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Abstract 

This thesis reports on a study into the fabrication of metal oxide silicon field effect 

transistors using electron beam lithography to pattern features with dimensions down to 

lOOnm and below. The study is in an area of extensive research, with devices at these 

dimensions of interest for future generations of integrated circuit manufacture. 

The design and construction of a high resolution electron beam system is reported. The 

system is based on a very high resolution scanning electron microscope equipped with a 

thermal field emission gun. Chemically amplified resist processes, for electron beam 

lithography, have been characterised for silicon device fabrication and sub lOOnm patterns 

have been demonstrated. 

The development of a fabrication process for silicon devices, with dimensions down to 

lOOnm, is described. The process uses electron beam lithography for all levels of 

patterning and electrical measurements are reported for a range of the fabricated devices 

Devices fabricated in this study are used to explore a novel width modification technique 

using focused ion beam milling to reduce the current drive of individual transistors. The 

transistors are characterised before and after modification and electrical measurements are 

presented which provide the basis for a new chip modification strategy. 
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1. 

Introduction 

The continued expansion of the microelectronics industry, with widespread use of 

semiconductor technology, has led to the demand for increased performance of 

silicon devices. Historically metal oxide silicon field effect transistor (MOSFET) 

device performance has been improved by reducing the device's physical 

dimensions, which increases the operating speed and packing density[Wong 1999]. 

This thesis demonstrates the challenges involved in the fabrication of high 

performance MOSFETs and reducing the dimensions of the devices. 

ti High Resolution Lithography 

Lithography is an important stage in the fabrication of MOSFET devices. It involves 

defining patterns in a photoresist material, which is used to reproduce structures in 

material layers after development of the resist. Improvements in the resolution of the 

lithographic process have been the driving force behind performance increases in 

metal oxide silicon (MOS) devices, as reducing the device feature sizes increases 

device performance. High resolution lithography is a label given to the lithography of 

advanced features, beyond those achievable with current manufacturing lithography 

systems. Due to this definition, high resolution lithography is an imprecise term that 

changes as technology improvements enhance the resolution of lithography systems. 

Other terms that are used to describe the resolution of lithography processes are: 

• Sub-micron 	- lithography below 1tm 

• Deep sub-micron - lithography below 0.35!im 

• nano-lithography - lithography below O.lj.tm 

High resolution lithography is presently best defined by nano-lithography. 

1 



Introduction 	 2 

There are various forms of exposure techniques available for the lithography of MOS 

devices. The three most widely used methods of exposure are: 

• Optical 

• X-ray 

• Electron beam 

Optical lithography uses ultra-violet radiation as the exposing medium and is 

currently used in the high volume production of integrated circuits. The technology, 

however, is being pushed to its limits to expose features in the deep sub-micron 

region of pattern definition. X-ray lithography uses a smaller wavelength of exposure 

radiation and can hence define features of reduced dimensions from optical 

lithography. The use of x-rays has inherent problems, described in section 3.2.2, and 

because of these is not currently favoured for the production of integrated circuits. 

Electron beam lithography, as described in this work, is primarily used as a high 

resolution research tool for the lithography of advance devices. 

1.1.1 Electron beam lithography 

For research applications, electron beam lithography is an important tool for the 

fabrication of advanced semiconductor devices. High resolution electron beams have 

enabled patterns to be produced with dimensions smaller than those achieved with 

the available optical lithography procedures. This is an established trend which 

continues to the present generation of MOSFET devices. The trend is well 

demonstrated by the fact that present industrial optical lithography steppers are used 

to manufacture devices with 0.18tm dimensions yet, electron lithography is used in 

the research environment at sub-O.lp.m [Ochiai 1996, Kawaura 1998] 

Electron beam lithography has many advantages as a patterning technique in a 

research environment. The systems are of relatively low cost, starting at around $1-

5M for a unit, compared to $5-10M for an optical stepper system. The operating costs 

are also low with the patterns defined sequentially, in a vector scan system, by a 

series of co-ordinates, instead of a physical masking method as used with optical and 
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x-ray techniques. This method of pattern definition also allows for multiple sets of 

patterns to be defined over the area of the silicon wafer, which is also useful in a 

research environment as many test structures can be utilised on a single processing 

wafer, which reduces fabrication costs. As the patterns are defined with an electron 

beam, the maximum area that can be patterned without moving the stage is smaller 

than exposed with optical techniques, this can cause complications when imaging 

larger patterns. Stitching techniques with careful stage positioning can overcome 

these problems, but can lead to a low throughput of wafers. It is this low throughput 

of wafers that inhibits electron beam lithography for use in the manufacturing 

environment. 

1.2 MOSFET devices 

The MOS transistor is the predominant silicon device currently in use by the 

microelectronics industry. Since the MOSFET's first reported use in 1960 by D. 

Kahng and M. M. Atalla [Kahng 1976], the basic structure of the device has 

remained relatively unchanged. The present generation of devices still use a gate 

electrode that is situated between two junctions, where a voltage is applied to the gate 

to produce an inversion layer in the channel below that enables a flow of electrons 

between the junctions. 

Although the MOSFET has retained its basic structure, the devices size has reduced 

considerably, with minimum feature sizes, in state of the art production devices down 

to 0. 1 8tm. The performance of the devices has also significantly increased with 

reduction in feature size, this is shown in the graph of figure 1.1 which highlights the 

performance increase in a CMOS circuit as the feature size of the device is reduced. 
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Figure 1.1 	Graph showing the performance increase, as a function of time delay, in a 

CMOS circuit with a reduction in the minimum feature size[Taur  1997] 

1.3 Project aims 

The motivation behind the work described in this thesis was to address the challenges 

of developing advanced silicon devices. As described in the previous sections, the 

challenges in this field are wide ranging with many different techniques available for 

the fabrication of silicon devices. For this reason the field of study has to be reduced 

to specific areas. The aims of the study can be stated as: 

• Investigate high resolution electron beam lithography for application to the 

fabrication of silicon MOSFET devices 

• Fabrication of advanced MOSFET devices using electron beam lithography 

• Analysis of the operating characteristics of deep sub-micron MOSFETs 

To realise these project aims it was necessary to develop the following systems and 

techniques. 

• The design and construction of a high resolution electron beam lithography system 

based around a thermal field emission scanning electron microscope. 
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. Characterisation of this system for high resolution lithography with chemically 

amplified photoresists. 

• The development of techniques to enable the fabrication of MOS transistors at 

deep submicron and nanoscale dimensions. 

The development of these systems enabled the project to focus on the stated aims and 

investigate the challenges of advanced silicon device fabrication. 

1.4 Thesis plan 

The operation of MOS transistors is discussed in chapter 2. Initially the 

characteristics of a long channel device are described and used in later sections of the 

discussion for more advanced short channel devices. The challenges of fabricating 

short channel MOSFETs are also described in this section. 

Chapter 3 introduces the area of electron beam lithography. The chapter discusses the 

technology used with this lithography technique and includes the past and present 

status of electron beam systems within microelectronic processing. Alternative 

lithography techniques are also discussed to provide a comparison of lithographic 

fabrication procedures. The electron beam lithography system that was designed and 

constructed as part of this project is discussed in detail in chapter 4. This section 

provides an in depth study of the operating systems within the e-beam system and is 

intended to provide both an insight into such systems and provide a reference manual 

for any future analysis of the system. 

The design and layout of the experiment to fabricate MOS transistors is described in 

chapter 5. The patterns that were designed for lithographic patterning with the e 

beam system are discussed and the dimensions of the designed transistors are 

displayed. Discussion of processing techniques that were used in the fabrication 

procedure are included, providing reference for the later discussion on process 

characterisation. 
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The characterisation of fabrication techniques are discussed in chapter 6, including 

characterisation of negative and positive photoresists and polysilicon processing. The 

fabrication procedure of the MOSFET devices is also described. 

Chapter 7 discusses the analysis of the fabricated transistors with advanced focused 

ion beam techniques. The electrical characteristics of the devices are described and 

the effect of focused ion beam sectioning of the devices is discussed. Finally, the 

thesis is concluded in chapter 8. 



2. 

MOSFET Device Operation 

The basic operation of the MOS transistor is discussed in this chapter. The 

information presented provides an overview of MOSFET operation and relates to the 

devices that are demonstrated in subsequent chapters of this thesis. The long channel 

characteristics of device operation are initially presented, highlighting the parameters 

that affect the output characteristics of the transistors. Short channel devices are then 

discussed, highlighting the variations in device performance as the channel length of 

the MOSFET is reduced. The analysis of short channel devices is important as 

current and future trends of MOS device fabrication involve the reduction of 

geometries to increase chip packing density and performance. Finally, a discussion 

on the scaling strategies of MOS transistors is included, with a discussion of the 

current trends in MOS device research. 

2.1 The Long Channel MOSFET 

The basic layout of a long channel n-MOSFET is shown in fig 2.1. The substrate is 

lightly doped, p-type silicon.. The device is controlled by four terminal connections, 

the gate, drain, source and body. The active region of the device contains the gate, 

source and drain. The gate is a conducting electrode, usually polysilicon, that is 

insulated from the channel region of the device by a thin oxide. Either side of the 

gate lie the source and drain regions, these are n-type impurities implanted into the 

substrate. The field region bounds the active area with a field oxide and a reasonably 

heavily doped p-type implant, that is used to isolate the device. The basic structure of 

a p-MOS transistor is the same as that described for the n-MOS device, except the 

substrate is n-type with p-type impurities implanted in the source and drain regions. 

Electrons are the carriers in the n-MOSFET and the device is biased with positive 

7 
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voltages. A p-MOS device has holes as the carriers and the transistor is biased with 

negative voltages. The analysis of the MOSFET from herein after will describe the n-

MOSFET. 
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Figure 2.1 	Layout of a long channel MOSFET a) Cross sectional view b) General 

structure c) Schematic diagram[Hodges 1983] 

2.1.1 Basic MOSFET operation 

For initial analysis of the MOS-transistors operation, the effect of the gate voltage on 

the channel will be considered. With no gate voltage applied there is a deficit of n-

type carriers (electrons) in the channel region due to the doped p-type substrate, 

which has an excess of holes. Negligible current can flow in this condition. As VG is 
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increased, the positive bias on the gate produces a transverse electric field across the 

channel region, this attracts electrons that form an inversion layer. The inversion 

layer is an induced n-type region which increases the conductance of the channel, 

causing a current to flow between the positively biased drain and the grounded source 

regions. The point at which the transistor begins to conduct is referred to as the 

threshold voltage, V 1. The magnitude of VG determines the conductance of the 

channel and hence the output current flow, 'D  A larger gate bias accumulates more 

electrons and causes an increase in ID.  The graph displayed in figure 2.2 shows this 

relationship between the gate voltage and the output current. The relationship 

between ID  and VG is not linear and the reasons behind this are discussed in the next 

section. 

IM 

0 	 VT 	 VG 

Figure 2.2 	Turn on characteristics of a n-MOSFET 

2.1.2 IN characteristics of the MOSFET 

There are three main regions of operation for the MOSFET: 

• Subthreshold 

• Linear 

• Saturation 

Subthreshold operation occurs when the gate voltage, VG,  is less than the threshold 

voltage (VG<VT). Under these conditions the transistor is switched off, this is 

discussed in more detail later in this section. The linear and saturation regions of 
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operation occur under strong inversion (VG>V T) and the current that flows through 

the channel, ID,  under these conditions is shown in figure 2.3. 

ID 

VD 
VDt 

Figure 2.3 	The variation of 'D  with increasing VD for a fixed VG> VT 

 

With VD at a small positive voltage the inversion region in the channel remains 

uniform over its length, shown in figure 2.4a. The current, ID,  increases linearly with 

the increase in VD as the conductance of the channel remains constant under these 

conditions. This region of operation is indicated in figure 2.3 between points 0 and A 

and is referred to as the linear region. As VD increases beyond a few tenths of a volt 

the current flowing in the channel causes a voltage gradient across the length of the 

channel, which in turn produces a widening of the depletion region under the gate at 

the drain end of the channel (see figure 2.4b). The mobile charge concentration in the 

inversion layer of this region decreases with the widening of the depletion region and 

causes a lowering of the channel conductance. The gradual increase in VD therefore 

results in a smaller increase in TD, which is displayed in the ID-VD characteristics of 

figure 2.3 between points A and B. If VD is sufficiently increased so that VD=(VG-VT) 

the inversion layer decreases to zero at the edge of the drain. This is shown in figure 

2.4c and is referred to as pinch-off. The pinch-off point is represented in figure 2.3 at 

the point B, and occurs at the saturation voltage, VDSat. Any further increase in VD 

after VDSat  causes a further widening of the pinch-off region, AL, as shown in figure 

2.4d. This widening occurs because the gate voltage is no longer sufficient to 

establish inversion in the pinch-off region. Most of the voltage increase above VDsat 

is dropped across the pinched-off region AL and because of this ID  does not 
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significantly increase with a rise in VD above VDsat.  This remains valid as long as 

L>>AL. However, as AL approaches the value of L, usually only occurring in short 

channel MOSFETs, the effect on ID  is increased and is explained in more detail in 

section 2.2.1. 
Inversion layer 

Depletion region 

L_ k 

 

bN+J 
_ 

(C) 

S 	I. 	 D 

LYT 

 

Figure 2.4 	Visualisation of the regions of operation for the MOSFET: a) VDOV,  b) 

Inversion layer narrowing under moderate VD biasing, c) pinch-off and d) post pinch-off, 

VD>VDSJ( 
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Linear and Saturation regions of operation 

The linear and saturation characteristics of the MOSFET can be quantified with 

equations to describe the devices operation. The equations are derived from models 

such as the Pao-Sah[Poa 1966], charge sheet[Baccarani 1978], bulk-charge [Brews 

1978] and square law[Pierret 1983] models all varying in complexity and hence 

computational time. The simplest model, the square law model demonstrates the 

parameters that affect the operation of the MOSFET under strong inversion. 

The square law model assumes that the electric field is constant across the length of 

the channel region and is perpendicular to the current flow. In the linear region the 

equation that models the current flow is given in equation 2.1. 

wI_ 	 VD '1  
ID =  4U,C 	- VT)VD ---- 

	
2.1 

where: 

ID - Drain current 

- Carrier mobility 

C0  - Gate oxide capacitance 

W - Width of device active area 

L - Channel length 

VG - Gate voltage 

VT - Threshold voltage 

VD - Drain voltage 

In the post pinch-off regime, when the device is operating in saturation, an increase 

in the drain voltage is assumed to cause no increase in the drain current. The culTent 

equation is then modelled by equation 2.2. 

WI 
ID = /2flc0X7L(vG -vT)] 	 2.2 
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The relationships between the output current and the gate and drain voltages, shown 

in equations 2.3 and 2.4, are expressed as the drain conductance gd  and the 

transconductance, g. 

dID 
2.3 

dVD 

dID 
gn=---- 	 2.4 

dVG 

Differentiating equations 2.1 and 2.2 give expressions for ,-,d  and g, 

W 
911 = Pit C'OX—J[vG —VT -VDII 	 2.5 

w 
gm = /1flCOVL[VGVT] 	 2.6 

Subthreshold region of operation 

When the MOSFET is biased in weak inversion (VG < VT) the current which flows in 

the channel is referred to as the subthreshold current, 'Dst•  This current occurs because 

of the small number of carriers present in the channel. The equations from the square 

law model that were previously used to describe the behaviour of the MOSFET 

assume 'D=°  when VG>VT and are, therefore, not useful in calculating IDsi'  The 

equation used to approximate the subthreshold current[WoIf 1995], shown in 

equation 2.7, is derived from the charge sheet model of current flow, which can 

account for the diffusion current in the MOSFET that is predominant when operated 

under weak inversion. 

W kT 	.%JKTSIEO 	 exp( 
q(p 1  (source)') 

'DsI = qD, 
Lq 2qN A co,f  (source) N 	 kT 	) 	

2.7 

where: 
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q - electron charge 

D - electron diffusion constant 

k - Boltzmann constant 

T - temperature 

NA - number of acceptor atoms 

(Psurf - surface potential 

- semiconductor dielectric constant 

Eo  - permeability of free space 

n 1  - intrinsic carrier concentration 

The component psurfS0 	is roughly proportional to VG in the subthreshold region, 

which implies that 'Dst  is exponentially dependant on VGS. This relationship is shown 

in figure 2.5 which is a logarithmic plot of the current against gate voltage for a long 

channel MOSFET. 
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Figure 2.5 	Subthreshold characteristics for a long channel device [Troutman 1974] 

The slope of the subthreshold curve is an important factor in the MOSFETs 

operation. The inverse of this slope is known as the subthreshold swing, S 1, and 

indicates how effectively the transistor can be switched off, i.e., the steeper the slope 

the more effective the switch off. St is calculated using equation 2.8 
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din ID' 
S=ln1O 

dVG 	
2.8 

The value of St is expressed in mV/decade and a typical value for a long channel 

MOSFET is around 70mV/decade. 

Another form of leakage current that occurs in the MOSFET when it is in the 

subthreshold region of operation is the gate-induced drain leakage (GIDL). This 

leakage current flows when the gate is grounded and the drain is at the supply 

voltage. A depletion region forms around the drain under the gate because of the 

electric field that occurs across the oxide, shown in figure 2.6. If the electric field 

becomes large enough an inversion layer attempts to form at the silicon surface of the 

drain. As the minority carriers move to form the inversion layer they are influenced 

by the substrate, which is at a lower potential, and drawn sideways to the substrate. 

This movement of minority carriers constitute the GIDL current. 
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Figure 2.6 	Gate induced drain leakage current in a MOSFET 
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2.1.3 Threshold Voltage 

The threshold voltage has been previously defined as the applied voltage at which the 

channel of the MOSFET starts to conduct. The equation which defines VT in a 

uniformly doped channel, with VB = 0, is given by [Wolf 1995]: 

VT = - Q 
+ + 2pfi 

Co., 	C(, x  

2.9 

where: 

(Pms - metal-semiconductor workfunction difference 

- total electronic charge 

Nb - substrate doping concentration 

(PB - semiconductor doping parameter 

The curves in figure 2.7 show the calculated values of VT as a function of gate oxide 

thickness, t 0 . The graph highlights two variables of gate oxide thickness and 

substrate doping, which affect the value of VT. For MOSFETs the gate oxide 

thickness is designed to maximise the output current, ID,  with the substrate doping of 

the channel region used to adjust the value of the threshold voltage. 
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Figure 2.7 	Calculated threshold voltages of a nMOSFET as a function Nb and t0 [Sze M, 

1988] 
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The substrate doping is normally performed by implanting a thin layer of impurity 

atoms in the channel region. This causes the substrate to become non-uniformly 

doped. The equation for the threshold voltage has to take this non-uniformity into 

account and the modifications are shown in equation 2.10. 

qDi ,.j2KcisoqNAqB (2Pa + qDix 	
2.10 VT= 	+2(J7B+ - + 

C0.. 	 C0. 	 C0. 	 2io ) 

where: 

D 1  - dose of implanted ions 

x 1  - implantation depth of impurities 

2.2 The Short Channel MOSFET 

The trend of MOSFET design is the reduction in size of the patterned features. Each 

progressive device generation reduces the minimum feature size to increase the 

density of transistors on the silicon and increase the drive current, IDsat,  and hence the 

operating speed. The main feature that is scaled to improve device performance is the 

gate length, which increases the current drive of the transistor. The gate oxide 

thickness is also reduced and the source/drain regions are decreased in depth. All of 

these parameters impact the operating characteristics of the devices and the models 

described in the previous section, for long channel transistors, do not accurately 

define the characteristics of the MOSFET. This phenomena is referred to as "short-

channel effects". The short channel effects describe three main areas of the 

MOSFETs characteristics that are affected by the feature size reduction: 

• ID is not as predicted by the long-channel models 

• Subthreshold currents are increased 

• Device reliability is reduced 

The subsequent sections will discuss these effects and describe the steps that can be 

used to minimise their influence on the operation of short-channel MOSFETs. 
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2.2.1 Short-channel device operation 

Current-Voltage Characteristics 

As the gate lengths of MOS transistors are reduced the prominence of short channel 

effects on the current-voltage characteristics increases. These occur as the electric 

fields from the junction regions and gate electrode have a greater effect on the 

relatively smaller channel region. The characteristics of the I-V curves of MOS 

transistors change with the onset of short-channel effects and begin to deviate from 

the long channel curves, that are shown in figure 2.8a. 

DE = 0 X = 0 
y0 a=1 

VdS  

DE = 0 >. > 0 
yO a'=l 

Va. 

DE = 0 X > 0 
-y >O a'>l 

VdS  

Figure 2.8 	Diagrams of increasing short channel behaviour in MOSFETs. a) Long channel 

behaviour, b) with channel modulation, and c) with velocity saturation [Duvvury  1986] 

When operated in saturation (V(;>VT) the short channel transistor exhibits a constant 

rise in drain current with an increasing value of VD,  shown in figure 2.8b. This is due 

to the effect of the channel length modulation factor, X. This occurs when the 

MOSFET is operating in saturation because the pinch-off length, AL, in short channel 
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devices (see figure 2.9) approaches the same size as the remaining effective channel 

length, Leff.  With most of the excess voltage above VDsat  dropped across AL, the 

voltage across L eff remains constant. However, with increasing VD,  and hence a 

lengthening value of AL, the size of the channel progressively gets shorter. This 

increases the current drive of the transistor and hence causes a rise in the output 

current. In longer channel length transistors this effect is not as apparent because the 

size of AL is only a small fraction of the size of Luff,  thus having negligible impact on 

the gain of the transistor. 

S 	LH 	D 

I ) 

Figure 2.9 	Diagram showing the pinched-off region, AL, in the channel of a short channel 

length MOS transistor operating in saturation. 

