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ABSTRACT 

It is currently believed that artificial neural network models may form the basis 

for inte1ligent computational devices. The Boltzmann Machine belongs to the class 

of recursive artificial neural networks and uses a supervised learning algorithm to 

learn the mapping between input vectors and desired outputs. This study examines 

the parameters that influence the performance of the Boltzmann Machine learning 

algorithm. Improving the performance of the algorithm through the use of a naive 

mean field theory approximation is also examined. 

The study was initiated to examine the hypothesis that the Boltzmann Machine 

learning algorithm, when used with the mean field approximation, is an efficient, 

reliable, and flexible model of machine learning. An empirical analysis of the 

performance of the algorithm supports this hypothesis. 

ii 

The performance of the algorithm is investigated by applying it to training the 

Boltzmann Machine, and its mean field approximation, the exclusive-Or function. 

Simulation results suggest that the mean field theory approximation learns faster than 

the Boltzmann Machine, and shows better stability. The size of the network and the 

learning rate were found to have considerable impact upon the performance of the 

algorithm, especially in the case of the mean field theory approximation. 
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A comparison is made with the feed forward back propagation paradigm and it 

is found that the back propagation network learns the exclusive-Or function eight 

times faster than the mean field approximation. However, the mean field 

approximation demonstrated better reliability and stability. Because the mean field 

approximation is local and asynchronous it has an advantage over back propagation 

with regard to a parallel implementation. 

The mean field approximation is domain independent and structurally flexible. 

These features make the network suitable for use with a structural adaption 

algorithm, allowing the network to modify its architecture in response to the external 

environment. 
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Section 1: Introduction 

1.1 Connectionist Modelling 

1.1.1 Rationale 

The rationale for connectionist modelling is the belief that massively parallel 

machines will lead to useful, and intelligent, emergent behaviour. Albus declares 

"that a sensory-interactive, goal-directed motor system is not simply an appendage to 

the intellect, but is rather the substrate in which intelligence evolved" (cited in 

Hampson, 1990, p. 11 ). It is a common thesis that a connectionist model is suitable 

for such a substrate. 

Connectionist models are called artificial neural networks. The goal is to 

emulate the "low level signal processing mechanisms and organization [sic] of the 

brain to try to incorporate these mechanisms into the design of our next generation 

artifacts [sic]" (Lee, 1991, p. 6). Artificial neural networks exhibit many desirable 

properties of biological systems - parallel computation, graceful degradation, 

distributed knowledge representation, and the ability to learn (Lee, 1991, p. 4). 
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1.1.2 Artificiql Neural Networks 

Artificial neural networks1 are similar to cellular automata and fuzzy logics 

(Narendra and Thathachar, 1989, p. 6; Kosko, 1992, p. 7). They contain simple 

processing elements that model the behaviour of biol?gical neurons. Each processing 

element communicates with neighbouring elements through a weighted connection. 

The properties of neural networks emerge from interactions between large numbers 

of these elements (Hopfield, 1984). 

1.1.3 Potential 

The ability to adapt to an environment is the most important property of neural 

networks (Lee, 1991, p. 13). Current learning algorithms are crude and allow only 

parameter u.daption, i.e., the architecture of the network is detennined prior to 

learning (Peterson and Hartman, 1989, p. 16; Lee, 1991, p. 14). There is a trend 

towards the development of learning methods capabltl of parameter and structural 

adaption. 2 Research in this area has the potential of producing intelligent computing 

elements that are able to fully adapt to any external e"vironment (Lee, 1991). 
':'' 

1 The tenn neural network is used to refer to connectionist model-;, references to biological neurnl 
systems will be clearly identified as such. 

1 Structural adaption is the alteration of the network's architecture in response to the current 
environmenL 
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1.2 The Boltzmann Machine 

The Boltzmann Machine belongs to an important class of neural network 

models. Its dynamic behaviour is "ruled by an energy function which decreases 

monotonically" (Karnp and Hasler, 1990, p. xi). The resulting behaviour, termed 

relaxation, is used to create content-addressable memories and solve constraint 

satisfaction problems (Hinton, Sejnowski, and Ackley, 1984, p. 2). 

