9 research outputs found

    Deep Clustering of Text Representations for Supervision-free Probing of Syntax

    Full text link
    We explore deep clustering of text representations for unsupervised model interpretation and induction of syntax. As these representations are high-dimensional, out-of-the-box methods like KMeans do not work well. Thus, our approach jointly transforms the representations into a lower-dimensional cluster-friendly space and clusters them. We consider two notions of syntax: Part of speech Induction (POSI) and constituency labelling (CoLab) in this work. Interestingly, we find that Multilingual BERT (mBERT) contains surprising amount of syntactic knowledge of English; possibly even as much as English BERT (EBERT). Our model can be used as a supervision-free probe which is arguably a less-biased way of probing. We find that unsupervised probes show benefits from higher layers as compared to supervised probes. We further note that our unsupervised probe utilizes EBERT and mBERT representations differently, especially for POSI. We validate the efficacy of our probe by demonstrating its capabilities as an unsupervised syntax induction technique. Our probe works well for both syntactic formalisms by simply adapting the input representations. We report competitive performance of our probe on 45-tag English POSI, state-of-the-art performance on 12-tag POSI across 10 languages, and competitive results on CoLab. We also perform zero-shot syntax induction on resource impoverished languages and report strong results

    A cascaded unsupervised model for PoS tagging

    Get PDF
    This is an accepted manuscript of an article published by ACM in ACM Transactions on Asian and Low-Resource Language Information Processing in March 2021. The accepted version of the publication may differ from the final published version.Part of speech (PoS) tagging is one of the fundamental syntactic tasks in Natural Language Processing (NLP), that assigns a syntactic category to each word within a given sentence or context (such as noun, verb, adjective etc). Those syntactic categories could be used to further analyze the sentence-level syntax (e.g. dependency parsing) and thereby extract the meaning of the sentence (e.g. semantic parsing). Various methods have been proposed for learning PoS tags in an unsupervised setting without using any annotated corpora. One of the widely used methods for the tagging problem is log-linear models. Initialization of the parameters in a log-linear model is very crucial for the inference. Different initialization techniques have been used so far. In this work, we present a log-linear model for PoS tagging that uses another fully unsupervised Bayesian model to initialize the parameters of the model in a cascaded framework. Therefore, we transfer some knowledge between two different unsupervised models to leverage the PoS tagging results, where a log-linear model benefits from a Bayesian model’s expertise. We present results for Turkish as a morphologically rich language and for English as a comparably morphologically poor language in a fully unsupervised framework. The results show that our framework outperforms other unsupervised models proposed for PoS tagging

    Unsupervised learning of probabilistic grammars

    Get PDF
    Probabilistic grammars define joint probability distributions over sentences and their grammatical structures. They have been used in many areas, such as natural language processing, bioinformatics and pattern recognition, mainly for the purpose of deriving grammatical structures from data (sentences). Unsupervised approaches to learning probabilistic grammars induce a grammar from unannotated sentences, which eliminates the need for manual annotation of grammatical structures that can be laborious and error-prone. In this thesis we study unsupervised learning of probabilistic context-free grammars and probabilistic dependency grammars, both of which are expressive enough for many real-world languages but remain tractable in inference. We investigate three different approaches. The first approach is a structure search approach for learning probabilistic context-free grammars. It acquires rules of an unknown probabilistic context-free grammar through iterative coherent biclustering of the bigrams in the training corpus. A greedy procedure is used in our approach to add rules from biclusters such that each set of rules being added into the grammar results in the largest increase in the posterior of the grammar given the training corpus. Our experiments on several benchmark datasets show that this approach is competitive with existing methods for unsupervised learning of context-free grammars. The second approach is a parameter learning approach for learning natural language grammars based on the idea of unambiguity regularization. We make the observation that natural language is remarkably unambiguous in the sense that each natural language sentence has a large number of possible parses but only a few of the parses are syntactically valid. We incorporate this prior information into parameter learning by means of posterior regularization. The resulting algorithm family contains classic EM and Viterbi EM, as well as a novel softmax-EM algorithm that can be implemented with a simple and efficient extension to classic EM. Our experiments show that unambiguity regularization improves natural language grammar learning, and when combined with other techniques our approach achieves the state-of-the-art grammar learning results. The third approach is grammar learning with a curriculum. A curriculum is a means of presenting training samples in a meaningful order. We introduce the incremental construction hypothesis that explains the benefits of a curriculum in learning grammars and offers some useful insights into the design of curricula as well as learning algorithms. We present results of experiments with (a) carefully crafted synthetic data that provide support for our hypothesis and (b) natural language corpus that demonstrate the utility of curricula in unsupervised learning of real-world probabilistic grammars

