1.1 Existing Approaches

In recent years, researchers have used many ideas to find an anomalous time series. Leng,

et al. [44], use a new time series representation method, based on key points and dynamic

time warping to find the anomalous series. Fujimaki et al. [25] construct a global AR model

for all series and then measure the anomaly score at time t as the gap between the observed

value and the predicted value. Keogh and Ratanamahatana [38] propose a lower bound

based pruning method for dynamic time warping to detect anomalous series. Protopapas

et al. [53] uses cross-correlation as the measure of similarity between two individual light

curves and use the average correlation as outlier measure. Yankov et al. [68] propose

fast k-nearest neighbor and early abandon to find the unusual time series for a time series

database. Discrete Wavelet Transform [8], and Discrete Fourier Transform [21] also can be

applied for anomalous series detection by calculating the distance between coefficients of

transformed series.

1.5.1.2 Issues and Our Solution

To the best of our knowledge, most of existing methods for anomaly detection relies on

a single measure; however, in general, any individual measure fails to capture varieties

of anomalies which may occur in multiple application domains. We propose an anomaly

detection method based on a combination of multiple distance measures (MUDIM) [34]

where strengths lies in the properties that several types of anomalies can be captured by it.

1.5.1.3 Our Contributions

We show that our multiple distance measures based methods do better than single distance

measure based method and it can capture a variety of anomalous series without requiring

more domain knowledge. Rank-based algorithms are applied to adjust the weights of dif-
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ferent features. The most interesting advantage of it is that in our approach the weights

change automatically, based on anomalousness of each distance feature; other algorithms

do not achieve the same goal in the same conditions.

1.5.2 Abnormal Subsequences Detection in a Single Series

This problem can be formulated as follows. Suppose X = {x(t)|1 ≤ t ≤ n} is a time

series where x(t) represents the value of the series X at time t and n is the length of X . A

subsequence of X is defined as Xp,m = {x(p), ..., x(p + m− 1)|1 ≤ p ≤ n−m + 1; 1 <

m ≤ n}. The goal is to find an abnormal subsequence Xp,m such that outlierness of Xp,m

exceeds a specified threshold. An abnormal subsequence is also known as “discord" in

other literatures [41, 6, 13].

1.5.2.1 Existing Approaches

To detect any abnormal subsequence in a series many solutions have been proposed. Lin

et al. [45] uses SAX, suffix tree and non-self match to find unusual medical time series

discords such as ECG (electrocardiograms) data set. ECGs are time series that measure

the electrical activities of the heart, and a premature ventricular contraction (PVC) is a

relatively common cardiac arrhythmia that can be easily detected in ECG compared with

a normal heart beat by a cardiologist. The techniques for anomalous time series detection

can be applied here to help cardiologists to identify the status of patient’s heart.

Keogh et al. use ‘ heuristic discord discovery’ based on augmented tries for detecting

discord [37, 41]. Fu et al. [13] and Bu et al. [6] both suggest a method based on haar

wavelet transformation to find the best alphabet size and word size to further improve speed

of their time series discord detection algorithm by pruning unnecessary calculations.
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1.5.2.2 Our Solutions

We proposed a novel outlier detection method based on sliding window and multiple dis-

tance measures. The method achieves better performance than the existing methods in a

variety of datasets used in our experiments.

Our algorithm can detect all abnormal subsequences within a single series with only

one parameter, w, the length of subsequence. Unlike other kNN based methods, it is able

to detect all abnormal subsequences even when k similar subsequences exist in a single

series, whereas other methods may fail.

1.6 Online (Real-time) Anomalous Series Detection

Online detection requires detecting the anomalous series as soon as possible. So the algo-

rithms for online detection must be very effective and efficient.

1.6.1 Related Research

This problem has been studied by various researchers [67, 63, 40, 61, 56, 9, 41].

Yamanishi, et al. [67], address this problem using a probability-based model in non-

stationary time series data. Wei, et al. [63], use frequencies of symbolic aggregation

representation (SAX) of time series. Keogh, et al., [40, 41] employ suffix tree comparison,

HOT SAX algorithm, and nearest non-self match distance. Toshniwal, et al., [61] extend

HOT SAX algorithm to detect outliers in streaming data time series. Sadik, et al. [56],

develop an algorithm based on adaptive probability density functions and distance-based

techniques to detect outliers in the data streams. Xie and Tang [65] propose a new dynamic

hidden semi-Markov model to detect time-variant user behavior.

Unfortunately, some of the above online methods can only be applied for detecting

outliers in a single series. In contrast with the above methods, our focus is on the impor-

tant variation where multiple time series are being observed simultaneously, and detection
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should occur as soon as one (or more) series begins to differ from the rest. In our approach

no training set is required and no model is constructed a priori. Some methods mentioned

earlier, such as [63, 56], can be used directly for online detection. Other methods, proposed

by Chandola et al. [10], such as anomalous series detection with training data sets based

using kNN, window based, predictive model based, segment based methods, can also be

adapted for online detection. But the main problems found in these methods are:

• Finding the optimal values of parameters of the algorithms requires the user to have

expert domain knowledge which may not be available.

• High amount of computational effort is required, so that these methods are not suit-

able for online detection in large data streams.

• Concept drifting ( the statistical properties of data objects change over time) and

data uncertainty are common problems in data streams, which prevent successful

application of fixed model based methods.

1.6.2 Our Solutions

To overcome these problems, we propose online algorithms [33] that utilize information

from multiple distance metrics. These unsupervised methods require only one parame-

ter, viz., the number of nearest neighbors (k). Experimental results show that our ap-

proaches are successful in anomalous time series detection, and also computationally effi-

cient enough to permit online execution. Our online algorithms have higher accuracy and

works better in more data sets than other competing methods.
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CHAPTER 2

POINT OUTLIERS DETECTION BASED

ON RANKS

The goal for point outliers detection algorithms is to find the point outliers that are “differ-

ent" from the rest of the data points in a given data set. Practical applications concerning

outlier detection occur in many domains such as fraud detection, cyber-intrusion detection,

medical anomaly detection, image processing and textual anomaly detection [11].

As mentioned in the first chapter, density-based algorithms seem to work better in most

of the application domains, so we will first review typical density-based algorithms in de-

tail. This chapter is organized as follows: in Section 2.1 we review the density based ap-

proaches of anomaly detection algorithms. Then in Section 2.2 we introduce our algorithm

- RBDA, and finally show the experiment results in Section 2.3.

2.1 Review of Density-based Approaches

In density based approaches the main idea is to consider the behaviors of a point with

respect to its neighbors. The neighborhood is conceptualized by considering k nearest

neighbors, where k is either iteratively estimated or is a preassigned integer. The underlying
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assumption is that if density of a point p is ‘different’ than densities of its neighbors, it must

be an anomaly. The main difference between the approaches described below is in how they

define the local behavior related with density.

2.1.1 LOF (Local Outlier Factor) approach

Breunig et al. [5] proposed the following approach to find an outlier. For each point p in the

given dataset, they evaluate its “local outlier factor" (LOF); a point whose LOF is ‘large’ is

declared anomalous.

Fig. 2.1: Illustration of reachability distance. - reach − distk(p1, o) and reach −
distk(p2, o) for k=4. This figure is from Breunig [5]

1. Find the distance, dk(p), between p and its kth nearest neighbor. The distance can

be any measure; but here the Euclidean distance is used. Denote the set of k nearest

neighbors of p by Nk(p) = {q ∈ D − {p} : d(p, q) ≤ dk(p)}.

2. Define the reachability distance of a point q from p, as reach−distk(p, q) = max{dk(q), d(p, q)}.



21

3. The average reachability distance is

reach− distavg(p) =

∑
q∈Nk(p)

reach− distk(p, q)
|Nk(p)|

.

The local reachability density of a point is defined as the reciprocal of reachability

distance

`k(p) = [reach− distavg(p)]−1.

4. Finally, this local reachability density is compared with the local reachability densi-

ties of all points in Nk(p), and the ratio is defined as LOF (local outlier factor):

Lk(p) = [

∑
o∈Nk(p)

`k(o)
`k(p)

|Nk(p)|
].

5. The LOF of each point is calculated, and points are sorted in decreasing order of

Lk(p). If the LOF values are ‘large’, the corresponding points are declared as out-

liers.

6. To account for k, the final decision is taken as follows: Lk(p) is calculated for se-

lected values of k in a pre-specified range, max Lk(p) is retained, and a p with large

LOF is declared an outlier.

LOF performs well in many application domains, but its effectiveness will diminish if

the density of an outlier is close to densities of its neighbors. In Figure 2.2, data object o1

is isolated but its density is very close to densities of objects in C1 which makes LOF fail

to detect this outlier.

2.1.2 COF (Connectivity-based Outlier Factor) approach

To solve the deficiency found in the LOF, Tang et al.[58] suggest a new method to calculate

the density as described below. Define the distance between two non-empty sets P and Q
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Fig. 2.2: A case in which LOF fails for outlier detection. - (This figure is from Tang et
al.[58])

as d(P,Q) = min{d(p, q) : p ∈ P, q ∈ Q}. This can be used to define the minimum

distance between a point and a set by treating the point as a singleton set.

1. As in the previous algorithm, let Nk(p) be the set of k nearest neighbors of p.

2. Define set-based path (SBN) of length k as a path < p1, p2, . . . , pk > based on the

set {p,Nk(p)} such that for all 1 ≤ i ≤ k − 1, pi+1 is the nearest neighbor of the

set {p1, p2, . . . , pi} in {pi+1, pi+2, . . . , pk}. In other words, the SBN-path represents

the order in which nearest neighbors of p are successively obtained. In simple words,

SBN is an ordered list of all neighbors of p.

3. The Set-based trail (SBT) is an ordered collection of k − 1 edges associated with a

given SBN path< p1, p2, . . . , pk >. The ith edge ei connects a point o ∈ {p1, . . . , pi}

to pi+1 and is of minimum distance; i.e., length of ei is equal to

d(o, pi+1) = d({p1, . . . , pi}, {pi+1, . . . , pk}). Denote the length of edge as dist(ei).

Figure 2.3 illustrates these concepts.

4. Given p, the associated SBN path< p ≡ p1, p2, . . . , pk >, and the SBT< e1, e2, . . . , ek−1 >,

the weight wi for edge ei is proportional to the order in which it is added to SBT set.

Then the average-chaining distance (A) of p is the weighted sum of the lengths of
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Fig. 2.3: Illustration of SBN and SBT. - The object p’s k-nearest-neighbors are q1, q2,
and q3 when k = 3. Then SBN path from p is {p, q1, q3, q2}, and SBT is <e1, e2, e3>
respectively.

the edges. That is:

ANk(p)(p) =
k−1∑
i=1

wi × dist(ei).

where

wi =
2(k − i)
k(k − 1)

5. Finally, the connectivity-based outlier factor (COF) of a point p is defined as the ratio

of p’s average-chaining distance with the average of average-chaining distances of its

k nearest neighbors;

COFk(p) = [ANk(p)(p)][

∑
o∈Nk(p)

ANk(p)(o)

|Nk(p)|
]−1.

6. As in LOF, larger values of COFk(p) indicates that p is an outlier with higher possi-

bility.
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COF works better than LOF in the data sets with sparse neighborhoods (such as a

straight line), but its computation cost is larger than LOF.

2.1.3 INFLO (INFLuential measure of Outlierness by symmetric

relationship) approach

Proposed by Jin et al. [36], in INFLO the k nearest neighbors and reverse nearest neighbors

of an object p are used to obtain a measure of outlierness.

Fig. 2.4: RNN and Influence Space - For k=3,Nk(q5) is {q1, q2, q3}. Nk(q1) = {p, q2, q4}.
Nk(q2) = {p, q1, q3}. Nk(q3) = {q1, q2, q5}. RN k(q5) = {q3, q4}. The original figure is
from Jin et al. [36].

1. Reverse Nearest Neighborhood (RNN) of an object p is defined as

RN k(p) = {q : q ∈ D and p ∈ Nk(q)}.

Note that Nk(p) has exactly k objects but RN k(p) may not have k objects. In some
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instances, it may be empty, because for all q ∈ Nk(p), p may not be in any of the set

of Nk(q).

2. The k-influential space for p, denoted as ISk(p) = Nk(p) ∪RN k(p).

3. The influential outlierness of a point p is defined as

INFLOk(p) =
1

den(p)

∑
o∈ISk(p)

den(o)

|(ISk(p))|

where den(p) = 1
dk(p)

.

Thus for any p, INFLO expands Nk(p) to ISk and compares p’s density with average

density of objects in ISk. By using the reverse neighborhood, INFLO enhances its ability

to identify the outliers in more complex situation, but it’s performance is poor if an object

p’s neighborhood includes data objects from groups of different densities, then outlierness

of p cannot be correctly measured.

2.2 Rank-Based Detection Algorithm (RBDA)

We present a new approach to identify outliers based on mutual closeness of a data point

and its neighbors. The key idea of our algorithms is to use rank instead of distance. The idea

of rank is borrowed from social network. Detecting outliers in a given data set resembles

finding the most unpopular person in a given social network. Consider the social network

in Figure 2.5: if we want to find if Bob is an unsocial person in it, then simply ask him this

question:“who are your best friends?", then ask all “friends" of Bob the same question, if

Bob is not in the list of his friends, he might be unpopular. Summaries of all answers are

able to give a more clear conclusion about who unsocial person is. For example, in Figure

2.5 (a), Bob says that Eric is his closest friend but Eric says Bob is not one of his best

friends. We ask the same question for every person in this social network. For example,

the same questions for Eric and Jack show that they are best friends to each other. It can
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be seen that Bob will appear to be No.1 unsocial person in this illustration. If we use the

concept of ranks to capture the relationship of ‘the best friend’, then we can also use it to

capture the outlierness of an outlier.

Fig. 2.5: Rank in social network - Rank can be used to measure popularity in a social
network.

To understand mutual closeness consider p ∈ D and q ∈ Nk(p). That is, consider a q

which is “close” to p because it belongs to k-neighborhood of p. In return, we ask “how

close is p to q?". If p and q are ‘close’ to each other, then we argue that (with respect to each

other) p and q are not anomalous data points. However, if q is a neighbor of p but p is not

a neighbor of q, then with respect to q, p is an anomalous point. If p is an anomalous point
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with respect to most of its neighbors, then p should be declared to be an anomaly. When

measuring the outlierness of p, instead of distance, we use the ranks calculated based on

neighborhood relationships between p and Nk(p) in our outlier detection algorithms. This

forms the basis of RBDA [31].

2.2.1 Description of Rank-based Detection Algorithm (RBDA) Al-

gorithm

Fig. 2.6: Rank-based Detection Algorithm - Pseudo code
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Fig. 2.7: Illustration of ranks - Red dash shows kNN of p when k is 3 and long blue
dash shows a circle with radius of d(p, q3) and center of q3. The kNN of p is {q1,q2, q3}.
Then rq3(p)=4, because d(q3, p) is greater than any of d(q3, q3), d(q3, q4), d(q3, q1) and
d(q3, q5).

1. Let p ∈ D where |D| = n, Nk(p) denotes the set of its k-neighbors, N (p), denotes

all the neighbors of p ∈ D, it is defined as N (p) = {d(p, o); p 6= o, o ∈ D}. Let

rq(p) denote the rank of p with respect to q, and it is defined as rq(p)=|I| where

I = {d(q, o); d(q, o) < d(p, q), d(q, o) ∈ N (q)}. For all q ∈ Nk(p), calculate the

rq(p).

2. ’Outlierness’ of p, denoted by Ok(p), is defined as:

Ok(p) =

∑
q∈Nk(p)

rq(p)

|Nk(p)|
. (2.1)

If Ok(p) is ‘large’ then p is considered an outlier.

3. One criterion to determine ‘largeness’ is described below. LetDo = {p ∈ D | Ok(p) ≤

O∗} where O∗ is chosen such that the size of Do is a large fraction (e.g. 75%) of the
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size of D. We normalize Ok(p) as follows:

Lk(p) = ln(Ok(p)) (2.2)

Zk(p) =
1

Sk
(Lk(p)− L̄k) (2.3)

where

L̄k =
1

|Do|
∑
p∈D

Lk(p) and S2
k =

1

|Do| − 1

∑
p∈D

(Lk(p)− L̄k)2

and if the normalized value Zk(p) is ≥ 2.5, then we declare that p is an outlier. In

this criterion we have assumed that the distribution of Zk(p) = 1
Sk

(Lk(p) − L̄k)

(normalized for mean and standard deviation) will be approximated by the standard

normal random variable and P(Zk(p) = 1
Sk

(Lk(p) − L̄k) > 2.5) ≈ 0.006. Hence,

value of Zk(p) = 1
Sk

(Lk(p)− L̄k) > 2.5 will be an outlier.

2.2.2 Why does RBDA work?

Fig. 2.8: Illustration of a case that density-based algorithm would not work. - Red
dash circles contain the k nearest neighborhoods of ‘A’ and ‘B’ when k=7.
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Fig. 2.9: How rank works. - Red dotted circle represents the k nearest neighborhood
of ‘A’ when k is 7; Blue solid circle shows the range of I when calculating ranks of ‘A’
for each its kNN. The number of data objects in blue circle represents the rank of ‘A’ with
respect to the object in the center of the circle. (Left) Ranks for ‘A’; (Right) Ranks for ‘B’

Before explaining why RBDA works, first we examine a scenario in which the density-

based algorithm would fail. Consider the data set in Figure 2.8. There are three groups

of data objects and one isolated data object - ‘A’. Data object ‘B’ is from group3. When

k is 7, the k nearest neighbors of both ‘A’ and ‘B’ contain the data objects from different

density groups. In this case, the density-based outlier detection algorithm, LOF, assigns a

higher outlierness value 1.5122 to ‘B’ and lower outlierness value 1.1477 to ‘A’ which is

counter intuition. Density-based algorithms assume that all the neighbors of interested data

objects are from the same density groups, but such is not the case in our example. In this

illustration, LOF also suffers the same deficiency when k is 6, 7, or 8.

To overcome this issue, instead of focusing on the calculation of density, RBDA chooses

another approach: using ranks instead of distance. Although rank is calculated based on

distance, it contains more useful information. The basic idea is that if an object is an outlier,

its rank with respect to its kNN is larger, whereas a normal object’s rank is smaller.

Since RBDA requires calculating the ranks of the interested data object with respect

to its k neighborhood, an object far away from many data objects in the data set will have
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large rank. For example, in Figure 2.9, object ‘C’ is the 7th nearest neighbor of object ‘A’,

but ‘A’ is the 31st neighbor of ‘C’, because ‘C’ is more close to the center of data set than

‘A’. Thus in Figure 2.9, RBDA outlierness (average rank) of ‘A’ is 10 and that of ‘B’ is less

(6.5714) as expected.

2.3 Experiments:

We use two synthetic and three real datasets to compare the performance of RBDA with

LOF, COF and INFLO. Metrics to compare the algorithms are described below.

2.3.1 Metrics for Measurement

To evaluate the performance of the algorithms, three metrics were selected – precision,

recall, and Rank-Power [2, 49, 57, 7].

Suppose the set D of n objects contains dt true outliers. Suppose, using a given outlier

detection algorithm, we identify m most suspicious instances in D. Let mt be the number

of true outliers among m instances. Then Precision, which measures the proportion of true

outliers in top m suspicious instances, is:

Pr =
mt

m
,

and Re which measure the accuracy of an algorithm is:

Re =
|mt|
|dt|

.

Precision and recall are insufficient to capture complete effectiveness of an algorithm. One

algorithm may identify an outlier as the most suspicious while another algorithm may iden-

tify it as the least suspicious. Yet the values for the above two measures remain the same.

Ideally, an algorithm will be considered more effective if the true outliers occupy top po-
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sitions and non-outliers are among the least suspicious instances. “RankPower" was pro-

posed by Tang et al. [58] to capture this notion. Let Ri denote the rank of the ith true

outlier. Then,

RP =
mt(mt + 1)

2
∑mt

i=1Ri

.

Rank-Power takes maximum value 1 when all n true outliers are in top n positions.

For a fixed value of m, larger values of all three of these metrics imply better perfor-

mance.

2.3.2 Synthetic Datasets

Two synthetic datasets, shown in Figures 2.10 and 2.11, are used to evaluate the outlier

detection algorithms. For illustrative convenience, we use only 2-dimensional data points

so that outliers can be seen easily. In each dataset, there are multiple clusters with different

densities. In each dataset, we have placed six additional objects, (A, B, C, D, E, and F) in

the vicinities of the clusters to evaluate their ‘outlierness’ by LOF, COF, INFLO, and our

proposed algorithm, RBDA.

In tables below, we summarize the performance of the algorithms, Pr represents preci-

sion, Re represents recall, and RP represents Rank-Power.

2.3.2.1 Synthetic Dataset 1

Synthetic dataset 1 contains four clusters of different densities consisting of 36, 8, 8, and

16 instances. Four different values of k and four values of m are used; results are shown in

Table A.1 in Appendix.

For k = 4, only COF and RBDA algorithms find all six outliers within top m ranked

instances, and their RankPowers are higher than those of LOF and INFLO algorithms.

For k = 5, 6, and 7 RBDA has higher precision and recall than the other algorithms;

and RBDA is the only algorithm that obtains the maximum RankPower of 1 for every m.
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Fig. 2.10: A Synthetic dataset with clusters obtained by placing all points uniformly
with varying degrees of densities. -

2.3.2.2 Synthetic Data set 2

Synthetic dataset 2 consists of 515 data objects including six planted outliers; this data set

has one large normally-distributed cluster and two small uniform clusters.