1.2.1 Significance 

3 

The Boltzmann Machine is of commercial and theoretical significance (Miller, 

Walker, and Ryan, 1990, p. 299; Hecht-Nielsen, 1990, p. 195). Practical applications 

include parsing context-free grammars and image processing systems that reflect 

"human performance nicely" (Zeidenberg, 1990, p. 187). 

1.2.2 Limitations of the Network 

The computational cost of simulating the Boltzmann Machine has restricted its 

use to small problem domains (Hinton, 1990a, p. 21; Hecht-Nielsen, 1990). The 

development of a naive mean field theory approximation3 of the Boltzmann Machine 

promises to improve the speed and quality of learning (Peterson and Anderson, 

1987). 

3 Referred to as the mean field approximation. 
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1.2.3 Limitations of the Learning Algorithm 

The Boltzmann Machine learning algorithm is domain independent (Hinton 

et al., 1984, p. 6) and controls the parameter adaption of the neural network; it 

requires domain dependent infonnation to specify the architecture of the network. 

Structural adoption requires global knowledge (Lee, 1991) -the Boltzmann Machine 

learning algorithm operates upon local knowledge' (Hinton et al., 1984, p. 8) and 

cannot incorporate structural adaption. 

1.3 The Approach of the Study 

1.3.1 Objectives 

This study resulted from an empirical investigation of the Boltzmann Machine, 

its mean field approximation, and the Boltzmann Machine learning algorithm;5 It 

was initiated to test the hypothesis that the Boltzmann Machine learning algorithm, 

when used with the mean field theory approximation, is efficient, reliable, and 

flexible. 

Efficient. This is used in reference to the speed of the learning. A comparative 

measure of learning speed is developed in Section Four. 

4 Globa1 knowledge concerns lhe entire network, local knowledge is knowledge only of a single 
processing element and its related connections. 

' Boftzinann Machine learning afgorithm a1so refers 10 the mean field theory appoximalioo 
lfMlling algorithm. 
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Reliable. The ability of the algorithm to consistently succeed with little 

deviation from average learning times is important for the construction of large 

applications. These properties suggest that the elgorithm is stable and predictable. 

Flexible. The algorithm should be robust against a number of constraints, 

including, (a) the rate of parameter adaption, (b) the architecture of the network, and 

(c) the amount of noise in the network. 

1.3.2 Focus 

5 

The study focuses upon the effects of changing (a) the size of the network, and 

(b) the rate of parameter adaption' upon the learning ability of the Boltzmann 

Machine learning algorithm. The algorithm was required to train a neural network 

the exclusive-Or function (see 4.4). The exclusive-Or function is a theoretically 

significant problem used by Minsky and Papert (1969) to examine the deficiencies of 

neural networks. This problem is recognised in the literature as an indicator of more 

general problem solving abilities. 

1.3.3 Methodology 

Several hypotheses provided direction for a series of simulations of the 

Boltzmann Machine learning algorithm (see 4.2). Data resulting from these 

6 The rate of learning. 



An Analysis of the Boltzmann Machine 6 

simulations were examined and compared using a simple perfonnance metric. A 

comparison was also made with the back propagation model. Back propagation was 

selected as a comparative model because, (a) the model is extensively discussed in 

the literature, and (b) similar comparative studies have been conducted (Peterson and 

Hartman, 1989) . 

• 

1.3.4 Suitability 

There is an emphasis towards experimental investigation of artificial learning 

algorithms (Shavlik and Dietterich, 1990, p. 6). The emergent properties of neural 

networks makes it difficult to investigate their behaviour fonnally; empirical studies 

may provide insights into their limitations and suggest future research directions 

(Kibler and Langley, 1988, p. 5). 

1.4 Scope of the Study 

1.4.1 Specific Problems 

The study sought answers to four questions: 

I. What is the performance of the Boltzmann Machine learning algorithm, 

and how does it compare to the back propagation paradigm? 

2. What is the impact of the size of the network and the rate of adaption 

upon the Boltzmann Machine learning algorithm? 
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3. What optimisation can be made to the Boltzmann Machine learning 

algorithm? 

