156 research outputs found

    Simulation study of scaling design, performance characterization, statistical variability and reliability of decananometer MOSFETs

    Get PDF
    This thesis describes a comprehensive, simulation based scaling study – including device design, performance characterization, and the impact of statistical variability – on deca-nanometer bulk MOSFETs. After careful calibration of fabrication processes and electrical characteristics for n- and p-MOSFETs with 35 nm physical gate length, 1 nm EOT and stress engineering, the simulated devices closely match the performance of contemporary 45 nm CMOS technologies. Scaling to 25 nm, 18 nm and 13 nm gate length n and p devices follows generalized scaling rules, augmented by physically realistic constraints and the introduction of high-k/metal-gate stacks. The scaled devices attain the performance stipulated by the ITRS. Device a.c. performance is analyzed, at device and circuit level. Extrinsic parasitics become critical to nano-CMOS device performance. The thesis describes device capacitance components, analyzes the CMOS inverter, and obtains new insights into the inverter propagation delay in nano-CMOS. The projection of a.c. performance of scaled devices is obtained. The statistical variability of electrical characteristics, due to intrinsic parameter fluctuation sources, in contemporary and scaled decananometer MOSFETs is systematically investigated for the first time. The statistical variability sources: random discrete dopants, gate line edge roughness and poly-silicon granularity are simulated, in combination, in an ensemble of microscopically different devices. An increasing trend in the standard deviation of the threshold voltage as a function of scaling is observed. The introduction of high-k/metal gates improves electrostatic integrity and slows this trend. Statistical evaluations of variability in Ion and Ioff as a function of scaling are also performed. For the first time, the impact of strain on statistical variability is studied. Gate line edge roughness results in areas of local channel shortening, accompanied by locally increased strain, both effects increasing the local current. Variations are observed in both the drive current, and in the drive current enhancement normally expected from the application of strain. In addition, the effects of shallow trench isolation (STI) on MOSFET performance and on its statistical variability are investigated for the first time. The inverse-narrow-width effect of STI enhances the current density adjacent to it. This leads to a local enhancement of the influence of junction shapes adjacent to the STI. There is also a statistical impact on the threshold voltage due to random STI induced traps at the silicon/oxide interface

    Total ionizing dose effects in advanced CMOS technologies

    Get PDF

    Schottky Field Effect Transistors and Schottky CMOS Circuitry

    Get PDF
    It was the primary goal (and result) of the presented work to empirically demonstrate CMOS operation (i.e., inverter transfer characteristics) using metallic/Schottky source/drain MOSFETs (SFETs - Schottky Field Effect Transistors) fabricated on silicon-on-insulator (SOI) substrates - a first-ever in the history of SFET research. Due to its candidacy for present and future CMOS technology, many different research groups have explored different SFET architectures in an effort to maximize performance. In the presented work, an architecture known as a bulk switching SFET was fabricated using an implant-to-silicide (ITS) technique, which facilitates a high degree of Schottky barrier lowering and therefore an increase in current injection with minimal process complexity. The different switching mechanism realized with this technique also reduces the ambipolar leakage current that has so often plagued SFETs of more conventional design. In addition, these devices have been utilized in a patent pending approach that may facilitate an increase in circuit density for devices of a given size. In other words, for example, it may be possible to achieve circuit density equivalent to 65 nm technology using a 90 nm process, while at the same time preserving or reducing local interconnect density for enhanced overall system speed. Fabrication details and electrical results will be discussed, as well as some initial modeling efforts toward gaining insight into the details of current injection at the metal-semiconductor (M-S) interface. The challenges faced using the ITS approach at aggressive scales will be discussed, as will the potential advantages and disadvantages of other approaches to SFET technology

    Surface topography of silicon microcircuits

    Get PDF

    A novel deep submicron bulk planar sizing strategy for low energy subthreshold standard cell libraries

    Get PDF
    Engineering andPhysical Science ResearchCouncil (EPSRC) and Arm Ltd for providing funding in the form of grants and studentshipsThis work investigates bulk planar deep submicron semiconductor physics in an attempt to improve standard cell libraries aimed at operation in the subthreshold regime and in Ultra Wide Dynamic Voltage Scaling schemes. The current state of research in the field is examined, with particular emphasis on how subthreshold physical effects degrade robustness, variability and performance. How prevalent these physical effects are in a commercial 65nm library is then investigated by extensive modeling of a BSIM4.5 compact model. Three distinct sizing strategies emerge, cells of each strategy are laid out and post-layout parasitically extracted models simulated to determine the advantages/disadvantages of each. Full custom ring oscillators are designed and manufactured. Measured results reveal a close correlation with the simulated results, with frequency improvements of up to 2.75X/2.43X obs erved for RVT/LVT devices respectively. The experiment provides the first silicon evidence of the improvement capability of the Inverse Narrow Width Effect over a wide supply voltage range, as well as a mechanism of additional temperature stability in the subthreshold regime. A novel sizing strategy is proposed and pursued to determine whether it is able to produce a superior complex circuit design using a commercial digital synthesis flow. Two 128 bit AES cores are synthesized from the novel sizing strategy and compared against a third AES core synthesized from a state-of-the-art subthreshold standard cell library used by ARM. Results show improvements in energy-per-cycle of up to 27.3% and frequency improvements of up to 10.25X. The novel subthreshold sizing strategy proves superior over a temperature range of 0 °C to 85 °C with a nominal (20 °C) improvement in energy-per-cycle of 24% and frequency improvement of 8.65X. A comparison to prior art is then performed. Valid cases are presented where the proposed sizing strategy would be a candidate to produce superior subthreshold circuits

    SILICON ON INSULATOR TECHNOLOGY REVIEW

    Full text link

    CMOS process simulation

    Get PDF

    A transistor based sensing platform and a microfluidic chip for a scaled-up simulation of controlled drug release

    Get PDF
    The framework of my thesis are Biomedical (or Biological) Microelectromechanical Systems (BioMEMSs). Two fields in which this discipline is involved are sensors and fluidics. Functionalized organic materials are under investigation to be the means for target biological sensing, and sensors are evolving to be integrated in fluidics platforms in order to produce in the future new small portable diagnostic devices. On the other hand one of the challenges of micro and nanofluidic technology is the fabrication of drug release devices, in order to control the amount of drug present in an organism. In this thesis these two arguments are considered. First we will discuss the implementation of a process oriented to the fabrication of an hybrid Organic Field Effect Transistor (OFET) with sensing capabilities from the semiconductive layer. In the second part we will show the fabrication process of a silicon based structure for the scaled-up characterization of drugs in nanochannels for controlled drug release. The characterization will consider charged microspheres playing the role of drugs to be tracked with a microscope. We will highlight also the possibility of implementing the transistor related technology in nanofluidic systems for the electronic controlled drug release
    • …
    corecore