Velocity saturation effects also influence the I-V characteristics of short channel 

MOSFETs. The carriers in the channel reach a saturation velocity when the lateral 

electric field reaches a critical value, Esat, and this occurs with the formation of the 

pinched-off region in the channel. The depletion region, from the drain, extends into 

the channel and in short-channel devices Esat occurs closer to the source. This has the 

effect of the current saturation point, VDSat,  occurring at approximately the same 

value of VD, independent of the effect of the gate voltage. This effect is shown in 

figure 2.8c. 

The I-V characteristics are also affected by the reduction in the mobility of the 

carriers in the inversion layer of short-channel devices. The mobility degradation 

factor, 0, is the parameter that describes the mobility reduction of the carriers and is 

an empirically defined value. The mobility is reduced because of scattering of the 

surface charge carriers at the SiISi02 interface that are acted upon with a transverse 
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electric field from the gate electrode. While this effect is present in long channel 

transistors it is more pronounced in short-channel devices, as the electric fields are 

higher because of the reduced dimensions of the channel region. The effect causes a 

reduction of the gain of the device, hence reduced current drive, in both the linear 

and saturation regions of operation. 

Subthreshold characteristics 

When the MOSFET is switched off, with the gate voltage below threshold, there are 

three components that contribute to the leakage current; punchthrough, 'vr,  which is a 

sub-surface current flowing from the drain to the source, a surface diffusion current 

and the gate-induced drain leakage (GIDL) current, 'GIDL,  which was discussed in 

section 2.1.2. 

Punchthrough is an effect that occurs when the source and drain depletion regions 

merge together, causing a larger drain current than is predicted with the long-channel 

MOSFET equations. This is because the gate, that controlled 'D  with the applied 

electric field, can no longer influences the current flow and ID  increases exponentially 

with applied VD. Punchthrough can place a limit on the maximum drain voltage that 

can be applied to the MOSFET and hence limit the output current, I [) . The voltage at 

which punchthrough occurs is related to the doping profile of the channel and the 

effect of the gate, but a simple one-dimensional approximation of the punchthrough 

voltage, VpT , is shown in equation 2.11[El-Kareh  et a], 1986]. From this it can be 

determined that V1 is proportional to the level of substrate doping and the square of 

the channel length. 

VPT=L2Nfl q 2.11 
2e £Si 

The doping in the channel region, from the VT adjustment implant, affects the 

magnitude of the junction depletion regions. The increased doping near the surface of 

the channel reduces the depletion widths at the surface, compared to lower down in 

the bulk, where the regions converge to produce a sub-surface current flow[Zhu 

1988]. Figure 2.10 shows the predominant path of 'DST  change from a surface current 
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at low VD, to a subsurface current at high V 0. From equation 2.11 it is evident that 

Vpr can be raised by increasing the doping level. 
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Figure 2.10 	Punchthrough current paths (dotted) in a surface-channel nMOSFET with 

VD=0.5 and 3.5V. Solid line shows the depletion region edge[Zhu  1988]. 

The onset of punchthrough also affects the value of the subthreshold swing. S 

increases in value with the onset of punchthrough. This is shown in figure 2.11. The 

curves of the long channel MOSFET in figure 2.11a do not exhibit punchthrough, as 

they show no change in S t  as VD is increased. The curves of the short channel 

MOSFET in figure 2.11b, however, gradually begin to flatten out with increasing 

values of drain current, thus increasing the value of S 1 . The increase in S occurs 

because there is an increase in the drain current at low gate voltages, due to the 

influence of the junction depletion regions merging across the shorter channel length 

with the increasing drain voltage. 
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Figure 2.11 	Subthreshold curves for, log 'D  versus VG,  for a) Long channel nMOSFET and 

b) Short channel nMOSFET[ Wolf 1995] 

Punchthrough can be reduced by increasing the doping in the substrate region where 

the subsurface current flows. The increased doping decreases the size of the junction 

depletion regions, in the same way as the channel doping implant. The doping can be 

increased with an implantation of atoms, p-type for the nMOSFET, at an energy 

which locates the ion impurities in the substrate below those for the VT adjustment 

implant. This implant is known as a punchthrough stopper implant. A development 

of this technique is to locally implant the impurities in the regions around the 

junctions, shown in figure 2.12, by tilting the sample as the implant is performed. 

This technique is referred to as halo implantation [Jung 1996]. The heavily doped 

inside sidewalls of the junctions suppress the extension of the depletion regions with 

increasing VD,  thus reducing the punchthrough effect. 
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Halo implants 

Figure 2.12 	Halo p implants around the junctions of a nMOSFET[Codella 1985] 

At low drain biases in short channel transistors a surface current can initiate the 

punchthrough effect[Fu 1997]. The effect dominates the subthreshold current until 

the drain voltage increases enough to produce bulk punchthrough, as described in the 

previous paragraph. The current path of surface current is shown in figure 2.10 for 

the low drain voltage of 0.5V. 

Threshold voltage 

The reduction in the channel length of MOSFETs affects the value of the threshold 

voltage, VT. In very short channel devices the threshold voltage reduces dramatically 

as the device's effective gate length is reduced, as shown in figure 2.13. This occurs 

because of the effects of the lateral electric fields from the source/drain junction 

regions. As the channel length, L, approaches the dimensions of the source/drain 

junction depletion widths, a larger part of the channel-depletion region begins to 

consist of the space charge in the junction depletion regions. Under these conditions 

less gate charge is required to invert the channel of the MOS transistor, causing the 

appearance of a lowering of VT.  This effect can be suppressed with an increase in the 

doping of the channel region, that reduces the lateral electric fields in the channel by 

curbing the junction depletion regions. 
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Figure 2.13 	Threshold voltage as a function of effective channel length[Liu  19931 

Modelling the threshold voltage in short-channel devices therefore requires the lateral 

electric fields and their effect on the channel region to be considered, unlike the 

longer channel equation given with equation 2.10. The method of analysis to 

characterise the change in VT is to calculate the shift in the threshold voltage, L\VTSC , 

from the one-dimensional value calculated using the model given in equation 2.10. 

Liu et-al determined a quasi-two-dimensional model to determine AVT SC , which is 

given by [Liu 1993] 

AV7 = 3(Vb, - 2) + V0 e' + 2.f(V,1 - 2(pB )(Vb1 - 	+ V,, )e '21 	2.12 

where: 

= 	 2.13 
E 0 17 

Vb1 - built in potential between source-substrate and drain-substrate junctions 

- 	characteristic length 

Oxide permittivity 

11 	Fitting parameter 

The overall effect of a reduction in the channel length of MOS transistors shows a 

decrease in the value of the threshold voltage, as described by the two-dimensional 

analysis of equation 2.12. Observation of fabricated short-channel devices, however, 
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shows an anomalous initial increase in VT with a reduction in channel length, shown 

in figure 2.14 as a shift AVT. This increase in VT is described as a reverse short 

channel effect (RSCE). 
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Figure 2.14 	Reverse short channel effect on threshold voltage[Orlowski 1987] 

The cause of the threshold rollup due to the reverse short channel effect has been 

attributed to the localised pileup of channel dopants along the edge of the gate at the 

silicon-silicon dioxide interface. The magnitude of the effect can be reduced by 

adjusting the processing stages of the device fabrication[Lutze  1995]. The main 

processing step to affect the threshold rollup is thought to be the source/drain 

junction implantation that causes interstitials in the lattice that leads to transient 

enhanced diffusion of the channel dopant[Chaudrhry 1 997].The profile of the 

channel doping has also been shown to affect the magnitude of the RSCE[Lutze 

1995], though adjusting the profile of the channel implant also changes many of the 

transistors' characteristics, such as short channel effects, which can lead to a 

compromise of the devices performance. 

2.2.2 Device Reliability 

Reliability is a primary concern to the integrated circuit designer, where millions of 

transistors can be incorporated onto a single chip design. Failure within a chip can 

come from two key areas[Chenming 1993]; firstly from the gate oxide and secondly 

the metal level for the interconnects. At the device level the gate oxide reliability is 

of primary concern and this type of failure is discussed in the following sections. 
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Hot carrier degradation 

Hot carrier degradation occurs in the gate oxide of a MOSFET when the carriers in 

the channel and pinch-off region, gain sufficient energy, from the lateral electric 

field, to surmount the energy barriers and tunnel into the oxide from the silicon. The 

problem is exaggerated in n-channel devices as the Si/Si02 energy gap for the 

carriers is smaller at 3.IeV for the electrons than 4.9eV for holes. Typical effects 

caused by hot-carriers include a shift in the threshold voltage, a change in the 

subthreshold swing and a reduction in the transconductance and hence current 

drive[Chen 1988]. 
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Figure 2.15 	Illustration of hot-carrier effects including hot-carrier generation, injection 

and trapping[Chen 19881. 

The main hot carrier effects of hot-carrier generation, injection and trapping are 

shown in figure 2.15. A high drain field generates hot carriers, which channels hot 

electrons and electron-hole pairs generated by impact ionisation. The generation 

tends to occur in the high field area of the channel called the velocity saturation 

region, which is produced when the device is operated in saturation, between the 

drain and the pinched-off inversion layer, shown in figure 2.15. The magnitude of the 

electric field also affects the injection of the hot-carriers into the oxide. A lower field 

strength corresponds to a lower electron temperature, or energy, and therefore less 
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probability of gaining sufficient energy to break through the Si/Si0 2  interface. The 

probability of a carrier being injected into the oxide can be expressed as[Chen  1988]: 

I 
P = exP -  J exlk— J 	2.14 

	

where: Ob 	- energy required for electrons to surmount the Si/Si02 barrier 

Te(x) - electron temperature 

	

X 	- distance from the interface 

	

A 	- energy dependant mean free path 

The mechanisms of hot carrier trapping include bulk oxide trapping and interface trap 

generation. The predominant form of degradation is thought to occur by interface trap 

generation with the simultaneous injection of holes and electrons[Groeseneken 

1995]. The injection of holes however are most effective by about four orders of 

magnitude over that of electrons. With LDD n-MOS devices the trapping of electrons 

in the sidewall spacer can enhance current degradation through an increase in the 

series resistance. 

There are three main strategies for improving the hot-carrier effects in MOSFETs: 

Drain engineering, oxide quality and power supply reduction. Strategies for drain 

engineering have included the introduction of the lightly doped drain (LDD), where 

the doping concentration of the device's junction is reduced with a shallow implant 

either side of the gate, shown as the N-well extension in figure 2.12. The lower 

doping concentration reduces the peak of the lateral electric field near the drain and 

hence reduces the generation of the hot-carriers. It has also been reported[Song 1996] 

that an optimised halo/LDD structure at the junctions can reduce the effects of the 

hot-carriers by limiting their generation. Oxide quality is an important factor in 

increasing the life-span of MOSFETs. The reliability of the standard SiO2 process 

has been shown to be improved upon with the introduction of nitrided oxides[Sodini 

1992]. This process reduces the interface trap generation because of the presence of 
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nitrogen at the Si/Si02 boundary, but without optimisation of the process the 

influence of charge trapping increases. There is, however, a trade off with this 

process because of a slight degradation of the electrical characteristics over Si02. 

Reduction of the drain voltage produces a corresponding reduction of the lateral 

electric field in the channel region, though this circuit parameter is generally outwith 

the control of the design engineer and is instead set for the technology generation of 

the devices. The supply voltage for the 0.25tm generation is 2.5-1.8V, which is 

projected to drop to 1.2-0.9V for the 0.1tm generation[SIA, 1997]. 

2.3 MOSFET Device Scaling 

The scaling of MOSFET devices involves the downsizing of the major features of the 

device, including the physical dimensions and the electrical constraints, such as 

power supply. This section discusses the basic theory of scaling strategies and the 

future implementation of different scaling scenarios. A prediction of the future 

scaling trends is also highlighted. 

2.3.1 Scaling strategies 

Constant electric field scaling 

The basis of scaling strategies is to reduce the dimensions of a MOS device while 

still maintaining the same long channel characteristics. The basic strategy is constant 

electric-field (CE) scaling, where the electric field potentials within a device are kept 

constant, while the dimensions and properties are changed using a scaling factor a 

(a>1)[Dennard 19741. The physical dimensions of the device are reduced by the 

factor 1/a and the electric fields within the device are kept constant by reducing the 

operating potentials by 1/a and increasing the doping concentration by a.. This 

technique increases the packing density of devices by a 2  and the speed by a, while 

the power dissipation is reduced by a 2 .[Davari 1995]. 
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Actual scaling strategy 

The scaling of MOSFETs has taken a slightly different path than the proposed 

method of CE scaling. While the dimensions of the devices were decreased in 

accordance with the scaling theory, the power supply was maintained at the same 5V 

level as previous generations. This level was maintained until the 0.5tm generation 

of transistor, where the power supply was reduced to 3.3V. The power supply levels 

of the different generations of transistors was kept constant, because it allowed 

design compatibility between the levels, even though the electric field in the 

MOSFET was increasing with the progressive decrease in the gate length feature 

sizes. The increase of electric fields within the devices was accounted for with a 

more generalised scaling strategy [(I)B acc arani 1984], where the electric field patterns 

within a scaled device are still preserved, but the intensity of the field can be changed 

everywhere in the device by a multiplication factor . The relationship between the 

generalised theory and constant-electric field scaling is shown in table 2.1. The 

supply voltage is scaled less rapidly by a factor F-/(x, while the electric field patterns 

are maintained by increasing the doping concentrations by the factor e. Limits to the 

generalised scaling include the gradual increase in electric field which leads to long 

term reliability problems from gate insulator failure or hot-carrier effects. 

Physical parameters 	 Constant-electric field 	 Generalised 

scaling factor 	 scaling factor 

Linear dimensions 	 1/a 	 1/a 

Electric-field intensity 	 E 

Voltage (Potential) 	 1/a 	 Eta 

Impurity concentration 	 a 	 a 

Table 2.1 	Relationships between constant-electric field and generalised scaling[Davari 

1995] 

Scaling MOSFETs to 0.1jtm and below 

As the dimensions of MOSFETs are reduced further down to 0.1tm the scaling of 

devices becomes constrained by the physical limits of the scaling parameters[Iwai 
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1998]. Parameters such as gate insulator thickness and channel length will approach a 

limit where scaling can no longer occur. As these limits are approached the scaling 

strategy has to consider a trade off between increased device performance and 

reliability. Channel hot-carrier effects limit the selection of optimum power supply 

voltage for devices below 0.25pm, and these effects have been discussed in 

section2.2.2. Drain engineering with increased doping affects the performance of the 

device by increasing the source/drain resistance, although these effects can be 

counteracted with the use of suicides at the source, drain and gate connections to 

lower the sheet resistance of the silicon or polysilicon material[Murarka  1983] 

2.3.2 High performance and low power scaling scenarios 

With the scaling of MOSFETs being a trade off between device performance, 

reliability and subthreshold current, two different scenarios for scaling have been 

proposed[Davari 19951. The high performance and low power scenarios, shown 

graphically in figure 2.16, provide an outlook for device scaling with the focus for 

each strategy focused on a different goal. The high performance scenario uses a 

higher supply voltage, for a given channel length, over the low power version. The 

electric fields within the device will be higher and so adequate long term device 

reliability has to be maintained. The gate oxide thickness and doping profiles are 

optimised with this scenario to provide low off and high drive current without the 

electric field producing gate oxide tunnelling and GIDL current. The low power 

scenario uses a reduced supply voltage, compared to the high performance case, with 

the aim to reduce the power dissipation per device and therefore maintain a lower 

power density. 
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Figure 2.16 	A measure of the electric field, VDD/L, as a function of channel length for 

various scaling scenarios[Davari  1995]. 

2.3.3 Scaling projections 

The introduction of MOS technology generations to the marketplace followed a 3-

year cycle. The projections for the introduction of future technologies are 

documented by the Semiconductor Industry Association (SIA), and the lead time 

between generations with the latest predictions are a two year gap between the 

introduction of a new technology[SIA, 19971. The projections for the scaling of 

future technologies by the SIA are shown in table 2.2. 
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Minimum Feature Size for 

Dense lines (nm) 

Minimum Feature Size for 

Gate Lithography (nm) 

Year of Introduction 

DRAM (bits) 

Supply Voltage (V) 

180 	150 

140 	120 

32 

130 	100 	70 	50 

100 	70 	50 	35 

1999 2001 	2003 2006 2009 2012 

1G - 	 4G 16G 64G 256G 

1.5-1.8 1.2-1.5 	1.2-1.5 0.9-1.2 0.6-0.9 0.5-0.6 

Table 2.2 	MOSFET technology projections[SIA, 1997] 

2.4 Present Silicon Device Research 

Research into future device technologies is presently focused on devices with 

minimum feature sizes of lOOnm and below. Devices of lOOnm dimensions, and 

operated at low temperature, were first reported by Sai-Halasz in 1987[Sai-Halasz 

1987]. Since that time a number of papers have demonstrated MOSFETs, operating 

at room temperature, with dimensions of IOOnm[Taur 1993][Yan 1992]. More 

recently research has investigated devices with fabricated gates of dimensions below 

lOOnm. Ochiai et al have reported 40nm MOSFETs using electron beam lithography 

to fabricate the gate electrodes[Ochiai 1996]. The current-voltage curves of the 

devices displayed transistor operation although punchthrough was evident from the 

characteristic curves. A reduction in the short channel effects of the sub-lOOnm 

transistor has been reported by Kawaura et at with the fabrication of a dual gate in a 

30nm gate length MOSFET[Kawaura 1998]. The dual gate involves the fabrication 

of a second longer gate over the existing gate in the device. This upper gate produces 

an inversion layer in the channel that acts like an ultra-shallow source/drain implant, 

reducing the short channel effects caused by the electrostatic field in the channel 

region. 
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25 Summary 

This chapter has provided an introduction to MOSFET device operation. The 

parameters that affect the operation of both long and short channel devices have been 

highlighted, and the equations used to model the respective devices performance 

have been introduced. Some of the short channel effects associated with the 

miniaturisation of MOSFETs have been presented, with reference to the culTent-

voltage, subthreshold and threshold voltage characteristics. Reliability considerations 

of hot carrier effects have been discussed with methods of failure prevention 

highlighted. Finally a discussion of device scaling strategies was displayed with a 

discussion of the current state of the art research into silicon device technology. 



3. 

Electron Beam Lithography 

The progressive reduction of feature sizes in the fabrication of MOS devices puts an 

increasing demand upon the lithography techniques used to define the nano scale 

features. Industrial production of devices currently uses an optical lithography 

process and can define feature sizes down to lSOnm. Research into future device 

technologies, however, requires much smaller feature sizes to be defined, predicted to 

be down to 70nm by the year 2006[SIA,  1997]. Electron beam lithography is an ideal 

approach for such narrow structure patterning as the system uses a finely focused 

electron beam of a few nanometers diameter to define the structures. 

This chapter provides an overview of electron beam lithography. The technology of 

electron beam systems is explained in order to provide an insight into the design 

strategy of the Edinburgh built system that is illustrated in chapter 4 of this thesis. 

Alternative techniques, of optical and x-ray lithography are also described to provide 

a comparison of technologies available for pattern definition. 

3.1 Electron beam lithography systems 

Electron beam pattern writing systems can be used in two roles for LSI 

production[Saitou 1996]. Firstly, as a direct write lithography tool for fabricating 

advanced devices and structures, and secondly as a mask making device for other 

lithography techniques such as optical and x-ray masks. 

3.1.1 A general system 

Electron beam lithography uses a high energy beam of electrons to define patterns on 

the substrate of a silicon wafer. The imaging beam is produced by an electron gun 

34 
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and is focused on a photoresist coated substrate. The beam is then scanned across 

defined areas of the substrate by deflecting it in a controlled way. The single beam 

writes one pattern at a time, so multiple patterns are imaged sequentially. After 

exposure, the patterns are wet developed and rinsed to produce a patterned image 

with the remaining resist. 

3.1.2 History of e-beam systems 

The development of electron beam lithography has progressed steadily since the mid 

1960s[Watts 1989]. Initially the main impact of this technology was the fabrication 

of masks for lithography tools, such as optical steppers, and more recently for x-ray 

lithography. Another use of the systems has been for low-volume manufacture of 

advanced, small scale, high performance devices. 

'EBES' (Electron beam Exposure system) was one of the first generation production 

e-beam lithography tools, it was developed at the Bell Laboratories in 1975[Herriott 

1975] and was designed primarily for the production of high quality, economic 

lithographic masks. The system exposed patterns in negative photoresist on a 

chromium plated glass substrate. The electron beam process had better resolution, 

linewidth control and a lower defect density than the emulsion masks produced by 

optical fabrication at that time. The beam was continuously scanned across a 14Otm 

field, and the full substrate area was imaged by continuously moving the stage and 

modulating the beam on and off to pattern the wafer. With this system the stage 

position could be measured to an accuracy of 30nm. Due to a fast patterning rate of 

80MHz, masks with a field of approximately 5cm square were completed in 40 

minutes. 

By 1986 the system had been developed into the fourth generation EBES4[Alles 

1986]. A brighter electron source and higher data rate increased the wafer 

throughput. Pattern definition was also changed to the more efficient vector scan 

method, where the patterns are broken into 21.xm  blocks and scanned individually by a 

figure generator. The maximum field size that can be written by the beam is 280p.m, 
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but larger areas could be written by the continuously moving stage. The spot size of 

this system allowed higher resolution patterning with a reduction in size from 0.5tm 

to 0.1251.tm 

The advanced resolution of electron beam lithography systems has enabled research 

into MOS devices with dimensions much smaller than the optically defined 

alternative at any time. A paper by Mackintosh, in 1965[Mackintosh  1965], discussed 

the fabrication of MOS transistors with channel lengths of 3.5tm. Optically defined 

transistors of the time had features in excess of 10l.tm. As techniques in optical 

lithography improved, knowledge in electron beam processes increased and thus 

feature sizes of exposed patterns reduced. A 1981 paper from the central research 

labs of Hitachi Ltd[Okazaki 1981] reported n-MOS transistor circuits with 0.6tm 

gate lengths. Again, the optical lithographic processes of the time were producing 

features 3-4 times larger than this. Reports of current processing with e-beam 

lithography describe devices with gate features defined below O.lp.m, while state of 

the art optical lithography is processing features of 0.18.tm. 