4. How flexible is the Boltzmann Machine learning algorithm - can it train 

networks of dynamic architecture? 

1.4.2 Limitations 

The study was delimited by: 

I. The size of the problem used to test the learning algorithm. The 

exclusive-Or is a small problem restricting the generality of results. 

2. The environment used to implement the simulations required that the 

network models were implemented as serial simulations. The Boltzmann 

Machine is an asynchronous parallel machine, it is assumed that serial 

simulation is valid for such a machine. 

The application of the learning algorithm to a number of domains would be a 

valuable expansion to the study, especially if such an expansion concentrated upon 

the issue of scaling to large problem domains. This was beyond the scope of the 

study. 

7 
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1.5 Structure of the Report 

This thesis is presented in three parts: 

1. A theoretical fonnulation and review of important empirical investigations 

is developed in Sections Two and Three. 

2. A description of the experimental methodology, the importance of the 

exclusive-Or function, and the hypotheses to be tested is developed in 

Sections Four and Five. 

3. A summary of the results and the identification of extensions to the 

research is contained in Section Six. 

8 
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Section 2: Theoretical Framework 

2.1 Artificial Neural Networks 

2.1.1 Definition of a Neural Network 

The architecture of a neural network describes a directed graph with the 

following properties (MUller and Reinhardt, 1990, p. 12): 

1. A state variable ni, associated with each node i. 

2. A weight wit• associated with each link (ik) from node i to k. 

3. A bias t}i, associated with each node i. 

4. A transfer function fi [nk• wik• 'l'}i, (k:;ti)j, associated with each node i, 

detennining the state of the node as a function of (a) its bias, (b) the 

weights of its incoming links, and (c) the states of the nodes connected to 

it by these links. 

9 
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To emphasise the relationship with biological systems each node in the network is 

called a neuron, the links between neurons are called synapses, the bias term is 

called the activation threslwld, and the transfer function is called the activation 

function. 

There are two classes of neuron: 

• Hidden neurons that cannot communicate with the external environment 

They receive synapses only from other neurons in the network. 

• Visible neurons that communicate directly with the external environment 

A visible neuron may act as an input device, an output device, or both. 

10 

The external environment can be any external entity, including another neural 

network, that communicates with the visible neurons. The task of a supervised 

learning algorithm is to model the probability distribution of the external environment 

(Hifllon et al., 1984, p. 6). The network's model of the environment is then 

contained in the weights and location of the synapses. 
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2.1.2 Classifying the Boltzmann Machine 

There are many methods for classifying neural network models, the simplest is 

to classify each model by its synaptic architecture and method of training. The 

Boltzmann Machine has the following characteristics: 

• Its architecture contains closed synaptic loops and is recursive because the 

output signals of its neurons feed back as additional inputs (Kosko, 1992; 

Kamp and Hasler, 1990). A recursive neural network can be described as 

a directed cyclic graph. 

• Learning occurs through an external supeiVisor and requires training data 

consisting of input - output vector pairs. The difference between the 

desired output and actual output guides the network through a gradient 

descent of the space of possible synaptic strengths. SupeiVised learning is 

equivalent to "descriminant analysis" in statistics (Diederich, 1990, p. 3). 
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2.2 The Boltzmann Machine 

2.2.1 Origins of the Bollzmann Machine 

In 1954 B.G.Cragg and N.V.Temperley compared the behaviour of lattices of 

atoms, or binary alloys (called Ising models), to fully connected networks of neurons 

(Cowan and Sharp, 1988, p. 13). Using this analogy they came to two conclusions 

(Cowan and Sharp, 1988, p. 14): 

1. "Domain patterns that are a ubiquitous feature of ferromagnets, comprising 

patches of up [+I] or down [-I] spins, should show up in neural nets as 

patches of excited or quiescent neurons." 

2. "Neural domain patterns, once triggered by external stimuli, would be 

stable against spontaneous random activity and therefore constitute a 

memory of the stimulus." 

