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Detection of abnormal behavior in trade data

using Wavelets, Kalman Filter and Forward Search

Christophe Damerval

Abstract

In this paper we address the issue of the automatic detection of
abnormal behavior in time series extracted from international trade
data. We motivate, review and use three specific methods, based on
solid frameworks: Wavelets, Kalman Filter and Forward Search. These
methods have been successfully applied to an important EU policy is-
sue: the analysis of trade data for antifraud and antimoney-laundering,
fields in which specialists are often confronted with massive datasets.
Our contribution consists in an in-depth study of these approaches
to assess their performance, qualitatively and quantitatively. On the
one hand, we present these three approaches, underline their specific
aspects and detail the used algorithms. On the other hand, we put
forward a rigorous assessment methodology. We use this methodology
to evaluate each method and also to compare them, on simulated time
series and also on real datasets. Results show each method has its spe-
cific advantages. Their joint use could be of a high operational impact
for our applications, to deal with the variety of patterns occurring in
trade data.

Keywords: Time series analysis, Anomaly detection, EU trade data, Wavelets,
Kalman Filter, Forward Search
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Outline

We first introduce the challenge of fraud detection, data available and exist-
ing approaches. We also present methods and algorithms to detect signals
of abnormal behavior in time series. Then we perform a thorough compar-
ison of these methods, addressing both qualitative and quantitative point
of view. In particular we assess them using simulated data, and also on a
considerable dataset reporting real trade.

1 Introduction

1.1 Context of antifraud and fight against money laundering

The identification of fraud or money-laundering is a difficult task for which
various approaches were put forward (Bolton and Hand, 2002; Fawcett,
1997). From an operational point of view, experts in the field carry out
in-depth verifications (of customs declarations for instance), taking into ac-
count legislative frameworks (national, European) and specific rules. Given
the vast amount of data to be processed, the adoption of automatic mon-
itoring tools is crucial for the identification of abnormal behavior. Such
tools should provide concise information on large datasets, allowing experts
in the antifraud field to focus on a limited number of specific cases. The
Joint Research Center of the European Commission contributes to this im-
portant EU policy issue (Fogelman-Soulie et al, 2008) using relevant sources
of information, in particular a database (COMEXT, Eurostat) reporting
trade flows (imports and exports of goods). The analysis of trade flows is
essential for many economic issues, and of prime interest for antifraud ana-
lysts. Since a part of the EU budget comes from tax imposed on external
trade, unexpected patterns in trade flows between EU and third countries
can be indicators of fraud or other irregular behavior. Here we focus on this
application: the identification of irregular behavior in trade data.

1.2 Trade data

The COMEXT database designed by Eurostat contains detailed informa-
tion on trade between EU member states and third countries, collected by
EU customs. This repository reports a huge number of records, reporting
monthly-aggregated data based on customs declarations (sum of transac-
tions over one month).
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These records give the value and the volume of products exchanged be-
tween two countries, for combinations (Product,Origin,Destination). Each
triplet corresponds to data

{xi, yi ∈ R, 1 ≤ i ≤ N}, i: month, xi: volume (in tons), yi: value (in euros)

Let us mention dimensions of such a dataset: 27 EU countries, 291 third
countries (non EU countries) and almost 15,000 products in the nomencla-
ture, thus leading to a maximum of 115 million combinations approximately.
Each record in COMEXT corresponds to one POD combination and one pe-
riod (one month for monthly aggregated data). In terms of time periods,
one can retrieve in COMEXT data ranging from 1988 to present, with dif-
ferences depending on countries: since 1988 for the EU15 Member States,
since 2004 for the 12 New Member States. The integration of new Member
States lead to a sharp increase: around 20 million records per year until 2003
and more than 40 million from 2004 onwards. In practice such a dataset
does not report all possible POD combinations at each time point: missing
values are frequent. This can be explained by the absence of trade, too low
quantities or unavailable data. Let us note such data can be considered
using either a national approach (considering each EU Member State indi-
vidually) or a EU-oriented approach. In the first case, data report trade
between one EU country and a third country (e.g. imports from US to FR).
In the second case, all EU countries are treated as one entity: this results
in trade between EU and third country (e.g. exports from EU to US) –
country-aggregated data. We point out that trade flows significantly vary
depending on the POD considered: certain products are more traded than
others, while certain countries have a preeminent role due to the size of their
economy. Furthermore, some trade flows can be subject to seasonality: for
instance agricultural products are naturally more traded during certain sea-
sons, which results in a 12-month seasonal evolution. Some products are
subject to economic demand development, which results in long-term in-
creases in trade quantities. Generally several types of fluctuations can be
observed, since trade is subject to a variety of economic factors. So per-
forming a robust analysis of such heterogeneous data constitutes a great
challenge.
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1.3 Signals of abnormal behavior – Methods for anomaly
detection

Such data can be analyzed using two main approaches: either statistical
regressions on scatterplots representing quantity and value, or time series
analysis (evolution over time). According to antifraud specialists, sudden
changes of quantity over time can be related with abnormal behavior within
trade data. To identify such signals, we focus here on time series repre-
senting the evolution of the quantity over time, using monthly-aggregated
and country-aggregated data. In this regard there exist in the literature
many methods for anomaly detection in time series. These come from do-
mains such as statistics (Fox, 1972; Barnett and Lewis, 1994; Abraham
and Chuang, 1989), signal processing (Soule et al, 2005), machine learn-
ing (Salvador and Chan, 2005; Ma and Perkins, 2003; Geurts, 2001), data
mining (Keogh et al, 2002; Caudell and Newman, 1993; Basu and Mecker-
sheimer, 2007; Chandola et al, 2009). Ideally the applied methods should
be: based on solid frameworks; able to deal with phenomenons such as non-
stationarity and seasonality; able to identify abnormal behavior (singulari-
ties, outliers); motivated by the applicative context (anti-fraud, anti-money
laundering).