3.1.3 Current e-beam technology 

The direct write c-beam system still plays a major role in the fabrication of advanced 

devices for future technologies. However, a great deal of work is being directed at the 

use of c-beam as an industrial tool for the replacement of optical lithography, if in the 

future optical becomes impossible or uneconomical to use. 

The SCALPEL system is an advanced projection lithography tool that has been 

developed for IC manufacture[DeJule 1999][Liddle  1995][Harriott 1996][Liddle 

1998], a schematic diagram of the SCALPEL imaging strategy is shown in figure 3.1. 

Progress has been made with this technique using a mask to image patterns onto the 

wafer substrate. A thin, lOOnm, membrane made of a low atomic number material 

constitutes the base material for the mask, while a high atomic number material is 

processed on top to provide the 4x mask pattern. High energy, lOOkeV, electrons are 

uniformly imaged over the mask in a lxlmm square electron beam. The electrons 
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pass through both layers of the mask, with the electrons that pass through the high 

atomic number mask material scattered and then blocked by an aperture before 

reaching the final imaging lens. Only the electrons that pass through the membrane 

material are imaged onto the wafer substrate. 

Scattering Mask 

Lens 

SCALPEL Apertun 

Lens 

Image in resist on 
Wafer 

Figure 3.1 	Schematic diagram of the SCALPEL imaging strategy[Harriott  19971 

This e-beam masking technique uses high energy electrons, which improves beam 

blurring and forward scattering. Previous electron beam lithography systems that 

employed a masking system have used stencil masks[Heritage 1975]. Stencil masks 

are membranes with gaps etched into the material to make transparent holes for 

electrons. The membranes absorb the electrons that do not pass through the holes, 

producing a masking effect. The limitations of this technique are that the absorption 

of electrons into the membrane causes significant heating of the mask, which can 

result in pattern distortions. The SCALPEL system does not suffer from these 

problems because the electrons are not absorbed by the mask, but scattered to be 

blocked by a mechanical aperture. Other problems that occur with stencil masks is 

their inability to print closed shape geometries, such as donut shapes. The SCALPEL 

systems mask has a continuous transparent membrane layer that enables such shapes 

to be patterned, with the masking material, on the surface. Limitations do however 

occur because of the fragile nature of the masks membrane material, with the size of 

the masks limited to strips of 1mm x 10mm. Larger mask designs can be 
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implemented by accurately stitching together different mask strips with an 

interferometrical ly measured stage positioning system. 

The wafer throughput of 15 200mm wafer/hour is still inferior to the current optical 

stepper systems, though improvements to the SCALPEL system and the expensive 

challenges that face optical lithography for the 130nm generation of IC 

manufacturing may introduce commercial viability to SCALPEL. 

Another system for e-beam manufacturing, which is still in the proof of concept 

phase, is the 'multi-beam' system [Electronics weekly, 1998]. Arrays of electron 

beams individually pattern areas of around 800 x 800nm with spot sizes of 40nm. 

The beam cathode arrays are to be produced on silicon chips with integral control 

circuitry. Unlike the SCALPEL system, the multi beam system is still in the early 

stages of development, working with 5x5 cathode arrays with spot imaging only 

down to 400nm. 

3.2 Alternative exposure techniques 

3.2.1 Optical Lithography 

Optical lithography has been the major lithographic source since the beginning of the 

semiconductor industry in the 1960s, albeit a natural progression of sources from 

contact printers, to proximity printing, to scanning projection lithography, and finally 

to the stepper technology (steppers) used today. Steppers are so called because they 

expose an image from a 5x enlarged mask onto a wafer substrate, with an ultraviolet 

light source, then step across the wafer to an adjacent position, align and repeat the 

pattern exposure, thus reproducing the same pattern many times on a single wafer 

substrate. 

The stepper has developed with the increasing demands for miniaturisation in the 

semiconductor industry. Each generation of stepper is referred to by the wavelength 

of the light source that it uses. In recent years the technology has moved from the 
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436nm (--line) stepper to 365nm (i-line) to the currently used 248nm 'deep-UV' 

technology. Industry is looking to 193nm and 157nm technology for progression to 

the next generations of microchips. 

Up to the i-line generation of stepper, the reduction of minimum feature size has been 

brought about by either a reduction of the exposing wavelength or an increase in the 

numerical aperture of the lens[Wauters  1998]. However, the complexity of 

introducing new technology while still maintaining the process latitudes necessary 

for control over the features critical dimensions , has caused the extension of the 

technology with resolution enhancement techniques such as optical proximity 

correction, off-axis illumination and phase shift masks. In the case of the i-line 

technology, production has been extended to 0.25.tm features. Similar requirements 

are being made of the 248nm deep-UV generation, with industry pushing to extend 

the technology to produce features of 0.18tm and possibly 0.15pm. 

The 1997 STA roadmap[STA,  1997] foresees the continued use of optical lithography 

up to the 0.13jim generation of devices, which has an estimated implementation date 

around 2003. Beyond this there is no recommendation as a successor for the 

subsequent generations of lithography, though there is optimism in the possibility of 

extending optical lithography down to the 0.1tm generation for introduction in 2006. 

3.2.2 X-ray lithography 

X-ray lithography has been hailed as the successor to replace optical lithography for 

many years. The 1994 SIA roadmap[SIA, 1994] is quoted as saying 'X-ray 

lithography holds the most promise for near term success when industry shifts from 

optical to non-optical lithography'. By 1997 the SIA roadmap[SIA, 1997] was, 

however, still pushing optical lithography for the next generation of devices and X-

ray is still required to provide solutions to fundamental problems in its processing. 

The promise of X-ray lithography lies in the high resolution attainable from the use 

of very short wavelength radiation (4-40A) and the elimination of many of the 
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problems associated with optical and e-beam lithography, such as depth of focus and 

reflection and scattering effects. Resists can be patterned with high aspect ratios, and 

any organic debris on the mask is effectively transparent to the x-ray radiation. 

The fabrication of patterns with X-ray sources involves the use of a thin (<1 mm) 

membrane which is patterned with features of an x-ray absorbing material to produce 

a mask. The mask is positioned in very close proximity to the substrate being 

exposed because X-ray radiation can not be focused. The inability to focus the X-

rays, like the UV radiation used in optical steppers, means that the mask is required 

to be of the same scale as the patterns being imaged, referred to as 1:1 printing. There 

are currently two types of sources of X-rays for lithography purposes: 

• Point sources 

• Synchrotron storage ring sources 

Point sources are the simplest method of producing X-rays for lithography purposes. 

X-ray tubes involve focusing high energy electrons onto a metal (e.g. palladium) 

target which emits X-rays[Watts  1989]. The efficiency of this source is low, less than 

1%, while the brightness of the source is 2-3 orders of magnitude lower than optical 

steppers. Laser plasma sources are point sources that have been demonstrated to be 

sufficiently bright for X-ray exposure, although contamination from the source on the 

X-ray window is a problem for large scale lithography. 

Problems, however, arise with point sources because of the proximity printing of the 

mask design. Geometric effects arise, shown in figure 3.2, because the source of the 

X-rays is from a point that is a distance, D, from the wafer. At the edge of the wafer 

the X-rays cause a 'shadowing' effect which blurs the patterned image. 
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HSR 	
S - Diameter of x-ray source 

	

I 	 D - Spacing between source and mask 
g - Gap between mask and wafer 

	

I 	 R - Radius of the exposure field 
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Figure 3.2 	X-ray proximity printing[Lepselter 19831 

The 'run out' at the edge of the field , A, is defined by the equation[Watts  1989]: 

3.1 
D 

Equation 3.1 shows that the run out error will increase linearly with distance from the 

centre of the wafer. Adjusting the image positions on the mask can compensate for 

this error. Problems with this effect occur with the overlay of patterns from different 

levels of wafer processing. If the mask is aligned at a different height, g, between 

levels then there will be an overlay error. This effect will also occur if there is any 

non-flatness on the wafer surface or in the mask itself. Another limiting geometrical 

effect is the penumbral blur, 6. This results from the nonzero extent of the source, 

defined by equation 3.2 

gs 	 3.2 
D 
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Synchrotron storage rings almost remove the problem of run-out by collimating the 

X-rays as they are produced by the source, thus removing the geometric effects. The 

systems are the choice source for research into manufacturing work with X-rays, as 

they are also the brightest X-ray sources available. The cost of the systems are, 

however, prohibitive at up to $25M per unit. 

A large amount of research is being undertaken using synchrotron radiation 

lithography. The technology is being developed for future generations of devices 

such as the fabrication by Mitsubishi of a 1Gb DRAM site with 140nm 

features [Nishi oka, 1995] and by IBM of CMOS test circuits with lOOnm feature 

sizes[Wind 1995]. The advanced lithography facility at IBM has been developing the 

key areas of alignment, mask making and resist technology for x-ray lithography with 

a synchrotron [Silverman 1997][ Silverman 1998]. The patterning field size of the 

system is 50x50mm2  and achieves a 2nm mean overlay error for the alignment of the 

lithography fields. The system has patterned features with dimension of lOOnm and 

below, proving its capability of imaging the features required for future generations 

of devices. However, the systems throughput is relatively slow at 15 wafers per hour 

and below the approximate target of around 50 wafers per hour for a production 

system. 

The majority of the resources in post optical technology are being put in the area of 

x-ray lithography. The capability of the techniques resolution is not in doubt. The 

problems lie with whether a suitable source can be found, with a process that can 

match the alignment criteria required for the scale of devices that will be produced. 

3.3 E-Beam exposure principles 

3.3.1 Beam projection system 

The electron optic systems used in c-beam systems are similar to those used in 

scanning electron microscopes. In fact SEM's are commonly modified for use as e 

beam systems. Figure 3.3 illustrates a simplified model of an electron column used in 
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e-beam systems. An electron source emits electrons that are focused in a beam at the 

wafer plane by magnetic lenses. The beam shaping aperture, near the gun, limits the 

excess current flowing in the column by removing the electrons that are not focused 

into the beam. The beam shaping aperture also governs the numerical aperture of the 

system. The beam blanking plates operate as a very high speed on-off switch for the 

beam. When switched off the beam passes through the blanking plates to the wafer 

plane for imaging. When a charge is placed on the electrostatic blanking plates, the 

beam is rapidly deflected and strikes a blanking aperture, stopping the beam from 

imaging the wafer plane. 

Gun 

Beam shaping 
aperture 

Lens 

Blanking plates 

Lens 

coo 	 —Stigmator 

I) 	
Deflection 

Z
/coils 

Lens 

Wafer Plane 

Figure 3.3 	Projection optics of an electron column 

Deflection coils enable defection of the beam across the wafer plane. The deflection 

allows the beam to write patterns over a small area, usually less than 20Ox200tm 

square, which is referred to as an imaging field. Patterns with larger field sizes than 
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this are often required, and a moving stage with laser interferometer positioning can 

achieve this in two ways: 

The stage is continuously moved at a constant rate, while the pattern is 

scanned as the stage moves systematically around the wafer. The wafer 

position is known, accurately, at any time, which allows for any alignment 

errors to be made by the positioning of the beam. 

The pattern is imaged in a field and then the stage is moved to an adjacent 

location and the system prints the another pattern. This motion can be step 

and repeat, where the same pattern is repeated over the whole wafer, or the 

exact positioning of the stage by laser interferometery can 'stitch' patterns 

together to make a larger pattern from smaller fields. 

Electron source 

There are two types of sources used in electron columns[Wolf  1986]: 

• 	Thermionic sources 

• 	Field-emission sources 

Thermionic sources use a metal that is heated to the elevated temperatures at which 

electrons are emitted. Materials such as tungsten(W), thoriated tungsten and 

lanthanum hexaboride (LaB 6) are used. Tungsten sources provide the most stable 

current, but have a low brightness, around 1-3x 10 (A/cm 2)/steradian. LaB 6  sources 

require high vacuum conditions to achieve stability, but are a brighter source around 

106  (A/cm2)/steradian. 

Field emission sources produce a very high electric field at the tip of a sharp emitter 

that extracts electrons to form a fine gaussian spot. This is the brightest form of 

electron source at around 108  to iü (A/cm 2)/steradian. Though very high vacuum 

conditions are required for stable conditions. 

Beam characteristics 

The beam current is related to the numerical aperture ((x) and the diameter of the spot 

focused on the substrate (d) by the relationship shown in equation 3.3[Watt 1989], 

where 0 is the brightness of the source. 
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The current density in the spot of a round beam source is not uniform, but consists of 

a bell shaped distribution. This distribution means that the beam diameter, d, is 

actually the effective spot diameter. From this equation it can be seen that the current 

density is directly related to the brightness of the source and the numerical aperture. 

The beam current is an important factor in the calculation of exposure times for the 

patterning of features with e-beam systems. If the beam current is I, the area of the 

exposed region is A, and the charge density to be 'dosed' to the patterned area is Q, 

then the relationship for exposure time, T, is as follows: 

T= QA 
	

3.4 
I 

From the equation it can be seen that exposure times can be reduced by either 

increasing the beam current or decreasing the amount of dose required by the resist, 

i.e. using a more sensitive resist. 

3.3.2 Resist technology 

With the very high resolution attainable from the narrow beam diameters of electron 

beams, it is accepted that the ultimate resolution of electron beam lithography is from 

the resolution of the resist and the subsequent fabrication processes[Broers 1996]. 

A good resist for processing requirements should have the following features[Owen 

1985]: 

High sensitivity to the exposing radiation 

Capable of resolving fine features 

After development, the resist should be resistant to the subsequent etching 

processes that it is subjected to. 
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Resist contrast and sensitivity 

The resolution of a given resist for a particular set of processing conditions is 

determined in large part by the resist contrast (y)[Moss 1987]. The contrast of a 

negative resist is related to the rate of the cross-linking network formation for a 

constant irradiation dose. For positive resists the contrast is related to the rate of the 

chain scissions and change of solubility at a constant irradiation dose. The value of y 

can be calculated from the linear portion of the response curves of a resist. The 

response curves of typical positive and negative resist processes are shown in figure 

3.4. The contrast of a positive resist is expressed in equation 3.5 as: 

Y P 	log 	 3.5 Do  
where D0  is the radiation at which the developer begins to dissolve the irradiated film 

and D is the complete development dose. The contrast of a negative resist is 

expressed in equation 3.6 as: 

[ 10 _ D~  ] 
	

3.6 

where D90  is the dose required to produce 100% initial film thickness and Dg ' is the 

interface gel dose. 

Resists that exhibit a high value of contrast minimise the radiation scattering effects 

from the irradiating source. If a resist had an infinite contrast value the profile of the 

developed resist would be of vertical sidewalls. Since all exposure techniques result 

in some of the energy being deposited outside the pattern area, some degree of 

contrast is inherent. 

Sensitivity of a resist is the required incident energy, or dose, that is given to the 

resist to produce the desired image after development. For positive resist the 

sensitivity is the dose required (D in figure 3.4a) to effect complete solubility of the 

exposed region, while the unexposed region remains insoluble. Sensitivity in 

negative resist is defined as the dose at which a lithographically useful image is 

formed. The point Dg ' in figure 3.4b represents the point at which cross-linking of the 



Electron Beam Lithography 	 47 

resist begins to form, though no useful image will form at this point. Additional dose 

is required to form an image and this is accepted to be the point Dg05 , which is the 

dose at which 50% of the original film thickness has been retained after 

development. 
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Figure 3.4 	Response curves for a) positive resist and b) negative resist in terms of the 

developed thickness normalised to the initial resist thickness as a function of log (dose) [Moss 

1987] 

Electron beam resists 

One of the first widely used e-beam resists is the positive working poly methyl 

methacrylate (PMMA). This resist is a very high resolution resist, because it does not 

swell under development. Small features <25nm have been demonstrated for this 

resist[Broers, 1996], although its other properties do not make it attractive for 

fabrication use. The resist has a low sensitivity (-80jiCIcm 2 ) and very poor resistance 

to dry etching techniques. 

P 
Pr 

(a) 
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The drive towards commercial resist technologies has developed 'chemical 

amplification' of the resists[Kudryashov 1996]. Chemically amplified resists (CAR's) 

can be used with exposure by deep-UV optical steppers, x-rays and electron beam 

radiation. The resist contains a radiation sensitive component that is decomposed 

under the exposure radiation, producing an acid. When the sample is heated up in the 

post-exposure bake, after exposure, the acid is activated and cross-linking or scission 

events occur in the molecules for negative and positive working resists respectively. 

CAR's exhibit high sensitivity (<1OtC/cm 2), high contrast and resolution and good 

resistance to plasma etching. The advanced chemically amplified positive and 

negative resists from Hoechst are investigated and characterised for the processing of 

MOS devices in chapter 6 of the thesis. 

3.4 Summary 

A background knowledge of electron beam lithography has been presented in this 

chapter. The information has provided an insight into the development of electron 

beam technology and how it relates to the microfabrication of silicon devices. The 

principles of the exposure systems to provide patterning with narrow beam 

dimensions have been described and the advanced chemically amplified resist 

technology for defining nano-scale patterns explained. This material will be used in 

later sections of the thesis, with the description of the electron beam system 

developed at Edinburgh University for advanced silicon device research. 



4. 

Edinburgh Electron Beam Lithography 

System 

The Edinburgh Electron Beam Lithography System (EEBLS) is a high resolution 

lithography system, designed and developed as part of this research and is capable of 

imaging sub lOOnm patterns in chemically amplified resists. This advanced 

lithography capability makes the system ideal for the research of advanced 

microelectronic devices and structures. The system was built to fully utilise the high 

resolution capabilities of a Philips XL 40 thermal field emission SEM. Also, the 

design specification of the systems features, such as wafer alignment, were co-

ordinated so that the operation integrated with the processing capabilities of the in-

house fabrication facilities. Designing and constructing the system in-house also 

enables the upgrade of the design to be changed if the performance of a certain area 

of the design is required to be increased or adjusted. The use of a thermal field 

emission SEM as the electron source provides a very high brightness beam that 

allows a small focused spot with a higher beam density than the LaB 6  emitters that 

are used in standard electron beam lithography systems, this enables a smaller spot 

size to be used for the exposure of a resist at a given beam current[Kamp 1999]. 

4.1 General Operation 

The layout of the e-beam system is shown in figure 4.1. The system has been 

designed as a series of discrete boards, each providing an individual function. The 

boards are linked together via two 64-way data buses, this provides the ability to 

upgrade the system by replacing only the board relating to the specific function. The 

system is interfaced to the SEM with X and Y scan inputs of analogue voltages that 
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control the positioning of the electron beam. A beam blank input provides a signal 

that effectively switches off the electron beam and the picoammeter enable signal 

engages the system to measure the current of the electron beam with a picoammeter. 

A computer also interfaces to the system and is used to download the pattern data and 

control the alignment of different levels of lithography. 
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Figure 4.1 	General layout of the EEBLS 

The pattern generator produces the beam position information from a pattern file 

stored on the computer. The beam is stepped sequentially within a patterning field, as 

a series of pixels, until the pattern is registered as finished, after which the next 

pattern is selected for imaging. The pattern field size is presently 4096 x 4096 pixels, 

as defined by the 12-bit resolution of the pattern input data. The system has, however, 

been designed to be upgraded to a 14-bit patterning field with 16384 x 16384 pixels 

for higher resolution. The patterns are exposed as a series of rectangles, which can be 

linked together to form more complex patterns. The speed at which the data is 

transferred to the pattern generator is governed by the energy dose given to each pixel 

in the pattern. A lower exposure dose increases the patterning speed and hence 

increases the data rate at which the system operates. The speed at which the data 

increments is governed by the system clock, which is ultimately limited by the 



Edinburgh Electron Beam Lithography System 	 51 

switching speeds of the pattern generator logic chips and the bus bandwidth for data 

transfer. The maximum designed clock speed of the EEBLS is 1MHz. 

The digital pattern data is transferred from the pattern generator onto two 12-bit data 

buses. The data is then read by the Digital to Analogue Conversion (DAC) board, 

where it is converted to an analogue signal that is used as the analogue beam 

deflection inputs of the SEM. The pattern data can also be manipulated, at this stage 

of the processing, to make adjustments for any registration errors in the alignment 

process. The data manipulation can rotate, skew and stretch the pattern so that it 

aligns the registration marks. 

The output board interfaces the beam deflection voltages to the SEM. Protection is 

provided to the SEM inputs by limiting the voltage of the output buffers to below the 

maximum rated voltage. The output board is specifically designed for interfacing the 

system to the Phillips microscope, the system could be adapted for use with another 

microscope by adjusting the set-up of the output board. Also located on this board is 

the circuitry for the beam blanker and the relay to connect the picoammeter, that 

accurately measures the imaging beam current. 

The video board converts the analogue video level signal of the scanned registration 

marks, from the SEM, into to a digital signal for transfer to the computer. The digital 

signal is analysed by the computer to detect the centre point of the alignment crosses, 

from which the transformation data is calculated to align the system for accurate 

lithography. 