These conclusions were followed by the work of Sherrington and Kirkpatrick in 

1975, who described a new magnetic ma1erial they called a spin glass. This material 

consists of a mixture of "ferromagnetically and antiferromagnetically interacting spins 

and exhibiting no net magnetism"; its properties include the ability to "store many 

different disordered spin patterns" (Cowan and Sharp, 1988, p. 14). 
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The relationship between Ising models, spin glasses, and networks of neuron-

like processing elements, led Hopfield (Hopfield, 1982) to describe the Hopfield 

network. The network contains multiple McCulloch-Pitts7 neurons with random, 

symmetric synaptic couplings. Hopfield described the use of Hebb's8 learning law 

to set the synaptic weights, thus creating locally stable states. This work is regarded 

as seminal to modem connectionist models and documents two important properties 

of a recurrent neural network: 

I. Such a network has stable states that can always be found by the network 

when it is started in a random state and allowed to evolve dynamically. 

2. Stable states can be created and removed by changing the strengths of the 

synaptic couplings. 

1 McCulloch-Pitts neurons are named after W.McCulloch and W.Pius. They are also called linear 
threshold units because they compute the total input from. other neurons and activate if this vaJue is 
greater than their activation threshold (MUller and ReinhardL, 1990, p.l3). 

8 Hebb's learning lay· is named after D.Hebb. Hcbb postulated that the. strength of a synapse, 
i.e., its weighL, can be adjusted if the level of activity between adjacent neurons changes. This is 
known as synaptic plasticity and is implemented by the reinforcement of synapses between neurons 
behaving correctly (Milller and Reinhardt, 1990, p.6). 
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2.2.2 The Hopfreld Network 

The Hopfield network (Hopfield, 1982, 1984) is a fully connected, 

symmetrically weighted neural network (see Figure 2.1). The network can be 

described at timo t by the state vector S(t), equation (2.1), the synaptic matrix W, 

equation (2.2), and the activation threshold vector 1}, equation (2.3). 

w, 

w-
w, 

w,, 

s, (I) 

s, (I) 
S(t) -

s, (I) 

w, ... w, 

w, ... w,, 

w,, ... w, 

1} -

1}, 

1}, 

1}, 

s,(t) e (-1,+1} 

1}, E R 

.. 
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(2.2) 

(2.3) 
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The Hopfield network contains only visible neurons, each neuron acting as an 

input and output device. During learning the environmental pattern is mapped to the 

state vector S(t) and the network allowed to compute a suitable synaptic matrix. 

Patterns are recalled by mapping an incomplete, or noisy, version to S(t) and the 

network allowed to dynamically evolve; thus acting as a pattern completion. or 

pattern correction, device. 

Binary Neurons 
(Processing Elements) 

Symmetric Synaptic 

/Co"''"'' 

Individual Neurons are independent- i.e., they are 
asynchronous 

Figure 2.1. The synaptic architecture of a Hopfield Network with three neurons. 

----------------------------------·----------------------------~, 
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DyiUlmic evolution of network state. During computation the Hopfield network 

evolves dynamically in discrete time steps. 9 At each time step each neuron 

calculates the synaptic potential that defines its total input, this is shown in equation 

(2.4) (Kamp and Hasler, 1990; Muller and Reinhardt, 1990). 

' 
h,(t)- Ew,;S/1) 

j-1 

(2.4) 

The activation function, shown in equation (2.5), f~r each neuron is simply a 

comparison between the synaptic potential (h1) and the activation threshold (111), i.e., 

they are linear threshold units; if the activation fuaction evaluates to zero the state of 

the neuron does not change. 

[-r. ] (2.5) s,(t+ I) - sgn[h,(t) - 1'1,] = sgn .L. w,;<;(t) - 1'1, ,_, 

This is known as the Heaviside step function and can be expressed in the fonn 

shown in equation (2.6) (Hopfield, 1984, p. 1). 

s,(l+l)- 8[h,(r)] 

' 
-1 if L w,;<;(t) < 11, 

j-1 

' 
= s,(t) if E w,;<;<t) - 11, 

i-l 
' 

+I if E W;;';(l) > 11, 
j-1 

9 Discrete evolution simulates the "finite regenerative period of real neurons." {MOJier and 
Reinhardl, 1990, p.l2) 

(2.6) 
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The effect of ;)0 ctn be simulated by extending the state vector and synaptic 

matrix to include an additional neuron. This bias neuron permanently has a state of 

-1, although its synaptic connections can be trained (Kamp and Hasler, 1990; Hinton, 

l990a). This simplifies the activation function to the form shown in equation (2.7). 