Results are presented in Table A.2 in Appendix for k = 25, 35, and 50, and m =

5, 10, 15, 20 and 30. It can be seen that for k = 25 and 35, RBDA has the best precision,

recall and Rank-Power for all m from 5 to 30. When k is increased to 50, RBDA still

performs better than others except for m = 20. The reason why LOF doesn’t work for k=50

is shown in Figure 2.12: the true outlier o has shorter distance to its kth nearest neighbor

than object q. When comparing the ratios of densities, q’s value is larger than o so that it

makes q look more like an outlier than o.

In this experiment, RBDA algorithm works better than others in most of the cases, and

for k = 25 and 35, it achieves the best performance.
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Fig. 2.11: Synthetic data set 2 - A synthetic data set with one cluster obtained using the
Gaussian distribution and other clusters by placing points uniformly.
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Fig. 2.12: Why LOF does not work. - Red dash circle encloses the k nearest neighbors
(kNN) of object o which is an outlier, and blue circle represents kNN of object q when k is
50.
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2.3.3 Real Datasets:

We have used three well known datasets, namely the Iris, Ionosphere, and Wisconsin breast

cancer datasets. We use two ways to evaluate the effectiveness and accuracy of outlier

detection algorithms; (i) detect rare classes within the datasets, rare classes are generated

by removing a majority of objects from the original class (this methodology has also been

used by other researchers such as Feng et al. and Tang et al. [22, 58]) and (ii) plant

outliers into the real datasets (according to problem specific knowledge) and expect outlier

detection algorithms to identify them.

2.3.4 Real Datasets with Rare Classes

In this subsection, we compare the algorithms in detecting rare classes. A class is made

‘rare’ by removing most of its observations. In all cases, the value of k is chosen between

5% to 10% percentage of the size of the dataset. Because the attributes are dependent,

Mahalanobis distance is used to measure the distance between two points.

2.3.4.1 Iris Dataset

This well-known data set contains the categorization of iris flowers to three classes: Iris

Setosa, Iris Versicolour, Iris Virginica, with 50 instances each. The Iris Setosa class is

linearly separable from the other two classes, but the other two classes are not linearly

separable from each other. We randomly remove 45 instances from Iris Setosa class to

make it ‘rare’; the remaining 105 instances are used in the final dataset. Three selected

values of k are 5, 7, 10. In Appendix, Table A.5 summarizes our findings.

We observe that for k = 5 , LOF and RBDA both have the highest precision and recall

values while RBDA has the best RankPower for all values of m; COF performs poorly (its

precision and recall values are all zero). The reason for COF’s poor performance is that

instances of rare class are close to each other which decrease average-chaining distance of
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COF algorithm significantly and thus decrease its usefulness.

For k = 7, LOF performs better than RBDA. In particular, COF doesn’t find any outlier

within top 10 ranked instances.

For k = 10 and all values of m, LOF, INFLO and RBDA perform well.

2.3.4.2 Johns Hopkins University Ionosphere Dataset

The Johns Hopkins University Ionosphere dataset contains 351 data objects with 34 at-

tributes; all attributes are normalized in the range of 0 and 1. There are two classes labeled

as good and bad with 225 and 126 data objects respectively. There are no duplicate data

objects in the dataset. To form the rare class, 116 data objects from the bad class are ran-

domly removed. The final dataset has only 235 data objects with 225 good and 10 bad data

objects. Four values of k = 11, 15, 20 and 23 are used; values of m are assigned at 5, 15,

30, 60 and 85. Results are presented in Appendix Table A.3.

We observe that, for k = 11, among all algorithms RBDA has the best precision, re-

call and RankPower except for m = 15. LOF and INFLO algorithms achieve the best

RankPower for m = 15; but RBDA is the only algorithm that finds all ten ‘bad’ class in-

stances.

For k = 15, LOF has higher RankPower than RBDA for m = 15 and 30; but for other

values of m, RBDA is the winner and has largest values of RankPower. RBDA algorithm

finds all 10 ’bad’ class instances while other algorithms only find 9 of them when m is less

than 85. For k = 20 and 23, situation is very similar to the previous case.

In general, RBDA shows the best overall performance.

2.3.4.3 Wisconsin Diagnostic Breast Cancer Dataset

Wisconsin diagnostic breast cancer dataset contains 699 instances with 9 attributes. There

are many duplicate instances and instances with missing attribute values. After removing

all duplicate instances and instances with missing attribute values, 236 instances labeled
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as benign class and 236 instances as malignant were left. Following the method proposed

by Cao [7], 226 malignant instances are randomly removed. In our experiments the final

dataset consisted 213 benign instances and 10 malignant instances. Results are presented

in Appendix Table A.4.

For k = 11, RBDA achieves the best precision and recall for m = 15, 20 and 50, and

gets the best RankPower for m = 30 and 40. COF has the best precision and recall for m =

30, 40 and 50, and it also has the best RankPower for m = 15, 20 and 50.

For k = 15, 19 and 22, the relative performance results are similar. Either RBDA or

COF gets the best precision, recall and RankPower for every m. But none of them can

achieve the best performance for all values of m.

In general, COF performs a little better than RBDA, but for certain values of m, RBDA

has better RankPower than COF.

2.3.5 Real Datasets with Planted Outliers

In experiments described in this subsection we plant some outliers into the real datasets

according to datasets’ domain knowledge.

2.3.5.1 IRIS with Outliers

We insert three outliers into IRIS dataset, that is, there are three classes with 50 instances

each and 3 planted outliers. The first outlier has maximum attribute values, second outlier

has minimum attribute values, and the third has two attributes with maximum values and the

other two with minimum values. Appendix Table A.6 contains the results for this setting.

For k = 7 and m ≥ 10, all algorithms found the three outliers, but their RankPowers

are different. RankPower of COF is lower than those of the other three algorithms; LOF,

INFLO and RBDA all have the best performance for precision, recall and RankPower.

For k = 15, INFLO and RBDA are the best because they all rank three outliers in top

three positions which are exactly the expected results that outlier detection algorithms are
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designed to do. LOF and COF have the worst Rank-Power.

2.3.5.2 Johns Hopkins University Ionosphere Dataset with Outliers

For ionosphere dataset, two classes labeled as good and bad, with 225 and 126 instances

respectively, are kept in the resulting dataset. Three outliers are inserted into the dataset;

the first two outliers have maximum or minimum value in every attribute, and the third has

9 attributes with unexpected values and 25 attributes with maximum or minimum values.

The unexpected value here is a value that is valid (between minimum and maximum) but is

never observed in real datasets1.

In Appendix Table A.7, we observe that RBDA consistently performs better than the

other algorithms. For all values of k and m, RBDA achieves the best precision, recall and

RankPower. In addition, RBDA algorithm is the only algorithm that detects all three rare

class instances for all three k values when m is 40.

The gap of performance between RBDA and other algorithms is large since RBDA’s

RankPower is almost twice that of other algorithms, for every k and m. The overall perfor-

mance of RBDA is the best.

2.3.5.3 Wisconsin Diagnostic Breast Cancer with Outliers

After removal of duplicate instances and instances with missing attribute values, only 449

instances were left with 213 instances labeled as benign and 236 as malignant. Two out-

liers were planted into dataset. Both outliers have maximum or minimum values for all

attributes.

In Appendix Table A.8, for every k, our algorithm, RBDA, is the only algorithm that

has the maximum RankPower (1) for every value of m. It also has the best precision and

recall for all k and m. We can observe that even the maximum RankPower of LOF, COF
1For example, one attribute may have a range from 0 to 100, but the value of 12 never appears in real

dataset.
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and INFLO is only half of the RankPower of RBDA, which means that their success in

outlier detection is much less than that of RBDA in this experiment.

In general, when k increases, most of the algorithms improve their performances. One

reason is that when k is larger, more neighbors around a specific instance are involved in

the process of evaluating that instance, so that the algorithm holds more information to

make an accurate decision about outliers.

2.3.6 Conclusions

Outlier detection is an important task for data mining applications. Existing algorithms

are effective and have been successfully applied in many real-world applications. But these

algorithms, especially density-based algorithms, have low efficacy in datasets with different

densities. In our work, we have introduced the Rank-based outlier Detection Algorithm

(RBDA) that is effective in solving the problem mentioned above.
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CHAPTER 3

ANOMALY DETECTION ALGORITHMS

BASED ON CLUSTERING AND

WEIGHTED RANKS

Clustering can be used to find anomalous objects in a given data set. This approach has a

significant advantage; it reduces the time complexity considerably provided the clustering

algorithm is fast.

In this chapter we argue that an object that belongs to a very large cluster is more likely

to be declared anomalous even if it is only slightly far away from its neighbors, compared

to the case if it had belonged to a small cluster. To account for this imbalance, we propose

the concept of modified rank.

The chapter is organized as follows. In Section 3.1 we discuss some clustering approaches

for anomaly detection. In Section 3.2 we introduce important notations, and in Section 3.3

we discuss our clustering algorithms, followed by our proposed new algorithm in Section

3.4. In Section 3.5, we compare the performance of the new algorithm with RBDA and

other close competitors.
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3.1 Clustering Approach for Anomaly Detection and a

New Clustering Algorithm

Among existing anomaly detection algorithms, one unsupervised approach is based on

clustering using the assumption that normal data objects belong to a cluster whereas anoma-

lies do not belong to any clusters. Its essential theme is to find clusters in a given data set

and declare any data object that does not belong to any cluster as anomalous. Unlike the

classical approaches to clustering in which all objects of the data set must belong to a clus-

ter, in this context objects are not required to be in a cluster. K-mean clustering and other

well known clustering techniques cannot be applied towards this task; special clustering

algorithms have been developed that do not force every data object to belong to a cluster.

DBSCAN, ROCK and SNN clustering algorithms proposed by Ester et al. [18], Guha et

al., [28], and Ertoz et al. [17], respectively, are among such clustering algorithms.

Unlike previous work, we do not require that all objects that do not belong to a clus-

ter are anomalous; instead we assume that data objects that do not belong to a cluster are

‘potential’ anomaly candidates. Further investigation is required to evaluate their anoma-

lousness.

In Section 3.3 we describe a new clustering algorithm which exploits “reachability".

The main idea is to declare data objects p and q to be ‘close’ if q is one of the k nearest

neighbor of p and vice versa. We define “reachability" as the transitive closure of the

‘closeness’ relation, e.g; if p1 and p2 are ‘close’ and p2 and p3 are ‘close’ we declare that

p3 is reachable from p1. Finally, reachable data objects are consider to form a cluster.

Details in mathematical notation are presented below.

There is one lingering concern related to the size of a cluster. For instance, if a cluster

contains only two data objects, is it ‘really a cluster’? If anomalies in the data set form

clusters by themselves, then a cluster based approach won’t be able to detect them, leading
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to poor performance. Chandola et al. [11] address such concerns. A subjective judgment

has to be made regarding the minimum number of data objects to form a cluster recognizing

yet another assumption to detect anomalies: “Normal data objects belong to large and dense

clusters, while anomalies either belong to small or sparse clusters."

We proposed a new algorithm by using cluster size and distance (in addition to the rank)

directly in evaluating the outlierness of data objects. We present several variations of such

algorithms, all of which begin with clustering as a preprocessing step. These algorithms are

evaluated on real and simulated test data sets, helping to understand the kinds of problems

in which they are most useful. These variations exhibited similar performance to each

other, which was considerably better than that of algorithms explored in previous work.

In the next section, after introducing key notations and definitions, we describe Tao

and Pi’s [60] DBCOD algorithm. Next we present new outlierness measures and new al-

gorithms for outlier detection. These new algorithms are compared with RBDA, DBCOD,

and other algorithms, using one synthetic and three real data sets. Brief descriptions of data

sets are presented in Section 3.5, followed by our findings. Section 3.6 presents concluding

remarks.

3.2 Notation and Definitions

The following definitions are used in the proposed clustering algorithm; all definitions are

parameterized with a positive integer parameter ` intended to capture the notion of cluster

tightness.

• D-reachability (given `): An object p is directly reachable (D-reachable) from q, if

p ∈ N`(q).

• Reachability: An object p is reachable from q, if there is a chain of objects p ≡

p1, . . . , pn ≡ q, such that pi is D-reachable from pi+1 for all values of i.
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Fig. 3.1: Illustrations of dk(p), Nk(p) and RN k(p) for k = 3. - The large blue circle
contains elements of N3(p) = {x, e, y}. Because y is farthest third nearest neighbor of
p, therefore d3(p) = d(p, y), the distance between p and y. The smallest (green) circle
contains elements ofN3(y) and the medium radius circle (red) contains elements ofN3(z).
Note that ry(p) = (rank of p among neighbors of y) = 9. Finally, RN 3(p) = ∅, since no
other object considers p in their neighborhood.

• Connectedness: If p is reachable from q, and q is reachable from p, then p and q are

connected.

Figure 3.1 illustrates the concepts of dk(p), Nk(p) andRN k(p).

3.3 Neighborhood Clustering (NC-clustering)

We use breadth-first search on a graph whose node-set is D and in which an edge exists

between p, q ∈ D if p ∈ N`(q) and q ∈ N`(p). A connected component C of the graph is

a cluster if the following conditions are satisfied:

1. Every object in C is D-reachable from at least two others in C.

2. The number of objects in C is no smaller than a pre-specified minimum, m∗.
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We denote the clustering method asNC(`,m∗). For example,NC(6, 5) denotes that a clus-

ter contains connected objects for ` = 6, and every cluster must contain at least 5 objects.

If any connected component C does not satisfy these conditions, it is broken up into

isolated objects, which are declared to be potential outliers.

In Figure 3.1 for k = ` = 3, y is D-reachable from p since y is in N3(p). but p and y

are not connected since p is not inN3(y). However, y and z are connected since they are in

each other’s 3-neighborhoods.

The appropriate values of ` and m∗ are problem-specific and depend on domain knowl-

edge. If ` is small, the NC-clustering method will find small and tightly connected clusters.

On the other hand, large values of ` will result in large and loose clusters. If the clusters

are small and tight, we expect to find more objects that don’t belong to any cluster whereas

in the latter case, only a few objects will be declared as outliers. In real world applications

(such as credit card fraud detection) most of the transactions are normal and only 0.01%

or less of the transactions are fraudulent. In such cases, a small value of ` is more suitable

than a large `.

The value of m∗ has a similar effect: if m∗ is too small, then the cluster size may also

be too small, and a small collection of outliers may be considered as a cluster, which is not

what we want. In our experiments, m∗ is set to a fixed value of 6.

Advantages of NC(`,m∗) clustering algorithms are:

• It only requires one scan to find all the clusters.

• It controls the tightness and sparsity of clusters using a single parameter - `.

• It can find the central objects of clusters easily by analyzing each Ok(p). The data

objects in the center must have lower Ok(p) values.

These properties will be further investigated in future work but are not fully evaluated in

this thesis, since the focus of this dissertation is not on developing or evaluating clustering
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algorithms.

3.3.1 Density and Rank Based Detection Algorithms

More recently, a density-based clustering and outlier detection algorithm (DBCOD) has

been proposed by Tao and Pi [60], described below

Density-based clustering and outlier detection algorithm (DBCOD) For p ∈ D, Tao and

Pi [60] define the local density, the neighborhood-based density factor, and neighborhood-

based local density factor of p, respectively, as:

LDk(p) =

∑
q∈Nk(p)

1
d(p,q)

|Nk(p)|
, NDFk(p) =

|RN k(p)|
|Nk(p)|

, and NLDFk(p) = LDk(p)× NDFk(p).

The threshold of NLDF, denoted as τNLDF, is defined as:

τNLDF =

 mink(NLDFk(p)) if for all objects p ∈ D,NDFk(p) = 1

maxk(NLDFk(p)) otherwise

Using the above definitions, Tao and Pi [60] find the clusters based on the definitions

in Section 3.2, except their definition of D-reachability is as follows: p and q are in each

other’s k-neighborhood and NLDFk(q) < τNLDF. Points outside the clusters are declared

as outliers.
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3.4 New algorithms based on distance and cluster den-

sity

Purely rank-based analysis leads to potential incorrect answers when an object is near a

dense cluster; this property is the ‘cluster density effect’. For instance, two points are of

special interest in Figure 3.2: point ‘A’ in the neighborhood of a cluster with low density

(25 objects) and point ‘B’ in the neighborhood of a cluster with high density (491 objects).

Fig. 3.2: An example to illustrate ‘Cluster Density Effect’ on RBDA; RBDA assigns
larger outlierness measure to B. -

By visual inspection, it would be argued that the object ‘A’ is an outlier whereas object

‘B’ is a possible but not definite outlier. For k=20, O20(A)=25 because rank of ‘A’ is 25

from all of its neighbors. On the other hand, the ranks of ‘B’ with respect to its neighbors

are: 2, 8,. . . , 132, 205, 227; so that O20(B) is 93.1. RBDA concludes that ‘B’ is more

likely to be outlier than ‘A’. This is due to the presence of a large and dense cluster in the

neighborhood of ‘B’, hence a point close to a dense cluster is likely to be misidentified as

an outlier.

By visual inspection, we intuitively conclude that a point is an outlier if it is ‘far away’

from the nearest cluster. This implies that the distance of the object (from the cluster)
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plays an important role; but in RBDA the distance is accounted for indirectly, only through

rank. This motivates examining possible improvements that may be obtained by modifying

the outlierness measure to give additional weight to the distance of a point from the set

containing its neighbors. In the first step, the data is clustered using a clustering algorithm,

and in the second step, a data object’s anomaly score is evaluated as its distance from

the closest centroid. We use a modification of this approach. Note that we don’t use the

centroid of the clusters, mainly due to the reason that clusters generated by the schema

discussed in Section 3.3 are not necessary spherical; we instead use the centroid of the

point’s k nearest neighbors. A distance could be defined in multiple ways, e.g., three

possible distance measures of a point q from the set Nk(p) are:

• minq∈Nk(p) d(p, q) (minimal distance)

• maxq∈Nk(p) d(p, q) (maximal distance)

• 1
|Nk(p)|

∑
q∈Nk(p)

d(p, q) (averaged distance)

Such different distance measures lead to multiple measures of outlierness. We have ex-

plored some of them but in the next subsection we consider only the third (averaged dis-

tance) that resulted in slightly better outlier detection performance than the other two vari-

ations.

3.4.1 Rank with Averaged Distance Algorithm (RADA)

This algorithm, described below, adjusts the rank-based outlierness value by the average

distance of p from its k−neighbors, where k, `,m∗ are positive integer parameters.

1. Find the clusters in D by NC(`,m∗) method.

2. Declare an object o to be a potential-outlier if it does not belong to any cluster.
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3. Calculate a measure of outlierness:

Wk(p) = Ok(p)×
∑

q∈Nk(p)
d(q, p)

|Nk(p)|
(3.1)

where Ok(p) is as defined in Equation 2.1 in the description of RBDA.

4. If p is a potential-outlier and Wk(p) exceeds a threshold, declare p to be an outlier.

For the dataset in Figure 3.2, we observe that W20(A) = 484.82 and W20(B) = 396.19

implying that A is more likely outlier than B, illustrating that RADA is capable of over-

coming the problem observed with RBDA.

Fig. 3.3: Assignment of weights in different clusters and modified-rank. - Modified-
rank of A, with respect to B, is 1 + 5× 1

9
+ 1

7
.

3.4.2 Outlier detection using modified-ranks (ODMR)

In this section we propose three alternative procedures to overcome the cluster density

effect. We have observed that the size of the neighboring cluster plays an important role
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when calculating the object’s outlierness via RBDA. Recall that in RBDA the weight of a

cluster C is |C|. But, in general, we can assign it a smaller weight to reduce the size effect.

Weight assignments equal to 1,
√
|C|, and log |C| are some possible examples.

We have experimented with weight assignment = 1 and
√
|C|: associated statistics are

described below.

3.4.2.1 ODMR:

Suppose that all clusters (including isolated points viewed as a cluster of size 1) are as-

signed weight 1, i.e., all |C| observations of the cluster C are assigned equal weights =

1/|C|.

Then the “modified-rank" of p is defined as mrq(p) = the sum of weights associated

with all observations within the circle of radius d(q, p) centered at q.

The desired statistic is the sum of “modified-ranks" in q ∈ Nk(p), denoted by

Ω =
∑

q∈Nk(p)

mrq(p). (3.2)

Figure 3.3 illustrates how modified-rank is calculated in this case.

3.4.2.2 ODMRS:

If cluster C is assigned a weight =
√
|C|, i.e., each observation of the cluster is assigned

the weight = 1/
√
|C|, then the “modified-rank" of p is obtained by summing these weights

associated with all observations within the circle of radius d(q, p) centered at q; that is

modified-rank of p from q = mrSq (p) =
∑

s∈{d(q,s)≤d(q,p)}

weight(s).

The associated statistic Ω(S) =
∑

q∈Nk(p)
mrSq (p).
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3.4.2.3 ODMRW:

Yet, a third alternative, to define modified rank, is as follows. Given a cluster C, first we

define pk,d =
∑

q∈Nk(p)
d(p.q). Then the modified rank of p is defined as:

mrWq (p) =
pk,d∑
p∈C pk,d

.