1.4 Used methods in the field – Rationale for their compar-
ison

To identify abnormal behavior, specialists in the fight against fraud and
money laundering were confronted with two major issues: increasing vol-
umes of data to be processed and lack of ready-to-use data processing tools.
To overcome such difficulties, statistical and signal processing techniques
were applied. First methods focused on particular fraud cases, for instance
cases in which trade flows suddenly increased at known dates. Then generic
methods were used, like detecting the major peaks of the first derivative with
respect to time. Later, more advanced tools were put forward: Wavelets
(WL), Kalman Filter (KF) and Forward Search (FS). These methods pro-
duced interesting results according to specialists in the field, who are looking
for indicators of potential fraud. In particular, they showed an interest for
such methods to the extent they produce interpretable results and are com-
putationally efficient.
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The comparison of methods is a crucial issue in many applications, both
qualitatively and quantitatively. Such comparisons often raise issues for the
different ingredients used. Here all three methods detect times at which ob-
servations are seen as abnormal, which are very similar in simple cases, less
in more complex ones. Let us briefly outline the underlying logic concerning
WL, KF and FS (this will be later detailed). WL focus on local analy-
sis using a multiscale framework (continuous wavelet transform). Although
no specific model is assumed, the signal detection assumes a Gaussian dis-
tribution of errors. KF assumes the evolution with time is governed by a
linear dynamical system, with errors following a Gaussian distribution. FS
assumes data follows a model with Gaussian errors possibly contaminated
by outliers. It is adapted (without being limited) to time series subject
to seasonality – when the seasonality period is known a priori. The fitted
model being robust to outliers, the signal detection relies on the difference
between model predicted by normal observations and abnormal observations
(outliers).

Let us now higlight links between fraud detection and anomaly detec-
tion. Fraud cases cover a variety of situations, for instance: stockpilling,
fraud in export refunds, evasion of import duties, deflection of trade, smug-
gling, trade-based money laudering. To a certain extent, these correspond
to specific patterns in trade data (outliers, upward or downward spike, level-
shift). Moreover complex fraudulent operations can lead to singular patterns
for several entities: an upward spike for (P1, O1, D1) and a downward spike
for (P1, O2, D1), a systematic underpricing for a group of entities. Although
the methods presented here were not designed originally for specific fraud
cases, they proved to be well adapted for the identification of fraudulent be-
haviour in trade data (detecting anomalies, ranking them with an adequate
measure, possible characterization). Since each method proved to be rele-
vant for this application, one wonders how the methods behave on specific
patterns and on real data. The computational aspects in terms of cost and
time are also important elements. Besides, one asks what compromises can
be made, i.e., what results should be expected or missing if only one method
is used. This would allow end-users to choose which method they should
use according to their needs.
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2 Detection of signals of abnormal behavior within
time series

We present here different methods able to process time series and to extract
a certain number of signals of abnormal behavior. Let us first precise this
notion: considering a method M – either wavelets (WL), Kalman Filter
(KF) or Forward Search (FS) – and one time series, a signal of abnormal
behavior is a time at which M detects a specific pattern (depending on the
method) along with additional information such as a measure of strength
(also depending on the used method). The data we consider here is made
of time series

(ti, xi), ti ∈ N xi ∈ R i = 1..N (1)

Each time series is processed independently from the others. We present
the general framework of each method, emphasizing its relevance. We de-
scribe the algorithm used to extract signals from time series. We also give
illustrations and comments on the detected patterns.

2.1 Wavelets (WL)

Wavelets are a powerful tool for data processing. This comes with math-
ematical properties as well as efficient algorithms. In particular a useful
tool for multiscale analysis is the Continuous Wavelet Transform (CWT),
defined as

∀u ∈ R, ∀s > 0 Wf(u, s) =
1√
s

∫

R

f(t)ψ

(

t− u

s

)

dt (2)

with f : R → R (analyzed function) and ψ : R → R a wavelet function
(analyzing function) – see Mallat (1989); Mallat and Hwang (1992) for de-
tails. Starting from data (ti, xi), algorithms based on either filterbanks or
fast Fourier transforms provide efficient computations of the CWT at any
chosen scale s > 0, see Beylkin et al (1991); Strang and Nguyen (1996). Let
us denote W (ti, s) these computed values. The CWT makes up a represen-
tation of the data, using a position u ∈ R and a scale s > 0. A well-known
application of the CWT is the detection of singularities, defined as locations
at which the response |u 7→W (u, s)| attains a local maximum and surpasses
a certain threshold.
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This leads to the set of singularities defined as

SWL =

{

tk, |W (., s)| local max. at tk and |W (tk, s)| >
MAD

0.6745
· TWL

}

(3)

where MAD is the median absolute deviation of the wavelet coefficients,
and TWL a parameter to be chosen (typical value TWL = 5). The use of
the quantity MAD/0.6745 allows to surpass the noise level (Donoho and
Johnstone, 1994). See also Hoaglin et al (1983) on the use of the median
absolute deviation in robust statistics. Another application of wavelets is
the computation of pointwise Lipschitz regularity (Jaffard and Meyer, 1996;
Benassi et al, 1998). Let us recall this value of regularity is the exponent
α ∈ R appearing in the expression

|f(t)− f(t0)| ≤ C|t− t0|α (4)

where f : R → R, t0 ∈ R and C > 0, for all t in a neighborhood of t0. This
value α ∈ R should not be confused with the significance level of a statistical
test. Numerically this value of regularity can be computed with wavelets,
by performing a linear regression at fine scales using the formula

logW (u, s) = α log s+D (D ∈ R) (5)

In practice the estimated value of regularity allows to quantify how regu-
lar or singular a pattern is: this value indicates the sharpness of a spike.
This comes from the fact the regularity α is a robust characteristic value
(Andersson, 1997; Damerval and Meignen, 2009). A positive value denotes
a regular pattern (like a smooth evolution), a value close to zero a level-
shift (like a Heaviside step) and a value close to −1 a spike (like a Dirac
impulse). In practice this value of regularity is generally comprised between
-2 and 2. For illustration purposes, we represent on Figure 1 a time series
representing the evolution of a quantity over time, the Sombrero wavelet
ψ(t) = (1 − t2) exp

(

t2/2
)

(used in all our experiments), and the CWT
W (u, s) defined in equation (2). We also represent the response (modulus
of the CWT) with respect to time, and the regularity seen in equation (4)
at each time instant.
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Figure 1: Illustration of wavelet approach: (a) Data: time series represent-
ing the evolution of a quantity over time; (b) Sombrero wavelet (second
derivative of Gaussian), used in all our experiments; (c) Wavelet transform
u 7→ W (u, s) at different scales s (fine, intermediate, coarse); (d) Wavelet
transform (u, s) 7→W (u, s) in surface representation (3D view); (e) Wavelet
response u 7→ |W (u, s = 1)|; (f) Values of regularity α estimated at each
time.
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Algorithm. Here the signals we will identify are times at which the
WL method detects a singularity in the evolution of a time series. We
also extract additional information (measure of strength and value of local
regularity)

1. Compute the continuous wavelet transform using the second derivative
of Gaussian as wavelet and three fine scales s1 = 1, s2 = 2, s3 = 3:

Data (ti, xi)i=1..N 7−→ Wavelet transform W (ti, sj)i=1..N,j=1..3 (6)