(2.7) 

The energy landscape. The Hopfield network is symmetric, allowing its 

dynamic behaviour to be modelled by an energy, or Lyapunov, function (MUller and 

Reinhardt, 1990). The energy (E) associated with a particular state vector S(t) is 

calculated using equation (2.8). 

l [ i•j ] 
E[S]- --

2 
~ w,l,s; ,, 

(2.8) 

•' 
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E[S] continually decreases with time; a complete proof is offered by Kamp and 

Hasler (1990, p. 24), and discussed in detail by Miiller and Reinhardt (1990, p. 31). 

The proof begins by considering that the contribution of an individual neuron can be 

calculated locally, as in equation (2.9). 

E,(t) • -s,(t)[ L w,;S/f) ]· -s,(t) h,(t) 
j;<i 

(2.9) 

The activation function, equation (2.7), allows this local energy function to be used 

to show that E[Sj will always decline or stabilise, see equation (2.10) (Miiller and 

Reinhardt, !990, p. 31). 

E,(t+ I) - -s,(t+ I) [ L w,l/1) ] 
'" 

• -sgn[ h,(t) J h,(t) 

·-[h,(t)[ 
=>S -s.(t) h.(t) • E.(t) . ' . (2.10) 

:. E,(t+l) S.E,(t) 

This continual reduction in the network's energy allows it to find the stable 

states defined by the synaptic matrix; thus it can act as a content-addressable 

memory. This relaxation process also allows the network to be used as an 

optimisation device, as used by Hopfield and Tank (1985) to solve the Travelling 

Salesman [Salesperson] Problem. 
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The Hopjie/d theorem. The proof offered in equation (2.10) leads to the 

following theorem (Kamp and Hasler, 1990, p. 24): 

If the synaptic matrix is symmetric with nonnegative [sic] diagonal 

elements, then the asynchronous operation mode of a recursive network is 

devoid of cycles. 

19 

This is an important result that holds for all recursive networks with the appropriate 

properties, including the Boltzmann Machine. There are interesting parallels between 

this relaxation behaviour and biological neural systems. 

2.2.3 Comparisons with Biological Memory 

The operation of human memory can be viewed as a relaxation process, similar 

to the operation of the Hopfield network (Killeen, 1989). The Lyapunov function, 

equation (2.8), describes E-space10 
- a landscape of potential energies with multiple 

local minima representing equilibrium states (see Figure 2.2). Killeen (1989) 

describes the operation of biological memory as follows: 

10 Energy space. 
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The tops of each of the hills are singularities: "immeasurably small 

energies" applied to an object [biological system, memory] at the top will 

cause it to roll one way into the basin of one well, or the other way into 

the basin of a different well. Within a well the system is stable - the 

object stays in the well unless new energy is added - or the landscape is 

changed. (p. 4) 

c"~"' "'"'"" .,.. ~ 

\~ 

Figure 2.2. Simplified potential energy landscape represented as a two-dimensional 
sutface. 

As shown in Figure 2.2 there are multiple local minima separated by energy barriers. 

Hopfield (1982) uses these local minima to store environmental patterns, or 

memories. 
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2.2.4 Problems With the Hopjield Network 

The Hopfield network has a very low capacity11 and suffers from two 

problems (Hinton and Sejnowski, 1986; MUller and Reinhardt, 1990): 

1. The Lyapunov function guarantees that the network will find local, not 

global, ntinima. Global minima are stable states that can be used to model 

the optimal solution to a constraint satisfaction problem (Hinton et al., 

1984). 

2. The learning algorithm originally suggested by Hopfield is a simple variant 

of Hebbian learning that cannot train hidden neurons. This means that the 

network cannot be used to model environments requiring the solution of 

three or more independent variables. This is a major criticism of 

connectionist paradigms (Minsky and Papert, 1969; Hinton et al., 1984). 