The associated statistic is Ω(W ) =
∑

q∈Nk(p)
mrWq (p)

3.4.2.4 ODMRD:

Influenced by the distance consideration of Section 3.4.1, we present one more algorithm

that modifies ODMR by using additional distance information. ODMRD-outlierness, de-

noted as Ω(D)
k(p), is defined as:

Ω(D)
k(p) =

∑
q∈Nk(p)

mrq(p)× d(q, p)

Note that we have used the modified rank definition of ODMR. Alternatives such as ODMRS

and ODMRW could also be explored.

3.4.3 Algorithm Description

Each of the above variations of ODMR can be used in an algorithm to compute outlier-

ness. We use Ω in the description below, representing ODMR, whereas other variations

use Ω(W ),Ω(S), and Ω(D), respectively, whose definitions were given above. As before,

algorithm parameters k, `,m∗ are positive integers, and D is an non-empty data set. The

algorithm is as follows:

1. Cluster the points in D using the NC(`,m∗) algorithm;
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2. Let the set of potential outliers P = the set of points in D that do not belong to any

cluster;

3. For each point p ∈ P , compute Ω(p) (as defined in Equation 3.2 or its variants);

4. Points p with large values of Ω(p) are declared to be outliers.

When applied to a new problem for which the ground truth is not known, we may examine

the distribution of Ω values to determine a threshold and all points whose Ω values exceed

this threshold would be considered to be outliers. To find the threshold, one can use the

classical upper 95% percentile of Ω values subject to the condition that there must be a

drastic difference between the average of the first 95% values versus the last 5% values (e.g.

4 times more). When there is no such threshold, e.g., if Ω values are uniformly distributed in

an interval, the user would have to select a threshold parameter m that indicates how many

points are to be considered outliers. Two algorithms could be compared by examining the

sets of m points considered to have the highest outlierness values (Ω), and evaluating in

each case how many of these are true outliers (if ground truth is known).

In summary, we have proposed five modifications to RBDA: weighted RBDA, three

based on modified ranks of p among its k−neighbors, and one with modified ranks in

conjunction with the distance.

3.5 Experiments

In this section, we compare the performance of RADA, ODMR, ODMRS, ODMRW, ODMRD,

RBDA, DBCOD, LOF, COF and INFLO for several datasets described in the experiment

section of previous chapter.
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3.5.1 Results

For the synthetic data set, results presented in the Apprendix, Tables B.1 and B.2, show

that RADA, ODMR, ODMRS, ODMRW and ODMRD work extremely well for all values

of k. RBDA achieves the best performance only when k is 25. But all the new algorithms

work better than LOF, COF, INFLO and DBCOD.

For iris data set with rare class, in Tables B.3 and B.4 results show that ODMRW

achieves the best performance when k is 5; LOF is the best when k is 10, while ODMRW

is the second best. For k is 10, RADA, ODMRW, RBDA, LOF, and INFLO have the best

performances.

For ionosphere data set with rare class, results in Tables B.5 and B.6 (with respect to

metrics mt and Recall) show that the algorithms RBDA, ODMR, ODMRD, and RADA

perform equally well whereas DBCOD does not perform well for k ≤ 30.

In the experiments for Wisconsin data set with rare class, Table B.7 show that no single

algorithm dominates, but our new algorithms performed better than LOF , COF , INFLO

and DBCOD.

For iris data set with planted outliers (see Table B.9), ODMRW achieves the best perfor-

mance for all values of k. RADA, ODMR, ODMRS, ODMRD and RBDA all have similar

performances. LOF, COF and INFLO do not work well for this data set since they hardly

detect any outlier when m ≤ 40.

For ionosphere data set with planted outliers (see Table B.10), ODMRW performs better

than the other algorithms for all values of k. DBCOD, LOF, COF and INFLO do not work

well for this data set since they are not able to detect more than 1 (out of 3) outlier when

m ≤ 30.

For Wisconsin data set (see Table B.11), RADA, ODMR, ODMRS, ODMRW, ODMRD

and RBDA achieve the best performances for values of k.

Note that higher value of mt, recall, and RankPower represent the better performance.

RankPower is a more discriminatory metric. Using this metric, the relative behavior of
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Fig. 3.4: Overall performance of algorithms for 7 data sets. - Average performance of
LOF, COF, INFLO, DBCOD, RBDA, RADA, ODMR , ODMRS, ODMRW, and ODMRD
for all data sets by using different values of k. Y axis presents the ratio of RankPower of
an algorithms versus the best RankPower of all the algorithms.
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algorithms can be summarized as:

ODMRW ≥ ODMRD ≥ ODMR ≥ RADA

≥ ODMRS ≥ RBDA ≥ LOF ≥ DBCOD ≥ INFLO ≥ COF

where by “≥" we indicate a better performance.

Table 3.1, which summarizes the performance over all values of k, is obtained by using

normalized RankPower. RankPowers are normalized to fall in the scale [0, 100], where

0 means that the RankPower of the algorithm is least, and 100 corresponds to the largest

RankPower. Values of k were chosen between 5% to 10% of the size of datasets. It can be

seen that ODMRW has the best overall performance.

Table 3.1: Summary of LOF,COF, INFLO, DBCOD, RBDA, RADA, ODMR , ODMRS,
ODMRW, and ODMRD for all experiments.

Dataset LOF COF INFLO DBCOD RBDA RADA ODMR ODMRS ODMRW ODMRD
Synthetic 44 27 36 45 80 100 100 100 100 100
Iris(r) 82 17 59 26 74 76 90 77 98 91
Inosphere(r) 54 57 58 26 92 97 92 92 100 98
Wisconsin(r) 62 86 61 92 93 95 93 92 86 92
Iris(o) 100 67 100 100 100 100 100 100 100 100
Inosphere(o) 49 48 53 34 92 96 92 92 100 96
Wisconsin(o) 6 20 12 47 100 100 100 100 100 100
Summary 57 46 54 53 90 95 95 93 98 97

Note: Numbers represent the average performance rank of the algorithms; a larger value
implies better performance. Data set with ’r’ in the parentheses represents the data set with
rare class. And data set with ’o’ in the parentheses represents the data set with planted
outliers.

3.6 Conclusions

The performance of an outlier detection algorithm based on rank alone is highly influenced

by cluster density variations. Furthermore, by definition, ranks use the relative distances
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and ignore the ‘true’ distances between the observations. This motivated us to develop new

outlier detection algorithms that utilize rank as well as distance information.

Extensive evaluations on synthetic and real datasets have demonstrated that the overall

performance of each of the new algorithms (ODMR and other variants) is significantly

better than previously known algorithms. Among the new variants of algorithms, ODMRW

performed best, perhaps due to the greater weightage placed on distance.
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CHAPTER 4

DETECTION OF ANOMALOUS TIME

SERIES

In this chapter, we address the problem of detecting an anomalous time series with respect

to entire time series data set. To the best of our knowledge existing methods for anomaly

detection use a single measure, failing to capture several varieties of anomalies that occur in

practical applications. This motivates our attempt to develop an anomaly detection method

based on a combination of multiple distance measures. The resulting “MUDIM" algorithm

is successful in detecting anomalies in most of the data sets we have examined, with much

better success rates than other algorithms.

This chapter is organized as follows: in Section 4.2, we review existing approaches

and evaluate them. In Section 4.3, we propose a multiple distance measure based detection

method and evaluation procedure. In Section 4.4, we present experimental details and

results; Section 4.5 summarizes the results.



58

4.1 Problem Definition Revisit

Let us revisit the problem: suppose we are given a time series data set D = {xi(t)|1 ≤ t ≤

n; i = 1, 2, . . . ,m}, where xi(t) represents the data object of the ith time series at time t, n

is the length of the time series, and m is the number of time series in the dataset. The goal

is to calculate O(xi), the outlierness of a series xi, and Othreshold a threshold such that if xi

is an anomalous series, then O(xi) ≥ Othreshold; otherwise O(xi) < Othreshold.

4.2 Existing Approaches - A Revisit

Identification of an anomalous time series is an important data mining task with many ap-

plications such as detecting fraud in credit card datasets, abnormal events in ECG data, net-

work intrusion, electronic device measurement, image processing and astronomical analy-

sis. For example, this technique can be used to detect light curves’ outliers within astro-

nomical data [53]. For financial data, consider time series in Figure 4.1 representing the

stock prices of the oil and gas companies for 2010 to 2012 in which the behavior of one

series (dashed red line) is different from the rest. Another example is for solenoid current

measurement. In Figure 4.2, the normal time series correspond to the data measured during

the normal operations of the valves and the anomalous series is measured during different

faulty operations of the valves. The goal of this study is to detect such anomalous behavior

in a collection of time series.

Viewed as a vector a time series is generally of very large dimensionality. Consequently,

the first step is to obtain a compact representation to capture important information con-

tained in the series. Three main categories of approaches have been identified, by Ding

et al.[16] and Chandola et al. [10], to reduce dimensionality of time series: model based,

data-adaptive, and non-data adaptive approaches. The compact representations obtained

using these approaches must then be compared using suitable distance measures, which

have been categorized into three groups [16]:
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Fig. 4.1: Stock prices for some oil and gas companies and an outlier series. - The
anomalous series is stock price of Walmart. Red dots represents the anomalous series.

Fig. 4.2: Solenoid current measurements on Marotta MPV-41 series valves. - The
anomalous series are measured during different faulty operations of the valves. Red dots
represents the anomalous series.
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• The lock-step measures are based on one-to-one mapping between two time se-

ries. Examples include: Cross Euclidean distance (EUC ) [21], the Cross Correla-

tion Coefficient-based measure, defined as 2
√

2(1− corrcoef(dx, dy)) [4], SameTrend

(STREND), and standard deviation of differences (DIFFSTD) (defined in Section

4.3.2) ).

• The elastic measures are based on one to many mapping between two time series,

e.g., Dynamic time warping (DTW) [3] [38], and Edit Distance on Real sequence

(EDR) [14].

• Measures in the transformed space, includes TQuEST [1] distance and Spatial As-

sembling Distance SpADe [15]. Other examples include Symbolic Aggregate ap-

proXimation (SAX) proposed by Keogh and Lin [41] with and without sliding win-

dow (SAXSL and SAXNW respectively); SAX with bag-of-pattern (SAXBAG) [46],

Discrete Wavelet Transform [8], and Discrete Fourier Transform [21].

Wei et al. [62] proposed an algorithm to find unusual shapes by using SAX presenta-

tion to speed up the process for selecting the best candidates. Lin et al. proposed distance

between bag-of-pattern [46] based on frequencies of each unique SAX words to find the

similar time series, which can be also applied for anomalous time series detection. Keogh

et al. [38] suggested indexing techniques for dynamic time warping by using their pro-

posed lower bounding measure, which can be used for detecting distance measures of time

series. Protopapas [53] computed outlier measure as the average of correlations between

time series. Chan [8] showed that Euclidean distance on Haar transformed domain can be

effective for finding time series matches and it outperformed Discrete Fourier Transforma-

tion (proposed by Faloutsos [21]). Bu et al. [6] applied Haar wavelet transform on time

series and built an augmented trie to find top k discords in time series database. In Ta-

ble 4.1, we summarize the Pros and Cons for some popular distance measures mentioned

above. It is clear that no single measure is able to detect all types of anomalous series.
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4.3 Outlier Detection Based on Multiple Distance Mea-

sures - MUDIM

4.3.1 Measure Selection

As described earlier, no single measure is capable of capturing different types of perturba-

tions that may make a series anomalous. Consequently it makes sense to include more than

one measure. An obvious choice is to select measures that are orthogonal to each other. We

have tried several methods to select the best combination of measures. First we describe

the method based on correlation coefficient. The heuristic is to select measures that are

least correlated with each other. The correlation coefficients of distances based on different

measures are calculated and selection is made using the heuristic. We used the following

steps:

1. Selected 30 data sets as testing set, which is denoted as DT = {Dm|1 ≤ m ≤ 30}

(see starred data sets in Tables 4.3 and 4.4) from multiple application domains such

as finance, electronics, astronomic, and image recognition, including some synthetic

data sets. The details of each data set is provided in Table 4.3.

2. We selected 8 distance measures: SAXSL, SAXNW, SAXBAG, DTW, WAVELET,

FOURIER, DIFFSTD AND STREND. The last two measures are introduced in the

following paragraphs. This collection is denoted as F .

3. Then we apply each distance measure for every data set, and calculate the distance

between every possible pair of series in the data set. Let Distm,n(i, j) be the dis-

tance between ith and jth series in the data set Dm by using nth distance mea-

sure in F , where 1 ≤ m ≤ 30, 1 ≤ n ≤ 8. The correlation coefficient between

pth and qth distance measures for the data set Dm is denoted as CCFm(p, q) =

corrcoef(Distm,p(i, j), Distm,q(i, j)), where i, j ≤ |Dm|.
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4. Let the average correlation coefficient between pth and qth measure ∈ F for all data

sets be denoted as CCF (p, q) =

30∑
m=1

CCFm(p,q)

30
.

5. The correlation coefficient matrix between different measures is obtained, as shown

in Table 4.2, and average correlation coefficientCCF (p) is calculated as

|F−1|∑
q∈F,q 6=p

CCF (p,q)

|F|−1 .

6. Select the measure which has the highest CCF(p) values. This measure is DIFFSTD.

7. Select the measure with the lowest correlation coefficient with DIFFSTD. It is SAXBAG.

8. In order to get the real relationship between DIFFSTD and SAXBAG, a partial cor-

relation can be calculated between DIFFSTD and SAXBAG, controlling with third

measure; as Table 4.2 shows with STREND, partial correlation coefficient between

DIFFSTD and SAXBAG is the minimum ( 0.096).

9. Calculate CCF values for a measure versus DIFFSTD and SAXBAG respectively.

Select the larger value. Repeat this for all other measures. Finally select the smallest

of them. The corresponding measure is our next selected measure.

10. Finally, DIFFSTD, SAXBAG, and STREND are our potential candidates.

Our second method to find a subset of above described measures is the exhaustive

method. We tried our algorithms (introduced in Section 4.3.2 ) based on each possible

combination consisting of two to four measures on 30 data sets introduced above, and

then selected the combination which achieves the best performance. The results show

that: combination of two or four measures is generally worse than a combination of three

measures. The combination consisting of DIFFSTD, SAXBAG, and STREND achieves

the best performance in our experiments.
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4.3.2 Anomaly Detection Based on Selected Measures

The correlation based approach selected three measures: (a) SAXBAG, (b) Same Trend

(STREND), and (c) Standard deviation of differences between two time series (DIFFSTD).

These three measures are described below, with a brief discussion that further justifies their

selection.

• SAXBAG (proposed by Lin et al. [46]): Given a time series, a subsequence of size `

is obtained using a sliding window. Each subsequence is reduced to w-dimensional

discrete representation in two steps. First, the subsequence is further divided into

u = `
w

equal size sub-subsequences and the average value of the data falling within

a sub-subsequence is evaluated. In the second step, each average is discretized to

a symbol, from a predetermined set of symbols, using equal probability intervals

approach. Figure 4.3(a) illustrates these concepts useing three symbols: a, b, and c.

• STREND: This is a new measure that we propose. For each i, we calculate the

difference x′i(t) = xi(t+ 1)− xi(t), t ∈ [1..n− 1] and define

Si,j(t) =


1 if x′i(t) · x′j(t) > 0

−1 if x′i(t) · x′j(t) < 0

0 otherwise.

Clearly, Si,j(t) indicates whether or not xi(t) and xj(t) change in the same direction

at time t. The aggregate measure, over the entire length, n, of the time series is

evaluated as

dist(i, j) = 1−
∑

t∈[1..n−1]

Si,j(t)/(n− 1). (4.1)

• DIFFSTD is the standard deviation of differences between two time series, i.e., if

δi,j(t) = ‖xi(t) − xj(t)‖, and µi,j =
∑

t δi,j(t)/n, then the new distance is defined



66

Fig. 4.3: Illustrations for three key measures of MUDIM - (a) Illustrates how a SAX
word, in a sliding window, is generated. SAXBAG counts the frequencies of such words
in the word-sequence; (b) illustrates STREND (table under the figure shows Si,j(t)’s); and
(c) illustrates DIFFSTD (vertical lines show the differences between two time series x1 and
x2).
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as dist(xi, xj) =
√

(
∑

t(δi,j(t)− µi,j(t))2/n. This measure is widely used in pair

trading in the financial field.

These measures capture different aspects of the time series, and a combination of these

gives a comprehensive measure of how isolated is a time series from others in the compari-

son set. SAXBAG captures behavior of a time series using a histogram of possible patterns,

STREND identifies the degree of synchronization of a series compared with another series,

and DIFFSTD measures the amount of deviation, as illustrated in Figure 4.3. Combining

these three metrics produces a comprehensive and balanced distance measure that is more

sensitive than individual measures.

From another perspective, SAXBAG addresses the “signature of a single time series"

whereas DIFFSTD and STREND are inter-time-series-measures; STREND focuses on the

synchronization of two time series whereas DIFFSTD focuses on the magnitude.

4.3.3 Normalization

After all three distance measures are calculated, they need to be normalized and combined

together. The ranges of selected measures are very different; for example, the range of

STREND is from 0 to 1, and the range of SAXBAG is from 0 to
√

2× l2 where l = the

number of words obtained from the entire series. So the three distance measures have to be

normalized in order to be processed further without any bias due to the different ranges.

Different normalization methods were tested including (1) linearly mapping in [0,1]

range; (2) removing 5% of the extreme observations on either end, then linearly mapping

to [0,1] range; (3) Dividing observations by trimmed mean (excluding 5% on either end).

Among all these normalization methods, the last normalization method appears to perform

best1 . The normalized distances between the ith and the jth series, based on SAXBAG,

STREND, and DIFFSTD are denoted as dist′s(i, j), dist′t(i, j), and dist′f (i, j), respectively.

1An extreme observation can strongly affect the mean and the standard deviation of a data set. To achieve
‘improved’ performance and robustness, use of trimmed mean is appropriate.
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4.3.4 Assignment of Weights to Selected Measure

Anomalousness of a time series can be measured in aforementioned three ways. How-

ever, it is quite possible that all three are not equally effective in detecting anomalousness.

Consequently it makes sense to assign the highest weight to that measure which is more ef-

fective. We calculate three weights adaptively, using the rank based approach discussed in

the previous Chapter. Different weights are assigned for different measures of each series

in a data set. The weight associated with a measure ` of the ith series in a given data set,

weight′`(i), is computed as follows:

1. For the ith series, find its k-nearest-neighbors (kNN) using the distance measure.

2. Based on kNN, find RBDA value, Ok(p), of ith series using equation 2.1.

3. weight′`(i) = Ok(p).

The advantage of our method for assignment of weight is its adaptability since rank based

algorithm automatically adjust the weights according to its anomalousness. Details can be

found in Algorithm MUDIM.

4.3.5 Decision for Anomalous Series

Getting the anomaly score for each series is not the final step, because there is one last

question left: which series is anomalous? This question we have again, can be answered

by our previous work in Chapter 3. We have two solutions: threshold based and clustering

based.

The basic idea of the first method is to assign the anomaly score for each series, then

decide the threshold for anomaly determination. The anomaly score for each series is

calculated based on distances and weights of the three measures mentioned in previous
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section.

Ai =

√ ∑
`∈{s,t,f}

(dist′`(i))2 × weight′`(i). (4.2)

Then we sortAi in descending order and calculate the average and standard deviation of the

lower 80% of sorted Ai observations. If the ith series has an Ai larger than three standard

deviation over average, it is declared as an anomalous series.

The second method is to make decisions via clustering. This idea can be applied in at

least two ways: 1) Apply the clustering algorithm NC(`,m∗) described in Chapter 3 in 3-

dimensional space (using all three features of a series), if a series belongs to a cluster, then

it is declared as normal, otherwise potentially anomalous; 2) Apply it in each feature space

separately. If a series belongs to one cluster in all three feature spaces, then it is declared as

a normal series, otherwise it is potentially anomalous. Finally, each potentially anomalous

series can be compared with normal series. For instance, if anomalousness is 3 standard

deviation above than that of a normal series, then it can be considered anomalous.

After empirical comparison of above two methods, the first one appear to be the better,

since the latter method results in more false positives.

All the steps of the resulting MUDIM algorithm are shown in Algorithm MUDIM.

4.3.6 Evaluation Methods

All time series in the given data set are normalized to have zero mean and standard deviation

equal to one, as suggested by Keogh [40], who writes “both series must be normalized to

make the meaningful comparisons between time series".

In the experimental study described below, we use the widely used RankPower com-

parison metric [57].

RankPower: Suppose we know the anomalous series in the dataset. The set of all such

series is denoted by O ⊂ D. A good algorithm should declare a series anomalous if it
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Algorithm 1 MUDIM algorithm.
Require: a positive integer k and a time series dataset D.
Ensure: outliers in D.

Step 1. Calculate the distances between ith and jth time series using SAXBAG,
STREND, and DIFFSTD, denoted as dists(i, j), distt(i, j), and distf (i, j), respectively.
Step 2. For ` = s, t, f normalize the raw distance to be between 0 and 1 as follows:

dist′`(i, j) =
dist`(i, j)

mean([5% . . . 95%] of sorted list of dist`(i, j))

Step 3. The weight for ith series for normalized ` feature for ` ∈ {s, t, f}, is as
weight′(i), can be calculated as:

weight′`(i) = Wk(i); where Wk(i) is calculated by equation 3.1 in Chapter 3.