    Annealing structural bias in multilingual weighted grammar induction

    No full text
    We first show how a structural locality bias can improve the accuracy of state-of-the-art dependency grammar induction models trained by EM from unannotated examples (Klein and Manning, 2004). Next, by annealing the free parameter that controls this bias, we achieve further improvements. We then describe an alternative kind of structural bias, toward “broken ” hypotheses consisting of partial structures over segmented sentences, and show a similar pattern of improvement. We relate this approach to contrastive estimation (Smith and Eisner, 2005a), apply the latter to grammar induction in six languages, and show that our new approach improves accuracy by 1–17 % (absolute) over CE (and 8–30% over EM), achieving to our knowledge the best results on this task to date. Our method, structural annealing, is a general technique with broad applicability to hidden-structure discovery problems.

    Supervised Training on Synthetic Languages: A Novel Framework for Unsupervised Parsing

    Get PDF
    This thesis focuses on unsupervised dependency parsing—parsing sentences of a language into dependency trees without accessing the training data of that language. Different from most prior work that uses unsupervised learning to estimate the parsing parameters, we estimate the parameters by supervised training on synthetic languages. Our parsing framework has three major components: Synthetic language generation gives a rich set of training languages by mix-and-match over the real languages; surface-form feature extraction maps an unparsed corpus of a language into a fixed-length vector as the syntactic signature of that language; and, finally, language-agnostic parsing incorporates the syntactic signature during parsing so that the decision on each word token is reliant upon the general syntax of the target language. The fundamental question we are trying to answer is whether some useful information about the syntax of a language could be inferred from its surface-form evidence (unparsed corpus). This is the same question that has been implicitly asked by previous papers on unsupervised parsing, which only assumes an unparsed corpus to be available for the target language. We show that, indeed, useful features of the target language can be extracted automatically from an unparsed corpus, which consists only of gold part-of-speech (POS) sequences. Providing these features to our neural parser enables it to parse sequences like those in the corpus. Strikingly, our system has no supervision in the target language. Rather, it is a multilingual system that is trained end-to-end on a variety of other languages, so it learns a feature extractor that works well. This thesis contains several large-scale experiments requiring hundreds of thousands of CPU-hours. To our knowledge, this is the largest study of unsupervised parsing yet attempted. We show experimentally across multiple languages: (1) Features computed from the unparsed corpus improve parsing accuracy. (2) Including thousands of synthetic languages in the training yields further improvement. (3) Despite being computed from unparsed corpora, our learned task-specific features beat previous works’ interpretable typological features that require parsed corpora or expert categorization of the language

    In Language and Information Technologies

    Get PDF
    With the rising amount of available multilingual text data, computational linguistics faces an opportunity and a challenge. This text can enrich the domains of NLP applications and improve their performance. Traditional supervised learning for this kind of data would require annotation of part of this text for induction of natural language structure. For these large amounts of rich text, such an annotation task can be daunting and expensive. Unsupervised learning of natural language structure can compensate for the need for such annotation. Natural language structure can be modeled through the use of probabilistic grammars, generative statistical models which are useful for compositional and sequential structures. Probabilistic grammars are widely used in natural language processing, but they are also used in other fields as well, such as computer vision, computational biology and cognitive science. This dissertation focuses on presenting a theoretical and an empirical analysis for the learning of these widely used grammars in the unsupervised setting. We analyze computational properties involved in estimation of probabilisti
    corecore