2. Identify the set of singularities SWL, using the scale s1 = 1 in equa-
tion (3)

3. Compute values of regularity at each singularity location u ∈ S, per-
forming a linear regression on formula (5) using three scales s1 = 1,
s2 = 2, s3 = 3

4. Extract the following features







































Singularity location : tk (k ∈ 1..N)
Response : |W (tk, s1)|
Value of regularity : αk ∈ R

Type of pattern : ”spike”, ”level-shift” or ”regular pattern”






spike if αk < −1/2
level shift if αk ∈ [−1/2, 1/2]
regular pattern if αk > 1/2

(7)

The rule to determine the pattern type arises from the characteristic aspect
of the regularity α (see above-mentioned theoretical values). Besides we use
a measure of strength that is normalized so as to be scale invariant: two
time series containing the same pattern should lead to the same strength,
even if they have different amplitudes. Besides the choice of used wavelet
has some importance. For analysis purposes with the CWT (case here), a
classical choice is the n-th derivative of Gaussian (with n positive integer).
Such a choice allows to identify (with the presented approach) the peaks of
a n-th derivative of the time series. Here we used the second derivative of
Gaussian (Sombrero wavelet): as a symmetric and infinitely derivable func-
tion, it allows to detect precisely singularities and provide a good regularity
estimation. So the wavelet approach can be seen as a generalization of the
basic approach consisting in detecting the peaks of the first derivative.
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Figure 2: Illustration of Kalman Filter approach: (a) Data (time series
representing the evolution of a quantity over time) and prediction obtained
thanks to Kalman Filter approach; (b) Normalized error (at each time)
between data and KF prediction.

2.2 Kalman filter (KF)

The Kalman Filter is a classical prediction method in time series analysis,
which was applied to various industrial applications (Durbin and Koopman,
2001; Kalman, 1960; Peng and Aston, 2010). The KF focuses on the tem-
poral aspect of time series, which allows to process and predict time series
progressively. This can be useful in real-time and on-line applications. The
detection of abnormal behavior will be performed comparing data with KF
prediction. Let us consider the monodimensional model

xi = ai + εi (i = 1..N) εi : N (0, σ21) (8)

ai+1 = ai + ηi (i = 1..N) ηi : N (0, σ22) (9)

in which data (xi)i=1..N are modelled as the sum of a noise and a state
(ai)i=1..N following a random walk. The predicted state ai+1 only depends
on noise and the current state ai. All noises are assumed with zero mean
and constant variance. From the computational point of view, the initial
state a0 can be obtained using optimization techniques, whereas the update
from ai to ai+1 can be performed explicitly. A strong point of the KF lies
in its capacity to estimate the state prediction and variance that formally
write as

xpi = E[ai|x1..i−1] (10)

vi = V ar(ai|x1..i−1) (11)
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This allows to define the normalized prediction error

ei =
xi − xpi√

vi
(12)

which behaves as a Gaussian distribution with zero mean and variance equal
to one. This quantity turns out as relevant for the detection of abnormal
behavior: provided it surpasses a certain threshold, this indicates a sharp
change in the evolution of the time series. The set of sharp changes are
defined as

SKF = {tk(k ∈ 1...N), ek > TKF } (13)

where TKF is a threshold parameter to be chosen (typical value TKF = 3).
To illustrate we represent on Figure 2 the KF prediction and the normalized
error associated to the time series previously seen in Figure 1. Algorithm.
Here the signals we identify are times at which the data and the KF pre-
diction significantly differ. Such signals correspond to sharp changes in the
evolution of the time series.

1. Compute KF prediction, residuals and normalized error.

2. Extract the following features















Sharp change location : tk (k ∈ 1..N)

Prediction : xpredictk

Residual : rk = xk − xpredictk

Normalized error : ek > 0

(14)

Remark: the KF approach can be efficiently implemented using the State
Space Models Peng and Aston (2010). In terms of perspectives we mention
that more complex models (non-Gaussian, non-linear) and robust versions
of KF (using techniques such as reweighting) offer perspectives that are
potentially relevant for our application.
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2.3 Forward Search (FS)

The Forward Search is a flexible approach in robust statistics. In particular
it allows to perform very robust regressions, presenting a specific adaptive-
ness to the data (Atkinson et al, 2004; Atkinson and Riani, 2000; Rousseeuw
and Leroy, 1987). This tool turns out as efficient for different applications
such as outlier detection, model selection and clustering. Here we process
time series with FS using a model integrating a seasonal trend (Riani, 2004).
This approach allows to evidence outliers. We will also extract additional
information for every outlier: residual and measure of outlyingness. Let us
recall the main steps of the Forward Search (Atkinson et al, 2004). First
choose an initial subset free of outliers: this can be done using least me-
dian of squares regression (alternatively least trimmed squares) Then add
progressively observations by selecting those corresponding to the smallest
squared residuals. Finally monitor the evolution of the standardized resid-
uals with respect to subset size. This allows to identify normal units – on
which a classical linear regression can be fitted – and outliers (corresponding
to large standardized residuals). For illustration purposes we represent on
Figure 3 the fitted model by FS and the monitoring of residuals correspond-
ing to the time series previously used with WL and KF – see Fig.1 and 2.

A strong point of the FS lies in its ability to order the data, from units
rather following the model until units more likely to be outliers. This allows
to evidence complementary subsets of normal units and outliers, using a
test size which is ts-simultaneous (ts ∈ [0, 1]). Let us recall the notion of
test size: considering a large number of datasets free of outliers, the FS will
identify outliers in a fraction of them (on average equal to ts). For instance
if we choose ts = 0.01, on average 1% of these datasets will be identified as
containing at least one outlier. Since we are interested here in the detection
of abnormal behavior, it is natural to consider the set

SFS = {tk identified as outliers by FS using a test size TFS} (15)

where the parameter TFS is chosen by the user (typical value TFS = 0.01).
Computing a measure of outlyingness. The choice of the test size ts
has an impact on the number of detected outliers but not on their strength.
Let us explain how to compute such a measure of strength: once outliers
have been identified by FS, we carry out the following steps: first fit a lin-
ear regression using normal units, second compute deletion residuals on this
outlier (with appropriate formula, see Atkinson et al (2004) for details) and
third perform a statistical t-test (Student test). This t-test quantifies the
agreement of the outlier with the set of normal units, giving a p-value in
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[0, 1] measuring the outlier strength: a value close to 0 indicates a strong
outlier. Let us now describe how we extract signals with FS in one time
series.

Algorithm. Here the signals we identify are times corresponding to outliers
detected by the Forward Search.

1. Perform FS on one time series using the approach proposed in Riani
(2004). This leads to two subsets made respectively of normal units
and outliers, denoted respectively N and O.