Wk(i) = Ok(i)×
∑

q∈Nk(i)
d(q, i)

|Nk(i)|

Step 4. For all i ∈ D, find k-nearest neighbors of the ith time series using dist′`(i, j) for
j = 1, . . . ,m; j 6= i;` ∈ {s, t, f}.

dist′`(i) =

∑
j∈Nk(i)

dist′`(i, j)

|Nk(i)|

where Nk(i) denotes the set of k-nearest neighbors.
Step 5. Calculate the anomaly score, Ai, for the ith time series as combined distance
based on weighted distances:

Ai =

√ ∑
`∈{s,t,f}

(dist′`(i))2 × weight′`(i).

Step 6. Sort Ai in descending order and calculate the average and standard deviation of
lower 80% of sortedAi observations. Any ith series with anAi larger than three standard
deviation over the average is declared to be an anomalous series.
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belongs to O, i.e., we expect that the algorithm will assign large anomaly scores to series in

O and smaller values to series ∈ D−O. To quantify this expectation we define RankPower

as follows. First we sort series in descending order of magnitude of their anomaly scores.

The series with largest score is assigned the rank 1, and the series with the smallest value

is assigned rank = m. We now define:

RankPower =
|O|(|O|+ 1)

2
∑

i∈O Ri

.

Clearly, if all series in O are ranked between 1 and |O|, the RankPower takes its largest

possible value, 1. Moreover, if RankPower of Algorithm I is larger than the RankPower of

Algorithm II, then Algorithm I is considered to be better in detecting anomalous series.

4.4 Datasets and Results

We have used 47 data sets, consisting of our three synthetic datasets and 44 modified real

datasets from all kinds of application domains, to compare performances of algorithms,

including MUDIM. In our experiments, three parameters of SAXBAG, the size of subse-

quence, the length of SAX word and the number of symbols, were 20, 5, and 5, respectively.

4.4.1 Datasets

Synthetic datasets are designed to introduce typical time series problems such as time lag-

ging and amplitude differences (see Figure 4.4). The real datasets come from different

application domains, such as synthetic, finance, electronic, image recognition and video

surveillance. We augment these real datasets by introducing one or more anomalous series.

Details about the normal series and anomalous series in each data set are given in Table

4.3 and 4.4. Since some data sets were originally designed for classification problems, we

modified them for our anomaly detection experiments by selecting all time series from one
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Fig. 4.4: Typical time series problems - Time lagging: two series Ta(t) and Tb(t),
Ta(t) = Tb(t+ x); Amplitude differences: Ta(t) <> Tb(t)

class and choosing a few time series from another class that are very different from the

most of the series of the first class, thus making them anomalous.
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Fig. 4.5: Plots of time series data set, part 1 - Red dots line represents anomalous series

Some background information about the data sets is given below:

• Synthetic Dataset 1(SYN1). Synthetic dataset 1 contains 14 univariate time series

including two anomalous time series. The length of each time series is 500. The two

anomalous time series have shapes considerably different from the others.

• Synthetic Dataset 2(SYN2). Synthetic dataset 2 contains 30 time series including

two anomalous time series, each of length 128. The normal time series consist of

two dissimilar groups, but the two anomalous series do not belong to either group.

• Synthetic Dataset 3(SYN3). Synthetic dataset 3 contains 7 time series including one

anomalous time series with the length of 500. The dataset contains time series with

many types of scaling such as increasing scaling and varying scaling. The anomalous

time series is a single (flat) line perturbed by random noise.

• Stocks(STOCKS). This dataset consists of closing prices of 17 oil & gas operation

industry stocks and one consumer retailer stock(WMT:Wal-Mart) from January-4th-

2010 to February-10th-2012 [66]. All stock prices are aligned by dates and contain
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Fig. 4.6: Plots of time series data set, part 2 - Red dots line represents anomalous series

Fig. 4.7: Plots of time series data set, part 3 - Red dots line represents anomalous series
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Fig. 4.8: Plots of time series data set, part 4 - Red dots line represents anomalous series

Fig. 4.9: Plots of time series data set, part 5 - Red dots line represents anomalous series
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Fig. 4.10: Plots of time series data set, part 6 - Red dots line represents anomalous series

Fig. 4.11: Plots of time series data set, part 7 - Red dots line represents anomalous series
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Fig. 4.12: Plots of time series data set, part 8 - Red dots line represents anomalous series

527 values. The symbols for the 17 stocks in oil and gas industry are APA, APC, BP,

CNQ, COP, CVE, CVX, DVN, EOG, HES, IMO, MRO, OXY, STO ,TOT, WNR,

XOM. All stock prices are normalized with a mean of zero and standard deviation of

one.

• Commodity Prices(OPMZ). This data set contains five commodity prices from [26]

and one consumer retailer stock(WMT:Wal-Mart) from October-13th-2009 to April-

13th-2012 [66]. Each series contains 629 values. The five commodities are wheat,

corn, cocoa, coffee and cotton. All prices are normalized with a mean of zero and

standard deviation of one. Since Wal-Mart is not a commodity, the outlier detection

method is expected to find Wal-Mart as an outlier in this experiment.

• Synthetic Lightning EMP (EMP3). This data set, from [35], contains 11 time

series; 8 of them are from one class and three anomalous series are from another

class. Each series contains 201 observations.

• Motor Current data set(MOTOR). Original data set is from [39], and contains 420
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time series. 21 were chosen including 1 anomalous time series, and each one consists

of 1500 real values. Normal time series are the current signals measured from normal

operations of a induction motor. The anomalous time series is obtained from a faulty

motor.

• Power Usage Data(POWER). This data set was obtained from UCR [39], and con-

tains 51 time series corresponding to the weekly power consumption measured every

15 minutes at a research facility from week 2 to week 52 in 1977. Each time series

contains 672 values, and the anomalous time series represent the power consumption

during the weeks with a holiday or special event.

• NASA Valve Data(TEK140, TEK160 and TEK170). This data set was also ob-

tained from UCR [39]. The data values are solenoid current measurements on a

Marotta MPV-41 series valve which is on and off under various test conditions in a

laboratory. The normal time series correspond to the data measured during the nor-

mal operations of the valves; the time series data measured during a faulty operation

of the valve is considered an anomaly. Three data sets T14, T16, and T17 all contain

5 time series of which 4 are normal and one is anomalous. The anomalous time series

were measured during different faulty operations of the valves.

• Shape(SHAPE1 and SHAPE2) These data sets were also obtained from UCR [39].

Both consist of 21 time series corresponding to the shapes. The normal time series

have the shapes of bones while the anomalous time series has the shape of a cup.

• Automatic Diatom Identification using Contour Analysis(ADIAC1 and ADIAC2).

These data sets ,also obtained from UCR [39],describe the contours of different type

of diatoms.

• Words(WORDS1 and WORDS2). These data were also obtained from UCR [39]

and describe the contours of word images.
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4.4.2 Experiment Results

RankPowers of all algorithms on all data sets are summarized in Table 4.5. From this table,

we conclude that MUDIM has the best overall performance and its RankPowers are 1 in

all cases; i.e; it finds the anomalous series in all data sets. This confirms our intuition that

a combination of measures performs better in most cases. We observe that simple methods

such as DIFFSTD, DTW, SAXSL, and FOURIER also work well in some, but not all cases.

Domain specific analysis is summarized below:

• MUDIM and STREND are good at detecting outliers in financial data sets such as

stock prices and commodity prices, perhaps because financial time series can be eas-

ily aligned, and variation in amplitudes is a common problem in financial time series

(for example, one stock may increase by 1% and another stock may increase by 5%

in the same day). Measures such as SAXSL, SAXBAG, DIFFSTD and FOURIER

rarely find real outliers in such data.

• Traditional methods, such as DTW, WAVELET and FOURIER, show good perfor-

mance in many data sets.

Summarizing the results, MUDIM achieves the best results and shows stable detection

accuracy in the experiments.

4.5 Conclusion

In this chapter we have tested the performance of popularly used measures for multiple

application domains. We observe that a combination of three measures performed the

best, i.e., was able to identify anomalous times series in all domains considered in our

experiments. The selection of three measures is, based on some preliminary analyses,

and also because we wanted to include measures that do not overlap in their detection

capabilities.
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Table 4.5: RankPowers of algorithms for 47 data sets.
Dataset SAXSL SAXNW SAXBAG DTW DIFFSTD STREND WAVELET FOURIER MUDIM
SYN1 1 1 1 1 1 1 1 1 1
SYN2 0.3 0.5 1 1 1 1 0.429 1 1
SYN3 0.5 0.333 1 0.5 0.5 0.5 0.5 0.5 1

STOCKS 1 0.5 0.067 0.333 0.5 1 1 0.5 1
OPMZ 1 0.5 0.333 0.5 0.5 1 0.5 0.5 1
EMP3 1 1 1 1 1 1 1 1 1

MOTOR 1 0.048 1 0.077 0.059 0.2 0.059 1 1
POWER 0.933 1 0.189 1 1 0.56 1 1 1
TEK140 1 1 1 1 1 0.5 1 1 1
TEK160 1 0.5 0.333 1 1 0.5 1 1 1
TEK170 1 0.5 0.5 1 1 0.5 1 1 1
SHAPE1 1 1 0.125 1 1 1 1 1 1
SHAPE2 1 1 1 1 1 1 1 1 1
ADIAC1 0.143 1 1 0.333 0.167 0.143 0.167 0.5 1
ADIAC2 0.5 1 1 1 0.5 1 0.333 1 1

BEEF1 0.167 0.167 1 0.143 0.143 1 0.143 0.143 0.5
COFFEE1 1 1 1 0.25 0.333 0.111 0.2 0.5 1
COFFEE2 0.03 0.056 0.6 1 0.068 0.016 0.07 0.231 1

CBF1 0.5 1 0.5 0.333 1 1 1 0.333 1
CBF2 1 0.5 1 1 1 0.5 1 0.333 1

WORDS1 0.25 0.333 0.2 1 1 0.2 1 0.5 1
WORDS2 0.333 1 1 1 1 1 1 1 1
WAFER1 0.6 1 1 1 1 1 1 1 1
WAFER2 0.769 0.625 1 0.667 0.625 0.588 0.588 0.303 1

ECG1 1 1 0.273 0.286 1 0.4 1 0.4 1
ECG2 0.6 0.6 0.25 0.214 0.75 0.2 0.75 0.143 1

FACEALL1 0.6 0.375 0.75 0.75 0.6 0.375 0.6 0.75 0.6
FACEALL2 0.75 0.6 1 0.6 0.429 0.3 0.429 0.107 0.75

SBANK 1 0.5 0.167 0.5 0.5 1 1 0.5 1
SMINE 1 1 1 1 1 1 1 1 1
YOGA1 1 1 0.333 0.2 0.5 1 0.5 0.25 1
YOGA2 0.143 0.2 0.333 0.2 0.25 0.2 0.25 0.5 0.5

SWEDL1 0.5 0.2 1 1 0.2 0.25 0.2 1 1
SWEDL2 1 1 1 1 0.5 0.5 0.5 1 1

FISH1 0.5 1 1 0.143 0.333 0.5 0.333 0.25 1
FISH2 1 1 1 1 1 1 1 0.5 1

OLIVE1 0.333 1 0.5 1 1 0.5 1 1 1
OLIVE2 0.2 1 0.5 1 1 0.125 1 1 1

TWOPT1 0.545 1 1 1 0.6 0.545 1 1 1
TWOPT2 1 1 0.286 1 1 0.09 0.24 0.333 0.667

LIGHTING1 0.25 0.25 1 0.333 0.5 0.333 0.5 1 1
LIGHTING2 1 1 0.2 0.333 0.333 0.5 0.5 0.333 1

FACE41 1 1 0.167 1 1 0.091 1 1 0.2
FACE42 1 1 1 1 1 1 1 1 1

GUNPT1 1 0.143 0.25 1 0.2 0.333 0.2 1 1
GUNPT2 1 1 1 0.25 1 1 1 1 1
GUNPT3 1 0.143 0.04 1 0.167 0.05 0.2 1 0.1

Average 0.733 0.714 0.679 0.722 0.686 0.587 0.685 0.711 0.922
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CHAPTER 5

ONLINE ANOMALOUS TIME SERIES

DETECTION

In this chapter, we extend to anomalous series detection algorithm (MUDIM) to an online

version. This approach, akin to control charts, makes it easy to determine when a series

begins to differ from other series. Empirical evidence shows that this novel online anoma-

lous time series detection algorithm performs very well, while being efficient in terms of

time complexity, when compared to approaches discussed in the literature (Section 5.2).

This chapter is organized as follows: two online algorithms are introduced in Section 5.3;

experiments are discussed in Section 5.4; conclusions are given in Section 5.5.

5.1 Problem Statement

Suppose a time series data set D = {xi(t)|1 ≤ t ≤ unknown; i = 1, 2, . . . ,m}, where

xi(t) represents the data object of the ith time series at time t, length of the time series is

unknown, and m - the number of time series in the dataset is given. The goal is to calculate

O(xi(t)), the outlierness of a series xi at time t.
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5.2 Literature Review

Online detection requires that we detect the anomalous series as soon as any new obser-

vation has arrived. For example, the behavior over time of the stock price of a company

may exhibit significant deviations from those of other companies in a comparison group,

suggesting an underlying problem that should trigger actions by stock traders. In order to

carry out such actions, it is important to detect such deviations as they occur in time, else

the trader may be too late and may suffer losses due to delays in analysis and decision-

making. Hence, in this chapter we focus on online anomalous time series detection, also

known as real-time detection.

Several methods have been proposed in recent years to address this task. Chandola et

al. [12] suggest a kNN based method which assigns anomaly score, equal to Euclidean dis-

tance to kth nearest neighbor in the data set, to each time series. Another distance measure

based approach that can be used with kNN is dynamic time warping (DTW) proposed by

Berndt and Clifford [3]. To address the time complexity of DTW, Keogh and Ratanama-

hatana [38] propose a lower bound based pruning technique to provide approximately linear

time complexity. Fujimaki et al. [25] suggest Autoregressive (AR) approach which con-

structs a global AR model for all series and then calculates the anomaly score at time t as

the gap between the observed value and the predicted value. Zhou et al [71] propose to

apply the Back propagation Neural Network to the results of Local Outlier Factor(LOF), to

analyze the outliers over data streams.

These methods are all based on single measure which may not achieve the best perfor-

mance, as discussed in Chapter 4.
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5.3 Online MUDIM Algorithms

5.3.1 A Naive Online MUDIM Algorithm (NMUDIM)

In Chapter 4, we proposed MUDIM, an anomaly detection method based on three distance

measures:

• distf (i, j): Standard deviation of differences (DiffStD) between ith and jth time

series;

• distt(i, j): Same trend (STrend) distance between ith and jth time series, which

identifies the degree of synchronization of a series with another series; and

• dists(i, j): SAXBAG distance between ith and jth time series, proposed by Lin [46],

which captures patterns of a time series using a histogram of possible patterns.

All these three distance measures can be updated for incremental changes, as follows:

• DIFFST: The variance (square of the standard deviation) of differences between

series i and j at time n can be calculated as:

distf (i, j) =
n× ssq(i, j)− (sqs(i, j))2

n× (n− 1)
, (5.1)

where ssq(i, j) =
n∑
t=1

(xi(t)− xj(t))2 and sqs(i, j) =
n∑
t=1

(xi(t)− xj(t)) (5.2)

Clearly, the numerator in 5.1 can be updated for the (n+1)th observations by adding

(xi(n + 1) − xj(n + 1))2 and (xi(n + 1) − xj(n + 1)) to ssq(i, j) and sqs(i, j)

respectively.

• STrend Let x′i(n) = xi(n)− xi(n− 1). Then, by definition,

Si,j(n) =

 1 if x′i(n) · x′j(n) > 0 or x′i(n) = x′j(n) = 0

0 otherwise



86

Consequently,

distt(i, j) =

∑n
t=2 Si,j
n− 1

. (5.3)

Therefore, to update it, for the (n+ 1)th observation we fix the numerator by adding

the last trend Si,j(n+ 1) and accordingly modify the denominator as well.

• SAXBAG is based on SAX. It converts the data segment in the sliding window of

size w to a single SAX word and then counts the frequency fi of each word. When

data at time n+ 1 is observed, a new SAX word will be generated based on {xi(n+

2 − w), xi(n + 3 − w), xi(n + 4 − w), ..., xi(n + 1)}. The stored data set can be

updated to account for the new SAX word.

• Normalization and Assignment of Weights Normalize distf (i, j), distt(i, j), and

dists(i, j) to dist′f (i, j), dist′t(i, j), and dist′s(i, j) respectively according to Step 2

in Algorithm 4.3.5. Then weight′`(i) be also calculated.

• Finally, anomaly score for ith series, Ai =
√∑

`∈{s,t,f}(dist′`(i))2 × weight′`(i).

Based on the above equations, we first propose the "naive" online detection algorithm

presented in Algorithm AlgNMUDIM . Anomaly scores, Oi’s, for each time series can be

plotted, for example see Figure 5.2.

Ignoring the length of a time series, the time complexity of NMUDIM is O(m2), be-

cause in MUDIM and NMUDIM we calculate distances distl(i, j), l = s, t, f for all i 6= j.

In addition, the k nearest neighbor of series i are identified for each i. In the next subsec-

tion, we propose a method to reduce this complexity.
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Algorithm AlgNMUDIM
Require: a positive integer k (number of nearest neighbor) , l (initial length for prepro-

cessing) and data stream sets D.
Ensure: anomaly score O for each series in D.

1: O = ∅;
2: Initially length of all series in D is l.
3: for i ∈ D do
4: Calculate and store saxi, fi;
5: for j ∈ D do
6: Calculate dists(i, j), distt(i, j), distf (i, j);
7: Calculate and store Si,j, ssq(i, j), sqs(i, j);
8: end for
9: end for

10: while new observations at time τ arrive do
11: for i ∈ D do
12: Update fi, saxi;
13: for j ∈ D do
14: Update Si,j, ssq(i, j), sqs(i, j) and dists(i, j), distt(i, j), distf (i, j) based on

equations 5.1 to 5.3;
15: end for
16: end for
17: for i ∈ D do
18: Ai(k) = Equation in Step 5 in Algorithm 4.3.5
19: Oi(τ) = Ai(k);
20: end for
21: end while
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Algorithm AlgOMUDIM
Require: a positive integer k (number of nearest neighbor) , l (initial length for preprocess-

ing), a real number α ∈ [0..1]( proportion of random sampling),β ∈ [0..1](proportion
of top used for threshold selection) and data stream sets D.

Ensure: anomaly score O for each series in D.

1: O = ∅.
2: Initially length of all series in D is l.
3: for i ∈ D do
4: Calculate and store saxi, fi.
5: for j ∈ D do
6: Calculate distmsm(i, j) based on 5.4.
7: Calculate and store Si,j, ssq(i, j), sqs(i, j).
8: end for
9: end for

10: while new observations at time τ arrive do
11: Find S which is randomly selected α proportion of the series from D;
12: for i ∈ S do
13: for j ∈ D do
14: Calculate Ai(k) based on equation 5.5.
15: end for
16: end for
17: Set threshold h = Aβ(k), where Aβ(k) is the top (β × 100)th percentile of Ai(k)’s

in descending order.
18: Mark i as non-anomalous if its Ai(k) is less than h.
19: for i ∈ D − S do
20: for j ∈ D do
21: Update Si,j, ssq(i, j), sqs(i, j) and distmsm(i, j) based on eqs 5.1 to 5.3
22: Update heapi and heapj with distmsm(i, j) where heapi and heapj contain the

k minimum distmsm for series i,j
23: if average(heapj) < h and heapj.size = k then
24: mark j as non-anomalous;
25: end if
26: if average(heapi) < h and heapi.size = k then
27: mark i as non-anomalous; break;
28: end if
29: end for
30: end for
31: for i ∈ D do
32: if i is marked then
33: Ai(k) = 0.
34: else
35: Ai(k) =

∑
j∈Nk(i) distmsm(i,j)

|Nk(i)|
.

36: end if
37: Oi(τ) = Ai(k)
38: end for
39: end while
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5.3.2 Faster Online Detection of MUDIM (OMUDIM)

To speed up the process, instead of using rank based weighted distance in MUDIM 4.3.5,

a simple weighted distance can also be used:

distmsm(i, j) =

√∑
`∈{s,t,f}(dist′`(i, j))2

3
. (5.4)

Then, the anomaly score for the ith series ,Ai(k), can be defined as the average of distmsm(i, j)

for i over its k nearest neighbor:

Ai(k) =

∑
j∈Nk(i)

distmsm(i, j)

|Nk(i)|
(5.5)

Now, select any k neighbors of i, and let A′i(k) denote the average distmsm(i, j) over them,

then, obviously, average distance of k-nearest-neighbors of i must be less or equal to aver-

age distance of any k neighbors of i, so:

Ai(k) ≤ A′i(k). (5.6)

In addition, if we can find a threshold λ such that Ai(k) < λ implies i is not an anomalous

series; then any A′j(k) < λ also implies j is not an anomalous series either; thus most

of the non-anomalous series can be excluded from anomaly score calculations. This is

the essence of OMUDIM. To find an estimate of the threshold, λ, we apply the following

sampling procedure: we calculate Ai(k)’s for i ∈ S, where S contains α × 100 percent

of D, randomly selected. Then λ is chosen to equal the value of Ai(k) which is at the top

(β × 100)th percentile in descending order. Based on the above observations, we propose

OMUDIM, a faster version of MUDIM, whose key steps are as follows:

1. Find λ as described above.

2. For xi ∈ D−S , maintain a binary max heap consisting of distmsm(i, j) where j’s are
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selected k neighbors of i. If the average of these k neighbors is less than λ, series i is

declared as non-anomalous. Else distmsm(i, j) is calculated for next selected value

of j, and the heap is updated by keeping only the smallest k values of distmsm. The

anomalousness of series i is tested using the above criterion. This process stops if at

any stage, the series is found to be non-anomalous or no j is left.