The following sections of this chapter provide analysis of the EEBLS operating 

characteristics. The workings of the individual boards are explained and, where 

relevant, timing diagrams are used to describe their operation. The information 

presented is intended as a guide to the systems operation and provide a reference as 

to the capabilities of the designed unit. 
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4.1.1 System Specification 

The specification of the Edinburgh electron beam lithography system is shown in 

table 4.1. 

Edinburgh Electron Beam Lithography System 

Electron Source 	 Thermal field emission 

Accelerating Voltage 	 30keV 

Beam Current 	 15pA-2nA 

Wafer Handling 	 up to 300mm 

Patterning method 	 Vector Scan 

Patterning field size 	 4096 >< 4096 pixels 

Field size at 230x magnification 	200 x 200tm 

Operating frequency 	 1MHz 

Table 4.1 	Edinburgh electron beam lithography system specification 

4.2 Pattern Generator Board 

The pattern generator board implements the pattern scanning method and the field 

size. The system was designed to expose with a vector scan method, where the beam 

is raster scanned across rectangular areas within the patterning field. This method is 

ideal for the applications for which the system was designed, which are high 

resolution, low volume, low throughput lithography. Patterns are designed, as 

rectangles, using standard Cadence [Cadence] software and can be quickly 

downloaded to the control computer for exposures to commence. 

The patterning width of the field is set by the resolution of the input data, which is a 

12-bit digital word in both the X and the Y planes. This produces a field with 212 

(4096) addressable locations, or pixels, in each plane. The field is of variable size 

depending upon the magnification used with the SEM. At a magnification of 230x 

the system has a field size of 200x200tm which relates to a pixel pitch of 50nm. The 
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vector scan method of exposure, which involves individually scanning each pixel and 

then moving on to the next pixel at an adjacent location, is shown with a 5x5 pixel 

pattern in figure 4.2. The style of patterns that can be imaged with this scanning 

method are squares or rectangles. 

X scan 
negative 4 	 10 positive 

Pixel 

V 
scan 

Direction of 
the pattern 

scan 

Figure 4.2 	Vector scanning of a 5x5 pattern 

A schematic of the circuitry that operates the pattern generator is shown in figure 4.3. 

The circuit is based around five sets of counters. 12 bit data is input to four of the 

five counters, which have the functions described below: 
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X 	Increments the absolute X co-ordinate of the beam in the scan field 

+AX Counts down the number of pixels in the positive direction of the X scan 

-AX Counts down the number of pixels remaining in the negative direction of the 

X scan 

Y 	Increments the absolute Y co-ordinate of the beam in the scan field 

AY 	Counts down the number of pixels remaining in the negative direction of the 

Y scan 
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Figure 4.3 	Schematic diagram of the pattern generator circuitry 

The counters are pre-loaded at the beginning of the scan for each pattern. The X and 

Y counters are loaded with the data co-ordinates of the start pixel for the pattern in 

the X and Y axis of the field respectively. The +AX and AY counters are loaded with 

the width data that determines the width of the pattern, in terms of pixels, in each 

axis of the field. 
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The system operates as illustrated in the timing diagram of figure 4.4.The X counter 

counts up with each clock pulse, from its loaded value, and the +AX counter counts 

down from its loaded number to zero. At the same time the -AX counter increments 

up from zero. When the +AX counter reaches zero the Line Increment Flip-flop is 

toggled. The Y counter is then incremented one unit (i.e. down one line) and the 

value of the AY counter is incremented down by one, i.e. one line in the pattern scan 

completed. After this first line is completed the beam is scanned back in the opposite 

direction with the X counter incrementing down, and the -AX counter counting down 

to zero. Again at the end of the line, when the -AX counter reaches zero, the Y and 

AY counters are incremented. 

System 
Clock 
Offset 
Clock 

Toggle 
Flip-Flop 

-LX2  

-xl 

-x o  

+AX0  

Y 1  

Yo  

Figure 4.4 	Timing diagram for a 50 (XxY) pattern from the pattern generator Circuit 

The toggle flip-flop changes state after each line is finished to change the operation 

of the three counters for the X scan. If the counter was counting upwards on the 

previous line its state is changed to counting downwards, and vice-versa if the 

counter was originally counting downwards. 
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When the AY counter reaches a zero value, the pattern scan is finished. A reset signal 

is sent to the -AX counter to reset it ready for the next pattern to be loaded and a 

'scan finished' signal is sent to the computer to allow for the next pattern to be 

downloaded for patterning. 

A offset clock signal is used with the line increment flip-flop to place a 300ns delay, 

from the system clock signal, in the toggling of the flip-flop from the AX counters 

output. This is so the values of the counters have had time to settle before any pulse 

is sent to reset them. 

4.3 Clock circuits 

The clock circuits provide timing signals to synchronise the data transfer of the 

pattern information around the EEBLS system. The main system clock operates at a 

maximum clock frequency of 1MHz. The two secondary 'Offset' and 'Delay' clocks 

use the 'system clock' as an input to produce their output pulses. 

4.3.1 System Clock 

The system clock produces an adjustable clock rate for the data transfer within the e-

beam system. The period of the system clock frequency corresponds to the dwell time 

that the beam exposes each individual pixel of the patterns. Adjusting the frequency 

of the system clock changes the period for which the beam dwells over each pixel 

and hence the dose of energy given to the pixel. The dwell time period is calculated 

as a minimum dwell time for all the patterns in the exposure field, and any increase 

from that minimum dwell period can be implemented with a multiplication factor for 

individual patterns. The equation used to calculate the minimum dwell time of the 

exposure is shown in equation 4.1. 

area of pixel x base dose 
min dwell time = 	 4.1 

beam current 

The schematic diagram of the system clock is shown in figure 4.5. The basic 

operation of the clock involves dividing down a 40MHz input and comparing the 

divided signal with that of a pre-set value loaded from the control computer. When 
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the values correspond, the toggle flip-flop is switched and the counters are 

simultaneously reset to start counting the second half period of the system clock 

pulse 
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Figure 4.5 	Schematic diagram of the system clock 

The timing diagram for the system clock is shown in figure 4.6 
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Figure 4.6 	Timing diagram for 1MHz operation of the system clock. 

The 40MHz clock signal is input into the 16 stage synchronous counters. The 

counters allow for a maximum division of 216  from the input signal. This corresponds 

to a programmable clock range down to 610Hz. The counter outputs are then used as 

one half of the inputs to 16-bit identity comparators. The other half of the comparator 

inputs are set to a 16-bit number written from the computer, through a set of isolating 

buffers. The pre-set 16-bit number corresponds to the number of divisions the 

40M1-Iz clock input is to undergo, set by equation 4.2 below. 
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40x 10 6  

2f 	
4.2 

x - pre-set data (decimal) 

f - required clock frequency (Hz) 

When the output from the synchronous counters match the 16-bit number, a circuit 

simultaneously switches the state of the toggle flip-flop and resets the synchronous 

counters to repeat the process. With the Toggle switching state and the counter 

repeating the same pre-set count, a clock pulse of equal positive to negative 

transitions takes place, as shown in the timing diagram of figure 4.6. 

4.3.2 Offset clock 

The signal from the offset clock is used on the pattern generator board to produce a 

reset pulse for the line increment flip-flop. The pulse has a 300ns delay from the 

falling edge of the system clock, to allow the X-scan counters time to settle before 

their counting operation is reversed with the offset clock pulse to the toggle flip-flop, 

see figures 4.3 and 4.4. The circuit layout of the offset clock is shown in figure 4.7 
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Figure 4.7 	Schematic diagram of the offset clock 

The system clock is the initial input to the offset clock, which is used to toggle a flip-

flop. This flip-flop in turn, releases the clear function of a 4-bit synchronous counter 

that counts the pulses from a 40MHz clock input. Set Pulse and Reset Pulse circuits 

count 12 and 14 pulses respectively and are applied to the J and K inputs of the J-K 

Flip-flop. The timing diagram of the offset clock is shown in figure 4.8 for a 1MHz 

system clock input. 
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Figure 4.8 	Timing diagram of the offset clock with a 1MHz system clock frequency 

4.3.3 Delay Clock 

The delay clock produces a zero level pulse that resets the integrator circuit on the 

video board, explained in section 4.5. The schematic circuit for its operation is shown 

in figure 4.9. 
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Figure 4.9 	Block diagram of the delay clock circuitry 

The counter starts counting with the low going transition of the system clock. Fifteen 

pulses from the 40M}Iz clock are counted before a reset pulse is input to the flip-flop 

which produces the output of the delay clock. The timing diagram for the delay clock 

is shown in figure 4.10. 
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Figure 4.10 	Timing diagram of the delay clock 

4.4 Digital to Analogue Converter Board 

The DAC board produces the analogue X and Y, line and field, waveforms that 

provide the scan inputs to the SEM. The combination of inputs to the DAC board can 

be combined to stretch, skew and rotate the pattern information that is input from the 

pattern generator board. This feature to the system produces an accurate and flexible 

way to manipulate the patterns for close tolerance alignment between patterning 

levels. The alignment of the system is designed to be within one pixel. 

The DAC board uses a 14-bit digital input of the beam position data from the pattern 

generator and converts it to an analogue signal that can be used as a beam deflection 

input to the SEM. The board was constructed with 14-bit architecture to enable its 

use when the system is upgraded with a 14-bit resolution pattern generator board. 

With the current 12-bit resolution the two most significant bits of the data are set to 

zero on the DAC board, thus disabling the inputs, while the 12-bit data is sent to the 

remaining inputs. 

The beam position data of the X-channel and Y-channel, that control the beam 

deflection coils of the SEM, is generated by the DAC board using a transformation 
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algorithm on the input data. The algorithm used is of the form of a transformation 

matrix of the input data, the basic equation of this translation is shown in equation 

4.3 

X\ (A 	(x 	
4.3 LJ=L D) y) 

4.3 

x - X scan beam position 

y - Y scan beam position 

X - X channel translated 

Y - Y channel translated 

data 

A, B, C, D - transformation 

variables 

The matrix expands to produce equations for the output of each channel of the beam 

deflection, shown in equations 4.4 and 4.5. 

X=Ax+By 	 4.4 

Y=Cx+Dy 	 4.5 

The circuit that implements the translation of the input data is shown in figure 4.11. 

data 

data 

data 
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DAC BOARD - SCHEMATIC DIAGRAM 

X Channel 	 V Channel 

Figure 4.11 	Layout of the DAC board circuitry 

The x and y beam position data, from the pattern generator board, is input into two 

multiplying DACs, where the digital information is multiplied with the analogue 

translation data. The translation data is produced individually in four DACs, with the 

data values calculated by the control computer and downloaded to the DACs through 

sets of buffers and latches, which load and hold the data onto the DACs from the data 

bus. The digital data from the computer is transformed to an analogue signal in 

DACs A-D. The data values from the multiplying DACs are added together in two 

summing circuits to produce the analogue X and Y channel beam signal for relaying 

to the SEM inputs. The layout of the DAC board circuitry implements the operation 

of the equations 4.4 and 4.5. 
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4.5 Video Board 

The video board changes the video signal from the analogue SEM output to a digital 

signal which is input to the computer. Imaging of the alignment crosses allows fully 

automated and manual alignment of patterns. The video scan images the alignment 

crosses at the edge of the patterning field, this scan is adjusted to a high contrast 

image that highlights the alignment crosses against the surface material. The edge of 

the cross is subsequently detected by image processing techniques in the control 

computer and the centre point of the cross is located. With the locations of three of 

the alignment crosses detected the transformation data to be input to the DAC board 

is calculated and the image is readjusted for accurate alignment. 

The schematic diagram for the video board is shown in figure 4.12. The video signal 

is initially input to an instrumentation amplifier to keep the Ground references of the 

SEM and the EEBLS isolated. The Brightness and Contrast DACs then manipulate 

the basic video signal by adjusting the voltage level or gain respectively. The signal 

is adjusted by a programmable 8-bit number, that produces 256 level shifts, from the 

computer. The contrast adjusted signal is then summed with the voltage level 

produced with the Brightness DAC. 
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Figure 4.12 	video board schematic diagram 

The level adjusted signal is subsequently input to an integrator circuit. This circuit 

averages the input video signal over a period, this reduces any noise on the signal 

before being sampled by an 8-bit flash video AID converter. The capacitor of the 

integrator circuit is reset after each sample from the AID converter by a pulse from 
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the Delay clock, explained previously in section 4.3.3. The period integration is 

determined by the frequency of the system clock. Integration of the video signal starts 

with the rising edge of the system clock signal and the sample is taken on the falling 

edge of the system clock, thus the period of integration is half of the system clock 

period. The clock is operated at 1Mhz for video signal sampling, thus the integration 

period is 500ns. 

4.6 Output Board. 

The output board contains the circuitry for interfacing the EEBLS outputs to the 

SEM. Contained on this board are the output buffer circuit, Beam Blanking circuit 

and the Picoammeter Relay Control circuit. 

4.6.1 Output Buffers 

The output buffers interface to the SEM and provide the line and field, X and Y, scan 

for the beam deflectors. Two identical sets of circuits buffer the output for each of the 

line and field scans, one half of the output buffer circuit is shown in figure 4.13. The 

reduced power supply to the two buffers provide protection to the inputs of the SEM 

by limiting the voltage range to within the maximum value specified for the SEM 

inputs. The 711 op-amp is high speed and working as a unity gain buffer. The 

BUF634 is a high current output, high-speed buffer. High current drive is necessary 

to source the low impedance input to the SEM. 

Figure 4.13 	output buffer circuit 
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4.6.2 Beam Blanking circuit 

The beam blanker circuit applies a voltage to the beam deflection plates of the 

electron column in the SEM. When the voltage is applied, the beam is 

electrostatically deflected away from the wafer plane at high speed. With the beam 

deflected away from substrate that is being exposed, the beam is repositioned to 

another area of the exposure field ready for imaging the next pattern. Once set-up at 

the next location the beam blanking voltage is removed and the beam is again 

controlled by the deflection coils of the SEM. The schematic layout of the beam 

blanking circuitry is shown in figure 4.14. 

Blanker enable 	
Relay 

> Enable 	 Diode 
Circuit 

	

Scan finished 	 Beam 
Brightness 	

ay H Fuse  H 	>Bnk 
Software blank 	 5 	Output 

	

enable 	 Buffers 

Figure 4.14 	Schematic diagram of the beam blanker circuitry 

The beam blanking circuitry is energised with one of three inputs: 

• 	The 'blanker enable' input operates the relay that physically isolates the 

blanker circuitry from operation. When this input is high the relay is switched 

off, thus deactivating the relay by directly connecting the blanking plates to 

the ground plane, reducing any noise effects that would interfere with the 

exposing beam and reduce its resolution. A low input switches the relay over 

to blanking operation and the blanker is then controlled from the output of the 

buffer circuit. 

• 	'software blank enable' is an input that is addressable from the computer to 

blank the beam without switching the relay off. 

• 	'scan finished' is the low signal produced by the pattern generator board to 

register that the current pattern has finished scanning and the beam is to be 

blanked before scanning the next pattern. 
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The selector circuit is a logic circuit that produces a high output when both of the 

inputs are low. The circuit activates a transistor that grounds the output when 

switched off. The buffer circuit used is the same as for the output buffers, shown in 

figure 4.13. The circuits high output current drives the beam blanker input to the 

SEM when switched on. The fuse and voltage clamp protect the SEM by restricting 

the maximum current and voltage from any overload from a short circuit. The diode 

provides a visual indication of the beam blanker circuit's status on the front panel of 

the EEBLS unit, the diode is illuminated when the circuit, is blanking the beam. 

4.6.3 Picoammeter Relay Control 

The picoammeter circuit switches the state of the relay that isolates the beam current 

measurement output from the SEM to the picoammeter. The circuit is shown in 

figure 4.15. When the 'picoammeter relay enable' input is low, the input to the 

transistor is pulled high through the 1kQ resistor. The transistor is switched on 

producing a high output and energising the relay, this opens the connection for the 

input to the picoammeter that enables the current to be read for the beam current 

measurement. The output is also used as the 'relay sense' input on the backplane of 

the EEBLS system. 

Picoammeter 
Relay Control 

5V 

Output 
to relay 

Figure 4.15 	Picoammeter Relay Control circuit 
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4.7 System Layout 

The lithography system is housed in a two level (6u) standard 19 inch sub-rack 

system. This construction enables the use of removable eurocard boards that connect 

to two 64-way backplane data-buses. The system layout in the rack is shown in figure 

4.16. The backplanes are laid out in the upper and lower halves of the rack. The 

upper data bus is connected to the control computer and carries the data signals to 

and from the computer to operate the lithography system. The lower backplane 

carries the X and Y scan data that is produced by the pattern generator board before it 

is used as an input to the DAC board. 
Pattern 

	

Generator DAC 	 Clock 	Output Video 

Board 	Board 	 Board 	Board Board 

Upper 
Backplan 

Lower 
Backplan 

-11111 __ I I I 
-. I 	 [power 
e 	 Supply 

F Module 

 

Scan Outputs 
x 	V 

00 

00 
Pico- 	Beam 

ammeter 	blanker 
Mains 

relay control output 
Power 

\/ 
40-Way 

DSocket 

 

Figure 4.16 	Electron beam lithography system layout, (a) Board layout viewed from the 

front of the system and (b) Input/output connections viewed from the back of the system. 

The connections are laid out at the rear of the system with the connections for the 

scan outputs, pico-ammeter relay control and beam blanker output made directly to 

their respective inputs on the SEM and the pico-ammeter. The 40-way D socket is 
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connected to the control computer and a mains socket provides the power connection 

to the unit. 

The connections to the 64-way data buses are laid out as shown in figure 4.17. The 

lower backplane has power supply connections for the boards with analogue circuitry 

and 28 pins are allocated for the two 14-bit data buses of the X and Y scan data. The 

upper backplane has power supply connections for the boards with digital circuitry. 

The 48 connections in the middle of the backplane are allocated as connections to the 

I/O card of the computer, all of the programmable data to the boards is sent through 

these connections. The delay, offset and programmable clock are connected to the 

bus to provide other boards in the system access to the signals. 

Lower Data Bus Upper Data Bus 

Agndl S S 	I Dgnd 

+15vS 2 +5V 
LSB '(00 S 0 AgndS 	S -15V 

'(01 S 0 +15V0 4 9 D00 	LSB 
'(021 0 0 	5 DOl 
'(03 5 0 0 6S D02 
'(04S 0 0 	5 003 

'(05S 0 085 004 

Y '(06S 0 0 	5 005 

Scan '(07 5 0 0 105 006 
Data '(08 5 0 Video Relay Enable S 	5 007 	Gain 

'(09 5 0 Pico Relay Enable S 121 008 	Data 

'(10 I 0 Pico Relay Sense S 	5 009 

Y11 5 0 0145 010 

'(12 S 0 0 	S 011 
MSB '(13 5 0 0 165 012 
LSB X00 5 0 Scan Finished 5 	5 013 

X01 5 0 ProgCLKS 181 D14 
X02 s 0 LSB 	V05 	S D15 	MSB 
X03 5 0 Vi S 200 ADO 	LSB 
X04 5 0 V2 	0 AOl 	

Address Bits 
X05 S 0 0/p 	V3 S 225 A02 

x X06 S 0 Video V4 S 	S A03 	MSB 

Scan X07 • 0 V5 S 245 Data load (active low) 
Data X08 5 0 V6 0 	5  Start scan (active low) 

X09 5 0 MSB 	V7 S 26S Hardware blanker enable 

X10 S 0 Scan Finished S 	S Software blanker enable 

xii • 0 Prog CLK S 280 PC 1-0 digital Gnd 
X12 5 0 PC 1-0 Dgnd 5 	5 Programmable CLK 

MSB X13 S 0 Delay Clock 03049 Offset Clock 

-15V • s S 	• +5V 
Agnd • 	• *-

3  L2  Dgnd 

Figure 4.17 	Layout of the connections to the upper and lower data buses 
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4.8 Summary 

The specification and operating parameters of the EEBLS have been presented in this 

chapter. The system design enabling high resolution electron beam lithography has 

been demonstrated, with the vector scan patterning of the pattern generator board. 

Techniques to set up accurate automated alignment of patterning levels have been 

highlighted with the use of a video scan and image recognition process on alignment 

marks. The modular design of the system has been highlighted to allow upgrades to 

be made to the specification without complex re-working of the whole design. The 

design of the output board, that provides an interface connection to the SEM, means 

the EEBLS can be interfaced to different SEM units with only the re-design of the 

output board necessary. 



5. 

Device Fabrication Layout 

With the electron beam lithography system operational for lithography work, an 

experiment was designed for the fabrication of nano scale MOSFET devices with 

dimensions to lOOnm and below. This chapter describes the design of the 

experiment, followed by a discussion of the layout of the lithography masks and 

pattern layouts and the structure of the MOS devices. Also included is a review of the 

processing techniques to be utilised in the fabrication of the devices. 

5.1 Design 

The design of the device integration experiment was centred on the fabrication of 

MOSFET devices with all critical lithography levels of the device processing 

performed with electron beam lithography. Optical lithography was only used to 

define the large scale features. 

E-beam lithography 	Optical lithography 

I 

2 Active areas 

3 	Gate electrodes 

4 Contact holes 

5 Metal (inner e-beam area) 

6 

Frame and alignment marks 

Metal (probe pads) 

Patterns for the lithography levels were designed using Cadence software. The 

patterns were built up from a series of square and rectangular blocks, to correspond 

to the file formats of the electron beam lithography system and the pattern generator 

system, which produces masks for the optical lithography steppers. The Cadence files 
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were output in the ".cif' format from which the files could be converted into the 

necessary format using software. 