2. Using the set of normal units N , we obtain a fit taking into account
a trend, either linear or seasonal. Using the set of outliers O, we
compute for each outlier the residual and a p-value (using a t-test).
These quantify the outlyingness of each outlier.

3. Extract the following features















Outlier location : tk (k ∈ 1..N)

Fitted value : xfitk

Residual : rk = xk − xfitk

p-value : pk ∈ [0, 1]

(16)

2.4 Notes on practical implementation

Each of the presented methods can be implemented efficiently in Matlab en-
vironment. Concerning WL, we mention there are toolboxes available to the
scientific community (Wavelab, 1992). For our experiments we developed a
specific wavelet analysis toolbox, with an emphasis on the CWT and robust
regularity estimation. Concerning KF, we used the SSM toolbox (Peng and
Aston, 2007), which is an efficient and general tool performing at state-of-
the-art. Concerning FS, we mention the reference toolbox FSDA, Forward
Search and Data Analysis (FSDA, 2011). We used this toolbox, and designed
specific functions to process time series taking into account seasonality. Fi-
nally we emphasize that all computations are performed using the same
software environment (Matlab) and efficient implementations performing at
state-of-the-art. This ensures the validity of further comparisons.
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Figure 3: Illustration of Forward Search approach: (a) Data: time series
representing the evolution of a quantity over time; (b) Model fitted by the
Forward Search; (c) Residuals (difference between data and FS fit); (d)
Monitoring of the Forward Search: evolution of the studentized residuals
with respect to subset size.

2.5 Conclusion

We presented three methods that are relevant for the automatic extraction
of features within trade data, analyzed as time series. All three allow to
identify instants at which there is a non-regular behavior and give addi-
tional information on the underlying pattern: strength and regularity with
WL, prediction and error with KF, and fitted model and evidenced outliers
with FS. In the following section we present computational issues, qualita-
tive aspects and a quantitative comparison.
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Figure 4: Signals of abnormal behavior detected on data consisting of a sea-
sonal trend, a Gaussian noise and three outliers, using: (a) WL (parameter
TWL = 5), (b) KF (parameter TKF = 3), (c) FS (parameter TFS = 0.01).

3 Comparison of the different approaches

To better highlight the differences between the present three methods, we
present in Table 1 an overview of their main characteristics. Since the pre-
sented methods WL, KF and FS are based on different frameworks, method-
ological issues appear when one wants to compare them. Therefore it is
essential to use a rigorous methodology that does not favor one method a

priori. We first discuss their computational performance, from the theoret-
ical and practical points of view. Then we compare them qualitatively by
illustrating results on classical patterns and commenting on the specificity
of each method. Finally we put forward procedures to compare them quan-
titatively, identifying times that are simultaneously detected by one, two or
three methods. With a view of assessing performance on large datasets –
on both simulated and real data – these procedures are carried out on each
time series, and then we define indicators bearing on the whole dataset.
Important note: all three methods allow to tune the number of signals
detected, either for one time series or for the whole dataset. In our exper-
iments we tune them to make sure that for the whole dataset, the number
of signals is the same for WL, KF and FS. This allows to obtain a similar
number of signals by the three methods for each time series, as represented
on Figure 4.
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Table 1: Overview of used methods: Wavelets, Kalman Filter and Forward
Search. For each method we mention its framework, the algorithm we use,
its complexity and practical speed.

Method Wavelets Kalman Filter Forward Search

Framework Time-frequency Prediction Statistical regression
analysis and optimization and optimization

Algorithm

detecting singularities sharp changes outliers

Additional Regularity Normalized Measure of outlyingness
information estimation error (pvalue)

Complexity

n: samples per POD O(n logn) O(n) Greater than O(n)
NPOD: nb. of POD CWL ×NPOD CKF ×NPOD CFS ×NPOD

Practical speed Very fast Moderate Moderate
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Figure 5: Evolution of the computational time (in seconds) with respect to
sample size n. For the three methods (WL, KF and FS) we perform 100
simulations of Gaussian noise and represent average computational times
corresponding to sample sizes: (a) up to 500; (b) up to 10,000. Remark: for
WL it is very close to the abscissae axis.
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3.1 Computational aspects

In the context of trade data one is often confronted with huge datasets.
Hence efficient algorithms are highly desirable to process them in a reason-
able time. We presented in section 2 known efficient algorithms for WL, KF
and FS – corresponding to the state-of-the-art. Let us now analyze their
theoretical complexity and practical speed.
Theoretical complexity. Denoting NPOD the number of time series, the
complexity of the three methods can be written as Cmethod×NPOD. Besides,
since data is processed independently for each time series, it is possible to
speed up these computations using parallel computing techniques. Now,
considering one time series, let us study the complexity and computational
times of the different methods. We denote n the number of observations of
one time series. Concerning wavelets, we use here the Continuous Wavelet
Transform (CWT) It can be efficiently computed by a spectral method (us-
ing fast Fourier transforms) of O(n logn) complexity. Once the CWT has
been computed, all operations (such as regularity estimation) can be per-
formed in O(n). So the complexity of our wavelet approach is O(n logn).
Concerning the Kalman Filter, it takes O(n) operations to initialize the
state and O(n) to compute prediction and other values at each time, result-
ing in a complexity O(n). Concerning the Forward Search, its algorithm
relies on linear regressions (such as least median squares) and optimization
procedures. We recall that the complexity of a simple linear regression is
O(pn2) (p: number of parameters). Given that the computation of the ini-
tial subset – ideally free of outliers – entails an enumeration of many possible
subsets, and even all for a small data size. In the worst case it can result
in a very high complexity (exponential), and in any case it remains greater
than O(n). This could be improved using heuristic approaches to provide
faster algorithms of FS.
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Practical comparison. To evaluate the relative speed of the WL, KF and
FS methods, we perform computations for different values of sample size n
(from 10 to 10,000). For each value of n, we consider 100 datasets made of
Gaussian noise. We represent on Figure 5 average computational times. Be-
sides we compute Taylor expansions of the computational time as a function
of the sample size n: denoting ctWL, ctKF and ctFS the computational times
(in seconds) of WL, KF and FS, we obtain the following approximations for
n ≤ 500

ctWL ≈ (32 + 0.2 · n)/1000
ctKF ≈ (82 + 24 · n)/1000
ctFS ≈ (4624 + 3 · n)/1000

(17)

and also for n ≥ 1000

ctWL ≈ 0.2 · n/1000
ctKF ≈ 13 · n/1000
ctFS ≈ 18 · n/1000

(18)