3. Calculate the anomaly scores of all potential anomalous series (found in Step2) and

find the anomalous series, if any.

4. The above steps are repeated once new observations arrive.

The details of OMUDIM are given in Algorithm AlgOMUDIM. By applying these

techniques, the time complexity of MUDIM is considerably reduced, as observed in exper-

imental simulations.

5.4 Experiments

Fig. 5.1: Experimental data sets - Four data sets (from top to bottom, left to right) :
SYN2, STOCKS, MOTOR, and SHAPE1. Anomalous series are marked as red.
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Fig. 5.2: NMUDIM anomaly scores for each data set - Plots of the online anomaly
scores for each series at time 100+x in four data sets (from top to bottom, left to right) :
SYN2, STOCKS, MOTOR, and SHAPE1. Anomalous series are marked as red.

We use eleven data sets, consisting of three synthetic data sets and eight modified real

data sets introduced in Chapter 4, viz., SYN1, SYN2, SYN3, STOCKS, OPMZ, MOTOR,

POWER, TEK140, TEK160, TEK170 and SHAPE1, to assess the effectiveness of the pro-

posed algorithm. Key characteristics of the data sets are shown in Tables 4.3 and 4.4.

Performance of our algorithms, measured in terms of capturing anomalous series, with ex-

isting online algorithms is presented in Table 5.1. We also calculate the running time of the

algorithm for synthetic data streams. The comparisons of computational effort between the

NMUDIM and OMUDIM are also shown in Table 5.2.

5.4.1 Results

In all experiments, the initialization is performed at l = 100th observations and the rest of

the observations of the series are used to test the effectiveness of the proposed algorithm.

The number of nearest neighbors is set at k = 5 for all data sets. All figures are obtained

based on results of NMUDIM.
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Table 5.1: Performance of all algorithms.
Numbers show the true outliers that are identified by algorithms within top p positions.

data sets p =# of true outliers Euclid AR DTW NMUDIM OMUDIM
SYN1 2 2 1 2 2 2
SYN2 2 2 2 2 2 2
SYN3 1 0 1 0 1 1

STOCKS 1 0 0 0 1 1
OPMZ 1 0 1 0 1 1

MOTOR 1 1 0 1 1 1
POWER 7 7 1 7 7 7
TEK140 1 1 0 1 1 1
TEK160 1 1 0 1 1 1
TEK170 1 1 0 1 1 1
SHAPE1 1 1 0 1 1 1

The data series in data sets are plotted in Figure 5.1 and the performance of the algo-

rithm in Figure 5.2. As more data arrives and if more unusual patterns occur, the anomaly

score increases and the gap between anomalous and normal series becomes larger. Normal

series’ anomaly scores converge if they are similar to each other.

We compare the performance of our algorithms with three other online detection al-

gorithms based on (a) Euclidean distance, (b) Dynamic Time Warping (DTW), and (c)

Autoregressive (AR) approach, proposed by[10], [41] and [25] respectively. The first two

of these methods calculate a measure of anomalousness of a time series by (i) finding the k-

nearest neighbors of the series, and (ii) using the average distance of these k-neighbors. The

third method constructs a global AR model for all series and then measures the anomaly

score at time t as the gap between the observed value and the predicted value.

To compare the performance of these algorithms, we simply compare the numbers of

true anomalous series they detect once all observations have arrived,shown in Table 5.1.

It can be seen that our methods (NMUDIM and OMUDIM) perform very well for all

11 data sets; i.e., anomalous series are always in top p places. Other methods do well for

some but not all sets. As seen in Chapter 4, this illustrates that no single "pure" metric is



93

sufficient for capturing multiple types of anomalies.

5.4.2 Time Complexity

To find the actual running complexity of the algorithm, six synthetic data sets were created.

The algorithm was implemented by Matlab R2010b, and was run on a machine with Core

i7, 6G memory, Windows 7 system.

The time complexity of the algorithm is O(n × m2) because it updates stored data

structures when new data arrive and then inter-time series distances are obtained for each

pair of series. In addition, the k-nearest neighbors are obtained in order to calculate the

anomaly scores.

As shown in all four figures, the anomalous series begins to differ from the rest of the

group within as few as 100 additional observations. The hardest detection problem is in the

upper right hand corner in Figures 5.1 and 5.2 consisting of stock prices; the anomalous

series is difficult to be visualized. Even in this case, our algorithm succeeds in identifying

the anomalous series. Experimental results describing computational effort are shown in

Table 5.2. In those experiments, the parameters for OMUDIM were as follows: k is 1, α is

0.05 if number of series is less than 200, otherwise 0.1. β is 0.1. OMUDIM is about 60%

faster than NMUDIM.

Table 5.2: Running time of NMUDIM and average computation workload comparison
between NMUDIM and OMUDIM.

Running # of NMUDIM NUMDIM OMUDIM
Time Length Series (Seconds) Workload Workload Ratio

Synthetic1 1500 20 3.90 190 63 33.2%
Synthetic2 1500 40 8.20 780 405 51.9%
Synthetic3 1500 80 18.28 3160 1138 36.0%
Synthetic4 1500 200 53.60 19900 6535 32.8%
Synthetic5 1500 400 152.69 79800 28387 35.6%
Synthetic6 1500 1000 706.64 499500 113304 22.7%
“Workload" represents the average number of comparisons performed in each
iteration.
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5.5 Concluding Remarks

We have proposed an algorithm for online anomaly detection of time series. This approach

is efficient and detects anomalous series as soon as it begins to drift away from the other

(non-anomalous) series, a substantial advantage over other anomaly detection algorithms

for time series. Our approach can handle data uncertainty very well, and its online version

only requires an initial length of data to start and doesn’t require any training data sets.

Compared with other methods, it requires less domain knowledge.
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CHAPTER 6

ABNORMAL SUBSEQUENCE

DETECTION IN A SINGLE SERIES

We addressed the problem of “which series is anomalous" in the preceding chapters, and

need to answer another related question: “When"? In this chapter we address the detection

of the subsequence of a single series which differs from the rest of the series, if anywhere.

The chapter is organized as follows. First we make a precise statement of the problem in

Section 6.1. We provide a quick review of existing approaches to address this problem in

Section 6.2. Our new algorithm presents in Section 6.3, followed by results and conclusions

in Section 6.4.

6.1 Problem Statement

This problem can be formulated as follows. Suppose X = {x(t)|1 ≤ t ≤ n} is a time

series where x(t) represents the value of the series X at time t and n is the length of X . A

subsequence of X is defined as Xp,w = {x(p), ..., x(p + w − 1)|1 ≤ p ≤ n − w + 1; 1 <

w ≤ n}. The goal is to find abnormal subsequence Xp,w, if any exists. More specifically,

we must calculate the outlierness, O(Xp,w), of Xp,w. If O(Xp,w) ≥ Othreshold ; then Xp,w is
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declared to be abnormal. In this abnormal subsequence detection problem formulation, we

leave users to determine value of Othreshold, and just address the computation of O(Xp,w)

for each subsequence Xp,w.

6.2 Literature Review

Some researchers use model based methods to find abnormal subsequences. In this ap-

proach first a model is generated to predict the behavior of the time series. Using this

model, the predicted values are calculated and compared with the observed values. The cu-

mulative score of the differences is defined as the anomaly scores of observed data objects.

These models include Regression by Fox [24], Rousseeuw and Leroy [55], Auto Regres-

sion by Fujimaki et al. [25], ARMA by Pincombe [52], ARIMA by Moayedi et al. [50],

and Support Vector Regression by Ma et al [48]. These methods were mainly designed for

individual outliers detection, not for abnormal subsequence detection, and some models are

impacted largely by parameters or distributions of data sets. These deficiencies limit their

practical application domains.

Keogh et al. [40] propose a method to convert a series to multiple shorter subsequences

first, then use suffix tree and discretized subsequences to create an index structure for these

subsequences, and finally compute anomaly scores by comparing trees generated by each

subsequence. They also propose another technique for detecting irregular time series con-

taining abnormal subsequences (they called it “discord") based on optimized dynamic time

warping and SAX representation for time series [37, 41]. They introduce the concept of

non-self match which means that it is meaningful to compare two subsequences only when

they don’t have any overlapping data objects. They claim that after optimization, the com-

putation’s speed of DTW is higher, but their approach simply detects only one abnormal

subsequence or requires users to decide how many abnormal subsequences need to be de-

tected before applying the algorithm. Wei et al. [63] propose a time series BITMAP method
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based on comparison between the frequencies of SAX words of current data and past data.

This approach some parameters whose appropriate values are hard to determine and may

confuse users.

We propose an algorithm - a modification of MUDIM, which requires little or no do-

main knowledge and can detect multiple abnormal subsequences in one run. It also requires

fewer parameters from users.

6.3 Proposed Method - Multiple Measure Based Ab-

normal Subsequence Detection Algorithm(MUASD)

The length of subsequence is a key factor used to decide the outlierness of a subsequence.

In Figure 6.1, we show normal and abnormal subsequences; each subsequence represents

power consumption on a weekly basis. Abnormal subsequences are plotted, along with the

week that they represent. However, if subsequences represent daily power consumption,

then it is quite possible that abnormal subsequences cannot be identified. Thus, anoma-

lousness of a subsequence may depend on the length w of subsequence. Our algorithms

rely on users to provide this length - w.

Detection of an abnormal subsequence of a given length w in a time series of length

n appears to be a different problem from what we have studied, but actually it is quite

similar to our previous work; consider each subsequence as a single time series and the

longer time series is constituted of a set of shorter time series. Thus abnormal subsequence

detection problem can be converted to anomalous time series detection problem discussed

in Chapter 4. More precisely: given a time series X , and a set of subsequences, the set

of extracted subsequences, Xw = {Xp,w; 1 ≤ p ≤ (n − w + 1)}, consists of X1,w =

{x(1), x(2), . . . , x(w)};X2,w = {x(2), x(3), . . . , x(w+ 1)}; . . . ;Xn−w+1,w = {x(n−w+

1), x(n− w + 2), . . . , x(n)}. One example is shown in Figure 6.2.

For abnormal subsequence detection, our algorithm uses the following criterion:the dis-
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Fig. 6.1: Examples for abnormal subsequences. - Subsequences extracted from a long
series of power consumption for a year; each subsequence represents power consumption
for a week. (Top left) contains normal subsequences; (Others) contains abnormal subse-
quences along with which week they appear represent the power consumption during a
week with special event or holidays.

Fig. 6.2: Illustration for sliding window concept. - The top series is original long series;
other series are subsequences generated by sliding window method. w is set to 20 in this
case.
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tance from an abnormal subsequence to its k nearest neighbors is significantly larger

than a distance from a normal series to its k nearest neighbor. Based on this assump-

tion, MUDIM algorithm introduced in Chapter 5 can be applied here to find the abnormal

subsequences. However there are still some problems that need to be addressed.

Majority of data objects of any two consecutive series are common. Therefore, two

consecutive subsequences will have a high chance to become the nearest neighbor of each

other. Even the abnormal subsequence will find a nearest neighbor with very high simi-

larity. Our assumption will fail and the algorithm will not be able to detect any abnormal

subsequence.

The root cause of this issue is called the self match; a subsequence is compared with

a clone of itself which may differ only by a small number of data objects. Keogh, et al.,

suggest to use Non-Self Match [41] for a meaningful comparison. The basic idea is that

one subsequence must be compared with another subsequence without any common data

objects.

Now the algorithm is straightforward: just applying MUDIM to the set of series in Xw,

which consists of all possible subsequences ofX , each of length w. Next, find the k nearest

neighbor subsequences for each subsequence Xp,w in Xw using Non-Self Match. In other

words, all Xp,w’s k nearest neighbor neighbors cannot have any common data objects with

Xp,w. But Xp,w’s k nearest neighbor neighbors may have common data objects between

each other.

MUDIM is a possible solution, but is not the optimal solution because of the reasons

described below:

• MUDIM has to calculate the three measure for each subsequence, but for the set Xw,

there is considerable redundant computation work involved because of data objects

shared by different subsequences.

• To find the nearest neighbor, MUDIM has to compare a series with all other series.

But in Xw, due to common data objects, there are some other methods that can help
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to speed up the process by reducing the redundant work for common data objects

between Xp,w.

• Frequencies of SAX words are used to calculate the distance between the series, but

for this problem, other comparison method may be better.

In our algorithm, we propose two steps to speed up the process:

1. To find the nearest neighbor of a subsequence in Xw, we use Euclidean distance, and

instead of k(>1) nearest neighbors we propose to use (1) the nearest neighbor only.

2. Comparing frequencies of SAX words of a subsequence Xp,w with frequencies of

same SAX words of the entire time series X is a more reasonable method.

We will introduce these two steps in detail in the following sections.

6.3.1 Finding Nearest Neighbor by Early Abandoning

In MUDIM, the k nearest neighbors are found based on MUDIM distances. But for abnor-

mal subsequence detection, Euclidean distance is sufficient for finding a nearest neighbor

for two reasons: 1) If we use Euclidean distance, the computational effort is reduced, espe-

cially when we exploit sliding window approach. 2) Because other measures are used, so

deficiencies of Euclidean distance such as time-lagging can be overcome by using sliding

window technique.

To search the nearest neighbor for a subsequence in a long time series, a “Reordering

early abandoning" approach, used by Rakthanmanon et al. [54], can help us to further

improve the speed. The idea of early abandoning is this: a distance which is the lowest

distance within all distances calculated so far is called best-so-far distance. During future

computation process, if current accumulated distance between each pair of data objects of

two subsequences is already larger than best-so-far distance, then we can abandon this sub-

sequence candidate since it cannot be the nearest neighbor for our interested subsequence.
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“Reordering early abandoning" simply means that instead of comparing the pair of data

objects of two subsequences from left to right, we can calculate the largest value objects

first which may have higher chances to get large accumulated distances quickly. In Figure

6.3, an example of reordering early abandoning is shown.

Suppose the nearest neighbor for X1,w is Xp,w, then what is the possible nearest neigh-

bor for X2,w? Since majority objects in X1,w andX2,w are common, then Xp+1,w would

have a very high possibility to be the nearest neighbor for X2,w. Thus, instead of searching

nearest neighbor from the beginning, we can start at Xp+1,w, if Xp+1,w is just the nearest

neighbor to X2,w, then the best-so-far distance for X2,w is the lowest and will speed up the

processing by reordering early abandoning.

Fig. 6.3: Illustration for reordering early abandoning. - Left) After 6 object calcula-
tions, the accumulated distance between T1 and T2 is larger than best-so-far distance, stop
here. Right) Calculate from the largest data objects first, we can stop only after 3 object
calculations.

The function for finding the nearest neighbor by reordering early abandoning algorithm

for MUASD can be implemented as shown in Algorithm FindNearestNeighbor.

6.3.2 Finding Abnormal Subsequence Based on Ratio of Frequen-

cies (SAXFR)

Another important improvement is based on SAXBAG. In original MUDIM algorithm,

we compare frequencies of SAX words of one series with frequencies of SAX words of

another series. But actually there is a better way to do this. In the new method, k is not
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Algorithm FindNearestNeighbor Finding the nearest neighbor subsequence for each sub-
sequence using Non-Self Match.
Require: subsequence set Xw.
Ensure: locations (locs) and distances (dists) of nearest neighbor to every subsequence

of length w in X .

1: N=|Xw|.
2: lastfound=0; locs = ∅; dists=∅.
3: for i = 1 : N do
4: currSub = Xw[i].
5: order = sortObjects(currSub, ’descending’);
6: best-so-far=infinity.
7: nID = lastfound;
8: nearestID=0;
9: for j = 1 : N do

10: nID = nID+1;
11: if IsSelfMatch(i,nID) then
12: continue; // Self match is ignored.
13: end if
14: neighborSub = Xw[nID].
15: sums = 0;
16: for p = 1 : w do
17: sums = sums+ DIST(currSub, neighborSub, order, p);
18: if sums>best-so-far then
19: break;
20: end if
21: end for
22: if sums<best-so-far then
23: best-so-far=sums; nearestID = nID;
24: end if
25: end for
26: locsi = nearestID; // locations
27: lastfound = nearestID;
28: distsi = best-so-far; // distances
29: end for
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Fig. 6.4: Frequency of abnormal subsequence is very low. - Red bold line represents the
abnormal subsequence. Abnormal subsequence only appear once in this series, but normal
series appear more often.

needed any more and high accuracy can still be achieved. The basic idea is based on one

assumption: the frequencies of abnormal subsequences are far lower than the frequencies

of normal subsequences if length w is properly chosen. An example is shown in Figure 6.4.

If we calculate the ratio between frequencies of SAX words generated from an abnormal

subsequence with frequencies of these words in the entire series, then the ratio computed for

an abnormal subsequence is much higher than the ratio computed for a normal series. For

example, if three SAX words abc, aac, abd are generated from an abnormal subsequence,

and these words only appear 2, 3, 2 times within entire series, then the ratios of each word

are 1/2, 1/3, 1/2 respectively. Then an average ratio can be calculated for all non-zero

ratios, in this case, it is (0.50 + 0.33 + 0.50)/3 = 0.44. For a normal series, this ratio

should be much more lower. This new method is called SAX words based frequency ratio

(SAXFR). To ensure SAX word is properly set to capture the outlierness of subsequence,

the window size of SAX is set to w
2

. If window size of each word in SAX is too short, then

the shorter subsequence represented by each SAX word may not be anomalous. If window

size is too long, then the number of SAX words obtained in each w length subsequence is
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less and it may impact the results of the frequencies ratio approach.

The advantages of SAXFR are:

• Since the ratio is compared between a subsequence and the entire series, there is no

need for nearest neighbor computation, and there is also no need for parameter k.

• Frequencies of entire series can be precomputed, and subsequence’s frequencies can

be updated incrementally, so the computation for ratios is very fast.

6.3.2.1 Length of Subsequence of SAXFR

We did some experiments to identify the relationship between size of subsequence and

performance of SAXFR. In our experiments, three key parameters of SAX , sliding window

size, number of symbols and length of SAX word, are set to half of sliding window size,

4 and 5 respectively. Sizes of subsequences :10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110

and 120, are tested for three data sets SYN0, ECG1 and ECG2. The minimum sizes of

abnormal subsequences in these three data sets are 40, 40 and 100 respectively. The results

are presented in Table 6.1 and Appendix C. The average of anomaly score of abnormal

subsequences is always higher than that of normal subsequences.

In general, size of subsequence is not necessary equal to exact size of abnormal subse-

quence in order to achieve the best performance. In SYN0, the ratio of average anomaly

score of abnormal subsequence over that of normal subsequence is larger than 3 when size

of subsequence is from 10 to 50. As long as the size of subsequence increases, the ratio

decreases. In ECG1, the ratio between average anomaly score of abnormal and normal

subsequence is larger than 3 when size of subsequence is 20 and 30. In ECG2, the ratio is

over 3 when size of subsequence is from 30 to 80.

According to the results of experiments, too small( like 10) or too large( like 120) size of

subsequence both are not the best choices for SAXFR. Since if size is too small, then SAX

word extracted from abnormal subsequence may be similar to the SAX word extracted from



105

Table 6.1: SAXFR performances versus length of subsequence

Dataset w
Anomaly Scores
Average of abnormal Xp,w Average of normal Xp,w Ratio

SYN0

10 0.2733 0.0538 5.08
20 0.3358 0.0653 5.14
30 0.3448 0.0779 4.42
40 0.3310 0.0764 4.33
50 0.2775 0.0908 3.06
60 0.2411 0.0978 2.47
70 0.2231 0.1055 2.11
80 0.2574 0.1215 2.12
90 0.2260 0.1209 1.87

100 0.1978 0.1246 1.59
110 0.2087 0.1303 1.60
120 0.1632 0.1213 1.34

ECG1

10 0.3761 0.1647 2.28
20 0.5414 0.1309 4.14
30 0.5176 0.1534 3.37
40 0.3982 0.1509 2.64
50 0.2769 0.1757 1.58
60 0.2724 0.1821 1.50
70 0.3133 0.1846 1.70
80 0.3658 0.2141 1.71
90 0.3446 0.2110 1.63

100 0.3462 0.2402 1.44
110 0.3546 0.2608 1.36
120 0.3161 0.2510 1.26

ECG2

10 0.2209 0.1557 1.42
20 0.2371 0.0976 2.43
30 0.2480 0.0762 3.25
40 0.2838 0.0852 3.33
50 0.3003 0.0935 3.21
60 0.3065 0.1000 3.06
70 0.3395 0.1041 3.26
80 0.3361 0.1077 3.12
90 0.3460 0.1157 2.99

100 0.3494 0.1178 2.96
110 0.3571 0.1295 2.76
120 0.3568 0.1381 2.58
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normal subsequences. In other aspect, if size is too large, then the ratio of true abnormal

subsequence in the subsequence is small, and it also causes the same problem.

The other factor that will impact the performance is the distribution of data, and more

specifically is the similarity between normal subsequences. If normal subsequences are

highly similar to each other such as SYN0, then the ratio of average anomaly score of

abnormal subsequence over that of normal subsequence is usually larger.

6.3.3 Multiple Measure Based Abnormal Subsequence Detection

Algorithm (MUASD)

Now, steps for MUASD are very straightforward:

1. Given a time series X , length of subsequence w, obtain Xw, the set of all possible

subsequences of X using sliding window technique.

