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Recognition of partially occluded objects has been an important issue to airport security because occlusion causes

significant problems in identifying and locating objects during baggage inspection. Neural network approach is suitable for

the problems in the sense that the inherent parallelism of Neural Networks pursues many hypotheses in parallel resulting in

high computation rates. Moreover, they provide a greater degree of robustness or fault tolerance than conventional computers.
The annealed Hopfield network which is derived from the mean field annealing(MFA) has been developed to find "global

solutions of a non-linear system. In the study, it has been proven that the system temperature of MFA is equivalent to the

gain of sigmoid function of Hopfield network. In our early work, we developed the hybrid Hopfield network(HI-IN) on the

purpose of fast and reliable matching[I]. However, HI-IN doesn't guarantee global solutions and yields false matching under

heavily occluded conditions because HI-IN is depending on initial states by its nature. In this paper, we present the annealed
Hopfield network(AHN) for occluded object matching problems. In AHN, the mean field theory is applied to the hybrid

Hopfield network in order to improve computational complexity of the annealed Hopfield network and provide reliable

matching under heavily occluded conditions. AHN is slower than HHN. However, AHN provides near global solutions

without initial restrictions and provides less false matching than HHN. In conclusion, a new algorithm based upon a Neural

Network approach was developed to demonstrate the feasibility of the automated inspection of threat objects from X-ray

images. The robustness of the algorithm is proved by identifying occluded target objects with large tolerance of their features.

1. INTRODUCTION
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Pattern recognition and computer vision theory has been considerably improved during the last decade such that the

appearance of an automated vision system seems very close to our future[2,3]. However, because of the higher computational

burden of image understanding algorithms, use of object recognition from an image is still limited to the restricted

environment. In the mean time researchers developed a new idea of computation which imitates human brain structure, called

a neural computing[4,5]. Techniques in neural computing are based on a new concept of distributed parallel computation, and

applicable to any number crunching objectives. Hopfield network, one of the neural computations is very popular in real world

application due to simple architecture and well defined time domain behavior[5-9]. The Hopfield network is composed of

single-layer neurons with fully connected feedback eotmections. The neurons have the sigmoid gain characteristic, while the

connectivity matrix corresponding to the connection is symmetric and the diagonal terms of the matrix are zero. Such networks

always move in the direction of decreasing the energy of the networks and get stable states at the local minimum of the

energy. Since the energy function of a Hop field network has many local minima, the resultant network output is usually the

closest local minimum to initial states. This nature of the Hopfield network must be the demerit in solving an optimization

problem. In our early work, we developed the hybrid Hopfield network algorithm to improve deficiency of the original

Hop field network. The method yields a good solution by adding an adjusting procedure for the output neuron states of the

IThis research has been supported by FAA under Contract DTF A01-87-c-00043, NSF under Grant ECD-8212696,

and the NASA Center for Research Excellence of North Carolina A&T State University under Grant No. NAGW-1924.
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Hopfield network. However, the method still does not guarantee global solutions. Simulated annealing is one heuristic

technique to help escape the local minima by perturbing the energy function with the annealing temperature and artificial

noise[10]. It is proven that the solution obtained by the simulated annealing is independent of the initial condition of the

network and is usually very close to the global minimum[9]. Since the network should settle down at each temperature and

the temperature decrement is very small, extraordinarily long time is required in the software computation. The mean field

theory(MF) has been applied to the simulated annealing in the effort on reducing the computational time and many impressive

outputs in image processing area have been reported. The MF has the analogy to the Hopfield networks[Ill. It was proven

that the system temperature of MF is equivalent to the neural gain. D. E. Van den Bout et al. also developed a new algorithm,

the mean field annealing(MFA) which merges many features of simulated annealing and Hopfield networks[12]. They does

not use a sigmoid function but use the normalization technique. However the normalization technique can be applied to the
case in which the sum of a normalized subgroup is equal to 1. An occluded object matching problem is the one which can be

cast into an optimization problem when the graph theory is applied to the problem. MFA can be used to solve the occluded

object matching problem. Unfortunately, the problem is not suitable to normalization technique because the sum of normalized

subgroups is zero or one. Thus, we use the sigmoid function, which is one of the important characteristic of Hopfield
network. We can do an hardware implementation as well as an algorithm approach. We call this technique as the annealed

Hopfield network(AHN).