The devices were processed on n-type and p-type 75mm Si wafers. All of the 

processing stages were performed within the Edinburgh Microfabrication Facility 

(EMF) 

5.2 Pattern Layout 

The different levels of patterning for the design are shown in figure 5.1. At the 

highest level the wafer was patterned with four 5x5 arrays of chip sites. It was within 

each of these chip sites that the lithography was performed. The chip sites contained 

an inner e-beam area, within which the electron beam lithography was performed. 

The multiple pattern levels for the e-beam lithography were aligned using the crosses 

at the edge of the field within the inner e-beam cell. 

• •I•1••IU i 
• U. . a-  & 
m M M 

in, 
 M M 

• 
•....U-. 

r0 ON MiErME MNI 
I 	 I 
I 	 I 

.LLi- --------- -1___1_j 
3" Wafer 	 Individual 	 Inner E-Beam 

Chip Site 	 Area 

Figure 5.1 	Levels of lithography patterning for the device experiment 

5.2.1 Wafer layout 

The initial patterning on the 75mm wafers was performed with optical lithography. 

Global alignment marks were patterned onto the wafer to provide a calibrated 

reference point for an initial alignment of the e-beam system. A two point alignment 

from these global marks allowed the c-beam system to step to any chip site window, 
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as the arrays were patterned a known distance from the global marks. The layout of 

the patterns and the chip site patterning distances from the global marks is shown in 

figure 5.2. The chip sites were patterned in four individual arrays to allow space for 

an endpoint detection window to be located in the centre of the wafer. This is 

because the laser from the end point detection system is aimed at the centre of a 

75mm wafer in the oxide and polysilicon dry etch systems (The end-point detection 

system was built specifically for this project and is described in section 5.4.3 

End-point 	N /7 	Detection Window .. 

14+fl  U ! : ± 
______ 	/ 

HHU 	HHH 
Global Alignment 

Mark 

5x5 Array of 
Chip Sites XI = 60,000um 

X2 = 14,000um 
X3 = 20,000um 

3" Wafer 
Figure 5.2 	Pattern layout on the 3" wafer 

5.2.2 Chip Site Patterning 

The patterning of chip sites with optical lithography occurs with two different levels 

of processing. The initial pattern is a frame level that defines the area that will 

contain the electron beam defined patterns. A hybrid opticalle-beam lithography step 

is performed near the end of the processing to define the probe pads, which are metal 

pads used for electrical analysis of the fabricated MOS devices. 
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Frame level lithography 

The pattern defined for the frame level is shown in figure 5.3. The pattern defines the 

c-beam alignment marks on the Si wafer. The alignment marks provide a calibrated 

reference point for alignment of the c-beam lithography levels. The frame around the 

border of the pattern gives a visible feature around each site which allows easy 

recognition of the individual chip sites when inspecting the wafer with optical or 

scanning electron microscopy. 

Figure 5.3 	Optical mask for the frame level of lithography 

The patterns from this mask are transferred from the photoresist image into the 

substrate of the Si wafer by etching the Si with a dry etch process. 
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Metal level lithography 

The optical metal level was designed to interface with the electron beam defined 

metal patterns within the inner e-beam cell. Optical lithography was used for this 

process because of the large feature sizes (80im probe pads) of the defined patterns. 

The hybrid patterning technique allowed high resolution patterning of the metal 

within the inner e-beam cell area and fast patterning of the large low resolution 

patterns for the outer probe pad area. The metal level mask is shown in figure 5.4. 

The previously defined frame level is also shown in the diagram to highlight how the 

two masks overlay. 

I 	 E11951J1J2 I 

An Bass 

 '... 	•.....1 in 
I-- 

Figure 5.4 	Optical mask for the metal level of lithography 
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5.2.3 Inner e-beam area device layout 

Two designs were produced for patterning devices within the experiment. The two 

sets of patterns contained arrays of sixteen transistors with a matrix of different gate 

lengths and contact window widths, these patterns are referred to as DesignO and 

Design]. 

The complete layout of the e-beam lithography patterns within the inner e-beam area 

are shown in figure 5.5. The transistors are arranged in sets of four within the area 

with the gate electrodes running horizontally. The series of boxes located in the top 

right hand corner of the area display the overlay control of the lithography alignment 

process. Each lithography level patterns a box centrally upon the box laid down by 

the previous level of lithography, the degree of box misalignment indicates the 

overlay error of the process. All of the e-beam masks for the processing are overlaid 

from the array Design] for figure 5.5. 
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Figure 5.5 	Electron beam lithography patterns for the inner c-beam area 
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Layout of patterns for DesignO transistor array 

The features of the pattern DesignO range from 1tm-0.25tm for the gate lengths and 

4pm-0.5pm for the contact widths. The transistors are arranged within the inner area 

as shown in figure 5.6 and the key to the design dimensions of the transistors are 

shown in table 5.1. 

SGDSGDDGSDGS 

I 
T2c -F7= D 

S 

D 

G 
D 

FT3C]  T3d T4a [~4~b 

DGSDGSSGDSGD 

Figure 5.6 	Layout of the transistors in the pattern DesignO 

Contact Length Gate Length 

Ti 4pm a 1pm 

T2 2pm b 0.75pm 

T3 1pm c 0.5im 

T4 0.5im d 0.25.tm 

Table 5-1 	Key of transistor gate and contact dimensions for pattern DesignO 
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Layout of patterns for Design 1 transistor array 

The features for the pattern Design] range from 0.5pm-0.05jim for the gate lengths 

and 1.tm-O. lpm for the contact widths. The transistors are arranged within the inner 

area as shown in figure 5.7 and the key to the design dimensions of the transistors are 

shown in table 5.2. 

SGDSGDDGSDGS 

Tic T2a T2b T1d 

T3c T3d T4a TO 

D G S D G S S G D S G D 

Figure 5.7 	Layout of the transistors in the pattern Design] 

Contact Length Gate Length 

Ti 1pm a 0.51.tm 

T2 0.5jim b 0.25pm 

T3 0.25pm C O.ipm 

T4 O.ljim d 0.05tm 

Table 5-2 	Key of transistor gate and contact dimensions for pattern Designi 
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5.3 MOS Device Structure 

The structure of the MOS devices was the same for both the DesignO and Design] 

patterns, except for the variation in the defined gate, contact and spacer length 

parameters. The layout of a designed transistor is shown in figure 5.8. The active area 

is overlaid with the polysilicon gate electrode. The contact to the polysilicon is made 

via a pad at the end of the electrode. The source/drain contacts are situated either side 

of the gate electrode within the active area. A sidewall spacer is defined over the gate 

electrode down the width of the active area and an isolation oxide borders the active 

area. 

5.3.1 Transistor dimensions 

The width of the device is defined by the overlap of the gate electrode over the active 

area. The transistors width is 6tm and the contact width is 4j..tm. There is a defined 

1tm gap between the edge of the contact and the outside edge of the active area. The 

pad of the gate electrode is 4x4j.tm and the contact hole is defined centrally on the 

pad with dimension 2x2tm. 

The length of the gate and contacts is changed for different transistors and the 

definitions for the two patterns are detailed in section 5.2.3. The separation of the 

edge of the contact and gate electrode is half the defined length of the contact (x/2). 

The metal level is defined to cover the contact hole but not short circuit the two 

junctions by connecting them together. The pattern edge, for the metal, is defined to 

lie halfway between the contact hole and the gate electrode, i.e. a distance x/4 from 

the gate. 
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Figure 5.8 	Mos device structure 

 



Device Fabrication Layout 

5.3.2 Sidewall spacer 

The sidewall spacer of the devices was defined using electron beam lithography. This 

novel technique of defining the spacer was employed to enable the use of variable 

sized and asymmetric shaped profile spacers. The spacer was defined in photoresist 

and the pattern transferred to the oxide with a reactive ion etch process, the structure 

of the spacer immediately after the pattern transfer step is shown in figure 5.9. Two 

different types of spacer were employed in the device experiment, one with a 1 OOnm 

extension from the gate electrode (defined in figure 5.8 as the distance 's') and the 

second with a 200nm extension. 

5.3.3 Isolation oxide 

An isolation oxide was defined around the border of the devices active area to 

prevent a leakage path from the ion implantation. The border was to be patterned 

with the same lithography process as the sidewall spacer and is displayed in figure 

5.9. The border was defined to be 2.tm wide around the active area, except between 

the gate electrode pad and the active area where the pattern was defined as 1im wide. 

This pattern was implemented during the processing of the devices and was not 

originally designed into the experiment. The border was included in response to the 

removal of the field oxide bordering the devices during a processing stage. The rapid 

implementation of the oxide border highlights the flexibility of the e-beam system in 

quickly designing and implementing patterns. 
Resist 

Gate 	
Oxide 

Si 
Substrate 

Figure 5.9 	Diagram of the sidewall spacer profile and isolation oxide 
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5.4 Processing Techniques 

The processing of the MOS devices requires various techniques to deposit/remove 

layers of material or define structures on the wafer substrate. This section explains 

the techniques used in the device fabrication process. 

5.4.1 Layer growth/deposition 

Thermal oxidation 

Thermal oxidation of silicon produces silicon dioxide (Si0 2). The use of Si0 2  in 

VLSI processing is common for many applications, including the isolation of 

individual devices with a local oxidation of silicon (LOCOS), gate oxide dielectric in 

MOS devices, a masking layer to protect against ion implantation and passivation of 

the silicon surface. 

The growth rate of the Si0 2  is related to the temperature at which the reaction takes 

place and the ambient that the Si material is exposed to. Temperature ranges of the 

order 700°C-1300°C are common for the oxidation of silicon, although a thin native 

oxide, <20A, will form at room temperature. The oxidation reaction will be increased 

if the ambient is changed from a dry, 02,  ambient to one that is wet, H20. The 

equations of these two reactions are highlighted in equations 5.1 and 5.2, below 

Si (solid) + 02  (vapour) - SiO2  (solid) 	 dry oxidation 	5.1 

Si (solid) + H10 (vapour) -> SiO, (solid) + 2H7 	wet oxidation 	5.2 

The rapid growth rate of the oxide in the wet environment makes it ideal for use in 

the LOCOS process and as an implantation mask, although it does not posses the 

propel-ties that are required for a gate oxide. The gate oxide has to be thin (15-

200nm) and uniform in thickness across the wafer, also defect free to withstand the 

high electric fields from the gate electrode. A dry oxidation process allows control of 
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these parameters and the addition of impurities, such as HCI, in the process slows the 

reaction rate down and allows a more controlled reaction. 

Chemical vapour deposition 

Chemical vapour deposition (CVD) involves the formation of solid layers on the 

surface of a substrate by the reaction of chemical gases. The layers that can be 

formed with this process include silicon nitride (Si 3N4) and polycrystalline silicon 

(poly-Si). The sequence of CVD involves the introduction of reactant and inert gases, 

at a controlled flow rate, into a reaction chamber. The gases then diffuse to the 

substrate, where the reactants are absorbed. Film-forming chemical reactions occur at 

the surface of the substrate which produce the required deposited layer and any by-

products of the reaction are removed from the chamber. 

The deposition rate of the CVD process is governed by the following two 

parameters[Kern 1979]: 

• rate of mass transfer of the reactant gases to the substrate surface. 

• rate of surface reaction of the reactant at the substrate surface. 

The rate of mass transfer can be increased by performing the reaction in a low 

pressure environment. The reduced pressure causes the boundary layer above the 

wafer surface, which the reactants must diffuse across, to be diminished, thus 

increasing the flow of reactants [Hammond 1979].The  name of this process is low 

pressure chemical vapour deposition (LPCVD). The surface temperature is an 

important parameter for the surface reaction rate, the combination of this and the 

mass flow rate control the rate at which the reaction takes place. At high 

temperatures the reaction rate exceeds the rate at which the reactants arrive at the 

surface and the reaction is said to be mass-transport limited. For lower temperatures, 

and hence lower reaction rates, the deposition is reaction rate limited. 

Polycrystalline silicon (poly-Si) films, that are widely used to fabricate gate 

electrodes and interconnects in MOS circuits, can be deposited with an LPCVD 

process. The material properties of poly-Si are similar to those of bulk-Si and allow 

the material to be subjected to high temperature processing after deposition. The 
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deposition process involves the thermal decomposition of silane (SiH4) in the 

temperature range 580-650°C. The overall reaction for the process is shown in 

equation 5.3 below. 

SiH4  (vapour) -> Si (solid) + 2H1 ( gas) 	 5.3 

LPCVD is used to deposit poly-Si because of its uniformity, purity and 

economy[Harbeke 19841. The poly can also be heavily doped during the deposition 

process which reduces the sheet resistance of the material. 

Silicon nitride (Si3N4) can also be deposited with a LPCVD process. Si 3N4  can be 

used as a masking layer for selective oxidation, because it is difficult for oxygen to 

penetrate through the nitride to the underlying layer. The nitride is deposited on a thin 

pad oxide, that is used as a stress relieving layer. LPCVD of silicon nitride occurs 

with the reaction of dichiorosilane (SiCl 2H2 ) and ammonia (NH3) at temperatures 

between 700-800°C. The reaction is shown in equation 5.4. 

3SiC12 H1  + 4NH3  -> Si3N + 6HC1 + 6112 	 5.4 

Electron-cyclotron resonance plasma CVD 

Electron-cyclotron resonance (ECR) plasma CVD can be used to deposit Si02 and 

silicon nitride films. Deposition occurs in a low pressure environment (1-2 mtorr) 

with an ECR plasma generated at microwave frequencies of 2.45ghz. Magnetic fields 

surround the microwave cavity and produce a field gradient that directs the ions of 

the plasma to the surface of the wafers. For the deposition of Si02 a gas mixture of 

SiH4, 02 and Ar is introduced in a controlled manner into the reaction chamber[ Wolf 

1990]. 

The low temperature deposition of the ECR films (20-150°C) allows the process to 

be used after the deposition of metal onto the wafers. Results also indicate that the 

properties of the deposited Si02 layers are identical to those of LPCVD deposited 
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films[Bulat 1992]. Divergence in the magnetic field can, however, produce films of 

non-uniform thickness across a wafer. 

Plasma enhanced chemical vapour deposition (PECVD) operates with a similar 

principle to ECR plasma CVD, with a radio frequency plasma enhancing the 

deposition process that also occurs at low temperatures. The ECR deposition takes 

place in a environment that is at a pressure that is an order of magnitude lower than 

that for PECVD, this has the effect that ECR oxides can fill spaces with a much 

smaller aspect ratio than those deposited with PECVD. ECR deposition was used for 

the deposition of some oxides in the fabrication of the devices due to the availability 

of the equipment. 

Sputter deposition of thin films 

Sputtering is a technique used in the deposition of metallic films in VLSI fabrication. 

Many metallic materials including aluminium, titanium, platinum and tungsten can 

be sputtered onto the surface of a wafer. The process involves the generation of ions 

in a low pressure environment, that are directed at a target of the metal that is to be 

deposited. The ions collide with the target and dislodge atoms from the surface of the 

material. The sputtered atoms are transported to the wafer surface where they 

condense to form a thin film[Wolf 1986] 

5.4.2 Dry Etching 

Dry etching of layer materials in VLSI processing allows control over the etch profile 

of the material that is not possible with wet chemical etch techniques. Wet etching is 

an isotropic process, where the etched material is removed equally in both the 

vertical and lateral directions. A dry etch can produce an anisotropic removal of 

material, where the direction of the etch is restricted to a vertical profile. The results 

of isotropic and anisotropic etches are shown in figure 5.10. 
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Figure 5.10 	Diagram showing the features produced with a isotropic wet etch and 

anisotropic dry etch 

Reactive ion etching (RIE) is a dry process that combines the two techniques of 

sputter-etching and plasma-etching. The process occurs in a molecular-gas plasma 

where the dimensional control of the etch is provided by the sputtering of the layer 

material, and the surface reactions, induced by the plasma etching, control the 

selectivity of the process between different layers. The plasma is produced by 

applying an electric field to the reactant chemicals introduced into the low pressure 

(<1 Ton) chamber. The field causes the gas to break down and become ionised 

producing the etchant species in the plasma[Sze  1985]. The reactants are transported 

to the surface of the wafer by diffusion through the boundary layer above the surface. 

The reactant is then absorbed on the surface which is followed by a chemical reaction 

to form volatile compounds that etch the layer material. These compounds desorb 

from the surface and are then pumped out of the system. The anisotropic aspect to the 

etch occurs because of the assistance of the sputter ions in the vertical direction of the 

etch, the etch in the lateral direction is determined only by the etch rate of the plasma 

produced reactants, which act isotropically. 

The qualities of an etch process depends upon many external aspects of the dry etch 

system, such as feed gas, power and pressure. Adjusting any of these parameters can 

affect two or more of the plasma parameters that affect the etch. Fig 5.11 shows a 
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representation of the parameters that affect the gas and surface interactions in a RIE 

system. 
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Figure 5.11 	Representation of the parameter problem in plasma etching systems (n e  is the 

electron density, f(E) is the electron energy distribution function, N is the gas density and r is the 

residence time[ Wolf 1986] 

Silicon dioxide 

A fluorocarbon based plasma is used to etch Si02. Adding Hydrogen (H2) to carbon 

tetafluoride (CF4) does not significantly reduce the etch rate of Si0 2 , although the 

selectivity of the etch over Si is improved. A mixture of trifluoromethane (CHF3) and 

Helium (He) can also be used as a selective etch for S102. 

The film characteristics of oxide can affect the etch rate, for a given set of processing 

conditions. A thermally grown oxide will etch at a slower rate than CVD Si02 films. 

Doping of the oxide film will also affect the etch rate. 

Polysilicon 

Poly-Si etching is used to define the gate electrode in MOS devices. The patterning 

of this structure is a critical feature in the processing of the devices, as a change in 
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the dimensions of the gate can severely affect the operating characteristics. The poly-

Si etch process must exhibit excellent linewidth control and high uniformity of 

etching. The process must also have a high selectivity between the Si material that is 

to be etched and the Si0 2  layer of the gate oxide underneath the poly. The gate oxide 

can be very thin (<lOnm) and overetching through this oxide would cause a rapid 

removal of the substrate Si material, and hence the implanted junction areas. 

Process chemistry for the etching of polysilicon include the use of silicon 

tetrachloride (SiCI4) and argon (Ar). Chlorine plasmas exhibit good selectivity over 

Si02 and anisotropic characteristics, although the etch rate is slower than that of 

fluorine based etches. 

5.4.3 End point detection 

End point detection is a non-intrusive method of determining when a dry etch has 

removed the layer of etch material. As highlighted in the previous section the dry 

etch process is sensitive to the many parameters that control the etch. Even if these 

parameters are tightly controlled the process is still liable to changes in the reactant 

chemistry from uncalibrated variables such as outgassing, virtual leaks and 

backstreaming from pumps. Any changes in the chemistry can lead to a change in the 

etch rate of the process and because of this a more reliable method of determining the 

end-stop of the etch process is necessary. 

A reliable method of end point detection for a dry etch process allows a reduction in 

the amount of overetch a sample is given and increases the reproducibility of a 

process. Methods of end point detection include 1) Laser interferometry and 

relectivity; 2) Optical emission spectroscopy; 3) Direct observation of the wafer 

surface through a viewing port on the chamber; 4) Mass spectroscopy[Marcoux 

1981]. An end point detection system was developed for monitoring the dry etch 

processes in the device experiment. The system was based on the laser 

interferometry/reflectance method. A schematic of the system layout is shown in 

figure 5.12 below. The laser head is situated outside the chamber and the light is 

emitted through a glass window onto the target wafer. The intensity of the reflected 
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light is amplified from the receiving photodiode and input to the control electronics. 

The electronic unit changes the light intensity signal into a linear d.c. signal which is 

then recorded by a computer after analogue to digital conversion. 

Diode 
laser 

Control 	Signal 
Electronics 	 recorder 

V 	 I 	 I DC 

window \ 	 PIiotodiode 	

Amplifier 	 Level 
Glass Signal 

Chamber 

Figure 5.12 	Schematic diagram of a laser interferometry/retlectance end point detector 

The method of operation of the end point detector depends upon layers that are being 

targeted by the laser. The system operates in interferometry mode if the film that is 

being monitored is a transparent film, such as Si02. As the film etches the amplitude 

of the reflected light varies, in an approximately sinusoidal manner, because of 

interference between the reflected light from the changing surface of the film. The 

end point is determined by the 'flattening' of the output signal as the film etches to 

zero thickness. Laser reflectance is used if the film is reflective , such as Al. If the 

layer being etched has a different reflectance to the layer underneath there will be a 

change in the reflected signal once the layer has etched to end point. 

5.4.4 Ion implantation 

Ion implantation is a process where energetic, charged particles are introduced into a 

silicon substrate. The ions are implanted with typical energies in the range of 10-

200keV and doses in the range 1011  to 1016  ions/cm 2. A schematic of an ion 

implantation system is shown in figure 5.13. The ionised dopant atoms are contained 

in the ion source. The ions pass through a mass-separating analyser magnet, where 

any unwanted ion species are removed. The selected ions are then accelerated by an 
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electric field in the accelerator tube, where the beam is scanned onto the wafer 

surface by horizontal and vertical scanners. 

C C E L E R AT ION 
VARIABLE SLIT 	TUBE 
FOR BEAM 
CONTROL 
	

r_VERTICAL 

	

SCANNER 	 WAFER 
(TARGET) 

Th 
ANALYZER 	 HORIZONTAL 

SCANNER 

ION SOURCE 

MAGNET 

Figure 5.13 	Schematic of an ion implantation system[Brodie  1982] 

Ion implantation is a preferred technique over the alternative methods, such as 

diffusion of ions, because there is a larger degree of control over the amount of ions 

implanted into the substrate (typically ±3%). The implanted ions also have a vertical 

distribution in the substrate, where there is a greater lateral distribution with 

diffusion. The ions can be implanted to different depths within the substrate, 

allowing variable shaped implant profiles such as LDD structures. 