2. Get locs and dists using algorithm FindNearestNeighbor.

3. Calculate the frequencies (FreqAll) of each SAX word based on the entire series.

4. For each subsequence Xp,w ∈ Xw, calculate frequency Freqi for Xp,w, and compute

the ratio distr(i) of frequencies.

5. Calculate the sametrend distance distt(i) between si and its nearest neighbor slocsi .

6. Normalize dists, distr, distt (subtracting the mean and dividing the standard devia-

tion).

7. Combine all distances and compute an anomaly score O(i) for each ith subsequence.

In this algorithm we do not assign different weights to different features, as we did

in MUDIM. The reason for this is that rank based method (and related methods) work

better if the number of outliers is far less than the number of normal objects. But in the

abnormal subsequence detection problem, the number of objects contained in an abnormal
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subsequence is sometimes large, thus the number of subsequences containing common data

objects with abnormal subsequence is also large. For instance, in ECG1 data set 6.7, the

total number of data objects in abnormal subsequences is close to 10% of the entire series.

A large number of anomalies will bias the results of rank based methods.

Algorithm MUASD Calculate the anomaly scores for each subsequence.
Require: a long time series X of length n, a length of subsequence w.
Ensure: anomaly scores O(i) for ith subsequence, 1 ≤ i ≤ n− w + 1.

1: Xw= ExtractSubsequences(X,w); {Subsequences are normalized to mean as zero.}
2: win = w

2
; word_size = 5; symbol_number = 4; { Set parameters for SAX}

3: SW = GetSAXWords(T,win, word_size, symbol_number); { Get sax words forX .}

4: FreqAll = CalculateFrequencies(SW );
5: [locs, dists] = FindNearestNeighbor(Xw);
6: N=|Xw|.
7: diste = dists;
8: for i = 1 : N do
9: nid = locsi; //find the id of nearest neighbor.

10: distt(i)=CalculateSameTrendDist(Xi,w, Xnid,w); { Calculate sametrend distance be-
tween ith subsequence and nidth subsequence using equation }4.1.

11: SWi = FindCurrentSAXWords(SW, i);
12: Freqi=CalculateFrequencies(SWi, F reqi−1); {Update frequencies incrementally

based on previous results if applicable, otherwise calculate from scratch}.
13: distr(i) = NoneZeroMean( Freqi

FreqAll
);

14: end for
15: O(i) =

√
diste(i)2 + distt(i)2 + distr(i)2;

6.4 Experiments

6.4.1 Competing Algorithms

We selected some existing algorithms along with our algorithm MUASD to compare their

performance. A length w of subsequence is given for every algorithm.

• (Euclidean distance method) Keogh et al. [41] use the Euclidean distance to nearest

neighbor as anomaly score to find the most unusual subsequence. We apply their
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method for every subsequence so that each subsequence can be assigned an anomaly

score.

• (SAX Frequency Ratio) We also apply SAXFR separately to check its performance.

The size of feature window is set to half of w. Alphabet size is set to 4 as suggest by

Rakthanmanon et al. [54] and word size is set to 5. The parameters are chosen for

the best performance.

• Model prediction based methods were used, e.g., Auto Regression by Fujimaki et

al. [25], ARMA by Pincombe [52], ARIMA by Moayedi et al. [50]. Models are

generated based on the entire series, and then the model is applied to predict the next

observation using the model. The mean square’s error is the anomaly score. Orders

of parameter are chosen from 10 to 20, yielding the minimum mean square error.

The evaluation method here is very straight forward. We just compare the anomaly

scores of abnormal subsequences (which are known to us) with those of normal subse-

quences. If anomaly scores of the abnormal subsequences are higher than those of normal

subsequence, than the algorithm is effective; otherwise not.

6.4.2 Data sets

We use one synthetic data set and 7 real data sets. The synthetic data set contains several

copies of ‘normal’ data and two abnormal subsequences, both exactly the same. Practical

data sets are obtained from multiple application domains: two data sets are from medical

domain, three are from electronic domain and two are from video surveillance domain. The

details of data sets are given in Table 6.2. The length of w for each data set is chosen either

by following the original author’s suggestion (ECG) or by our observations.



109

Table 6.2: Time series data sets details.
Dataset Source Length w Domain
SYN0 Generated 966 40 Synthetic
ECG1 [63],[64] 1000 40 Medical
ECG2 [63],[64] 2160 40 Medical
TEK140 [41],[42] 5000 100 Electronic
TEK160 [41],[42] 5000 100 Electronic
TEK170 [41],[42] 5000 100 Electronic
VIDEOS1 [41],[42] 11251 200 Video Surveillance
VIDEOS2 [41],[42] 11251 200 Video Surveillance

Fig. 6.5: Experimental results for SYN0 - Red circles highlight abnormal subsequences.
(Top Left) Plot of SYN0 time series; (Other) Results of 6 algorithms used in these compar-
isons. Y axis represents anomaly scores at time t. X axis shows time t.
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Fig. 6.6: Experimental results for ECG1 - Red circle highlights abnormal subsequences.
(Top Left) Plot of ECG1 time series; (Other) Results of 6 algorithms used in these compar-
isons. Y axis represents anomaly scores at time t. X axis shows time t.

Fig. 6.7: Experimental results for ECG2 - Red circle highlights abnormal subsequences.
(Top Left) Plot of ECG2 time series; (Other) Results of 6 algorithms used in these compar-
isons. Y axis represents anomaly scores at time t. X axis shows time t.
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Fig. 6.8: Experimental results for TEK140 - Red circle highlights abnormal subse-
quences. (Top Left) Plot of TEK140 time series; (Other) Results of 6 algorithms used in
these comparisons. Y axis represents anomaly scores at time t. X axis shows time t.

Fig. 6.9: Experimental results for TEK160 - Red circle highlights abnormal subse-
quences. (Top Left) Plot of TEK160 time series; (Other) Results of 6 algorithms used in
these comparisons. Y axis represents anomaly scores at time t. X axis shows time t.
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Fig. 6.10: Experimental results for TEK170 - Red circle highlights abnormal subse-
quences. (Top Left) Plot of TEK170 time series; (Other) Results of 6 algorithms used in
these comparisons. Y axis represents anomaly scores at time t. X axis shows time t.

Fig. 6.11: Experimental results for VIDEOS1 - Red circle highlights abnormal subse-
quences. (Top Left) Plot of VIDEOS1 time series; (Other) Results of 6 algorithms used in
these comparisons. Y axis represents anomaly scores at time t. X axis shows time t.
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Fig. 6.12: Experimental results for VIDEOS2 - Red circle highlights abnormal subse-
quences. (Top Left) Plot of VIDEOS2 time series; (Other) Results of 6 algorithms used in
these comparisons. Y axis represents anomaly scores at time t. X axis shows time t.

6.4.3 Results

Experimental results are shown in Figures 6.5, 6.6, 6.7, 6.8, 6.9, 6.10, 6.11 and 6.12. Our

observations are:

• Euclidean distance based method works well if abnormal subsequences are not sim-

ilar to each other, see example in Figure 6.5. This approach results in false positives

for some data sets such as TEK140 and TEK170.

• SAXFR method works well if normal subsequences appear more frequently. In TEK

data sets, SAXFR doesn’t work well since normal subsequences only appear four

more times than abnormal subsequence and contain considerable noises.

• Model based methods work slightly well for data set ECG1 in Figure 6.6, but only

one of three abnormal subsequences is detected. For other data sets, these do not

work.
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• MUASD usually works better for high frequency data sets. In low frequency data

sets such as TEK, it may result in false positives.

6.5 Conclusions

In general, MUASD works better than other algorithms, even in the data sets that have

exactly duplicated abnormal subsequences.

MUASD combines three important process: early abandoning searching for the nearest

neighbor subsequence, frequencies ratio comparisons for each subsequence, and calcula-

tion for the same trend. Thus its time complexity is higher than Euclidean distance based

method and SAXFR.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORKS

7.1 Conclusions

Anomaly or outlier detection problems are of considerable importance, arising frequently

in diverse real-world applications such as finance and cyber-security. In the context of

anomaly detection in financial institution (see Introduction) we argued that the collection of

data associated with all users is likely to form multiple clusters with variable number of data

points in each cluster, variable densities, etc; that is, no two clusters look alike, although

they consist of ‘normal’ behavior. In such situations, to find anomalous observations, the

ideal solution is to transform the data so that in the transformed space all data points have

the same statistical distributions. In this dissertation we have attempted to achieve this goal

via ‘ranks’ and ‘modified ranks’. In using rank based approach (especially local to the

object of interest) we manage to diminish the effect of inter-object distances; and in using

‘modified-ranks’ we diminish the effect of the size of the local cluster(s).

Several algorithms have been formulated for anomaly detection, usually based on a

problem-dependent heuristic or distance metric. To achieve the better performance of

anomaly detection, we transform the original data set into a transformed space such that

all normal data objects are more closer to each other while anomalous objects are far away
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from them.

In this dissertation we have addressed three important outlier detection problems: de-

tection of 1) point outliers in a given data set; 2) anomalous time series in a given time

series data set; and 3) abnormal subsequence in a single series. We propose anomaly detec-

tion algorithms that exploit the notion of “rank," expressing relative outlierness of different

points in the relevant space. Ranks also exploit asymmetry in nearest neighbor relation

between points: a data point is “more anomalous" if it is not the nearest neighbor of

its nearest neighbors. Although rank is computed using distance, it is a more robust and

higher level abstraction that is particularly helpful in problems characterized by significant

variations of data point density, where distance alone is inadequate. Our anomaly detection

algorithms have many advantages compared with other existing approaches:

1. No apriori training set or reference set for normal behavior is needed.

2. Anomalies can be effectively detected even if the distribution of data is unknown.

3. It can be applied or modified for outlier detection in different domains.

4. Number of user-provided parameters is small.

1. Point outlier detection For point outliers detection, we have proposed novel algorithms

based on ranks, that captures the anomalousness of an object more precisely in most cases.

Moreover it can be applied in multiple domains arising the real world situations. In con-

junction with clustering algorithm these rank based algorithms can be further improved; by

identifying a small subset that do not belong to any cluster as “potential" outliers. Extensive

evaluations on synthetic and real datasets have demonstrated that the overall performance

of each of our new algorithms is significantly better than previously known algorithms.

Among the new variants of algorithms, ODMRW performed best, perhaps due to the reason

that it takes into account the robustness of rank methods and distance which is considered

to be the primary measure of normal versus anomalous objects.
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2. Anomalous time series detection To detect anomalous time series, we propose an

algorithm that uses multiple distance measures; thus it performs better than single distance

measure based methods because it can capture a variety of anomalous series with less

domain knowledge. The selection of three measures is based on several heuristics. Rank

based algorithms are applied to adjust the weights of different measures automatically. The

weight assigned to a measure is proportional to its effectiveness in detecting anomalousness

of a series in the data set, as described in Chapter 2.

The outlierness of a series can be incrementally calculated, which allows its application

for online detection. We propose two versions of online detection algorithms based on

multiple distance measures. These approaches are efficient and detect anomalous series

as soon as it begins to drift away from the other (non-anomalous) series, a substantial

advantage over other anomaly detection algorithms for time series. Our approaches can

handle data uncertainty very well, and only requires an initial length of data to start and

don’t require any training data sets. Compared with other methods, our algorithms require

less domain knowledge.

3. Abnormal subsequence detection For abnormal subsequence detection, we propose a

novel algorithm based on nearest neighbor and multiple distance measures. Our approach

only requires one parameter which is a user-provided length of subsequence that poten-

tially contains abnormality and uses the entire time series. The algorithm achieves higher

accuracy than other known methods, even in the data sets that have more than one copy of

abnormal subsequences; other algorithms may fail in this situation.

7.2 Future Work

Following applications of rank based anomaly detection of a point or a time series are

planned for future research.
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7.2.1 Rank Based Time Series Anomaly Detection

Presently, we transform a given series and evaluate its anomalousness in transformed space.

Alternatively, we can consider D as a collection of column vectors, where each vector is a

collection of observations of all time series at a given time point. That is D = {v1, . . . , vn}

where, for example , vT1 = {x1(1), x2(1), . . . , xm(1)}. Now we can find anomalies in each

vector and then analyze the number of anomalies associated with each time series. This

potential alternative approach to detect anomalous time series in D will be explored and

compared with existing methods.

7.2.2 Clustering Based Anomalous Time Series Detection Ap-

proach

Another possible research direction is implementation of other clustering algorithms. Cur-

rently, only NC(`,m∗) clustering algorithm is explored, but other clustering algorithms in

conjunction with ranks are also worth investigating. The clustering algorithm, NC(`,m∗)

has been exploited for anomaly detection only. Another potential application is to use its

center for other applications, for example in many applications users want to find clusters

of similar time series and use the center for trading applications.

7.2.3 Time Complexity of Online Detection Algorithms

To reduce the time complexity of the online detection algorithm ihe other possible research

direction is to take advantages of as much information as possible. In NMUDIM method,

new observations arrival at t will cause each series in D to find its kNN by comparing with

all other series in D. When the number of series m is large, this process is computationally

expensive. But actually, it can be avoided by making use of its k nearest neighbors at t− 1,

which are already known. If distances of these neighbors have not changed significantly,

then xi is more likely a normal series; otherwise, old method may be needed to find new
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kNN for xi. In most cases, normal series continue to be normal, thus the computation cost

will be reduced from n ×m2 to n ×m × k which is significant improvement when m is

very large.

7.2.4 Anomalous Multivariate Time Series Detection

Anomalous multivariate time series detection is more complicated than univariate time

series detection. To extend our algorithms to multivariate time series, we can use the fol-

lowing possible methods:

• Multivariate time series data set can be treated as multiple univariate time series

data set. Then our algorithms can be applied for each univariate time series data set

separately and then all results of each data set can be merged together by rank based

weighted method. Or

• Select other multivariate-adaptable features into our algorithms such as covariance

matrix.

Our rank based approach can be used in multivariate time series to adjust the weights not

only in different features but also in different variables.

7.2.5 Time Series Data Issues

Two major ‘real-world’ properties of two series have been overlooked in our work. They

consist of

• Lack of alignment.

• Missing data.

We will explore how to account for these problems in our algorithms.
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Table A.1: Comparison of LOF, COF, INFLO and RBDA for k = 4, 5, 6 and 7 respectively
for synthetic dataset 1. The highest values are marked as bold.

k=4 LOF COF INFLO RBDA
m mt Pr Re RP mt Pr Re RP mt Pr Re RP mt Pr Re RP
5 5 1.00 0.83 1.000 5 1.00 0.83 1.000 5 1.00 0.83 1.000 5 1.00 0.83 1.000

10 6 0.60 1.00 0.955 6 0.60 1.00 1.000 6 0.60 1.00 0.955 6 0.60 1.00 1.000
15 6 0.40 1.00 0.955 6 0.40 1.00 1.000 6 0.40 1.00 0.955 6 0.40 1.00 1.000
30 6 0.20 1.00 0.955 6 0.20 1.00 1.000 6 0.20 1.00 0.955 6 0.20 1.00 1.000

k=5 LOF COF INFLO RBDA
m mt Pr Re RP mt Pr Re RP mt Pr Re RP mt Pr Re RP
5 5 1.00 0.83 1.000 5 1.00 0.83 1.000 5 1.00 0.83 1.000 5 1.00 0.83 1.000

10 6 0.60 1.00 0.955 6 0.60 1.00 0.955 6 0.60 1.00 0.955 6 0.60 1.00 1.000
15 6 0.40 1.00 0.955 6 0.40 1.00 0.955 6 0.40 1.00 0.955 6 0.40 1.00 1.000
30 6 0.20 1.00 0.955 6 0.20 1.00 0.955 6 0.20 1.00 0.955 6 0.20 1.00 1.000

k=6 LOF COF INFLO RBDA
m mt Pr Re RP mt Pr Re RP mt Pr Re RP mt Pr Re RP
5 5 1.00 0.83 1.000 5 1.00 0.83 1.000 5 1.00 0.83 1.000 5 1.00 0.83 1.000

10 6 0.60 1.00 0.913 6 0.60 1.00 0.955 6 0.60 1.00 0.955 6 0.60 1.00 1.000
15 6 0.40 1.00 0.913 6 0.40 1.00 0.955 6 0.40 1.00 0.955 6 0.40 1.00 1.000
30 6 0.20 1.00 0.913 6 0.20 1.00 0.955 6 0.20 1.00 0.955 6 0.20 1.00 1.000

k=7 LOF COF INFLO RBDA
m mt Pr Re RP mt Pr Re RP mt Pr Re RP mt Pr Re RP
5 5 1.00 0.83 1.000 5 1.00 0.83 1.000 5 1.00 0.83 1.000 5 1.00 0.83 1.000

10 6 0.60 1.00 0.913 6 0.60 1.00 0.913 6 0.60 1.00 0.955 6 0.60 1.00 1.000
15 6 0.40 1.00 0.913 6 0.40 1.00 0.913 6 0.40 1.00 0.955 6 0.40 1.00 1.000
30 6 0.20 1.00 0.913 6 0.20 1.00 0.913 6 0.20 1.00 0.955 6 0.20 1.00 1.000
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Table A.2: Comparison of LOF, COF, INFLO and RBDA for k = 25, 35 and 50 respectively
for synthetic dataset 2. The highest values are marked as bold.

k=25 LOF COF INFLO RBDA
m mt Pr Re RP mt Pr Re RP mt Pr Re RP mt Pr Re RP
5 4 0.80 0.67 1.000 3 0.60 0.50 0.857 3 0.60 0.50 1.000 5 1.00 0.83 1.000

10 5 0.50 0.83 0.882 3 0.30 0.50 0.857 4 0.40 0.67 0.714 6 0.60 1.00 1.000
15 6 0.40 1.00 0.656 5 0.33 0.83 0.484 5 0.33 0.83 0.600 6 0.40 1.00 1.000
20 6 0.30 1.00 0.656 5 0.25 0.83 0.484 5 0.25 0.83 0.600 6 0.30 1.00 1.000
30 6 0.20 1.00 0.656 6 0.20 1.00 0.375 6 0.20 1.00 0.438 6 0.20 1.00 1.000

k=35 LOF COF INFLO RBDA
m mt Pr Re RP mt Pr Re RP mt Pr Re RP mt Pr Re RP
5 1 0.20 0.17 1.000 0 0.00 0.00 0.000 1 0.20 0.17 1.000 5 1.00 0.83 1.000

10 3 0.30 0.50 0.375 2 0.20 0.33 0.158 3 0.30 0.50 0.375 5 0.50 0.83 1.000
15 5 0.33 0.83 0.357 5 0.33 0.83 0.259 5 0.33 0.83 0.375 6 0.40 1.00 0.808
20 6 0.30 1.00 0.362 5 0.25 0.83 0.259 5 0.25 0.83 0.375 6 0.30 1.00 0.808
30 6 0.20 1.00 0.362 6 0.20 1.00 0.256 6 0.20 1.00 0.344 6 0.20 1.00 0.808

k=50 LOF COF INFLO RBDA
m mt Pr Re RP mt Pr Re RP mt Pr Re RP mt Pr Re RP
5 1 0.20 0.17 0.500 0 0.00 0.00 0.000 1 0.20 0.17 0.500 5 1.00 0.83 1.000

10 2 0.20 0.33 0.250 1 0.10 0.17 0.100 2 0.20 0.33 0.250 5 0.50 0.83 1.000
15 4 0.27 0.67 0.278 1 0.07 0.17 0.100 5 0.33 0.83 0.300 5 0.33 0.83 1.000
20 6 0.30 1.00 0.300 2 0.10 0.33 0.100 5 0.25 0.83 0.300 5 0.25 0.83 1.000
30 6 0.20 1.00 0.300 6 0.20 1.00 0.175 6 0.20 1.00 0.292 6 0.20 1.00 0.583
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Table A.3: Comparison of LOF, COF, INFLO and RBDA for k = 11, 15, 20 and 23 respec-
tively for the Ionosphere dataset. The highest values are marked as bold.

k=11 LOF COF INFLO RBDA
m mt Pr Re RP mt Pr Re RP mt Pr Re RP mt Pr Re RP
5 5 1.00 0.50 1.000 5 1.00 0.50 1.000 5 1.00 0.50 1.000 5 1.00 0.50 1.000

15 6 0.40 0.60 1.000 6 0.40 0.60 0.778 6 0.40 0.60 1.000 8 0.53 0.80 0.818
30 7 0.23 0.70 0.667 7 0.23 0.70 0.560 7 0.23 0.70 0.651 9 0.30 0.90 0.703
60 8 0.13 0.80 0.409 8 0.13 0.80 0.409 8 0.13 0.80 0.419 9 0.15 0.90 0.703
85 9 0.11 0.90 0.294 9 0.11 0.90 0.290 9 0.11 0.90 0.300 10 0.12 1.00 0.372

k=15 LOF COF INFLO RBDA
m mt Pr Re RP mt Pr Re RP mt Pr Re RP mt Pr Re RP
5 5 1.00 0.50 1.000 5 1.00 0.50 1.000 5 1.00 0.50 1.000 5 1.00 0.50 1.000