The inability to find global minima is serious due to the occurrence of metastable, or 

parasitic, states. These are locally stable states that do not confonn to any intended 

solution state. The presence of metastable states cannot be predicted and they may 

cause the network to behave incorrectly. 

11
• The Hopficld network can only store .. 0.138N patterns, where N is Lhe number of neurons in 

the network; above this limit the capacity of the network falls away dramatically (Maller and 
Reinhardt, 1990, p.42). 
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2.2.5 Definition of the Boltzmann Machine 

The architecture of the Boltzmann Machine is identical to the Hopfield network 

(see 2.2.2). Individual neurons can be represented as binary [0,1] or bipolar [-1,+1) 

elements (see 3.4.3).12 There are two functional groups of neurons in the 

Boltzmann Machine: 

1. Mandatory visible neurons that act as input I output devices. 

2. Optional hidden neurons used to reduce the higher-order constraints present 

in the problem domain. 

The Lyapunov function used to describe the energy of the network is the same 

as that used in the Hopfield network, see equation (2.8). The activation function, see 

equation (2.5), is replaced with a form of the Metropolis algorithm (Hinton et a!., 

1984, p. 4 ). The variable T acts as temperature for the system and defines the level 

of thermal noise (randomness) in the network. 

f(h;) - [--
1

--._,"'·'":-] 
(1+er) 

12 The Boltzmann Machine uses discrete, i.e., two-valued, states. 

(2.11) 
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The activation function/( hJ is sigmoidal, being monotonic between the limits shown 

below: 

limf(h;) • 0, and 
~.~--

limf(h;l • I 
(2.12) 

11,-.·-

An important property of the Boltzmann Machine is that the probability of a 

neuron changing state is independent of its current state. This means that the 

Boltzmann Machine can move to energy minima from any starting state, and can 

occasionally move to levels of higher energy. Thermal and stochastic noise supplies 

the momentum required to escape locally stable states (see 2.2.3). 
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Reaching tlu?rmal equUibrium. If the Boltzmann Machine continues to evolve 

at a fixed temperature the system will reach a condition called thermal equilibrium. 

Once the system is in equilibrium the probability of two global states is determined 

by the Boltzmann distribution; the network state depends only upon the relative 

energies of the available states, see equation (2.13). 

Pa e( -ET(S)0 ) -(E!SJ.- E[SJ,) 

- - ---,--=o,.,..,. - e r 
pP e(-E~s'') 

(2.13) 

Using simulated annealing. When a low temperature (1) is used the network is 

strongly attracted to states of low energy in a detenninistic fashion, similar to the 

Hopfield network. But at low temperatures there may be insufficient thennal noise 

for the network to escape local minima, and at high temperatures all states become 

equiprobable. Similar to physical systems, the Boltzmann Machine makes use of 

annealing. This is simulated by starting the network at a high temperature that is 

reduced, gradually, until the network behaves detenninistically. As T approaches 

zero the network becomes detenninistic, behaving like 8(hJ: 

limf(h;l- El(h;l (2.14) 
r~o 
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Features of till! Boltvnann Machine. The Boltzmann Machine captures many 

properties exhibited by biological neural networks: 

• 

• 

• 

Content addressability/associativity. this is inherently rrore efficient than 

traditional address based memories (Kamp and Hasler, 1990). 

Graceful degradation when subjected to localised damage and noisy 

environments (Hinton et al., 1984). 

The Boltzmann Machine is asynchronous making it suitable for parallel 

implementation. Asynchronous behaviour is considered a good 

approximation of biological neural systems (MUller and Reinhardt, 1990). 

• The Boltzmann Machine can adapt to the external environment by 

changing its synaptic matrix, thus learning to compute new functions and 

making optimal use of its hidden neurons (Hinton et al., 1984). 

• The Boltzmann Machine can operate as a pattern classification device, 

allowing it to generalise when presented with novel environmental patterns. 
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2.3 Boltzniann Machine Adaption 

2.3.1 Modelling the External Environment 

The ability to train hidden neurons, and to create an optimal synaptic matrix, is 

the result of the relationship shown in equation (2.13). The energy of the network is 

a linear function of the synaptic matrix, leading to a relationship, shown in equation 

(2.15), between the probabilities of global states and individual synaptic strengths 

(Hinton et al., 1984, p. 6). 