After implantation into the target substrate the energetic ions lose their energy and 

come to rest. The mechanisms that stop the ions are by electrical and nucleic 

interaction in the substrate. Electrical stoppages occur when the energy from the ion 

is transferred to an adjacent electron which surrounds the atoms in the substrate 

lattice. This interaction cause excitation, where the electrons are transferred to a 

higher orbit, or ionisation, where the electrons are ejected from their atomic orbits. 

The energy loss that these interactions cause eventually slows the ion down until it 

stops. Nuclear collisions occur when the ion impacts with an atom and removes it 

from the lattice[Sze  1985]. The effect of dislodging atoms from the lattice causes 

damage to the substrate. The effect essentially makes the implanted region an 

amorphous layer of silicon. The region can be electrically activated by annealing the 

wafer to restore order in the lattice structure. 
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5.5 Summary 

The layout of the devices for fabrication have been described in this chapter. The 

layout of the chip sites on the silicon wafers have been displayed, with the 

organisation of the chip sites and their individual c-beam patterning area. The 

dimensions of the transistors in the patterning arrays have been highlighted and the 

processing techniques used in the fabrication have been described to provide an 

insight into the various processes. 



6. 

Fabrication Procedure 

The experiment to fabricate MOSFET devices required the use of many processing 

techniques. Some techniques were specific to procedures used in electron beam 

lithography, such as the chemically amplified resists, and as such were not 

characterised for use within the fabrication facility of the EMIF. This chapter 

describes the characterisation of the new processing techniques employed within the 

experiment, using the processing technology that was described in section 5.4. 

Finally the sequence with which the fabrication process was performed is described, 

6.1 Characterisation 

Before fabrication of the experimental devices could proceed the processes used in 

certain fabrication steps had to be characterised. This characterisation was necessary 

for consistent reproduction of each stage in the fabrication process across the 

multiple wafers processed in the experiment. The main processing steps that required 

characterising were as follows: 

• AZ PN 114, negative chemically amplified resist 

• AZ PF 514, positive chemically amplified resist 

• Gate electrode fabrication with polycrystaline silicon 

Although the development of high resolution processes for these chemically 

amplified resists have been previously researched, the integration of the high 

resolution lithography processes into a device fabrication process have not previously 

been investigated. The characterisation for each of the processes will be described in 

the following sections. 
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6.1.1 Negative photoresist 

The chemically amplified negative resist used in the processing was the Hoechst AZ 

PN 114. This resist exhibits the properties of high sensitivity and dry etch resistance 

required in a manufacturing resist process [Early 1992]. The resist properties and 

processes for high-resolution lithography have been intensively researched [Early 

1992, Macintyre 1996, Cui 1997]. The results of these studies were used in 

formulating the processes of the device experiment. The parameters of the resist 

process used were as follows: 

• Vapour prime wafers with HN'IDS 

• Spin photoresist on wafers (see section 6.1.1 on resist thinning) 

• Softbake on vacuum hotplate at 120°C for 120s 

• Expose wafers with electron beam lithography (refer to section 6.1.1 on dose 

control) 

• Immersion develop in M1F319 (0.237N) for 90s 

• Rinse with de-ionised water 

• Dry wafers in the centrifuge 

Resist contrast and sensitivity data 

The response curve of AZ PN 114, when developed using the parameters highlighted 

above, is shown in the graph of figure 6.1. The steep profile of the curve indicates the 

high contrast of the resist, which was calculated to have a value of -4. The sensitivity 

of the resist (D g05 ) is -7.5.iC/cm2. 
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Figure 6.1 	Sensitivity curve for AZ PN 114 exposed by e-beam lithography and developed 

in Shipley MF 319. 

Pattern residue removal 

The initial development tests on the resist for the fabrication of the device active 

areas showed a residue around the base of the developed pattern, displayed in figure 

6.2a. Secondary electron scattering, enhanced by the relatively low 30kV accelerating 

voltage, was probably the cause of the residue effect. This extension of resist material 

from the base of the pattern may have led to interference with the accurate pattern 

transfer of the defined resist image of the active area into the nitride layer, by causing 

a masking effect with the residue. For this reason the removal of the thin residue 

layer was investigated. 

The removal of the residue was to take place after the lithography level had been 

performed. It was thus important for the process to maintain the dimensions of the 

original pattern. The properties of the oxygen plasma ash in the anisotropic RIE 

system were investigated for this reason. The vertical directionality of the etch would 

remove the small amount of the resist around the base of the pattern and also a small 

amount of resist from the surface of the pattern, while not affecting the profile or 

dimensions of the pattern sidewalls. 



Fabrication Procedure 

Test structures in the shape of active area patterns were exposed with sufficient dose 

for correct exposure and then imaged in the SEM to visually inspect the amount of 

residue around the pattern. After recording the images the patterns were split into 

four samples that were etched for 5, 10 and 15 seconds in a 02 plasma. The samples 

were again imaged in the SEM for inspection of the residue material. 

The residue had etched away after the first 5s etch, shown in the image of figure 6.2b. 

This showed that subsequent etches of lOs and 15s were superfluous, only removing 

more of the resist material off the pattern. Comparison of the dimensions of the pre 

and post-etch patterns showed no change in the dimensions of the pattern thus 

deeming the process suitable for the removal of the resist material from the 

developed patterns in the negative AZ PN 114 photoresist. 

a) 
	

I)) 

Figure 6.2 	4x6pm active area pattern a) before residue removal. b) post 02 plasma ash. 
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Resist thinning 

The resolution of photoresist increases with decreasing thickness [(I)Rangelow 

1994]. The very narrow sub lOOnm features required for the gate level of the 

experiment required the photoresist to be reduced in thickness from the undiluted 

solution. The layer thickness of the undiluted resist is 1tm when spun onto HMDS 

primed wafers at 8000 rpm. As well as impeding the resolution of the resist, the 

relatively thick 1tm layer has too high an aspect ratio, as the small patterned features 

with the thick resist were susceptible to falling sideways during the subsequent 

processing steps, shown in figure 6.3 

Figure 6.3 	Collapsed lOOnm line patterned in 1m thick photoresist 

High-resolution studies with the resist by Macintyre used resists of thickness ranging 

between 30nm and 300nm to achieve patterns with linewidths below lOOnm 

[Macintyre 19961. To reduce the thickness of the spun on resist it was mixed, by 

ratio, with AZ 1500 thinner from Hoechst. The thin resist that had been diluted in the 

ratio 1:5 (resist: thinner) was measured at a thickness of —lOOnm and produced 

features that were less than lOOnm across, shown in figure 6.4. The thickness of the 

resist used for the gate level processing was, however, thinned down in the ratio of 

1:3, to a thickness of —200nm, because of the compromise required for the 

subsequent processing of the wafers in the device experiment. The requirements of 

the resist thickness are highlighted in section 6.1.4 on the polysilicon level of 

processing. 
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Figure 6.4 	Photoresist line patterned in resist diluted in the ratio 1:5 (resist: thinner) 

Pattern dose calibration 

The dose is the amount of energy absorbed by the resist material from the electron 

beam. The larger the amount of energy, the more cross-linking of the resist molecules 

occurs. The dose provided to each individual pattern has to be calibrated to ensure 

that the pattern is not underexposed with too little, or overexposed with too much 

energy. The dose of the pattern is measured in the units tC/cm 2  and is controlled in 

the EEBLS system by the dwell time that the beam exposes each individual pixel (the 

longer the beam dwells on a point, for a constant beam current, the more dose that is 

given to the resist at that point). 

The calibration of the dose given to different pattern sizes was necessary, because 

decreasing the size of the patterns, for a specific dose, produced a tendency towards 

underexposure of the patterns. This effect is shown in figure 6.5, where a test pattern 

of lines has been exposed. The lines decrease in size from left to right on the image, 

from 10 pixels across to 1 pixel. The dose given to each set of lines also increases in 

steps of 5tC/cm 2  from the top set of lines, given a base dose of 5jtCIcm 2  to the 

bottom set of lines exposed at 50j..tCIcm 2 . It can be seen that the smallest 1 and 2 

pixel width lines are significantly less exposed than the wider lines of the same 

exposure dose. 



Figure 6.5 	Test pattern of lines with increasing width exposed with increasing dose 

between 5 and 5%W/cm-2 

The calibration of the pattern doses was characterised with test patterns of the type 

shown in figure 6.6. Two sets of patterns were used for this purpose, the first called 

'azresa' and the second 'gate230'. The two sets of patterns are shown in figures 6.6a 

and 6.6b. 
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Figure 6.6 	a) Test pattern 'azresa' b)Test pattern 'Gate230' 
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The first pattern, azresa, used in the early calibration tests was designed as a coarse 

grid to prove the reproducibility of the development process and also find the 

approximate doses required for exposure. The patterns were basic lines 200 pixels 

tall and between 1 and 10 pixels across. These dimensions defined lines of 10tm tall 

and 0.05pm to 0.5pm across in the 200 x 200p.m patterning field that was to be used 

in the device experiment. The dose given to the lines was incremented with a 

multiplication factor, starting at xl, which is the base dose as programmed into the 

computer for the patterning dose. This increased up to xlO which extended the dwell 

time of the pattern exposure by 10 times over the dose given to the base dose pattern. 

After the approximate pattern doses were determined for the different pattern sizes 

with the 'azresa' pattern, the requirements for the shapes that were to be used in the 

critical gate lithography level of exposure could be investigated with the 'gate230' 

test pattern. This pattern defined the exact shapes that were to be found in the gate 

level of exposure, with 1,2,5,10 and 20 pixel width lines, all 120 pixels tall and a 80 

pixel square box which replicated the contact pad at the end of the gate electrode. 

The exposure grid used for this test pattern was a lot finer, however, with nine 

increments of only xO.1 from the base dose of xl.0 up to xl.9. 

These test patterns were suitable for the characterisation of the pattern dosage for the 

critical exposure levels in the device experiment because they calibrate individual 

lines. The proximity effect can be ignored in this characterisation technique because 

of the isolated nature of the lines to be exposed in the device experiment layout. 

Line patterning results 

The doses that were found to produce the correct exposure of the patterns, with a 

base dose of 24jtCIcm 2 , for the gate lithography level of the experiment are shown in 

table 6.1: 
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Line Pixel Width Defined Pattern Dose Multiplier Pattern Dose 

Size (nm) (tCIcm 2) 

1 50 x3.75 90 

2 100 x2.4 57.6 

5 250 x1.5 36 

~!10 ~!500 xl.0 24 

Table 6.1 	Exposure conditions for AZ PN 114 

Figure 6.7 	Cross-section of a negative photoresist line of 1 pixel defined width. 
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6.1.2 Positive Photoresist 

The resist AZ PP 514 from Hoechst was used as the positive resist for defining the 

contact holes in the experiment. The process used in the deposition and development 

of the resist was developed from the research previously performed by I.W. 

Rangelow et at [Rangelow 1994] and the process used was as follows: 

• Vapour prime wafers with FIMIDS 

• Spin photoresist on wafers, 3000 rpm for 30s (see section 6.1.2 on resist thinning) 

• Softbake on vacuum hotplate at 126°C for 82s 

• Expose wafers (refer to section 6.1.2 on dose calibration) 

• Immersion develop in diluted M1F319 (0.178N) for 90s 

• Rinse with de-ionised water 

• Dry wafers in the centrifuge 

Resist thinning 

As with the thin layer of negative resist used for the gate level processing, the 

positive resist can not be reduced too much, because the layer has to provide good 

step coverage of the patterned devices. If the resist were too thin it would not spin 

over the device where the contact windows are to be etched. The dilution of 1:2 

(resist: thinner) was chosen as the solution of resist for the positive resist processing 

as the 300nm thickness of the resist layer provided good coverage of the features on 

the wafer. 

Pattern dose calibration 

A similar test pattern to that of the gate230 pattern, described for the negative resist 

characterisation in section 6.1.1, was used for the calibration of the positive resist. 

The patterns were designed to mirror the dimensions of those that were to be used in 

the patterning of the contact level in the device experiment. Two test patterns were 

produced for this purpose, firstly contacta was a series of patterns with a coarse 

increment, in xl.0 steps, of the multiplication factor and contactb, shown in figure 

6.8 used a finer increment of xO. 1 for the multiplication factor. 
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Figure 6.8 	Test pattern contactb, used for the calibration of the positive resist AZ PF 514 

Line patterning results 

The pattern doses that produced the correct exposure dimensions of the patterns, with 

a base dose of 5tC/cm 2 , for the contact lithography level of exposure are shown in 

table 6.2: 

Pixel Width Defined Pattern 

Size (nm) 

Dose Multiplier Pattern Dose 

(j.xCIcm 2) 

2 100 x3.0 15 

5 250 x2.0 10 

10 500 x1.25 6 

20 1000 x1.25 6 

~40 ~!2000 xl.0 5 

Table 6.2 	Exposure conditions for AZ PF 514 
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The smallest feature of the 2 pixel trench, exposed slightly wider than the defined 

0.1tm, at 120nm. This is shown in the image of figure 6.9. 

Figure 6.9 	Image of a 2 pixel wide trench, exposed in positive AZ PF 514 photoresist. 

6.1.3 Polysilicon processing 

The polysilicon process characterisation involved the refining of the pattern transfer, 

using a dry reactive ion etch process, from the masking negative resist layer of the 

gate lithography process, through to the polysilicon layer underneath the resist. 

Polysilicon etch process 

The etch that is used to pattern the polysilicon must produce a line of poly that is of 

the same dimensions as the original masking feature. The etch must also not remove 

the thin gate oxide as this protects the silicon substrate from etching once the 

polysilicon material has been removed. 

Three etch processes were used in the RIE system for polysilicon removal in the 

Edinburgh Microfabrication Facility. The process conditions and etch rates of the 

processes are displayed in the tables 6.3 and 6.4 respectively. 
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Process Conditions 

SiC14 Flow Ar Flow Power Pressure 

(ccmlmin) (ccmlmin) (W) MT 

Step 	15 15 100 25 

Step2 	15 15 50 25 

Step3 	15 0 50 50 

Table 6.3 	Process conditions for the polysilicon etch process 

Etch Rates 

Si etch rate S102 etch rate Selectivity 

(nm/mm) (nmlmin) Si:Si02 

Stepi 	 55 22 2.5:1 

Step2 	 34 6 6:1 

Step3 	 17 0.5 34:1 

Table 6.4 	Etch rates of the polysilicon etch process 

For the selectvity of the etch criteria to be met, a combination of the above processes 

is necessary. The unselective etches of Steps 1 and 2 can be used to remove the 

polysilicon material quickly without affecting the etching of the underlying gate 

oxide. The Step3 etch is then used as a directional etch to achieve a vertical profile of 

the polysilicon sidewalls, that is not achieved with the isotropic etches of Steps 1 and 

2. Step3 is also highly selective to the gate oxide as the unmasked polysilicon is 

removed when this etch process is performed. 

Resist on polysilicon etch tests 

The initial tests for the pattern transfer etch involved patterning the negative resist 

directly onto the polysilicon layer and then etching the pattern with the RIE process 

after the resist had been developed. 

This process was first performed using just the Step2 etch, which is mainly isotropic, 

and using the end point detector to determine when the poly had etched to the oxide. 
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Figure 6.10 	Patterned poysilicon line after Step2 etch process using AZ PN 114 resist as a 

mask 

A second test with the resist-on-poly process used the anisotropic Step3 etch after 

etching the poly to end-point with the Step2 process. The resulting pattern is shown 

in figure 6.11. The sidewalls of the patterned poly are of a more vertical profile than 

those highlighted in the previous paragraph. Although with this process the increased 

etch time, with the second etch step, has removed almost all the patterning resist. 
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Figure 6.11 	Patterned polysilicon line after Step2 followed by Step3 etch process 

The resist on polysilicon etch process was deemed to be unreliable because of the 

resist removal during the process. Another process was investigated which used an 

intermediate pattern transfer layer that was more resistant to the harsh etch processes 

used in the polysilicon etch. 

Resist to oxide pattern transfer 

The negative resist material did not provide a reliable mask for the polysilicon 

etching. A more resistant material to the etch processes would need to be used if the 

gate level lithography was to be transferred into the polysilicon. As highlighted in the 

'polysilicon etch process' parameter section, oxide has a higher selectivity over 

silicon with the etch steps used in the process. The properties of the resist to oxide 

pattern transfer were investigated to see if the resist pattern could be reliably 

reproduced in an oxide layer. 

Because of the higher etch selectivity, the oxide layer does not need to be a thick as 

the polysilicori layer. With a resistant etch mask the full three step etch process could 

be used, and the approximate amount of oxide that would be etched with such a 

process can be approximated at 42nm (Stepl:30s, Step2:300s, Step3:120s). The 

oxide that was to be used as the mask was the ECR deposited oxide. The deposition 
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rate of this oxide is not precise and so a 65nm layer was deposited on the polysilicon 

for the experiments. 

The lithography of the gate patterns was as discussed in section 6.1.1. and a dry RIE 

of 4 minutes duration transferred the resist pattern into the oxide. The pre and post 

oxide etch images of a patterned line can be seen in figure 6.12. Some resist material 

has been removed during the etch process, although the pattern has been successfully 

transferred into the oxide from the resist image, so the negative resist can provide a 

reliable masking material for pattern transfer into the oxide. The actual pattern 

transferred into the oxide is not replicated from the resist to the oxide. It can be seen 

from figure 6.12b that the oxide line is 124nm across the base, whereas the resist line 

is only 89nm. This is an unacceptable increase in linewidth for the processing. 

PtooresU 
Line 

Silicon 

ai- 

Substrate _14 &':i-ii 1LTjF 

(a) (J) 

Figure 6.12 	Image of a single pixel line a) Pre-oxide etch and b) Post-oxide etch 

The increase in the patterned oxide feature during the pattern transfer was thought to 

have been caused by a polymer build up during the etch process. To remove this 

build up of material around the sidewalls of the patterned oxide a subsequent 02 

plasma ash step was proposed. The results of a 2 minute ash step on a patterned 

oxide line is shown in figure 6.13. The image shows only the oxide line, as the resist 

material has been removed during the plasma ash process. The line shows that the 

resulting line has replicated the linewidth of the original resist line that masked the 

image. 
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Figure 6.13 	Image of an oxide line after a pattern transfer step from the resist and a 2 

minute 02 plasma ash 

Oxide to polysilicon pattern transfer 

With the oxide as a mask for the polysilicon pattern transfer step a three stage etch 

process was investigated. The initial Stepi process was a highly unselective process 

used to cut through the native oxide at the surface of the polysilicon, this is used for a 

30 second etch. The Step2 process is a mainly isotropic etch performed to the end-

point of the poly etch, the sidewalls of the poly after this etch are sloped as 

highlighted in a previous section. The third, Step3 process is a anisotropic etch 

performed as a 25% overetch of the time for the Step2 process. The results of this 

etch are shown in figure 6.14. The polysilicon pattern transfers from the oxide pattern 

to within lOnm of the masking pattern. It can also be seen on this image that there is 

still a significant amount of oxide still masking the polysilicon after the three step 

etch process. 
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Figure 6.14 	Cross-section of a polysilicon line after pattern transfer etch with an oxide 

mask 

6.2 Processing sequence 

The device experiment fabrication involved the processing of both n-FET and p-FET 

devices. The starting material for the processing was <100> p-type and <100> n-type 

wafers for the n-PET's and p-PET's respectively. The processing sequence is shown 

on the run-sheet in appendix A. The main areas of the processing can be divided into 

the following six subsections: 

Active areas 

Gate oxide and channel implants 

Gate formation 

Junction implants and sidewall spacer 

Contact formation 

Metalization 

Prior to the device processing, alignment marks were etched into the silicon to 

provide a fixed reference point for the subsequent e-beam lithography patterning 

levels. The alignment marks were patterned onto the wafer with an optical 

lithography process using a positive resist and a dark field mask set. After the 

lithography step, the exposed silicon was etched to 1pm depth with a dry etch 
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process using an Ar and Si3C14 process. Removal of the masking photoresist revealed 

bare silicon wafers with etched alignment marks. 

6.2.1 Active areas 

A 20nm LOCOS buffer oxide was formed on the wafer with a dry oxidation process, 

followed by the deposition of 50nm of Si 3N4 . The active areas were then defined by a 

e-beam lithography process using the negative resist AZ PN 114. The nitride was 

then removed to expose the field region of the devices, leaving the nitride layer 

masking the active region of the devices. The field region was then defined with a 

50kV ion implantation of Boron at dose 4el2cm 2  for the n-FET devices and 

Phosphorous at dose 2e12cm 2  for the p-FBT devices. After removal of the 

photoresist a field oxide was grown with a wet process to a thickness of 250nm. 

After oxidation the nitride was removed by immersing the wafers in phosphoric acid, 

heated to 165°C for 35 minutes. 

6.2.2 Channel implant and gate oxide 

The buffer oxide covering the active region was removed by immersing the wafers in 

4:1 buffered HF (H20:HF) for lOs. The active area surface was then cleaned of film 

contaminants with a RCA clean process. A fresh mixture of H 20:NH40H:H202  

(5:1:1 by volume) was heated to 70°C and the wafer immersed for 5 minutes. After a 

dump rinse in DI H20 the wafers were immersed in a 70°C solution of 

H20:HCJ:H202 (5:1:1 by volume) for 5 minutes, followed by a dump rinse in DI 

H20. Immediately after this clean process a Snm sacrificial oxide was grown over the 

active region. A dual implant was performed on the n-FET devices with a shallow 

20kv Boron implant at 5e12cm 2  to change the substrate doping to adjust the 

threshold voltage of the devices. A deeper 60kV Boron implant at 5e12cm 2  provides 

a punchthrough prevention implant. The p-FET devices were implanted at 100kV 

with Phosphorous at 4e12cm 2. After the removal of the sacrificial oxide and further 

RCA clean a gate oxide was grown with a dry oxidation process at 785°C. The 

measured thickness of the oxide was 48A. 
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6.2.3 Gate formation 

Approximately 150nm of poysilicon was deposited on the wafers by a LPCVD 

process at a temperature of 600°C. The sheet resistance of the material was reduced 

by doping the polysilicon using an ion implant process. The n-FET poly material was 

doped at 10kV with phosphorous at 1e15cm 2  and the p-FET material at 10kV with 

boron at 2e15cm 2. The implants were then activated with an anneal step at 850°C for 

15 minutes. The characterised pattern transfer technique described in section 6.2.4 

was used to pattern the e-beam lithography defined gate patterns into the polysilicon. 