15 6 0.40 0.60 1.000 6 0.40 0.60 0.913 6 0.40 0.60 1.000 8 0.53 0.80 0.818
30 7 0.23 0.70 0.757 8 0.27 0.80 0.522 7 0.23 0.70 0.700 9 0.30 0.90 0.714
60 9 0.15 0.90 0.354 9 0.15 0.90 0.372 9 0.15 0.90 0.352 9 0.15 0.90 0.714
85 9 0.11 0.90 0.354 9 0.11 0.90 0.372 9 0.11 0.90 0.352 10 0.12 1.00 0.377

k=20 LOF COF INFLO RBDA
m mt Pr Re RP mt Pr Re RP mt Pr Re RP mt Pr Re RP
5 5 1.00 0.50 1.000 5 1.00 0.50 1.000 5 1.00 0.50 1.000 5 1.00 0.50 1.000

15 7 0.47 0.70 0.848 7 0.47 0.70 0.737 7 0.47 0.70 0.800 8 0.53 0.80 0.837
30 7 0.23 0.70 0.848 7 0.23 0.70 0.737 7 0.23 0.70 0.800 9 0.30 0.90 0.738
60 9 0.15 0.90 0.417 9 0.15 0.90 0.413 9 0.15 0.90 0.405 9 0.15 0.90 0.738
85 9 0.11 0.90 0.417 9 0.11 0.90 0.413 9 0.11 0.90 0.405 10 0.12 1.00 0.387

k=25 LOF COF INFLO RBDA
m mt Pr Re RP mt Pr Re RP mt Pr Re RP mt Pr Re RP
5 5 1.00 0.50 1.000 5 1.00 0.50 1.000 5 1.00 0.50 1.000 5 1.00 0.50 1.000

15 7 0.47 0.70 0.875 7 0.47 0.70 0.848 7 0.47 0.70 0.848 8 0.53 0.80 0.837
30 7 0.23 0.70 0.875 8 0.27 0.80 0.621 7 0.23 0.70 0.848 9 0.30 0.90 0.738
60 9 0.15 0.90 0.441 9 0.15 0.90 0.484 9 0.15 0.90 0.417 9 0.15 0.90 0.738
85 9 0.11 0.90 0.441 9 0.11 0.90 0.484 9 0.11 0.90 0.417 10 0.12 1.00 0.393
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Table A.4: Comparison of LOF, COF, INFLO and RBDA for k = 11, 15, 19, and 22
respectively for the Wisconsin Breast Cancer data. The highest values are marked as bold.

k = 11 LOF COF INFLO RBDA
m mt Pr Re RP mt Pr Re RP mt Pr Re RP mt Pr Re RP
15 5 0.33 0.50 0.469 6 0.40 0.60 0.656 5 0.33 0.50 0.417 7 0.47 0.70 0.519
20 6 0.30 0.60 0.420 7 0.35 0.70 0.560 6 0.30 0.60 0.404 9 0.45 0.90 0.517
30 9 0.30 0.90 0.372 10 0.33 1.00 0.444 8 0.27 0.80 0.375 9 0.30 0.90 0.517
40 9 0.23 0.90 0.372 10 0.25 1.00 0.444 9 0.23 0.90 0.349 9 0.23 0.90 0.517
50 10 0.20 1.00 0.324 10 0.20 1.00 0.444 9 0.18 0.90 0.349 10 0.20 1.00 0.430

k = 15 LOF COF INFLO RBDA
m mt Pr Re RP mt Pr Re RP mt Pr Re RP mt Pr Re RP
15 6 0.40 0.60 0.525 7 0.47 0.70 0.848 6 0.40 0.60 0.538 7 0.47 0.70 0.596
20 7 0.35 0.70 0.467 8 0.40 0.80 0.692 6 0.30 0.60 0.538 8 0.40 0.80 0.554
30 9 0.30 0.90 0.395 8 0.27 0.80 0.692 8 0.27 0.80 0.439 9 0.30 0.90 0.495
40 9 0.23 0.90 0.395 10 0.25 1.00 0.474 9 0.23 0.90 0.381 9 0.23 0.90 0.495
50 10 0.20 1.00 0.346 10 0.20 1.00 0.474 9 0.18 0.90 0.381 10 0.20 1.00 0.407

k = 19 LOF COF INFLO RBDA
m mt Pr Re RP mt Pr Re RP mt Pr Re RP mt Pr Re RP
15 6 0.40 0.60 0.568 7 0.47 0.70 0.848 6 0.40 0.60 0.538 7 0.47 0.70 0.622
20 8 0.40 0.80 0.480 7 0.35 0.70 0.848 7 0.35 0.70 0.483 8 0.40 0.80 0.590
30 9 0.30 0.90 0.441 9 0.30 0.90 0.536 8 0.27 0.80 0.450 9 0.30 0.90 0.511
40 9 0.23 0.90 0.441 10 0.25 1.00 0.474 9 0.23 0.90 0.391 9 0.23 0.90 0.511
50 10 0.20 1.00 0.372 10 0.20 1.00 0.474 9 0.18 0.90 0.391 10 0.20 1.00 0.410

k = 22 LOF COF INFLO RBDA
m mt Pr Re RP mt Pr Re RP mt Pr Re RP mt Pr Re RP
15 7 0.47 0.70 0.549 7 0.47 0.70 0.848 7 0.47 0.70 0.538 7 0.47 0.70 0.636
20 7 0.35 0.70 0.549 7 0.35 0.70 0.848 7 0.35 0.70 0.538 8 0.40 0.80 0.600
30 9 0.30 0.90 0.446 9 0.30 0.90 0.500 8 0.27 0.80 0.486 9 0.30 0.90 0.517
40 9 0.23 0.90 0.446 10 0.25 1.00 0.451 9 0.23 0.90 0.417 9 0.23 0.90 0.517
50 10 0.20 1.00 0.374 10 0.20 1.00 0.451 9 0.18 0.90 0.417 10 0.20 1.00 0.414
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Table A.5: Comparison of LOF, COF, INFLO and RBDA for k = 5, 7 and 10 respectively
for the Iris dataset. The highest values are marked as bold.

m LOF COF INFLO RBDA
mt Pr Re RP mt Pr Re RP mt Pr Re RP mt Pr Re RP

5 1 0.20 0.20 0.200 0 0.00 0.00 0.000 1 0.20 0.20 0.200 1 0.20 0.20 0.200
10 4 0.40 0.80 0.313 0 0.00 0.00 0.000 2 0.20 0.40 0.214 4 0.40 0.80 0.370
15 5 0.33 1.00 0.341 0 0.00 0.00 0.000 2 0.13 0.40 0.214 5 0.33 1.00 0.385
20 5 0.25 1.00 0.341 0 0.00 0.00 0.000 2 0.10 0.40 0.214 5 0.25 1.00 0.385

m LOF COF INFLO RBDA
mt Pr Re RP mt Pr Re RP mt Pr Re RP mt Pr Re RP

5 5 1.00 1.00 1.000 0 0.00 0.00 0.000 3 0.60 0.60 0.667 3 0.60 0.60 0.750
10 5 0.50 1.00 1.000 0 0.00 0.00 0.000 4 0.40 0.80 0.625 5 0.50 1.00 0.714
15 5 0.33 1.00 1.000 2 0.13 0.40 0.103 5 0.33 1.00 0.556 5 0.33 1.00 0.714
20 5 0.25 1.00 1.000 3 0.15 0.60 0.130 5 0.25 1.00 0.556 5 0.25 1.00 0.714

m LOF COF INFLO RBDA
mt Pr Re RP mt Pr Re RP mt Pr Re RP mt Pr Re RP

5 5 1.00 1.00 1.000 0 0.00 0.00 0.000 5 1.00 1.00 1.000 5 1.00 1.00 1.000
10 5 0.50 1.00 1.000 2 0.20 0.40 0.176 5 0.50 1.00 1.000 5 0.50 1.00 1.000
15 5 0.33 1.00 1.000 5 0.33 1.00 0.278 5 0.33 1.00 1.000 5 0.33 1.00 1.000
20 5 0.25 1.00 1.000 5 0.25 1.00 0.278 5 0.25 1.00 1.000 5 0.25 1.00 1.000

Table A.6: Comparison of LOF, COF, INFLO and RBDA for k = 7 and 15, respectively,
for the Iris data with planted anomalies. The highest values are marked as bold.

k=7 LOF COF INFLO RBDA
m mt Pr Re RP mt Pr Re RP mt Pr Re RP mt Pr Re RP
5 3 0.60 0.60 1.000 2 0.40 0.40 1.000 3 0.60 0.60 1.000 3 0.60 0.60 1.000

10 3 0.30 0.60 1.000 3 0.30 0.60 0.667 3 0.30 0.60 1.000 3 0.30 0.60 1.000
15 3 0.20 0.60 1.000 3 0.20 0.60 0.667 3 0.20 0.60 1.000 3 0.20 0.60 1.000
20 3 0.15 0.60 1.000 3 0.15 0.60 0.667 3 0.15 0.60 1.000 3 0.15 0.60 1.000

k=15 LOF COF INFLO RBDA
m mt Pr Re RP mt Pr Re RP mt Pr Re RP mt Pr Re RP
5 3 0.60 0.60 0.857 3 0.60 0.60 0.857 3 0.60 0.60 1.000 3 0.60 0.60 1.000

10 3 0.30 0.60 0.857 3 0.30 0.60 0.857 3 0.30 0.60 1.000 3 0.30 0.60 1.000
15 3 0.20 0.60 0.857 3 0.20 0.60 0.857 3 0.20 0.60 1.000 3 0.20 0.60 1.000
20 3 0.15 0.60 0.857 3 0.15 0.60 0.857 3 0.15 0.60 1.000 3 0.15 0.60 1.000
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Table A.7: Comparison of LOF, COF, INFLO and RBDA for k = 18, 25, and 35, respec-
tively, for the Ionosphere data with planted anomalies. The highest values are marked as
bold.

k=18 LOF COF INFLO RBDA
m mt Pr Re RP mt Pr Re RP mt Pr Re RP mt Pr Re RP
10 0 0.00 0.00 0.000 0 0.00 0.00 0.000 0 0.00 0.00 0.000 0 0.00 0.00 0.000
20 0 0.00 0.00 0.000 0 0.00 0.00 0.000 0 0.00 0.00 0.000 1 0.05 0.33 0.063
30 1 0.03 0.33 0.037 0 0.00 0.00 0.000 1 0.03 0.33 0.038 1 0.03 0.33 0.063
40 1 0.03 0.33 0.037 1 0.03 0.33 0.026 2 0.05 0.67 0.046 3 0.08 1.00 0.073
50 2 0.04 0.67 0.042 2 0.04 0.67 0.034 2 0.04 0.67 0.046 3 0.06 1.00 0.073

k=25 LOF COF INFLO RBDA
m mt Pr Re RP mt Pr Re RP mt Pr Re RP mt Pr Re RP
10 0 0.00 0.00 0.000 0 0.00 0.00 0.000 0 0.00 0.00 0.000 0 0.00 0.00 0.000
20 0 0.00 0.00 0.000 0 0.00 0.00 0.000 0 0.00 0.00 0.000 1 0.05 0.33 0.077
30 0 0.00 0.00 0.000 0 0.00 0.00 0.000 0 0.00 0.00 0.000 1 0.03 0.33 0.077
40 1 0.03 0.33 0.029 0 0.00 0.00 0.000 1 0.03 0.33 0.029 3 0.08 1.00 0.075
50 1 0.02 0.33 0.029 1 0.02 0.33 0.022 1 0.02 0.33 0.029 3 0.06 1.00 0.075

k=35 LOF COF INFLO RBDA
m mt Pr Re RP mt Pr Re RP mt Pr Re RP mt Pr Re RP
10 0 0.00 0.00 0.000 0 0.00 0.00 0.000 0 0.00 0.00 0.000 0 0.00 0.00 0.000
20 0 0.00 0.00 0.000 0 0.00 0.00 0.000 0 0.00 0.00 0.000 1 0.05 0.33 0.083
30 0 0.00 0.00 0.000 0 0.00 0.00 0.000 0 0.00 0.00 0.000 1 0.03 0.33 0.083
40 1 0.03 0.33 0.031 1 0.03 0.33 0.029 1 0.03 0.33 0.029 3 0.08 1.00 0.078
50 1 0.02 0.33 0.031 1 0.02 0.33 0.029 1 0.02 0.33 0.029 3 0.06 1.00 0.078
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Table A.8: Comparison of LOF, COF, INFLO and RBDA for k = 22, 35, and 45, respec-
tively, for the Wisconsin Breast data with planted anomalies. The highest values are marked
as bold.

k=22 LOF COF INFLO RBDA
m mt Pr Re RP mt Pr Re RP mt Pr Re RP mt Pr Re RP
5 1 0.20 0.50 1.000 1 0.20 0.50 0.500 1 0.20 0.50 1.000 2 0.40 1.00 1.000

10 1 0.10 0.50 1.000 2 0.20 1.00 0.273 1 0.10 0.50 1.000 2 0.20 1.00 1.000
20 1 0.05 0.50 1.000 2 0.10 1.00 0.273 1 0.05 0.50 1.000 2 0.10 1.00 1.000
30 1 0.03 0.50 1.000 2 0.07 1.00 0.273 2 0.07 1.00 0.130 2 0.07 1.00 1.000
40 2 0.05 1.00 0.077 2 0.05 1.00 0.273 2 0.05 1.00 0.130 2 0.05 1.00 1.000

k=35 LOF COF INFLO RBDA
m mt Pr Re RP mt Pr Re RP mt Pr Re RP mt Pr Re RP
5 1 0.20 0.50 1.000 2 0.40 1.00 0.429 1 0.20 0.50 1.000 2 0.40 1.00 1.000

10 1 0.10 0.50 1.000 2 0.20 1.00 0.429 2 0.20 1.00 0.300 2 0.20 1.00 1.000
15 2 0.13 1.00 0.231 2 0.13 1.00 0.429 2 0.13 1.00 0.300 2 0.13 1.00 1.000

k=45 LOF COF INFLO RBDA
m mt Pr Re RP mt Pr Re RP mt Pr Re RP mt Pr Re RP
5 1 0.20 0.50 1.000 2 0.40 1.00 0.429 1 0.20 0.50 1.000 2 0.40 1.00 1.000

10 2 0.20 1.00 0.273 2 0.20 1.00 0.429 2 0.20 1.00 0.333 2 0.20 1.00 1.000
15 2 0.13 1.00 0.273 2 0.13 1.00 0.429 2 0.13 1.00 0.333 2 0.13 1.00 1.000



139

APPENDIX B
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Table B.1: Performance of all algorithms for synthetic dataset 2.
The highest values among all algorithms for same measurement for the same k and m are
shown in bold.

k=25 RADA ODMR ODMRS ODMRW ODMRD
m mt Re RP mt Re RP mt Re RP mt Re RP mt Re RP
6 6 1 1 6 1 1 6 1 1 6 1 1 6 1 1

10 6 1 1 6 1 1 6 1 1 6 1 1 6 1 1
15 6 1 1 6 1 1 6 1 1 6 1 1 6 1 1
20 6 1 1 6 1 1 6 1 1 6 1 1 6 1 1
30 6 1 1 6 1 1 6 1 1 6 1 1 6 1 1

k=25 RBDA DBCOD LOF COF INFLO
m mt Re RP mt Re RP mt Re RP mt Re RP mt Re RP
6 6 1 1 3 0.5 0.857 4 0.667 1 3 0.5 0.857 3 0.5 1

10 6 1 1 4 0.667 0.667 5 0.833 0.882 3 0.5 0.857 4 0.667 0.714
15 6 1 1 5 0.833 0.577 6 1 0.656 5 0.833 0.484 5 0.833 0.6
20 6 1 1 6 1 0.5 6 1 0.656 5 0.833 0.484 5 0.833 0.6
30 6 1 1 6 1 0.5 6 1 0.656 6 1 0.375 6 1 0.438

k=35 RADA ODMR ODMRS ODMRW ODMRD
m mt Re RP mt Re RP mt Re RP mt Re RP mt Re RP
6 6 1 1 6 1 1 6 1 1 6 1 1 6 1 1

10 6 1 1 6 1 1 6 1 1 6 1 1 6 1 1
15 6 1 1 6 1 1 6 1 1 6 1 1 6 1 1
20 6 1 1 6 1 1 6 1 1 6 1 1 6 1 1
30 6 1 1 6 1 1 6 1 1 6 1 1 6 1 1

k=35 RBDA DBCOD LOF COF INFLO
m mt Re RP mt Re RP mt Re RP mt Re RP mt Re RP
6 5 0.833 1 3 0.5 0.857 2 0.333 0.429 0 0 0 2 0.333 0.429

10 5 0.833 1 5 0.833 0.577 3 0.5 0.375 2 0.333 0.158 3 0.5 0.375
15 6 1 0.808 5 0.833 0.577 5 0.833 0.357 5 0.833 0.259 5 0.833 0.375
20 6 1 0.808 6 1 0.457 6 1 0.362 5 0.833 0.259 5 0.833 0.375
30 6 1 0.808 6 1 0.457 6 1 0.362 6 1 0.256 6 1 0.344
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Table B.2: Performance of all algorithms for synthetic dataset 2 (Cont).
The highest values among all algorithms for same measurement for the same k and m are
shown in bold.

k=50 RADA ODMR ODMRS ODMRW ODMRD
m mt Re RP mt Re RP mt Re RP mt Re RP mt Re RP
6 6 1 1 6 1 1 6 1 1 6 1 1 6 1 1

10 6 1 1 6 1 1 6 1 1 6 1 1 6 1 1
15 6 1 1 6 1 1 6 1 1 6 1 1 6 1 1
20 6 1 1 6 1 1 6 1 1 6 1 1 6 1 1
30 6 1 1 6 1 1 6 1 1 6 1 1 6 1 1

k=50 RBDA DBCOD LOF COF INFLO
m mt Re RP mt Re RP mt Re RP mt Re RP mt Re RP
6 5 0.833 1 3 0.5 0.857 1 0.167 0.5 0 0 0 1 0.167 0.5

10 5 0.833 1 3 0.5 0.857 2 0.333 0.25 1 0.167 0.1 2 0.333 0.25
15 5 0.833 1 5 0.833 0.484 4 0.667 0.278 1 0.167 0.1 5 0.833 0.3
20 5 0.833 1 5 0.833 0.484 6 1 0.3 2 0.333 0.1 5 0.833 0.3
30 6 1 0.583 6 1 0.396 6 1 0.3 6 1 0.175 6 1 0.292
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Table B.3: Performance of all algorithms for iris with rare class.
The highest values among all algorithms for same measurement for the same k and m are
shown in bold.

k=5 RADA ODMR ODMRS ODMRW ODMRD
m mt Re RP mt Re RP mt Re RP mt Re RP mt Re RP
5 1 0.2 0.2 3 0.6 0.75 2 0.4 0.6 3 0.6 0.857 3 0.6 0.75

10 5 1 0.429 5 1 0.652 5 1 0.517 5 1 0.75 5 1 0.714
15 5 1 0.429 5 1 0.652 5 1 0.517 5 1 0.75 5 1 0.714

100 5 1 0.429 5 1 0.652 5 1 0.517 5 1 0.75 5 1 0.714

k=5 RBDA DBCOD LOF COF INFLO
m mt Re RP mt Re RP mt Re RP mt Re RP mt Re RP
5 1 0.2 0.2 0 0 0 1 0.2 0.2 0 0 0 1 0.2 0.2

10 4 0.8 0.37 1 0.2 0.125 4 0.8 0.313 0 0 0 2 0.4 0.214
15 5 1 0.385 4 0.8 0.2 5 1 0.341 0 0 0 2 0.4 0.214

100 5 1 0.385 5 1 0.208 5 1 0.341 5 1 0.059 5 1 0.16

k=7 RADA ODMR ODMRS ODMRW ODMRD
m mt Re RP mt Re RP mt Re RP mt Re RP mt Re RP
5 3 0.6 0.857 4 0.8 1 4 0.8 0.833 4 0.8 1 4 0.8 1

10 5 1 0.714 5 1 0.882 5 1 0.75 5 1 0.938 5 1 0.882
15 5 1 0.714 5 1 0.882 5 1 0.75 5 1 0.938 5 1 0.882

100 5 1 0.714 5 1 0.882 5 1 0.75 5 1 0.938 5 1 0.882

k=7 RBDA DBCOD LOF COF INFLO
m mt Re RP mt Re RP mt Re RP mt Re RP mt Re RP
5 3 0.6 0.75 0 0 0 5 1 1 0 0 0 3 0.6 0.667

10 5 1 0.714 1 0.2 0.125 5 1 1 0 0 0 4 0.8 0.625
15 5 1 0.714 4 0.8 0.2 5 1 1 2 0.4 0.103 5 1 0.556

100 5 1 0.714 5 1 0.208 5 1 1 5 1 0.142 5 1 0.556
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Table B.4: Performance of all algorithms for iris with rare class (Cont).
The highest values among all algorithms for same measurement for the same k and m are
shown in bold.

k=10 RADA ODMR ODMRS ODMRW ODMRD
m mt Re RP mt Re RP mt Re RP mt Re RP mt Re RP
5 5 1 1 4 0.8 1 4 0.8 1 5 1 1 4 0.8 1

10 5 1 1 5 1 0.938 5 1 0.882 5 1 1 5 1 0.882
15 5 1 1 5 1 0.938 5 1 0.882 5 1 1 5 1 0.882

100 5 1 1 5 1 0.938 5 1 0.882 5 1 1 5 1 0.882

k=10 RBDA DBCOD LOF COF INFLO
m mt Re RP mt Re RP mt Re RP mt Re RP mt Re RP
5 5 1 1 0 0 0 5 1 1 0 0 0 5 1 1