Since these computational time depend on the machine used, we underline
that the important aspect lies in the relative practical speed of the methods.
Globally, the performance of KF and FS are of the same order of magnitude,
KF being faster than FS for 200 < n < 3000. For smaller values of n, we
note that FS is more influenced than WL and KF by the constant term
seen in equation (17). This can be explained by the importance of the
initialization step in the Forward Search algorithm (initial subset free of
outliers). Overall the WL method is dramatically faster than KF and FS.
In particular for larger values of n – see equation (18) – WL turn out as 65
times faster than KF and 90 faster than FS. This huge difference is explained
by the direct computations in WL, compared to costly optimizations in KF
and FS.
Conclusion. We assessed the computational efficiency of the methods WL,
KF and FS, considering associated known efficient algorithms. From the
theoretical point of view, all three methods present a complexity suitable
to process massive datasets. From the practical point of view, we note
a moderate speed for KF and FS whereas the WL algorithm appears as
clearly faster.
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Figure 6: Classical patterns corresponding to abnormal behavior: (a) Sharp
spike; (b) Sharp level-shift; (c) Singular waveform localized in time; (d) Spike
on a smooth seasonal evolution. (a’,b’,c’,d’) Detected signals of abnormal
behavior using WL, KF and FS.
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Figure 7: For each pattern i = 1..4 seen in Fig.6, spike, level-shift, localized
waveform, seasonal trend with a spike: (ai) WL response, (bi) KF prediction,
(ci) FS fit.
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3.2 Qualitative comparison

The presented methods are designed to detect specific patterns. Since each
method has its own philosophy and underlying assumptions on data, we ex-
pect them to perform differently depending on the abnormal pattern present
in the data. We represent some classical patterns on Figure 6. Let us precise
which patterns are likely to be detected by WL, KF and FS. The wavelet
approach uses a multiscale transform of the data to detect singular pat-
terns. This makes it well adapted to high-frequency waveforms, spikes and
level-shifts. The Kalman Filter allows to predict the evolution of the data ac-
cording to previous observations, and can be used to detect sudden changes
(spikes, level-shifts). The Forward Search allows to detect outliers in vari-
ous contexts, in particular times series having a seasonal trend. It is well
adapted to cases when data behaves as a clear seasonal evolution except for
a few outliers. In addition to the detection of patterns at certain times, these
methods provide additional information on these patterns. Concerning WL,
it is possible to compute response and values of regularity. These quantify
the strength and the sharpness of a pattern, and allow to classify it as spike,
level-shift or more regular. Concerning KF, this method provides normal-
ized error, which quantifies to which degree an observation is far from the
KF prediction. Concerning FS, once the outliers have been identified, an
ad-hoc formula allows to compute residuals. In the context of large datasets
to be processed, an important aspect is to control the number of detected
patterns. This can be done through thresholding on an appropriate parame-
ter, which quantifies the strength of a pattern: measure of strength for WL,
normalized residuals for KF and FS. Although these measures differ from
one method to another (and cannot be compared directly), they allow to
tune the number of detected patterns.
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Let us now compare results obtained on simple examples by these ap-
proaches (WL, KF and FS). We represent on Figure 6 classical patterns of
abnormal behavior within time series, often encountered in practice when
dealing with trade data. Applying the methods WL, KF and FS (using
adequate thresholding), we detect signals corresponding to these patterns.
The spike pattern is effectively detected by all three methods, and WL also
detects singularities before and after the spike. The level-shift pattern is
detected by WL and KF but not by FS (no clear outlier). Concerning the
waveform pattern, WL detects several singularities, KF one sharp change,
and FS one clear outlier. Finally the pattern consisting on a spike over the
seasonal trend is well detected by all three methods. Additionally we rep-
resent on Figure 7 the WL response, the KF prediction and the FS fitted
model corresponding to these four classical patterns. This allows to under-
stand better how these methods detect signals of abnormal behavior. First,
WL focuses on pointwise singularities, sometimes leading to several signals
for one pattern. Second, KF focuses on sharp changes and performs best
when there is one sudden change over a smooth trend (spike, level-shift).
Third, FS focuses on outliers using linear or seasonal models, yet it does not
perform well for level-shifts and non-stationary time series. In conclusion,
all three methods effectively identify these classical patterns, using different
approaches for signal detection.

3.3 Quantitative comparison methodology

We present here methodologies that allow to evaluate the performance of
the used methods. We address two cases:

• Case of simulated data: we apply the proposed methods to times series
containing patterns seen in section 3.2. Since signals of abnormal
behavior are known, we can compare them with the signals detected by
each method WL, KF and FS. This allows to evaluate the performance
of each method, comparing practical results to theoretical ones.

• Case of real data: we apply the proposed methods to times series
relative to EU trade data, as described in section 1.2. In this context
where signals of abnormal behavior are a priori unknown, we rely on
inter-method comparison. This allows to evidence the common aspects
and the differences between WL, KF and FS.
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Case of simulated data. We carry out the following procedure

1. For every time series TSi, i = 1..N (N : number of POD/time se-
ries), each method M (here M =Wavelets, Kalman Filter or Forward
Search) detects a set of time instants

Si(M) = {ti,mi } (19)

2. For every time series, compute the matching score defined as

MSi(M) =
|Si(M) ∩ S0

i |
max(1, |Si(M)|, |S0

i |)
∈ [0, 1] (20)

where S0
i is the set of time instants corresponding to a known pattern.

Now, considering all time series, we compute the average matching score
MS(M) = 1

N

∑

iMSi(M). This measures to which degree one method is
adapted to a given pattern. Additionally we compute the rate of effective
detection, defined as the percentage of time series for which the pattern was
detected (case when Si(M) ∩ S0

i 6= ∅). This measures the ability of one
method to detect effectively signals of abnormal behavior.
Case of real data. We carry out the following procedure

1. Perform step 1 used for simulated data to obtain sets Si(M) for each
time series and each method

2. For every time series, compute the matching score defined as

MSi(M,M ′) =
|Si(M) ∩ Si(M ′)|

max(1, |Si(M)|, |Si(M ′)|) ∈ [0, 1] (21)

which measures common signals of abnormal behavior between two
methods M and M ′.