6.2.4 Junction implants and sidewall spacer 

The n-PET devices employed a lightly doped drain structure to reduce the hot carrier 

effects that are induced by the shortened channel lengths. After the formation of the 

gate a shallow source/drain extension of arsenic was implanted, at 20keV with a dose 

of 2.5e12cm 2 . The implant was self aligned using the gate structure as a mask. The 

p-PET devices were not processed at this time. 

Masking for the source/drain implants is generally performed with a sidewall spacer 

that is engineered from a layer of CVD oxide. The oxide material remaining, after 

etching, provides a self aligned extension to the gate structure and masks the 

implantation of the junction ions. A different style of sidewall spacer was used in the 

device experiment. The spacer was an oxide material defined using an aligned 

electron beam lithography process. This type of spacer was used to investigate the 

suitability of the electron beam system to define novel sidewall spacer designs, such 

as asymmetric patterns around deep sub-micron gate structures. The types of 

structure defined for the experiment were, however, symmetrical spacers that 

extended lOOnm and 200nm from the sidewalls of the gate electrode. The 

asymmetric sidewall spacer has recently been under investigation for sub-micron 

devices in the 0.35im [Chen, 1998] and 0.25tm [Stockinger, 1999] devices The 

patterning process for the sidewalls involved the deposition of 200nm of ECR planar 

oxide. The sidewall spacer patterns were then patterned in negative photoresist with 
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an alignment step to the e-beam cells alignment marks, followed by a pattern transfer 

of the resist patterns, by a dry etch process, into the oxide. 

With the sidewalls masking the LDD source/drain extensions the source drain 

implants were performed with arsenic implanted for the n-FET devices at 30keV 

with dose 2.5e15cm 2  and BF2 implanted for the p-FET devices at 30keV with dose 

2.5e15cm 2 . 

6.2.5 Contact formation 

After formation of the device junctions, the wafer was to be covered with a dielectric 

into which the contact holes were to be etched prior to the deposition of the metal 

layer. The material used for this process was a 250nm deposited layer of ECR oxide. 

A CVD deposited BPSG layer was not necessary for this application as only a single 

layer of metal was to be used on the interconnect level and the topography of the 

wafer, with only sixteen devices per chip site, was smooth enough to not require a 

dielectric smoothed with a reflow step. After deposition of the oxide the junction 

implants were activated with a low temperature regrowth anneal at 600°C for 30 

minutes in a nitrogen ambient atmosphere, followed by a rapid thermal anneal at 

950°C for 10 seconds. Contact holes were then patterned with the characterised 

positive photoresist process. The contact holes were etched through the dielectric 

layer with a RIE process. 

6.2.6 Metalization 

The patterning of the metal layer of the devices required a two step process with the 

metal within the e-beam cell patterned with an electron beam lithography process and 

the metal in the outer probe pad area defined with an optical lithography process. 

Firstly a 500nm thick layer of metal was deposited on the insulator, followed by a 

250nm thick layer of deposited ECR planar oxide. The c-beam cell area was 

patterned using the negative resist as a mask and the pattern was transferred through 

to the oxide. After the resist was stripped an optical lithography process using a 

positive resist with a light field mask was used to leave a masking layer of resist in 
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the outer probe pad area, the patterned oxide layer provided masking for the inner e-

beam area. A defined overlap of 5tm ensured that the two levels connected to 

produce a continuous mask. The metal was etched with a RIE process and then 

sintered at 435°C in a H2/N2 atmosphere for 10 minutes. 

6.3 Summary 

This chapter has described the processes that have been characterised for the 

processing of the MOSFET devices. The negative resist AZ PN 114 has been 

characterised to dimensions of 72nm and the process to transfer the resist pattern into 

polysilicon has been demonstrated. Also, the positive resist AZ PF 514 has been 

characterised to pattern contacts to dimensions of 120nrn. 



7. 

Device Results 

The results obtained from the analysis of the fabricated MOS devices are presented in 

this section. Analysis of the device structure is displayed and electrical results of 

devices with various gate lengths are presented. Also included is an investigation into 

the operating characteristics of n-MOSFETs after sectioning with a focused ion beam 

(FIB). 

7.1 Device Structure 

The structure of a fabricated nMOSFET is shown in the SEM image of figure 7.1. 

The device is designed with a gate length of IOOnm and contact lengths of 500nm. 

The gate contact is located at the top of the picture with the gate electrode below and 

between the source/drain junction contacts. The isolation oxide pattern is situated 

around the perimeter of the device and is visible as a raised section. 

4 
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A cross-sectional image of a MOSFET is displayed in the FIB image of figure 7.2. 

The image is across the middle of the device with the 80nm gate electrode visible 

between the two 1tm contacts. The platinum was deposited on the device to produce 

a clear image after the removal of material by the ion beam. The magnified image of 

the device highlights removal of the isolation oxide above the gate electrode. This 

removal of material was thought to have occurred during the metal etch process as 

the trench is located centrally between the edges of the metal for the contacts. The 

gate alignment is within lOOnm of the centre of the contacts, which represents an 

alignment accuracy to within two patterning pixels from the electron beam 

lithography system. 

b) 

Figure 7.2 
	

FIB cross-sections of a nMOSFET device: a) Overview of device, b) Magnified 

view 

7.2 Electrical Characterisation 

Electrical measurements of the nMOS devices were made using a Hewlett Packard 

HP4 156 semiconductor parameter analyser. Connections for each measurement were 

made manually using a Wentworth manual probing station. 

The devices used for characterisation were the electron beam lithography defined 

nMOS devices fabricated in the EMF at the University of Edinburgh. The fabrication 
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process is described in section 6.2 and the processing sequence is shown in appendix 

A. Devices with four different gate length of 1im, 0.5j..tm, 0.25p.m and 0.1j.im were 

characterised and their respective dimensions are displayed in table 7.1: 

Nominal Gate length (.im) 	1.0 	0.5 	0.25 	0.1 

Contact length (jim) 	0.5 	1.0 	0.5 	1.0 

Active area width (jim) 	6 	6 	6 	6 

Table 7.1 	Dimensions of the characterised NMOS transistors 

Three curves were plotted for each device: 

• Current-voltage output curves 

• Subthreshold curves 

• Turn-on curves 

7.2.1 I-V output curves 

Figure 7.3 shows the I-V curves for the four devices. The trend of the curves, as the 

gate length of the devices is reduced, is an increase in the drain current for a constant 

gate voltage. The magnitude of the rise is consistent with the linear increase that is 

modelled by the drain current equation, 2.1. To enable comparison between the 

devices the transconductance (g m) and output conductance (gi) were calculated from 

a pre-defined measurement point. A drain voltage of 1V for V=1.5 and 1.25V were 

used to calculate g 1  and the range V=1.0-1.5V at a gate voltage of 1.5V was used to 

calculate gd. 

The 1tm and 0.5jtm devices, in figures 7.3a and b, show good long channel 

operating characteristics, shown with low g j  values of 1.3mS/mm and 5mS/mm for 

the lj..tm and 0.5jtm device respectively. The transconductance for the respective 

devices is 69mS/mm and 94mSImm, which indicate a voltage gain, (A) of 53 for the 

ijim device and 19for the 0.5jim device. 

The 0.25j.im device exhibits quasi long channel behaviour. The output current is 

significantly increased, with the reduction in the gate length. At VD=Vc=1.5V, the 
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output current has increased from 0.3 1 m for the 0.5j..tm device to 0.84mA with the 

0.25.tm device. The transconductance has also significantly increased to 164mS/mm. 

A gd  value of 28mS/mm gives a voltage gain of 6 for the device. Severe short 

channel effects of punchthrough and velocity saturation are not evident in the device. 

The 0.1 gm device is punched through for all values of drain voltage, with the gate 

voltage having little effect on the output current. The output current has a strong 

dependence on the drain voltage with little differentiation between the linear and 

saturation regions of operation for the device. 
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Figure 7.3 	I-V curves for devices with gate lengths: a) 1jtm, b) O.Stm, c) 0.25.tm, d) O.ljtm 

7.2.2 Subthreshold curves 

The subthreshold curves for the devices were obtained for the drain voltages of 0.25, 

0.5 and 0.75 volts. The resulting curves for the four devices are shown in figure 7.4. 

These curves indicate how effectively the transistor can be turned off as V 0  falls 

below VT. The rapid reduction of ID  below threshold indicates that the transistor is 

turning off quickly and is represented with a low value of subthreshold swing, S 1 . A 

transistor that exhibits a gradual reduction in ID  indicates the onset of punchthrough 

in the device and has a larger value of S 1 . 

The subthreshold curve for the 1tm device indicates long channel behaviour with a 

steep roll-off current when the gate voltage is less than VT. The value of S 1 , at 
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90mV/decade, is independent of the drain voltage, which indicates the absence of a 

punchthrough component. The transistor also has a very low current of lOOfA when 

the transistor is switched off with VG=OV. 

The 0.5trn device exhibits the same long channel behaviour as the previously 

described lj.tm device. The subthreshold slope is 88mV/decade and 'D  at VG=OV is 

220fA. 

The 0.25j.im device shows good turn-off characteristics with a low value of St at 

98mV/decade. There is a slight shift in the curves with increasing VD values, 

indicating a slight reduction in V1. The current under weak inversion is 75pA at 

VG=OV and Vn=250mV. 

The 0.1l.tm device exhibits severe punchthrough, with the gate having little control 

over the drain current. With no gate voltage applied to the transistor, the value of 'D 

is high at 98tA. The significant change in ID  with increasing VD indicates that 

punchthrough is dominating the output current, 
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Figure 7.4 	Subthreshold curves for devices with gate lengths: a) 14m, b) 0.5tm, c) 0.25.tm, 

d) O.1J.Lm 

7.2.3 Turn-on curves 

The turn on curves, shown in figure 7.5, plot ID  against VG  on a linear axis. These are 

used to indicate the gate voltage at which the transistor enters strong inversion, i.e. 

the voltage where the threshold voltage has been exceeded. The curves indicate a 

general trend of decreasing threshold voltage with reduction in gate lengths, to the 

point where the 0.1tm transistor is effectively in strong inversion for all values of 

gate voltage. 

As the drain voltage is reduced the value of VT remains almost constant for the 1J.tm 

and 0.5i.m devices, indicating good long channel behaviour. The separation of the 

curves for the 0.25tm device indicates a gradual shift in VT as the drain voltage is 

increased, indicating slight onset of short channel effects. The shift is further 

exaggerated in the O.11im device, with wide separation of the curves. 



Device Results 	 122 

________ - - 	 1E-OS 	 --------- -------------------- 

9 06-04 	 9 06-04 

Vd.d.5v 

boy 
8.06-04 	 8.06-04 

7 06-04 	 7.06-80 

05 
0v 

6 00-04 	 600.04 

S OE-04 	 500-04 

4.06.04 	 4 OE-04 

05 

3.OE-04 	 3,OE-04 

2.OE-04 	 2 OE.04 

.06-04 	 I OE-04 

o os.oc 	 I 	 0.OE.00 

o 	 05 	 I 	 IS 	 2 	 25 	 0 	 0.5 	 1 	 IS 	 2 	 0.5 

Vd0.5V 	 1.0 

I 4E.03 

5011~4 	 I OE G3 

4.0E 04 	 8 GE- 

a) 

OE-04 	 2 00.04 

000.00 	 000.05 	 III 	 III. 	 II 	 I 

0 	 0.2 	 0.4 	 06 	 0.8 	 I 	 12 	 1.4 	 0 	 02 	 04 	 06 06 	 1 	 1 2 	 1 4 

Vqm 	

Vol V) 

C) 	 d) 

Figure 7.5 	Turn on curves for devices with gate lengths: a) lj.tm, b) 0.5m, c) 0.25jim, d) 

O.1.Lrn 



Device Results 	 123 

7.2.4 Characterisation summary 

The devices presented in this section are from the first batch of wafers fabricated 

using the EEBLS. The results show good long channel transistor operation for all but 

the smallest devices, providing a good basis for future experiments using this design 

approach. With the devices measured and characterised a study was carried out, using 

these devices, in conjunction with a focused ion beam system. 

7.3 Focused Ion Beam Width Modification of Transistors 

Focused ion beams have recently become widely used in the analysis and 

modification of ULSI circuits. The systems can be used to remove small amounts of 

material from a defined area of a circuit to allow cross-sectional analysis of the 

internal structure of the circuit. Another common use is to change the topography of 

circuits by modifying the metal interconnects with a cutting and re-strapping 

technique of the metal tracks. Novel implantation techniques have also been 

demonstrated, using the gallium beam to produce localised doping of the channel 

region with a p+ implant [Shen 1998]. 

Focused Ion Beam systems have not to date, however, been used to demonstrate the 

modification of the internal structure of silicon MOS devices and the effects of such 

modification on the devices electrical characteristics. Such modification of transistors 

would allow the characteristics of a fabricated circuit to be adjusted by designers by 

modifying individual transistors within the circuit without re-fabrication. 

This section describes the results of a preliminary study into the effects of FIB width 

modification on the electrical characteristics of nMOS transistors. 

7.3.1 Transistor modification strategy 

The devices used for modification with the FIB were the electron beam lithography 

defined nMOS devices that were from the batch of devices describes in section 7.2. 
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Transistors with gate lengths of 0.25 Jtm and 0.5tm were modified as they represent 

the dimensions of industrially manufactured devices. 

A FEB 200 system manufactured by FEI was used to modify the MOS devices. The 

system utilises a 30keV gallium ion beam and material etches were performed with 

beam currents of 70pA. An iodine etch enhancement facility was also used to 

minimise the re-deposition of material that had been etched. 

The transistors were modified to adjust the devices effective electrical width. This 

was demonstrated using two different techniques, shown in figure 7.6. The first 

strategy, shown in figure 7.6a, was a lateral cut across the length of the gate, thus 

reducing the width of the transistor by effectively reducing the size of the devices 

active area. Figure 7.6b shows the second strategy an orthogonal cut up the width of 

the device, thus reducing the width in only one junction of the transistor. This 

technique investigates the effect of material removal in the source and drain regions 

of a transistor. 

Figure 7.6 	Modification strategy of transistors, a) Lengthways cut across the gate, b) 

Vertical cuts up the width of the device. 

A focused beam of ions is a useful technique to implement this strategy as small 

areas of material (e.g. 1j.imx0.25pm) can be removed from a device with a positional 

accuracy of a few nanometers. 
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7.3.2 FIB removal of material (0.5jtm devices) 

Three transistors with gate lengths of 0.5tm were modified with lateral and 

orthogonal cuts using the FEB system. The dimensions of the devices are listed in 

table 7.2. 

Ti 	T2 	T3 

Gate length (tm) 	 0.5 	0.5 	0.5 

Contact length (gm) 	0.5 	1.0 	1.0 

Active area width (tm) 	6 	6 	6 

Table 7.2 	Dimensions of transistors modified using FIB system 

Lateral cut 

Two transistors were modified with a lateral cut, Ti and T2. The first, Ti, was cut 

across the whole active area, shown in figure 7.7a. The effective active area after the 

cut was reduced to —Sjtm. A cut on the second device, T2 shown in figure 7.7b, 

removed a smaller amount of material, cutting across the gate of the device and into 

approximately 0.5jtm of the source/drain regions. The active area of the device was 

effectively reduced to —3m. 

a) 
	

b) 

Figure 7.7 	Lateral FIB cuts across transistors: a) TI b)T2. 
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Orthogonal cut 

The orthogonal cut was performed on transistor T3. The cut ran up the width of the 

active area and was positioned to be just adjacent to the gate electrode. The cut was 

performed at the top of the active area, near the gate contact. The post-cut image of 

transistor T3 is shown in figure 7.8. 

Figure 7.8 	Orthogonal FIB cut in transistor T3 
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7.3.3 Electrical results (0.5pm devices) 

Lateral cut 

The subthreshold curves for transistors Ti and T2 are displayed in figure 7.9. The 

characteristics of the devices in the subthreshold region have been maintained after 

the FEB cut across the device. The subthreshold slope remains constant at 

94mV/decade for Ti and 88mV/decade for T2. The cut does however increase the 

leakage current for gate voltages below O.4V. It can be seen from fig 7.9 that Ti and 

T2 show a constant leakage of 1 .4nA for gate voltages below O.4V. The constant 

current that is produced at the low values of VG is probably influenced by a leakage 

path, either between the drain to the substrate or across the face of the cut connecting 

the junction regions. 
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Figure 7.9 	Subthreshold curves for: a) Ti b) T2 

The current-voltage curves for the devices are shown in figure 7.10. The I-V 

characteristics exhibit a reduction in 'D,  that is expected as the width of the active 

area is reduced. The magnitude of the reduction in drive current approximately 
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corresponds to the ratio of the width reduction for the two devices. The reductions of 

17% and 50% in the device widths for Ti and T2 resulted in 25% and 52% drops in 

I. When operating in saturation the devices exhibit a constant rise in 'D,  this is most 

probably due to the resistive leakage path caused by the FIB cut, also demonstrated in 

the subthreshold characteristics. 
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Figure 7.10 	Current-voltage characteristics for: a) Ti b) T2 
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Orthogonal cut 

The electrical analysis on device T3 changed the connection of the source and drain 

contact to produce results that incorporated the orthogonal FEB cut in first the source 

and then the drain junction region. The results with the cut in the source region are 

referred to as the forward connected device, and with the cut in the drain junction 

region as the reverse connected device. 

The subthreshold curves are shown in figure 7.11. The characteristics of the device 

for both forward and reverse connections are similar with a subthreshold slope in 

each case of 90mV/decade. With the device connected in the forward direction, there 

is no increase in the leakage of the subthreshold current with the curve maintaining 

its characteristics. The positioning of the curve is, however, shifted to the right, 

indicating an increase in the devices threshold voltage. When connected in the 

reverse direction the device exhibits increased leakage, although the level of which is 

not constant, as for the lateral cut. Also the leakage when V 0=OV is lower than for 

the lateral cut, at 39pA. 

I 00.03 r 	 - - -- 	 iDE-OS.---------- 

a) 
	

b) 

Figure 7.11 	Subthreshold characteristics for device T3: a) forward connection, b) reverse 

connection 
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The current-voltage curves shown in figure 7.12 also exhibit different characteristics 

in the forward and reverse connected device. The magnitude of the drive current is 

reduced by different margins for each of the connections, as would be expected. The 

reduction in ID  was 48% in the forward direction and 62% in the reverse direction 

and the cut covered 43% of the active area down the width of the device. The 

forward connected device also exhibited less increase in ID  when the device was 

operated in the saturation region. 
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Figure 7.12 	Current-voltage characteristics for device T3: a) forward connection, b) 

reverse connection 

7.3.4 FIB removal of material (0.25p.m device) 

One device with a gate length of 0.25.tm, transistor T4, was modified with a lateral 

FEB cut across the gate of the transistor. The structure of the device after the cut had 

been performed is shown in figure 7.13. The position of the cut effectively reduced 
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Figure 7.14 	Subthreshold curves for transistor T4 

The I-V curves of the device are shown in figure 7.15. The decrease seen in the 

output current between the two cuts is in the same ratio as the reduction in width of 

the devices active area, as was seen with the 0.5j.tm devices. The active area was 

reduced by approximately 50% with the FIB cut and the output current decreased by 

52%. 

The short channel effects seen in the curves of the pre-cut measurements do not 

appear to be greatly exaggerated by the FIB cut in the device. The drain conductance 

value remains almost constant at 28mS/mm before the FIB cut to approximately 

25mS/mm after the cut. The drain conductance value after the cut is only an 

approximation because of the measurement of the active area width after the FIB cut. 
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Figure 7.15 	Current-Voltage characteristics for transistor T4 

7.4 Summary 

The electrical characteristics of nMOS transistors fabricated by electron beam 

lithography have been demonstrated. The devices with gate lengths of 1tm and 

0.5.tm display good long channel characteristics, while the 0.25tm devices only 

show the onset of short channel behaviour, with an increase in the output 

conductance due to channel modulation effects. The shortest channel 0. 1pm device 

exhibited severe punchthrough, limiting the control of the output characteristics with 

the gate voltage. 

Devices with industrially relevant sizes have been modified with a focused ion beam 

to investigate techniques in post fabrication adjustment of MOSFET electrical 

characteristics. Reducing the width of the active area with a lateral cut across the 

length of the gate maintained the subthreshold characteristics of the device, but also 

introduced a constant leakage current under very weak inversion of approximately 

mA. Reduction in the width of the devices active area, with the FIB cut, was found 

to result in a comparable reduction in ID. 

Investigation of the position of the cut in the source and drain junction regions 

indicated that there was no increase in the subthreshold current when the cut was 
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positioned in the source region of the device. A leakage current was shown, however, 

when a cut was made in the drain region of the device. 



Conclusions 

This thesis has reported on the development of a nanotechnology research capability 

based around electron beam lithography, and its application to the fabrication of 

nanoscale MOS transistors. This chapter summarises the research carried out, 

highlighting the key achievements and concludes with a discussion of future 

directions for this research. 