10 5 1 1 3 0.6 0.231 5 1 1 2 0.4 0.176 5 1 1
15 5 1 1 5 1 0.288 5 1 1 5 1 0.278 5 1 1

100 5 1 1 5 1 0.288 5 1 1 5 1 0.278 5 1 1



144

Table B.5: Performance of all algorithms for ionosphere dataset with rare class.
The highest values among all algorithms for same measurement for the same k and m are
shown in bold.

k=7 RADA ODMR ODMRS ODMRW ODMRD
m mt Re RP mt Re RP mt Re RP mt Re RP mt Re RP
5 5 0.5 1 5 0.5 1 5 0.5 1 5 0.5 1 5 0.5 1

15 8 0.8 0.818 8 0.8 0.783 8 0.8 0.766 8 0.8 0.837 8 0.8 0.818
30 9 0.9 0.726 9 0.9 0.682 9 0.9 0.672 9 0.9 0.738 9 0.9 0.726
60 9 0.9 0.726 9 0.9 0.682 9 0.9 0.672 9 0.9 0.738 9 0.9 0.726
85 10 1 0.387 10 1 0.364 10 1 0.362 10 1 0.396 10 1 0.39

k=7 RBDA DBCOD LOF COF INFLO
m mt Re RP mt Re RP mt Re RP mt Re RP mt Re RP
5 5 0.5 1 0 0 0 5 0.5 1 5 0.5 1 5 0.5 1

15 8 0.8 0.783 0 0 0 7 0.7 0.737 5 0.5 1 7 0.7 0.718
30 9 0.9 0.703 0 0 0 7 0.7 0.737 7 0.7 0.467 7 0.7 0.718
60 9 0.9 0.703 9 0.9 0.091 7 0.7 0.737 8 0.8 0.33 9 0.9 0.3
85 10 1 0.369 10 1 0.098 9 0.9 0.273 9 0.9 0.256 9 0.9 0.3

k=11 RADA ODMR ODMRS ODMRW ODMRD
m mt Re RP mt Re RP mt Re RP mt Re RP mt Re RP
5 5 0.5 1 5 0.5 1 5 0.5 1 5 0.5 1 5 0.5 1

15 8 0.8 0.818 8 0.8 0.818 8 0.8 0.818 8 0.8 0.837 8 0.8 0.818
30 9 0.9 0.726 9 0.9 0.703 9 0.9 0.703 9 0.9 0.738 9 0.9 0.726
60 9 0.9 0.726 9 0.9 0.703 9 0.9 0.703 9 0.9 0.738 9 0.9 0.726

200 10 1 0.387 10 1 0.374 10 1 0.372 10 1 0.399 10 1 0.393

k=11 RBDA DBCOD LOF COF INFLO
m mt Re RP mt Re RP mt Re RP mt Re RP mt Re RP
5 5 0.5 1 0 0 0 5 0.5 1 5 0.5 1 5 0.5 1

15 8 0.8 0.818 0 0 0 6 0.6 1 6 0.6 0.778 6 0.6 1
30 9 0.9 0.703 0 0 0 7 0.7 0.667 7 0.7 0.56 7 0.7 0.651
60 9 0.9 0.703 9 0.9 0.098 8 0.8 0.409 8 0.8 0.409 8 0.8 0.419

200 10 1 0.372 10 1 0.105 10 1 0.198 10 1 0.197 10 1 0.216
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Table B.6: Performance of all algorithms for ionosphere dataset with rare class (Cont).
The highest values among all algorithms for same measurement for the same k and m are
shown in bold.

k=15 RADA ODMR ODMRS ODMRW ODMRD
m mt Re RP mt Re RP mt Re RP mt Re RP mt Re RP
5 5 0.5 1 5 0.5 1 5 0.5 1 5 0.5 1 5 0.5 1

15 8 0.8 0.837 8 0.8 0.818 8 0.8 0.818 8 0.8 0.857 8 0.8 0.837
30 9 0.9 0.738 9 0.9 0.703 9 0.9 0.703 9 0.9 0.75 9 0.9 0.738
60 9 0.9 0.738 9 0.9 0.703 9 0.9 0.703 9 0.9 0.75 9 0.9 0.738

200 10 1 0.401 10 1 0.382 10 1 0.382 10 1 0.423 10 1 0.407

k=15 RBDA DBCOD LOF COF INFLO
m mt Re RP mt Re RP mt Re RP mt Re RP mt Re RP
5 5 0.5 1 0 0 0 5 0.5 1 5 0.5 1 5 0.5 1

15 8 0.8 0.818 0 0 0 6 0.6 1 6 0.6 0.913 6 0.6 1
30 9 0.9 0.714 0 0 0 7 0.7 0.757 8 0.8 0.522 7 0.7 0.7
60 9 0.9 0.714 9 0.9 0.104 9 0.9 0.354 9 0.9 0.372 9 0.9 0.352

200 10 1 0.377 10 1 0.111 10 1 0.228 10 1 0.232 10 1 0.241

k=23 RADA ODMR ODMRS ODMRW ODMRD
m mt Re RP mt Re RP mt Re RP mt Re RP mt Re RP
5 5 0.5 1 5 0.5 1 5 0.5 1 5 0.5 1 5 0.5 1

15 8 0.8 0.857 8 0.8 0.837 8 0.8 0.837 8 0.8 0.857 8 0.8 0.857
30 9 0.9 0.75 9 0.9 0.738 9 0.9 0.738 9 0.9 0.75 9 0.9 0.75
60 9 0.9 0.75 9 0.9 0.738 9 0.9 0.738 9 0.9 0.75 9 0.9 0.75

200 10 1 0.417 10 1 0.399 10 1 0.399 10 1 0.43 10 1 0.426

k=23 RBDA DBCOD LOF COF INFLO
m mt Re RP mt Re RP mt Re RP mt Re RP mt Re RP
5 5 0.5 1 0 0 0 5 0.5 1 5 0.5 1 5 0.5 1

15 8 0.8 0.837 0 0 0 7 0.7 0.875 7 0.7 0.848 7 0.7 0.848
30 9 0.9 0.738 0 0 0 7 0.7 0.875 8 0.8 0.621 7 0.7 0.848
60 9 0.9 0.738 9 0.9 0.114 9 0.9 0.441 9 0.9 0.484 9 0.9 0.417

200 10 1 0.393 10 1 0.119 10 1 0.267 10 1 0.306 10 1 0.272
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Table B.7: Comparison of all algorithms for the Wisconsin dataset with rare class.
The highest values among all algorithms for same measurement for the same k and m are
shown in bold.

k=7 RADA ODMR ODMRS ODMRW OMDRD
m mt Re RP mt Re RP mt Re RP mt Re RP mt Re RP
15 8 0.8 0.8 7 0.7 0.8 7 0.7 0.8 8 0.8 0.735 8 0.8 0.8
25 10 1 0.64 10 1 0.611 10 1 0.598 9 0.9 0.643 10 1 0.618
40 10 1 0.64 10 1 0.611 10 1 0.598 10 1 0.573 10 1 0.618

k=7 RBDA DBCOD LOF COF INFLO
m mt Re RP mt Re RP mt Re RP mt Re RP mt Re RP
15 9 0.9 0.714 9 0.9 0.662 5 0.5 0.306 6 0.6 0.42 5 0.5 0.326
25 10 1 0.64 9 0.9 0.662 7 0.7 0.318 10 1 0.417 7 0.7 0.318
40 10 1 0.64 10 1 0.545 10 1 0.288 10 1 0.417 10 1 0.314

k=11 RADA ODMR ODMRS ODMRW OMDRD
m mt Re RP mt Re RP mt Re RP mt Re RP mt Re RP
15 8 0.8 0.783 8 0.8 0.655 8 0.8 0.667 8 0.8 0.706 8 0.8 0.735
25 10 1 0.604 10 1 0.579 10 1 0.591 9 0.9 0.592 10 1 0.573
40 10 1 0.604 10 1 0.579 10 1 0.591 10 1 0.534 10 1 0.573

k=11 RBDA DBCOD LOF COF INFLO
m mt Re RP mt Re RP mt Re RP mt Re RP mt Re RP
15 7 0.7 0.651 9 0.9 0.763 6 0.6 0.5 9 0.9 0.703 6 0.6 0.538
25 10 1 0.573 9 0.9 0.763 9 0.9 0.409 10 1 0.655 8 0.8 0.45
40 10 1 0.573 10 1 0.598 10 1 0.385 10 1 0.655 10 1 0.39

k=22 RADA ODMR ODMRS ODMRW OMDRD
m mt Re RP mt Re RP mt Re RP mt Re RP mt Re RP
15 8 0.8 0.75 8 0.8 0.735 8 0.8 0.72 8 0.8 0.72 8 0.8 0.75
25 10 1 0.579 10 1 0.585 9 0.9 0.643 9 0.9 0.616 10 1 0.573
40 10 1 0.579 10 1 0.585 10 1 0.573 10 1 0.55 10 1 0.573

k=22 RBDA DBCOD LOF COF INFLO
m mt Re RP mt Re RP mt Re RP mt Re RP mt Re RP
15 8 0.8 0.667 9 0.9 0.804 8 0.8 0.581 8 0.8 0.878 7 0.7 0.596
25 9 0.9 0.634 9 0.9 0.804 9 0.9 0.549 9 0.9 0.692 9 0.9 0.529
40 10 1 0.567 10 1 0.625 10 1 0.505 10 1 0.585 10 1 0.466
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Table B.8: Comparison of all algorithms for the iris dataset with planted outliers.
The highest values among all algorithms for same measurement for the same k and m are
shown in bold.

k=7 RADA ODMR ODMRS ODMRW OMDRD
m mt Re RP mt Re RP mt Re RP mt Re RP mt Re RP
10 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1

k=7 RBDA DBCOD LOF COF INFLO
m mt Re RP mt Re RP mt Re RP mt Re RP mt Re RP
10 3 1 1 3 1 1 3 1 1 3 1 0.667 3 1 1
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Table B.9: Comparison of all algorithms for the ionosphere dataset with planted outliers.
The highest values among all algorithms for same measurement for the same k and m are
shown in bold.

k=7 RADA ODMR ODMRS ODMRW OMDRD
m mt Re RP mt Re RP mt Re RP mt Re RP mt Re RP
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 1 0.333 0.091 1 0.333 0.059 1 0.333 0.059 1 0.333 0.091 1 0.333 0.083
30 1 0.333 0.091 2 0.667 0.068 2 0.667 0.068 2 0.667 0.075 1 0.333 0.083
40 3 1 0.077 3 1 0.072 3 1 0.072 3 1 0.081 3 1 0.076

k=7 RBDA DBCOD LOF COF INFLO
m mt Re RP mt Re RP mt Re RP mt Re RP mt Re RP
10 0 0 0 0 0 0 1 0.333 0.333 1 0.333 1 1 0.333 0.333
20 1 0.333 0.059 0 0 0 1 0.333 0.333 1 0.333 1 1 0.333 0.333
30 2 0.667 0.068 0 0 0 1 0.333 0.333 1 0.333 1 1 0.333 0.333
40 3 1 0.072 0 0 0 1 0.333 0.333 1 0.333 1 1 0.333 0.333

k=18 RADA ODMR ODMRS ODMRW OMDRD
m mt Re RP mt Re RP mt Re RP mt Re RP mt Re RP
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 1 0.333 0.083 1 0.333 0.063 1 0.333 0.063 1 0.333 0.091 1 0.333 0.083
30 1 0.333 0.083 1 0.333 0.063 1 0.333 0.063 2 0.667 0.073 1 0.333 0.083
40 3 1 0.077 3 1 0.073 3 1 0.073 3 1 0.08 3 1 0.077

k=18 RBDA DBCOD LOF COF INFLO
m mt Re RP mt Re RP mt Re RP mt Re RP mt Re RP
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 1 0.333 0.063 0 0 0 0 0 0 0 0 0 0 0 0
30 1 0.333 0.063 0 0 0 1 0.333 0.037 0 0 0 1 0.333 0.038
40 3 1 0.073 0 0 0 1 0.333 0.037 1 0.333 0.026 2 0.667 0.046
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Table B.10: Comparison of all algorithms for the ionosphere dataset with planted outliers
(Cont).
The highest values among all algorithms for same measurement for the same k and m are
shown in bold.

k=25 RADA ODMR ODMRS ODMRW OMDRD
m mt Re RP mt Re RP mt Re RP mt Re RP mt Re RP
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 1 0.333 0.091 1 0.333 0.077 1 0.333 0.077 1 0.333 0.091 1 0.333 0.083
30 1 0.333 0.091 1 0.333 0.077 1 0.333 0.077 2 0.667 0.073 1 0.333 0.083
40 3 1 0.078 3 1 0.075 3 1 0.075 3 1 0.081 3 1 0.077

k=25 RBDA DBCOD LOF COF INFLO
m mt Re RP mt Re RP mt Re RP mt Re RP mt Re RP
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 1 0.333 0.077 0 0 0 0 0 0 0 0 0 0 0 0
30 1 0.333 0.077 0 0 0 0 0 0 0 0 0 0 0 0
40 3 1 0.075 0 0 0 1 0.333 0.029 0 0 0 1 0.333 0.029

k=35 RADA ODMR ODMRS ODMRW ODMRD
m mt Re RP mt Re RP mt Re RP mt Re RP mt Re RP
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 1 0.333 0.091 1 0.333 0.083 1 0.333 0.083 1 0.333 0.091 1 0.333 0.091
30 2 0.667 0.073 1 0.333 0.083 1 0.333 0.083 2 0.667 0.075 2 0.667 0.073
40 3 1 0.08 3 1 0.078 3 1 0.078 3 1 0.082 3 1 0.08

k=35 RBDA DBCOD LOF COF INFLO
m mt Re RP mt Re RP mt Re RP mt Re RP mt Re RP
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 1 0.333 0.083 0 0 0 0 0 0 0 0 0 0 0 0
30 1 0.333 0.083 0 0 0 0 0 0 0 0 0 0 0 0
40 3 1 0.078 0 0 0 1 0.333 0.031 1 0.333 0.029 1 0.333 0.029
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Table B.11: Comparison of all algorithms for the Wisconsin dataset with planted outliers
(Cont).
The highest values among all algorithms for same measurement for the same k and m are
shown in bold.

k=7 RADA ODMR ODMRS ODMRW ODMRD
m mt Re RP mt Re RP mt Re RP mt Re RP mt Re RP
10 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1
20 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1
30 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1
40 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1

k=7 RBDA DBCOD LOF COF INFLO
m mt Re RP mt Re RP mt Re RP mt Re RP mt Re RP
10 2 1 1 2 1 0.188 0 0 0 1 0.5 0.1 1 0.5 0.1
20 2 1 1 2 1 0.188 1 0.5 0.05 2 1 0.136 2 1 0.1
30 2 1 1 2 1 0.188 1 0.5 0.05 2 1 0.136 2 1 0.1
40 2 1 1 2 1 0.188 2 1 0.053 2 1 0.136 2 1 0.1

k=22 RADA ODMR ODMRS ODMRW ODMRD
m mt Re RP mt Re RP mt Re RP mt Re RP mt Re RP
10 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1
20 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1
30 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1
40 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1

k=22 RBDA DBCOD LOF COF INFLO
m mt Re RP mt Re RP mt Re RP mt Re RP mt Re RP
10 2 1 1 2 1 0.75 1 0.5 1 2 1 0.273 1 0.5 1
20 2 1 1 2 1 0.75 1 0.5 1 2 1 0.273 1 0.5 1
30 2 1 1 2 1 0.75 1 0.5 1 2 1 0.273 2 1 0.13
40 2 1 1 2 1 0.75 2 1 0.077 2 1 0.273 2 1 0.13
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APPENDIX C

EXPERIMENTS FOR RELATIONSHIP

BETWEEN SIZE OF SUBSEQUENCE AND

PERFORMANCE IN SAXFR

C.1 Data set: SYN0

Fig. C.1: Synthetic data set SYN0 - Abnormal subsequence is highlighted in red rectan-
gle.
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Fig. C.2: SAXFR results for SYN0 - SAXFR results when size of subsequence is 10. Y
axis presents SAXFR values for each subsequence.

Fig. C.3: SAXFR results for SYN0 - SAXFR results when size of subsequence is 20. Y
axis presents SAXFR values for each subsequence.

Fig. C.4: SAXFR results for SYN0 - SAXFR results when size of subsequence is 30. Y
axis presents SAXFR values for each subsequence.
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Fig. C.5: SAXFR results for SYN0 - SAXFR results when size of subsequence is 40. Y
axis presents SAXFR values for each subsequence.

Fig. C.6: SAXFR results for SYN0 - SAXFR results when size of subsequence is 50. Y
axis presents SAXFR values for each subsequence.

Fig. C.7: SAXFR results for SYN0 - SAXFR results when size of subsequence is 60. Y
axis presents SAXFR values for each subsequence.
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Fig. C.8: SAXFR results for SYN0 - SAXFR results when size of subsequence is 70. Y
axis presents SAXFR values for each subsequence.

Fig. C.9: SAXFR results for SYN0 - SAXFR results when size of subsequence is 80. Y
axis presents SAXFR values for each subsequence.

Fig. C.10: SAXFR results for SYN0 - SAXFR results when size of subsequence is 90. Y
axis presents SAXFR values for each subsequence.
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Fig. C.11: SAXFR results for SYN0 - SAXFR results when size of subsequence is 100.
Y axis presents SAXFR values for each subsequence.

Fig. C.12: SAXFR results for SYN0 - SAXFR results when size of subsequence is 110.
Y axis presents SAXFR values for each subsequence.

Fig. C.13: SAXFR results for SYN0 - SAXFR results when size of subsequence is 120.
Y axis presents SAXFR values for each subsequence.



156

C.2 Data set: ECG1

Fig. C.14: Synthetic data set ECG1 - Abnormal subsequence is highlighted in red rect-
angle.

Fig. C.15: SAXFR results for ECG1 - SAXFR results when size of subsequence is 10.
Y axis presents SAXFR values for each subsequence.
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Fig. C.16: SAXFR results for ECG1 - SAXFR results when size of subsequence is 20.
Y axis presents SAXFR values for each subsequence.

Fig. C.17: SAXFR results for ECG1 - SAXFR results when size of subsequence is 30.
Y axis presents SAXFR values for each subsequence.

Fig. C.18: SAXFR results for ECG1 - SAXFR results when size of subsequence is 40.
Y axis presents SAXFR values for each subsequence.



158

Fig. C.19: SAXFR results for ECG1 - SAXFR results when size of subsequence is 50.
Y axis presents SAXFR values for each subsequence.

Fig. C.20: SAXFR results for ECG1 - SAXFR results when size of subsequence is 60.
Y axis presents SAXFR values for each subsequence.

Fig. C.21: SAXFR results for ECG1 - SAXFR results when size of subsequence is 70.
Y axis presents SAXFR values for each subsequence.
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Fig. C.22: SAXFR results for ECG1 - SAXFR results when size of subsequence is 80.
Y axis presents SAXFR values for each subsequence.

Fig. C.23: SAXFR results for ECG1 - SAXFR results when size of subsequence is 90.
Y axis presents SAXFR values for each subsequence.

Fig. C.24: SAXFR results for ECG1 - SAXFR results when size of subsequence is 100.
Y axis presents SAXFR values for each subsequence.
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Fig. C.25: SAXFR results for ECG1 - SAXFR results when size of subsequence is 110.
Y axis presents SAXFR values for each subsequence.

Fig. C.26: SAXFR results for ECG1 - SAXFR results when size of subsequence is 120.
Y axis presents SAXFR values for each subsequence.
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C.3 Data set: ECG2

Fig. C.27: Synthetic data set ECG2 - Abnormal subsequence is highlighted in red rect-
angle.

Fig. C.28: SAXFR results for ECG2 - SAXFR results when size of subsequence is 10.
Y axis presents SAXFR values for each subsequence.
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Fig. C.29: SAXFR results for ECG2 - SAXFR results when size of subsequence is 20.
Y axis presents SAXFR values for each subsequence.

Fig. C.30: SAXFR results for ECG2 - SAXFR results when size of subsequence is 30.
Y axis presents SAXFR values for each subsequence.

Fig. C.31: SAXFR results for ECG2 - SAXFR results when size of subsequence is 40.
Y axis presents SAXFR values for each subsequence.
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Fig. C.32: SAXFR results for ECG2 - SAXFR results when size of subsequence is 50.
Y axis presents SAXFR values for each subsequence.

Fig. C.33: SAXFR results for ECG2 - SAXFR results when size of subsequence is 60.
Y axis presents SAXFR values for each subsequence.

Fig. C.34: SAXFR results for ECG2 - SAXFR results when size of subsequence is 70.
Y axis presents SAXFR values for each subsequence.
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Fig. C.35: SAXFR results for ECG2 - SAXFR results when size of subsequence is 80.
Y axis presents SAXFR values for each subsequence.

Fig. C.36: SAXFR results for ECG2 - SAXFR results when size of subsequence is 90.
Y axis presents SAXFR values for each subsequence.

Fig. C.37: SAXFR results for ECG2 - SAXFR results when size of subsequence is 100.
Y axis presents SAXFR values for each subsequence.
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Fig. C.38: SAXFR results for ECG2 - SAXFR results when size of subsequence is 110.
Y axis presents SAXFR values for each subsequence.

Fig. C.39: SAXFR results for ECG2 - SAXFR results when size of subsequence is 120.
Y axis presents SAXFR values for each subsequence.
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