116 research outputs found

    Recognition of partially occluded threat objects using the annealed Hopefield network

    Get PDF
    Recognition of partially occluded objects has been an important issue to airport security because occlusion causes significant problems in identifying and locating objects during baggage inspection. The neural network approach is suitable for the problems in the sense that the inherent parallelism of neural networks pursues many hypotheses in parallel resulting in high computation rates. Moreover, they provide a greater degree of robustness or fault tolerance than conventional computers. The annealed Hopfield network which is derived from the mean field annealing (MFA) has been developed to find global solutions of a nonlinear system. In the study, it has been proven that the system temperature of MFA is equivalent to the gain of the sigmoid function of a Hopfield network. In our early work, we developed the hybrid Hopfield network (HHN) for fast and reliable matching. However, HHN doesn't guarantee global solutions and yields false matching under heavily occluded conditions because HHN is dependent on initial states by its nature. In this paper, we present the annealed Hopfield network (AHN) for occluded object matching problems. In AHN, the mean field theory is applied to the hybird Hopfield network in order to improve computational complexity of the annealed Hopfield network and provide reliable matching under heavily occluded conditions. AHN is slower than HHN. However, AHN provides near global solutions without initial restrictions and provides less false matching than HHN. In conclusion, a new algorithm based upon a neural network approach was developed to demonstrate the feasibility of the automated inspection of threat objects from x-ray images. The robustness of the algorithm is proved by identifying occluded target objects with large tolerance of their features

    The Center for Aerospace Research: A NASA Center of Excellence at North Carolina Agricultural and Technical State University

    Get PDF
    This report documents the efforts and outcomes of our research and educational programs at NASA-CORE in NCA&TSU. The goal of the center was to establish a quality aerospace research base and to develop an educational program to increase the participation of minority faculty and students in the areas of aerospace engineering. The major accomplishments of this center in the first year are summarized in terms of three different areas, namely, the center's research programs area, the center's educational programs area, and the center's management area. In the center's research programs area, we focus on developing capabilities needed to support the development of the aerospace plane and high speed civil transportation system technologies. In the educational programs area, we developed an aerospace engineering option program ready for university approval

    Fast point pattern matching by heuristic and stochastic optimization techniques

    Get PDF
    This work is concerned with one of the methodologies used in the final stages of machine vision: the matching of model point patterns to observed point patterns. Conventional search methods not only fail to arrive at the optimal match, but are also computationally expensive and time consuming. To arrive at the optimal pattern match, stochastic and heuristic optimization as the search technique, exploiting Simulated Annealing (SA), Evolutionary Programming (EP) and Mean Field Annealing (MFA), are explored in detail. A comparison of results obtained using SA versus hill-climbing and exhaustive search techniques, and results of EP are presented. The relative effectiveness of these optimizing search algorithms over other conventional algorithms will be demonstrated. Finally, the limitations of MFA are discussed

    An examination and analysis of the Boltzmann machine, its mean field theory approximation, and learning algorithm

    Get PDF
    It is currently believed that artificial neural network models may form the basis for inte1ligent computational devices. The Boltzmann Machine belongs to the class of recursive artificial neural networks and uses a supervised learning algorithm to learn the mapping between input vectors and desired outputs. This study examines the parameters that influence the performance of the Boltzmann Machine learning algorithm. Improving the performance of the algorithm through the use of a naïve mean field theory approximation is also examined. The study was initiated to examine the hypothesis that the Boltzmann Machine learning algorithm, when used with the mean field approximation, is an efficient, reliable, and flexible model of machine learning. An empirical analysis of the performance of the algorithm supports this hypothesis. The performance of the algorithm is investigated by applying it to training the Boltzmann Machine, and its mean field approximation, the exclusive-Or function. Simulation results suggest that the mean field theory approximation learns faster than the Boltzmann Machine, and shows better stability. The size of the network and the learning rate were found to have considerable impact upon the performance of the algorithm, especially in the case of the mean field theory approximation. A comparison is made with the feed forward back propagation paradigm and it is found that the back propagation network learns the exclusive-Or function eight times faster than the mean field approximation. However, the mean field approximation demonstrated better reliability and stability. Because the mean field approximation is local and asynchronous it has an advantage over back propagation with regard to a parallel implementation. The mean field approximation is domain independent and structurally flexible. These features make the network suitable for use with a structural adaption algorithm, allowing the network to modify its architecture in response to the external environment

    Boolean Dynamics with Random Couplings

    Full text link
    This paper reviews a class of generic dissipative dynamical systems called N-K models. In these models, the dynamics of N elements, defined as Boolean variables, develop step by step, clocked by a discrete time variable. Each of the N Boolean elements at a given time is given a value which depends upon K elements in the previous time step. We review the work of many authors on the behavior of the models, looking particularly at the structure and lengths of their cycles, the sizes of their basins of attraction, and the flow of information through the systems. In the limit of infinite N, there is a phase transition between a chaotic and an ordered phase, with a critical phase in between. We argue that the behavior of this system depends significantly on the topology of the network connections. If the elements are placed upon a lattice with dimension d, the system shows correlations related to the standard percolation or directed percolation phase transition on such a lattice. On the other hand, a very different behavior is seen in the Kauffman net in which all spins are equally likely to be coupled to a given spin. In this situation, coupling loops are mostly suppressed, and the behavior of the system is much more like that of a mean field theory. We also describe possible applications of the models to, for example, genetic networks, cell differentiation, evolution, democracy in social systems and neural networks.Comment: 69 pages, 16 figures, Submitted to Springer Applied Mathematical Sciences Serie

    Small nets and short paths optimising neural computation

    Get PDF
    corecore