2. ANNEALED HOPFIELD NETWORK

2.1 Feature extraction and graph formation

In boundary based approaches, comer points are important since the information of the shape is concentrated at the

points having high curvatures. From the comer points, we can extract useful features such as a local feature of an angle

between neighboring comers and relational features of distances between the comers. These two features which are invariant
under transnational and rotational changes are used for the robust description of shape of the boundary. Comer points are

usually detected in a curvature function space by capturing the points whose curvature values are above a certain threshold

value. We developed a new comer detection algorithm which provides reliable and invariant comers for a matching procedure

in the early study[9]. A graph can be constructed for a model object using comer points as nodes of the graph. Each node
has a local feature as well as relational features with other nodes. For the matching process, a similar graph is constructed

for the input image which may consist of one or several overlapped objects. Each model graph is then matched against the

input image graph to find the best matching subgraph.

2.2 Hopfield Network versus Mean field theory

L
E

The continuous Hopfield network(CHN) is a deterministic model which retains the significant characteristics of the

discrete Hopfield network. The discrete network(DHN) uses binary states. However, real neurons and real physical circuits

have integrative time delays due to capacitance, and the time evolution of the state of such systems is represented by a

differential equation, so called the equation of motion. The continuous network has flow of neuron states in a continuous
domain while the discrete network has flow of neuron states in a discrete domain. It means that CHN is better than DHN for

the optimization problems since CHN has a smooth energy function surface. A two dimensional array is constructed to apply

a matching problem into the neural networks. The columns of the array label the nodes of an object model, and the rows

indicate the nodes of an input object[14,15]. The number of column n is the number of nodes of a model object and the

number of rows m is the number of nodes of input image. Therefore, the state of each neuron represents the measure of match

between two nodes from each graph. The matching process can be characterized as minimizing the following energy function:

. -=-.2
--2
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where V_ is a variable which converges to "1" if the ith node in the input image matches the kth node in the object model;

otherwise, it converges to "0". The first term in Eq.(1) is a compatibility constraint. Local and relational feature which have

different measures are normalized to give tolerance for ambiguity of the features as follows:

C_,--" W_x F_,A) + W_ x F_,j_) + W_ x F(ru, r_) (2)

The fuzzy function Fhas a value 1 for a positive support and -1 for a negative support. The value ofF(x, y) is defined such
that if the absolute value of the difference between x and y is less than a threshold 0, then F(x, y) is set to 1, otherwise F(x,

y) is set to -1. The sum of the weights is 1. In our early work[], we uses two features such as angle and distance. Angle

helps us to recognize the shape of object. However, false segmentation cause to generate different angles from those of

original segmentation. In this paper, relational features are more emphasized than local features. AHN even works well
without local features. The last two terms are included to enforce the uniqueness constraint so that each node in the object

model eventually matches only one node in the input image and the summation of the outputs of the neurons in each row or

colurrm is no more than 1. Some papers concerning a matching problem with the Hopfield style neural network have used

EE(1-Vv,) 2 as an uniqueness constraint. This term implies global restriction. However, matching of occluded objects will not

guarantee that every row or every column has only one active neuron. Thus the energy function of the occluded matching

problem excludes the global restriction condition in Eq.(1). In a traveling salesman problem, uniqueness coefficient q is more

weighted than the coefficient of the compatibility term because q contributes yielding valid solutions. However, conditions
of valid solutions in the matching of occluded objects are indefinite, so the coefficient A is supposed to be more weighted in

the matching problem. Eq.(1) can be cast into the discrete Hopfield energy function(DI-IN) as follows:

1
E = -._ _ Tu_V_V_,- _ It_Vt_ (26)

J _ J

: co.,,` -q (8,,+ -

where _5u = 1 when i = j, otherwise 8_=0. Hopfield proved that the energy function is a Liapnov function. Thus the energy
function converges to a local minimum when the states of neurons converge to stable states[13]. Unlike the other

application[ 14,15], the constraint that I;I;V a is equal to the number of column can not be used in the occluded object matching

problem since occluded objects can lose a lot of segments of the original. The matching process Of CHN can be characterized
by the same energy function as that of DHN. Only an integral term is added to the energy function as follows:

v,

Where g is a sigmoid function and R_ is the input resistance of a neuron. This term comes from the point of view that neural

input state u0_will lag because of the existence of capacitance in an analog electrical circuit. Thus, there is a resistance-

capacitance charging equation, called the equation of motion that determines the rate of change of u_[14]. It is the first order

differential equation. _I'he equation of the motion is as follows[9]:

du_

where

g(u_) = 1 (6)
1 + exp[-ua /X]

Now, let us consider MFA application. A motion equation is shown in Eq.(5) with the sigmoid function g. Our

energy function of the matching problem is organized as Eq.(1). The output of each neuron for the matching problem has
the value of 0 or 1 to represent measure of similarity. We will call output of each neuron a spin for the mean field annealing
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approach. It was assumed that the spin interactions Ttq_ are symmetric and have no self-interaction (i.e.,Ttm = 0). The state

space of each spin is:
s_ E {0, 1} for 1 < i,k < N (7)

where N _ = m x n. In simulated annealing, random perturbations move the system towards its thermal equilibrium at the

current temperature. Assuming that all the spins are at equilibrium, one can determine the equilibrium spin average of the ith

spin < s_ > from the Boltzarmrm distribution and the change in the average system energy as sa flips from 0 to 1. To illustrate,

let Ho = < H(s) > [ _-o, Ht = < H(s) > I m-r Since the system is Boltzmarm distributed, the equilibrium value of <sty>

is calculated as follows:

<stt> = Pr{sa=O} xO + Pr{sa=l } xl

•_ exp(---_-)

-- /40 ._. (8)exp(-T) + exp(- )

= {1 + exp[-(H°-H0]} -' = {1 + exp[-_-]} -_
T ./

We define ut_ to represent the quantity H o - H I, which is the mean or effective field experienced by the ikth spin.

Unfortunately, it is in general difficult to compute utt for large N:

| J k I - l k

= EEEETtq,<sttsy,> ÷ EEItt<stt>
I k J I i k

(9)

The difficulty arises from the fact that s_ and sjl are not independent, so that their expected values are not separable in the

above equation. However, when the number of interacting spins is large enough that the effect of any single spin on any other

spin is very small in comparison to the total field, then the mean field approximation can be used:

<n<s>>--EEEEr ,<s.> <s,,> + EEI.<s,.>
l k J l i k

The Eq.(8) and Eq.(lO) has the same structure as Eq.(3) and Eq.(6). In addition, random perturbation to move the system

towards its thermal equilibrium in simulated annealing is the same as updating rule of the Hopfield network. The only

difference is that ), in eq. (6) is replaced with temperature T. It means that given T, flow to thermal equilibrium in MFA
is the same as the flow of Hopfield network given X. Therefore, if we fred the stable points of states by slowly lowering X

from the high value, then we will find global solutions or near global solution of the network without initial restriction. We

call this algorithm as the annealed Hopfield network(AHN).

2.3 The Critical Temperature(T,) and Uniqueness Coefficient(q)

Setting the operating parameters for the annealed network significantly affects a final solution. Starting at too high

a temperature above the critical temperature is just time-consuming since no progress is made toward a solution until the

critical temperature is reached. Starting at too low a temperature can quench the system and quickly force it into a poor

solution. In addition, neural networks often enforce problem constraints through penalty functions which must be weighted

in importance against the remaining cost components of the objective function. Weighting penalties too heavily leads to valid

but poor solutions, while reducing the penalties permits infeasible solutions to arise. In this section, techniques for estimating

T_ and q are explained. D.E. Van Den Bout et al. use normalization technique to improve solutions of TSP[16]. However,

the technique is hard to implement hardware since it is not natural flow in biological neural networks or the analog Hopfield
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network model. In this paper, we use the sigmoid function and derive critical temperature from the function.

perturbations near T_ are smallen0ugh so that all the spins remain near their high temperature average of I/N.

assumption, the effect mean field changes have on the spins are found from the sigmoid function in Eq.(8) to be

asa _ (N-l)

0%, N2T

The spin
With this

(11)