We use this procedure to compare on the whole dataset the average match-
ing scores between two methods (WL and KF, WL and FS, KF and FS).
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Comments. Let us present extreme cases, to better interpret the meaning
of the matching score. First, let us consider a method M that identifies all
times as abnormal for any time series. In such case equation (20) becomes

MSi(M) =
|Si(M) ∩ S0

i |
max(1, |Si(M)|, |S0

i |)
=

|S0
i |
N

(22)

Besides, considering such methods M and M ′, equation (21) becomes

MSi(M,M ′) =
|Si(M) ∩ Si(M ′)|

max(1, |Si(M)|, |Si(M ′)|) =
N

N
= 1 (23)

Hence, in such case the score MSi(M) is low (low performance) while the
score MSi(M) is high (100% common part). Now, considering again such
method M and a perfect method M ′ giving Si(M

′) = S0
i , equation (21)

becomes

MSi(M,M ′) =
|Si(M) ∩ Si(M ′)|

max(1, |Si(M)|, |Si(M ′)|) =
|S0

i |
N

(24)

which results in a low score. This illustrates the relevance of these matching
scores to evaluate the performance of one method, or to assess the common
part between two methods.
Important note: for each method, one can control the number of extracted
signals using an adequate parameter. Although the matching scores previ-
ously defined allow to compare very different methods, it can be useful to
tune the parameters so that the number of detected signals are roughly simi-
lar. Besides, for each method used here one can rank the detected signals by
importance thanks to an adequate measure (response for WL, error for KF,
outlyingness for FS). This can be used to obtain exactly the same number
of signals for each method.
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4 Results

We present here results obtained on simulated and real data. Considering
one dataset made of time series, we first detect signals of abnormal behav-
ior using all three methods (WL, KF and FS). Then we apply on these
signals the methodologies presented in section 3.3. Results allow to draw
conclusions on the relevance of each method to detect certain patterns.

4.1 Application on simulated data

Experiments. We apply the methods WL, KF and FS on the sum of one
pattern and a Gaussian white noise. The pattern is one of those represented
on Figure 6: spike, level-shift, localized waveform, or spike over a trend. We
add Gaussian noise to perturbate these clear signals of abnormal behavior,
using the following signal-to-noise ratios: 20dB, 15dB, 10dB and 5dB – we
recall the signal-to-noise ratio is defined as SNR = 20 log10

Noise amplitude
Signal amplitude

and that a lower SNR means a higher noise level. For instance a 20dB
SNR means the signal is 10 times stronger than the noise. Note this differs
from other contamination methods used in robust statistics, such as adding
outliers randomly. This would be inappropriate here because such outliers
would be detected as abnormal patterns. Every method is applied on 100
simulations of each pattern and each noise level. Denoting S0 the known
location of the pattern, we compute the matching score S(M,S0) ∈ [0, 1]
for each method and each pattern (average value over 100 simulations).
Moreover we compute the rate of effective detection of the pattern, defined
as the percentage of simulations for which the known pattern was effectively
detected (average value over 100 simulations). A method is all the more
efficient than these two values are high: ideally the matching score should be
close to 1, and the effective detection close to 100%. Results are summarized
in Table 2.

24



Table 2: Results on simulated data. Matching score and effective de-
tection rate obtained by applying our methodology to data made of noisy
classical patterns (the level of noise is quantified by the SNR, high SNR
corresponding to low noise).

Matching score Effective detection
SNR WL KF FS WL KF FS

20dB 0.66 0.50 1.00 100% 100% 100%
15dB 0.52 0.31 0.90 99% 100% 90%
10dB 0.43 0.26 0.19 76% 100% 19%
5dB 0.24 0.19 0.02 41% 81% 2%

(a) Spike

Matching score Effective detection
WL KF FS WL KF FS

20dB 0.75 0.66 1.00 99% 100% 100%
15dB 0.73 0.51 0.90 94% 100% 90%
10dB 0.52 0.43 0.19 68% 100% 19%
5dB 0.37 0.38 0.02 48% 95% 2%

(b) Level-shift

Matching score Effective detection
WL KF FS WL KF FS

20dB 0.51 0.67 1.00 100% 100% 100%
15dB 0.55 0.42 0.85 100% 100% 85%
10dB 0.48 0.29 0.12 81% 100% 13%
5dB 0.24 0.24 0.02 40% 97% 2%

(c) Localized waveform

Matching score Effective detection
WL KF FS WL KF FS

20dB 0.52 0.35 1.00 100% 100% 100%
15dB 0.53 0.31 0.82 100% 100% 82%
10dB 0.42 0.27 0.12 76% 99% 12%
5dB 0.19 0.22 0.02 36% 87% 2%

(d) Spike over a seasonal trend
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Results. First let us analyze the results for each pattern. Concerning
the spike pattern – see Tab 2(a))– FS performs very well for low level of
noise, and poorly for higher noise levels. WL and KF perform quite well
overall, and appear as more robust to higher noise levels (compared to KF).
We observe similar results for the level-shift pattern – see Tab 2(b). For
low noise level, FS performs very well while WL and KF perform well.
For higher noise level, WL and KF perform better and appear as more
robust than FS. In particular we note that for both spike and level-shift
patterns, WL possess better accuracy (matching score) compared to KF
and FS. Concerning the localized waveform pattern – see Tab 2(c) – results
for WL and KF are good overall, while FS performance decreases sharply
as the level of noise increases. Finally we note that WL obtain a good
matching score overall (which underlines its robustness) while KF maintains
a high effective detection rate. Concerning the spike over a seasonal trend
pattern, – see Tab 2(d) – we note that for low levels of noise, FS performs
significantly better than WL and FS (considering matching scores). However
the performance of FS drastically drops for higher levels of noise. In contrast,
WL and KF present a better robustness to noise, especially KF in terms of
effective detection rate.

Now let us analyze the results on Table 2 focusing on the impact of the
noise level. In the context of low level of noise (20dB, 15dB), FS turns out
as very efficient, with a matching score close to 1 and an effective detec-
tion rate close to 100%. WL and KF perform well overall: matching score
good for WL and average for KF, while both methods attain a high effec-
tive detection rate. In the context of a high levels of noise (10dB, 5dB),
the performance of FS falls dramatically while WL and KF present a bet-
ter robustness. More precisely WL obtain slightly better matching score
than KF whereas KF attains a better effective detection rate (especially
for the highest level of noise). Finally we underline that in the context of
high level of noise, the results obtained by WL and KF can be considered
as good: even visually the patterns are difficult to distinguish from the noise.

Conclusion. We presented here results on simulated data for which the
pattern are known a priori, using different levels of noise. These results
show that FS performs very well in the context of low noise level, and poorly
for high level of noise. WL perform well overall, having a good robustness
to noise. Finally KF perform well overall, having a very good robustness to
noise.

26



Table 3: Results on real data. We apply the methods WL, KF and FS
on a dataset reporting EU trade data, consisting of 26,233 times series. We
first compare the detected signals of the three methods for each time series
(here K = 5000) and then synthesize the results for the whole dataset: (a)
Matching score, as defined in our methodology for real data; (b) Percentage
of perfect matches, defined as POD for which the signals detected by two
methods are identical.