With the aim of investigating electron beam lithography for the fabrication of silicon 

devices, a system has been designed and constructed based around a high resolution 

scanning electron microscope. Patterning processes have been characterised using the 

system and then applied to a device fabrication experiment. The resulting MOS 

transistors have been electrically characterised and used to explore a new chip 

modification strategy using focused ion beam techniques. 

This project has produced the following achievements: 

• Development of a nanofabrication capability, with construction of a high 

resolution electron beam lithography system and characterisation of patterning 

processes. 

• Integrated MOS device fabrication, with all device patterning levels performed by 

electron beam lithography. 

• Demonstration of a focused ion beam chip modification strategy for adjusting the 

electrical characteristics of a MOS device after fabrication. 

These three areas are discussed in further detail in the following sections. 

135 
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8.1 Nanofabrication Facility 

A high resolution electron beam lithography system has been designed and 

constructed for use with the electron optical column of a thermal field emission 

SEM. The unit is fully automated and can automatically align to registration marks, 

expose a pattern and step to the next exposure site. The system is suitable for the low 

volume production of small area nanoscale circuits. 

Using this e-beam system chemically amplified photoresist technology was 

investigated. The negative AZ PN 114 and positive AZ PF 514 resists from Hoechst 

were investigated to determine the processing characteristics of the resists and doses 

required for high resolution patterning. While the use of these resists is advantageous 

due to their high sensitivity, their application to all levels of lithography in a device 

integration experiment has not previously been reported in literature. 

The negative resist was found to have a contrast of 4 and a sensitivity 7.5j.iC/cm 2 . 

The exposure dose was calibrated for a range of patterns with dimensions from 70nm 

to SOOnm and above. The dose required for the patterns was found to increase as the 

pattern width reduced. The doses ranged from 24tC/cm 2  for the lines above SOOnm, 

to 90iCIcm 2  for the 70nm lines. The positive resist was characterised for patterning 

of the contact level of the design. The characterised exposure doses for this resist 

ranged from 5tC/cm 2  for the 2tm wide patterns, to 15tC/cm 2  for the smallest 

contact windows which were 120nm wide. 

The negative resist process was refined to remove any trace of photoresist residue in 

the non-exposed areas using a short oxygen dry etch step after the development 

process. This step had no measurable effect to the dimensions of the developed 

pattern. 

For the critical step of gate electrode formation, an oxide on polysilicon pattern 

transfer process was characterised to pattern gate electrodes with 70nm lengths. The 
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resist pattern was initially transferred into an oxide from the resist, which was then 

used as a mask for a three step patterning process of the polysilicon. 

8.2 Integrated MOS Device Experiment 

MOS devices with gate lengths ranging from 70nm to 1tm have been fabricated. All 

of the critical patterning levels of active areas, gate electrodes, contact formation and 

metalization were performed using electron beam lithography. A novel oxide 

sidewall spacer, also patterned by e-beam lithography, was used as a mask for the 

junction implants. The novel sidewall spacer demonstrated the ability of the process 

to control the dimensions of the spacer to investigate new implantation processes, 

such as asymmetric implants, for nanoscale MOSFETs. 

The fabrication process was designed for deep sub-micron devices, to demonstrate 

the capability of the electron beam system and the characterised lithography 

processes, that have been described previously. The operation of the transistors 

demonstrates that further investigation is warranted, to refine the process for the 

fabrication of optimised nanoscale MOS devices. The exposure of all lithography 

levels with electron beam lithography would enable investigation of extreme 

miniaturisation for all features of the device. 

Analysis of the electrical characteristics of the fabricated MOS devices, show long 

channel behaviour for the transistors with dimensions down to 250nm gate lengths. 

The transconductance for a 250nm device is high at 164mS/mm and an associated 

voltage gain of 6. The subthreshold slope at these dimensions is 98mV/decade, with a 

drain off current of 75pA. These very good electrical characteristics confirm 

successful integration of the electron beam lithography system, chemically amplified 

resists and pattern transfer techniques. Electrically testable structures have also been 

fabricated down to lOOnm dimensions and polysilicon gate electrodes have been 

patterned down to 70nm. This confirms that the lithography system is ready for 

application to further nanoscale devices research. 
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8.3 Focused ion beam modification of MOS devices 

A transistor modification strategy has been demonstrated using focused ion beam 

sectioning techniques. Devices with gate lengths of 0.511m and 0.25tm were used to 

demonstrate a process of modifying the electrical characteristics of a MOS transistor, 

after the fabrication process has been completed. This type of process would be of 

particular interest to specialised integrated circuit manufacturers, as the 

characteristics of a circuit could be adjusted and evaluated, without re-fabricating the 

whole circuit. Two strategies were implemented and involved cutting trenches in the 

device to remove material from the transistor. The first produced a lateral cut across 

the length of the device and the second involved orthogonal cuts up the width of the 

device. 

The lateral cut reduces the width of the active area by reducing the active size of the 

gate electrode. The drive current, of the modified device, was reduced in the same 

ratio as the reduction in the width of the active area, demonstrating a method of 

reducing the current drive of fabricated transistors. The electrical characteristics of 

the modified device, exhibited the same values of subthreshold slope for the pre and 

post modification device, although there was a slight increase in the subthreshold 

current under weak inversion. 

The orthogonal cut was made primarily to investigate the effect of a FIB cut in the 

source and drain regions of a transistor. In the source region, the cut increased the 

threshold voltage, while maintaining the subthreshold characteristics. However, in 

the drain region the cut introduced a small leakage current when operating in weak 

inversion, though there was no change in the operating characteristics under strong 

inversion. The single orthogonal cut up the width of the device also reduced the 

output current drive of the device, although the reduction was not proportional to the 

length of the cut in the active area. Also, the current drive was less when the cut was 

in the drain region of the device as compared to the source region. 
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8.4 Future work 

The work presented has covered a wide area, with systems and processes 

demonstrated for a full device fabrication process. Therefore this study represents an 

initial investigation into the challenges of nanoscale device fabrication. The 

techniques developed provide an excellent basis for further investigation of 

nanoscale structures in silicon. 

The processes have been shown to be capable of fabricating structures down to 

70nm. From these dimensions it would be possible to use the system to investigate 

further and optimise MOS transistors to these dimensions. New features could also 

be included in the fabrication process to take advantage of the nanoscale feature 

capability in all lithography levels of the device process. Source and drain 

implantation techniques could be developed with the lithographically defined 

sidewall spacers. Contact and interconnect schemes for the nanoscale transistor could 

also be investigated further. 

Looking beyond 70nm devices there are opportunities to research novel device 

features that could be applied to transistors with dimensions in the 10-70nm range. 

To enable this capability the lithography system could be developed further and the 

processes, such as photoresist exposure, could be investigated and characterised at 

these smaller dimensions. 

The investigation into focused ion beam cross-sectioning of fabricated transistors has 

provided an insight of the effects of a FEB cut on the operating characteristics of a 

transistor. There is, however, a great deal of further investigation possible with this 

line of research. 

With the lateral cut, across the transistor, the relationship between the active area 

width reduction and the associated decrease in drive current could be characterised. 

The study would check for a linear relationship between the two factors, as was 
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indicated in the initial study. The leakage current under weak inversion may be 

investigated to find the factors that influence the leakage path. The length, area and 

depth of the cut could be adjusted to determine any effect on the magnitude of the 

leakage current. Mechanisms to reduce the amount of this leakage current would help 

maintain the characteristics of the transistor after modification. 

The effect of cuts in the junction regions of the device warrants further investigation. 

The initial study highlighted a contrast in the operating characteristics of the device 

with the cut performed in each of the junctions. Adjusting the length, area and depth 

of the cuts in these regions would determine the effect of FIB cuts and indicate 

optimal methods of sectioning different areas of the device. 

The operating parameters of the FIB system may also introduce a variable to the 

operating characteristics of a sectioned device. The beam current used to etch the 

section from the device may introduce a variable parameter. Also the use of a 

enhanced etch facility could adjust the transistors characteristics. 

8.5 Conclusions 

The work carried out has demonstrated the use of electron beam lithography in the 

fabrication of MOS devices. An electron beam lithography system has been designed 

and constructed, and the system characterised for use with chemically amplified 

resists. Pattern transfer techniques have also been characterised for the production of 

nanoscale gate electrode features for the fabrication of MOSFETs. Devices with 

nanoscale features have been fabricated and the operation of deep sub-micron devices 

has been demonstrated. 

A novel chip modification technique has been investigated, using a focused ion beam 

to section deep sub-micron MOSFETs to adjust the transistors electrical 

characteristics. The technique can be used to reduce the current drive of a fabricated 

transistor by shortening the width of the devices active area. The modification 
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process used is only an initial demonstration of the technique, though further studies 

into the process may lead to a new post fabrication chip modification strategy. 
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Device Fabrication Run-sheet 

Edinburgh Microfabrication Facility 
	

Batch No: 95005 

Optical/E-Beam Defined transistors with 1 trn-50nrn Gate Lengths 

alignment marks 

Si depth 1tm 

Optical Lithography Level 0 

RIE silicon 

Photoresist strip 

Grow LOCOS buffer oxide 

Deposit Si 3N4  

E-Beam level 1 

02 Plasma etch 

RIE nitride 

Field ion implant 

nFET Boron 

pFET Phosphorous 

10.Photoresist strip 

11.E-Beam level la 

12.RIE oxide and Si 

13 .Photoresist strip 

14.Strip back oxi-nitride, 1-IF dip 

15 .Nitride strip 

16.Etch buffer oxide 

17.RCA clean 

thickness 20nm 

thickness SOnm 

active area 

time 5s 

4e12cm 2  @ 50keV 

2e12cm 2  @ 50keV 

frame 

Oxide depth 250nm 

Si depth 250nm 

15s4:1 buffered HF 
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18.Grow sacrificial oxide thickness Snm 

temp 785°C 

19.Channel implant 

nFET Boron 5e12cm 2  @ 20keV 

nFET Boron 5e12cm 2  @ 60keV 

pFET Phosphorous 4e12cm 2  @ lOOkeV 

20.Remove sacrificial oxide 

21.RCA clean 

22.Grow gate oxide thickness 4.5-5nm 

23 .Polysilicon deposition thickness 1 SOnm 

24.Polysilicon ion implantation 

nFET Phosphorous 1e15cm 2  @ lOkeV 

pFET Boron 2e15cm 2  @ lOkeV 

25.Polysilicon anneal 850°C for 15min in N2 

26.ECR oxide deposition thickness 75-80nm 

27.E-Beam level 2 polysilicon 

28.02  Plasma etch time 5s 

29.Oxide etch RIE 

30.02 Plasma etch time 2mm 

31.Ion implanted SID extensions depth SOnm 

nFET Arsenic 2.5e14cm 2  @ 20keV 

pFET No processing 

32.Field oxide RIE 

33.Photoresist strip 

34.ECR oxide deposition thickness 200nm 

35.E-beam lithography level 3 sidewall spacer 

36.Oxide etch RIE 

37.Photoresist strip 

38.Ion implantation of SLD depth lOOnm 

nFET Arsenic 2.5e15cm - @ 30keV 

pFET BF2  2.5e15cm 2  @ 30keV 
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39.ECR oxide deposition thickness 250nm 

40.Low temperature regrowth 600°C for 30min in N2  

41.Rapid thermal anneal 950°C for lOs in N2 

42.E-beam level 4 contacts 

43.Contact RIE 

44.Photoresist strip 

45.Pre-metal clean 

46.Metal deposition 500nm of Al 

47.ECR oxide deposition 250nm 

48.E-beam level 5 metal 

49.Oxide etch RIlE 

50.Photoresist strip 

51.Optical lithography level Sb metal fanout 

52.Metal etch 

53.Photoresist strip 

54.Sinter metal temperature 435°C 
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Fabrication Techniques for Nano Scale 
MOSFETs Using Electron Beam Lithography 

David W. Travis, Clive M. Reeves, Alan Gundlach, Tom Stevenson. Richard Langford, Alec Rulhven 

Abstract-- Techniques have been developed for fabrication of 
70ims gate length silicon MOSFET's using thermal field 
emission electron beam lithography in conjunction with 
chemically amplified resists. The techniques will prove useful 
for future onus scale device research. 

I. INTRODUCTION 

Improvements in lithographic techniques continue to push 
back the boundaries of feature size in silicon device 
fabrication. Advanced optical printing, with a krF excinser 
laser light source at 248ism, can print down to 0. I 8l.sn . It 
is, however, uncertain as to how far this technology can be 
improved for the resolution demands of future device 
production. Meanwhile, electron beans lithography has been 
used lor many years as an advanced lithography tool for 
nanostructure patterning. The high resolution of this 
lithographic technique is ofEset by the relatively low wafer 
throughput, making it unsuitable for commercial scale 
manufacturing. 

In this paper, we 	report on the use of a newly 
commissioned electron beam lithography tool based on a 
Philips XL40 field emission electron column, which offers 
sub-5nm resolution at 30keV. The paper describes the 
electron beam system, basic characterization of the system 
for device fabrication and the processing steps for 
fabrication of nano-scale devices, in particular the 
fabrication of gate electrodes with dimensions down to 
70nnt with fully scaled contacts. Fig. I. Shows a fabricated 
MOSFET with a 70nm gate electrode. 

II. ELECTRON BEAM LrrttooRAvHY 

A high resolution Philips XL40 FEC SEM was mortified for 
use as a 30keV direct write c-beam system. The beam 
diameter of the SEM is less than 5nns at 30keV. The system 
has been designed, built and tested as part of the nano-scale 
MOSFET project. A sequential vector scan technique is 
implemented for the patterning of rectangular shapes by the 
beam into photoresist. The patterns for the various 

fabrication layers of the mosi-- i­rs are defined using 
Cadence Software and then converted ed IstO a liii rat 

-.- 	... 

5cc V spot Mar55 Oat wn Cop I 	I 2 no 
5 Rn tv in 89295 SE 101 8 	Ilnraa.sty Or EthnbO,Qh 

Fig. I. Scanning electron nncrograph of a MOSFET with 
70nns gate electrode and ltm contacts. 

to be read by the electron beam system. The resolution of 
the system is determined by the beans spot size in 
combination with the pixel pitch. A 12-bit bus architecture 
is toed, providing a maximum of 4096 pixels in both the X 
and 'i' scan directions. At a patterning magnification of 
230x, a pixel pitch of 50ntn and a field size of 200piti x 
700itn is achieved. 

Each of the subsequent patterning levels required for device 
fabrication are aligned within the exposure field by using 
video capture of four alignment crosses, which are located 
at each of the four corners of the exposure held. A center 
point detection algorithm is performed on the image of 
each cross to determine the degree of rttis-alignment of the 
field. Any mis-alignment in the system is then compensated 
for by adjusting the size of [lie patterning field with a 
combination of a stretch, rotate or skew transformation of 
the pattern data. All of the alignment and patterning 
procedures are performed automatically by computer 
control, allowing the system to automatically expose a 
whole series of chip patterns by step and repeat patterning. 

III. BASIC CHARACTERIZATION OF THE ELECTRON BEAM 
LITHOGRAPHY SYSTEM 

The authors arc with the University 01 Edinburgh at the Edinburgh 
Microfabricalion Facility and MIAC. Edinburgh, 
EH9 3JL. 
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Before processing commenced on the fabrication of the 

MOS devices, basic characterization of the system was 

performed to optimize the resist processes for nano scale 

patterning. The negative AZ PN 114 and positive AZ PP 

514 chemically amplified resist systems from Hoechst were 

used in the patterning process Research by Macinlyre and 

Rangelow 131  has investigated the high resolution 

properties of the resists and from this processes were 

Optimized for use with Hoechst AZ 1500 thinner and 

Shipley MF3 19 developer. 

Pattern exposure dosage was determined by performing 

exposures with a multi-featured lest pattern. The patterns 

contained several features of various linewidths and box 

sizes. The patterns were all repeated with an increasing 

exposure dose to provide it matrix of features exposed with 

an array of doses. From these tests, the correct dose for a 

specifically sized pattern could be determined for exposure 

in the MOSFET fabrication process. 

After development of the patterns in pholoresisl, it small 

amount of residue was visible around the base of the 

patterns. This was especially visible in the patterns from the 

negative resist. It was thought that this residue may cause a 

widening effect in the patterns transferred from the resist in 

the fabrication process. In order to remove this effect the 

resist patterns were exposed to  short, lOs, 02  plasma etch. 

This removed all traces of the residue without affecting the 

profile of the exposed patterns. Fig. 2. Shows the cross-

section of a 72nm line of resist. 

Fig.'-. Cross section of a 72nm line of negative pliotoresist. 

IV. MOSFET PROCESSING STEPS 

Fig. 3. shows it schematic cross section of a MOSFET 

device. The processing for isFET devices firstly involved 

the electron beam definition of the active areas, followed by 

a conventional local oxidation of silicon (LOCOS) isolation, 

A 5rsm gate oxide was thermally grown with a dry-oxidation 

process at 785°C for 15nsin. The sub 100nm 

gate electrodes were then fabricated (described is section 

IV A). After it shallow LDD implant of As with dose 

2.5el4cn1' 2 @1  20keV in aligned sidewall spacer was 

defined with electron beans lithography. The source/drain 

junctions were then implanted with it deeper As implant of 

Sidewall spacec 
oxide 	1p015 SOlO 

Metal 

I 	/ • 	..ii::i
Field Dxlde I P7 •  

LOD wplansx 

Fig. 3. Schematic cross section of all MOSFE1'. 

dose 2.5et5cm' 2  @ 30kcV. Contact holes were then etched 

in the deposited insulating oxide (described in section IV 

B). The lithography for the metal interconnect level was 

performed with a combined e-bearstmopticat lithography 

process. The inner 200 x 200pm field, to contact the 

devices. was defined by a c-beam process. Then it optical 

process defined a larger outer field that contained the probe 

pads, to enable electrical testing of ttte devices. The two 

field were aligned together using a common alignment 

mark. 

Gate level processing 

The high resolution lithography of the gate level was 

performed with the negative resist and involved an 

intermediate mask process. This process involved 

transferring tlte resist image into Si0 2  prior to the 

pol vsilicon etch process. This process was chosen due 10 the 

niucls higher selectivity of ttte SiO 2  than the resist during the 

polysilicon etch. A 200nm layer of negative resist was spun 

onto a deposited SiO 2  layer and softbsked at 120°C for 

120sl21. After it 90s development in Shipley MF3 19 

developer a lOs 0 2  plasma etch removed any residue around 

the patterns. The resist patterns were tlsen transferred into 

the oxide with a dry etch step. The polysi licon was then 

etched svitts it three step process to produce a steep sidewall 

profile of the poly. The first etch was a isotropic etch to 

break through any native oxide on the poly, which was 

followed by a 6:1 selectivity process (Si:SiOt) which etched 

through the poly and then slopped immediately the etch 

end-point detection system registered the removal of the 

poly. A third highly selective 30:1 auisotropic process was 

then performed as a 251Y, over etch to produce a steep 

sidewall profile on the polysilicon. 

Contact here! 

For the contact level processing A 200nm thickness of AZ 

PF 514 was spun onto it 250rtns deposited layer of Si0 2 . 

Processing conditions for the positive resist involved the 

thinning of the resist with 2 parts AZ 1500 thinner to I part 
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resist. After spin coating at 3000 rpni the resist was 
softbaked at I26C for 825. Post exposure the resist was 
softhaked at 65C for 70s and developed in Shipley MF3 19 
developer, diluted 3:1 (MF3I9:I-1 20) with dc-ionized water 
to make a 0. 178N solution. The patterns, in fig. 4 show 
resist contact holes of length 120nm. This size of feature 
allows for the processing of fully scaled contact holes in the 
fabrication of nano scale MOS devices. 

Fig. 4. Image of I 20itnt cottlact holes developed in positive 
resist. 

V. RESULTS 

Fig. 5. shows the current-voltage characteristics of two 
nFET devices svith gate lengths of 500tsns and 90iun. The 
width of the devices is 6pm. The SOOnm device exhibits 
normal transistor action with suppression of the short-
channel effects while the 90nm device exhibits transistor 
action with onset of punchthrough of the chattnel region. 
This is shown by the inability of the gate to control the drain 
current, II) when the device is saturated. 

_ 

(a)  

(b) 

Fig.5. I-V characteristics of MOSFET devices with gate 
lengths of (a) 500nm. and (b) 90nns. 
The operation of the devices in the subthreshold region are 
shown in Fig. 6. The longer SOOnni device displays good 
subthreshold operatiott, with a subthreshold slope of 
75mVfdecsde. The putschtlseough in the channel of the 
90nm device is evident again with a subthreshold slope of 
just 8nsv/decade. 

(a) 

Fig. 6. Subthreshold characteristics of devices with channel 
lengths of (a) SOOnrn, and (b) 90tttss. 

A cross section of a 90nm MOSFET with 1pm contacts is 
shown its Fig. 7. The image highlights the partial etching 
through of the passivatioti layer above the gate electrode. 
The etching away of the material possibly occurred during 
the etching of the metal interconnects, but is not thought to 
have affected the performance of thte devices. 
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= 

Fig. 7. Focused Ion Beam cross, section image ol a 90uin 

MOSFET device with ll.tm  contacts, 

VI. SUMMARY 

Nanofabrication techniques for integration into a sub-

lOOnrn gate length silicon MOSFET fabrication have been 

reported. The development and characterization of an 

electron beam lithography system has enabled the 

production of MOS devices with all the lithography levels 

performed by electron beam lithography. Results have been 

presented for functional 90nm gate length devices which 

require further optimization to suppress the short-channel 

effects. 
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