From Eq. (5),

, ik = jl
0% TO_l , ik _ jl
a%

(12)

The change of sa, Asa cause the change of inputs of the other neurons Auj_ as follows:

c_stt Asa + st,,a-'_j l

= Tt_fis _

(13)

Now, the change of sj_, As, from the change of u_._is:

_ Os_t N1

%,_ %, - IV-I

(14)

From the change of sj_, As_, the new input of ikth neuron Aua s is calculated:

au a 0%

_, Osj,

= E T,,.,,(N-l) T_vfisu, = Asu,(N-I) E Tu_,:

(15)

Finally, we get the new perturbation As_ from the Eq.(15)

b asa _ (N-l) (N-I)A_a E _,

As a - Out_ Au_ N_T N_T aw., (16)

IV "l" litwjl

In fact, the Hopfield network in the object matching problem is a fully connected network and the flow of the output

change of neurons are very complicated. The result is based on the assumption that output changes of all the other neurons

caused by the change of the ikth neuron Ast_ are fed back to the ikth neuron and force the change of the ikth neuron to be

accelerated when a temperature is near Tc. Therefore, we ignore the effect of other neuron outputs to simplify this problem.

Let an average of connection strength be w. At the critical temperature, the spin perturbation must persist so that As_ = As a.
This results in:

As_- (N-1)_As..N2w2 ffi (N-1)_Asaw2 (17)

AtT= T_, Asa _ = AStk

L = - lwl = lwl (18)

forN > > I. q is not emphasized because valid solution is not quite definite in this problem. Therefore q has relatively small
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value as it'does in the TSP problem, q is set to the unit value in the energy function.

3. EXPERIMENTAL RESULTS

Several models are obtained and used in the matching procedure to test the new algorithm. Figure-1 shows images

of model objects and occluded images. Once images are obtained, boundary is extracted by the chain code method. After

extracting the boundary, comer points are obtained by using the optimal boundary smoothing method based on the constrained

regularization technique. Figure-2 shows the boundary and comer points of the model objects. The number of segments of
the models and occluded images ranges from 6 to 25. From each segment, features are extracted: an angle as local feature

and the distance between nodes as relational feature. The boundary segmentation algorithm is very reliable in the sense that

it is not noise dependable and it keeps detecting the same comer points from an object in different scenes. However, some

models in occluded images are occasionally oversegmented or lose some comer points under the same threshold value. They

affect matching procedure as occluded parts does. A matching algorithm should be tolerable for the false segmentation

occurred in preprocessing stage as well as occlusion. AHN shows good performance in the above situation. Fig.-2(c) and

Fig.-3(d) shows robustness of the algorithm under over-segmentation as well as occlusion. The number of the model is 8 but
in the occluded image, the model has 14 segments. 8 nodes of the model are exactly matched with those of images. Figure-3

shows output plots of AHN. Star signs indicate matched nodes between model and occluded images. The results show the

desired matchings are successfully obtained.

We also experiment on the critical temperature to see if the parameter estimation is correct. As shown in Fighre-5,

annealing through the higher temperature is wasted work since it has no effect on the energy function. Instead, most of the

optimization occurs near the critical temperature. There is a precipitous drop in the energy function around the critical

temperature where a coagulation starts. Annealing through the low temperature does not improve the solution but serves only

to saturate the neurons at 1 or 0. As shown in Figure-4, the experiment result of Figure-3(a) was 0.45 of T, while the estimate

of Tc was 0.7. This discrepancy may result from the small number of neurons of the example since we assume that the number

of neurons are very large for mean field approximation. Therefore we have the T, be the half of the estimated T, to get a valid

solution.

4. CONCLUSION

Issues related to the reliable matching have been discussed in this paper. Annealing the network allowed convergence

to begin close to the critical temperature such that good solutions were found. By estimating the critical temperature, we can

get a near optimal solution by few steps decreasing temperature. In conclusion, AHN gives a reliable matching of the

corresponding segments between two objects. The method eliminates possibility for a part of an object to be matched to

similar segments in a different object. We conclude that AHN is a robust approach to solve the two-dimensional occlusion

problems.
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Figure-l: Model Images and Occluded Images
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Figure-3: Matched Nodes in Occluded images(continued)
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