Matching score Percentage of perfect matches
WL KF FS

WL 1 0.25 0.21
KF - 1 0.30
FS - - 1

WL KF FS

WL 100% 19% 12%
KF - 100% 23%
FS - - 100%

(a) (b)

4.2 Application on real data

Experiments. Here we consider real data extracted from the huge exter-
nal trade database mentioned in the introduction (COMEXT, Eurostat).
We focus in particular on imports of products entering the EU, spanning
the period 2008-2011, trade being reported monthly, and bearing on all 99
chapters of the Integrated Tariff of the European Communities (TARIC).
We underline this makes up a comprehensive dataset on trade between EU
and third countries, covering a very large set of traded products. In terms
of dimensions, this dataset contains 16 million records. In summary data
consist of a large number of time series with 36 observations, each reporting
the volume of a product over time. We explained in section 1 the relevance
of the detection of abnormal behavior within such data. We apply the meth-
ods WL, KF and FS on each time series. This is carried out independently
for each method, using adequate thresholds, we ensure that the number of
detected signals are equal for each method. We denote K ∈ N this number
of most important signals to be detected.

K = Nsignals(WL) = Nsignals(KF ) = Nsignals(FS) (25)

These signals of abnormal behavior obtained on real data make up a ba-
sis to compare the three methods. Applying the methodology presented
in section 3.3, we compute matching scores between two methods (WL vs.
KF, WL vs. FS, KF vs. FS). We report in Table 3(a) average values
on the whole dataset. This allows to evaluate to which extent signals of
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Figure 8: Results on real data. Common parts and differences between
signals detected by WL, KF and FS. We apply the three methods WL, KF
and FS on a dataset reporting EU trade data. For each method we extract a
subset containing the K most important signals: (a) K=100; (b) K=1000; (c)
K=5000. Considering the whole set made of these three subsets, we identify
the signals of different methods corresponding exactly the same time of the
same time series. This allows to classify signals into the following categories:
those detected by only one method (WL for instance) only two methods (WL
and KF for instance) and by all three methods (WL, KF and FS).

one method correspond to those of another method. We point out match-
ing scores should be in any case lower for real data compared to simu-
lated data: denoting T the set of (unknown) ground truth, MS(M,M ′) ≤
min (MS(M,T ),MS(M ′, T )). Furthermore we identify the time series for
which two methods evidence exactly the same time instants (as signals of
abnormal behavior). Then we define the percentage of perfect matches as
the proportion of such time series among the time series for which at least
one signal was detected by any of the two methods. This actually identifies
the percentage of the time series for which the matching score equals one.
We report in Table 3(b) the percentage of time series for which there is such
perfect match. Finally we identify the common parts and the differences
between the signals detected by the three methods. More precisely, for each
time series we consider the time instants identified as abnormal by any of
the three methods. Then, for each time series and each signal we check if it
corresponds to: only WL, only KF, only FS, only two of them, or all three
of them. Considering now the whole dataset, we apply these steps selecting
the K most important signals for each method. Results provide a global
picture of the signals of abnormal behavior, see Figure 8.

28



Results. Let us analyze the results of Table 3. We recall the matching
score measures the similarity between signals detected by one method and
those detected by another, and that reported values are average over the
whole time series for which there was (at least) one signal detected. In Ta-
ble 3(a), we note relatively low values of matching score overall, between 0.2
and 0.3, the lowest corresponding to WL-FS and the highest to KF-FS. So
on real data the three methods produce heterogeneous results. This can be
explained by the fact they are based on different frameworks, as explained
in section 3.2. Empirically, when we look at the corresponding time series,
we note that this is often due to a lack of precision (like several singulari-
ties detected by WL when there is only one signal), the abnormal pattern
being still effectively detected. Concerning perfect matches, we observe val-
ues between 12% (WL-FS) and 23% (KF-FS). Given the strict criterion of
perfect match, these relatively moderate values indicate actually a certain
correspondence between the results: there are patterns for which all three
methods give very similar results, as we previously noted on simulated data.

Now let us analyze the results of Figure 8. Choosing a certain value of K
(in our experiments K = 100, 1000, 5000) we obtain a set of most important
signals according to all three methods (less than 3 · K given the common
parts). We can then identify common parts and differences within this
set. Globally we first note that results for K = 100 and K = 1000 are very
similar, and that there is a greater part in common for K = 5000 (compared
to K = 1000 and K = 100). Thus when selecting a larger number of
signals, one gets signals which are more likely to be detected by two or three
methods rather than one. Second, focusing on the most important signals
(K = 100), as reported on Figure 8(a), we observe that 2% of the signals
correspond to all three methods, 1% to KF and FS, 2% to WL and FS, 12%
to WL and KF. Thus we note a larger part in common between WL and
FS. This can be explained by the link between singularities (WL approach)
and sharp changes (KF approach). Finally we note that there is a wide part
of signals that are detected by only one method, even when selecting the
most important signals: for K = 100, this proportion of signals attains 83%
– 24% for WL, 25% for KF, 34% for FS. (other experiments with K = 10
lead to a proportion of 95%). We also point out that restricting the number
of selected signals results in lower common parts – each method focusing
on its reference pattern. Considering time series, we note that roughly 20%
of them correspond to perfect matches – corresponding generally to simple
patterns with low noise.
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In summary, we note a small proportion of signals is simultaneously
detected by all three methods (between 2% and 9%), a moderate part is
detected by at least two (between 15% and 23%), and the largest part is
detected only by one (between 68% and 83%). This can be explained by
the different frameworks of the three methods, and the variety of patterns
encountered in real data.
Qualitative analysis. In addition to the presented quantitative results, let
us present qualitative aspects. We underline no ground truth is known for
such huge datasets, and that expert evaluation is often subject to confiden-
tiality. We perform an empirical study on time series, assessing visually the
computed results by a group of non-specialists. More precisely we consider
two cases: when at least one signal was detected in a time series, either
by each method (first case) or by any of the methods (second case). In
both cases we consider 100 time series (randomly chosen), and we retain the
consensus opinion of the group: good (pattern precisely detected), satisfy-
ing (pattern approximately detected, several signals when there is only one
pattern), poor (main pattern missed, or signal detection when there is no
clear pattern). We represent in Table 4 a synthesis of these results. First no
significant difference is seen between Table 4(a) and (b), which indicates a
certain stability of the methods. Second, the obtained results are very good
for WL and KF – and also similar. Given the ambiguity of certain time se-
ries, this emphasizes the relevance of these methods. Third, we note average
results for FS. This actually comes from the fact FS performs poorly when
no seasonal trend can be successfully fitted. However it gives good results
when the time series presents a clear seasonal trend. Let us detail comments
on each method.
Wavelets: very good overall, in particular concerning level-shifts and spikes.
Nevertheless we note a tendency to detect several singularities when only
one pattern is present.
Kalman Filter: very good overall, especially for upward spikes. We note a
tendency to erroneously detect signals when time series are very oscillating.
Besides some level-shifts and downward spikes are not always detected.
Forward Search: good when a seasonal fit is successful. However, when
only a linear fit is performed, it performs poorly (either zero or too many
outliers).
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Table 4: Results of qualitative evaluation. Proportion of time series
for which the signal detection by WL, KF and FS was evaluated as good,
satisfying or poor (according a group consensus). The considered time series
obey the following rules: (a) at least one signal was detected by WL, KF
and FS; (b) at least one signal was detected by WL, KF or FS.

WL KF FS

Good 75% 72% 51%
Satisfying 21% 21% 28%

Poor 4% 7% 21%

WL KF FS

Good 74% 70% 52%
Satisfying 20% 21% 30%

Poor 6% 9% 18%
(a) (b)

Conclusions. We presented here results obtained on real data containing
a variety of patterns. We performed a quantitative evaluation of the signals
detected, which allowed to compare the methods. Further analysis was
provided on qualitative aspects. This provides better understanding of the
results obtained by these methods on real data, and in which cases such or
such method turns our as efficient. The obtained results suggest the joint use
of these three methods can be relevant for the applications. For instance,
we can classify signals of abnormal behavior into three classes using the
following criterion: provided a time instant was detected (respectively) by
one, two or three of the presented methods, it can be identified as a light,
medium or strong signal. Considering the studied real data (forK = 100) we
obtain respectively 83% of light, 15% of medium, and 2% of strong signals
of abnormal behavior. Such an approach would then allow the classification
of the time series, based on the number of signals detected by each method.

4.3 Recommendations – Method choice

Here we detail practical recommendations on the use of such or such method,
according to the results obtained on simulated and real data.
Identification of sharp changes. When the task consists in identifying
sharp changes (spikes, clear level-shifts) in time series, WL and KF proved
their efficiency (FS performed poorly except for simple patterns and low
noise level). So in this case we recommend first KF and second WL.
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Distinguishing spikes, level-shifts and more regular patterns. In
this case, the WL presents an added value: the estimated value of regularity
allows to distinguish how regular a pattern is (what KF and FS cannot do).
So when the user wishes to separate signals depending on their type (only
level-shifts for instance), we recommend WL.
Identification of extra-seasonal breaks. In the context of time series
presenting a clear seasonal trend, some of them present an extra-seasonal
break: low or high value at one month, compared to quantity of the preced-
ing years at the same month. In such cases FS shows its very relevance, only
identifying these extra-seasonal breaks as outliers. In contrast, KF detects
high values but not low values, while WL tend to detect all variations. So
for practical applications in which products are naturally subject to such
seasonal trends (agricultural chapters for instance), we recommend the FS
approach, and KF to a certain extent.
In-depth and thorough analysis. We previously pointed out the possi-
ble joint use of WL, KF and FS. This is valid when the user wants to carry
out an in-depth analysis of a limited dataset. The added value of this joint
use is to focus on signals that were detected: by all three methods (strong
signals); simultaneously by WL and KF whilst not by FS (spikes); and only
by FS (extra-seasonal breaks).
Processing of massive datasets. While in theory all three methods have
a similar computational complexity, we note significant differences in prac-
tice: while KF and FS lead to satisfying computational times, WL turns out
as extremely fast. Hence for huge datasets (several million of records, data
size greater than one gigabyte) we recommend the WL approach.

5 Conclusions and perspectives

In this paper we addressed a topic of interest for applications such as an-
tifraud and fight against money-laundering. We studied methods allowing
the detection of abnormal behavior within time series: Wavelets, Kalman
Filter and Forward Search. These are based on different frameworks (ap-
plied mathematics, signal processing and statistics), and each has its specific
features. We highlighted their differences and carried out a qualitative com-
parison. An original contribution of this work is a general methodology
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allowing to effectively compare these methods, on both simulated and real
datasets. Concerning simulated data, results show that all three methods
can precisely detect classical patterns (the extracted signals being equal in
simple cases). The wavelet approach performs well overall, with a good ro-
bustness to noise. The Kalman filter approach performs well, with a very
good robustness to noise. The Forward Search approach performs well for
low level of noise, but poorly for higher levels of noise. Concerning real
data reporting EU trade, results show that the signals detected by the three
methods present some common part and also significant differences. These
greater differences on real data (compared to simulated data) are explained
by the greater complexity of real data (compared to simulated one). Fi-
nally we noted the great computational efficiency of the wavelet approach,
in absolute terms and also compared to Kalman Filter and Forward Search.

In terms of applications, the joint use of these three approaches can
turn out as relevant for the monitoring of EU trade data. This is empha-
sized by the additional information these methods give on the underlying
pattern: wavelet response and local regularity estimation, Kalman Filter
prediction and error, fitted model and residual obtained by applying the
Forward Search. Hence a signal of abnormal behavior simultaneously de-
tected by three methods could be considered as relevant for further analysis
by antifraud analysts or specialists of the fight against money-laundering.
More generally data monitoring systems can benefit from such integrated
approaches, especially when the used methods present some complementar-
ity. Finally when these methods provide further interpretable information
(such as the local regularity in the wavelet approach), one better under-
stands why and how such abnormal pattern was detected. This motivates
the joint use of these methods in the applications.

Finally let us mention some perspectives on the presented methods.
First, enhancing the multiscale aspect in the wavelets approach would al-
low to detect patterns more robustly. Second, the Kalman Filter could be
improved using a robust formulation (reducing the effect of outliers on the
prediction). Third, the Forward Search could be improved in general by effi-
cient algorithms (heuristic approaches without full search), and particularly
for times series by allowing more flexibility concerning the model (adaptive
seasonality).
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Abstract 
 

In this paper we address the issue of the automatic detection of abnormal behavior in time series extracted from international 

trade data. We motivate, review and use three specific methods, based on solid frameworks: Wavelets, Kalman Filter and 

Forward Search. These methods have been successfully applied to an important EU policy issue: the analysis of trade data for 

antifraud and antimoney-laundering, fields in which specialists are often confronted with massive datasets. Our contribution 

consists in an in-depth study of these approaches to assess their performance, qualitatively and quantitatively. On the one hand, 

we present these three approaches, underline their specific aspects and detail the used algorithms. On the other hand, we put 

forward a rigorous assessment methodology. We use this methodology to evaluate each method and also to compare them, on 

simulated time series and also on real datasets. Results show each method has its specific advantages. Their joint use could be 

of a high operational impact for our applications, to deal with the variety of patterns occurring in trade data. 
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