- .!._ [ s" s~ - p .. J 
T ' J 'I 

(2.15) 

This relationship makes it "possible to manipulate the ... probabilities of global 

states" (Hinton et al., 1984, p. 6), causing them to model the probabilities of 

environmental states. "The machine's model is just the probability distribution it 

would produce over the visible units if it were allowed to run freely without any 

environmental input" (Denhick, 1984, p. 1). 
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2.3.2 Traversing G-Space 

The learning algorithm alters the synaptic weights to minimise the difference 

between the environmental [P'(V all and the internal [P(V all probability disnibutions, 

as measured by equation (2.16) (Hinton et al., 1984, p. 7). 

G- 't"' P(V) In( P(V.) J 
~ a P'{Va) 

(2.16) 

This is the information-theoretic measure of the difference between the two states, 

and is known as the asymmetric divergence, the Kullback measure, or the G cost 

function. G is a function of the synaptic weights and lies on a "W [number of 

weights] dimensional surface within the W+ I dimensional space we call G-space" 

(Derthick, 1984, p. 2). Learning occurs by finding the global minimum within G-

space. Minimising the G measure is similar to minimising the network energy (E[S], 

see 2.2.3) but one optimisation of G may require many optimisations of the energy 

function (Denhick, 1984, p. 2). 
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2.3.3 The Boltzmann Machine Learning Algorithm 

When training the Boltzmann Machine the input neurons are clamped with the 

appropriate environmental patterns. The algorithm then proceeds in three phases 

(Hinton et al., 1984; Peterson, 1991): 

1. The desired output pattern is clamped to the output neurons and the 

network relaxes by updating the undamped neurons in a series of learning 

sweeps. After a series of sweeps the temperature is lowered according to 

an annealing schedule. Co-occurrence (simultaneous activation) statistics 

are collected, when the network has reached equilibrium at the final 

temperature, by running the network for a sampling period 

(( ... ) represents the average state): 

(2.17) 

2. The output neurons are released, and again the network relaxes by 

updating the undamped neurons. When the network reaches equilibrium 

co-occurrence statistics are again collected: 

(2.18) 

--··~·-•··~~··-,-.. '~~·---·r··-·""-"-- --,..,, ., ... -~ '-" -·• ·-·-••-···--- -~~--··•-·-· ---- -··-· ""' _, ------- ---
-~-·- •' 
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3. After all training patterns have been applied to the network the synaptic 

weights are updated acconling to: 

aw,i. e( pii _ P:i) (2.19) 

The variable e is the learning rate of the algorithm and detennines the 

speed of traversal in G-space. 

The algorithm is applied repeatedly until changes to the synaptic weights no longer 

occur, or the network has reached a specified level of performance. A single 

learning cycle consists of presenting all training patterns to the network and allowing 

the synaptic weights to he adjusted. 

2.4 A Mean Field Theory Approximation 

The instantaneous state of an individual neuron in the Boltzmann Machine is 

not important because it is determined through noisy sampling. Of greater relevance 

is the m~an activity of the neuron; the neuron's average behaviour during the entire 

annealing process drives the learning algorithm. 
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2.4.1 Approximating the Stochastic State 

Peterson and Anderson (1987), Peterson and Hartman (1989), Peterson (1991), 

and Hartman (1991) have shown that the "stochastic simulated annealing process in 

the Boltzmann machine can be replaced by a set of deterministic equations in the so-

called mean field theory approximation" (Peterson and Hartman, 1989, p. 1). The 

approximation can be developed by first considering the average activity of an 

isolated bipolar neuron whose instantaneous state can be calculated according to 

equation (2.11) (Muller and Reinhardt, 1990, p. 38). 

<s;> - (+I )f(h) + (-I )/(h) 

-[~-·:~] 
1 + e r (2.20) 

"'· ,., .. 
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In a network of multiple neurons the activity of an individual neuron is 

detennined by the synaptic potential applied to that neuron - see equation (2.4). The 

synaptic potential is determined by the instantaneous state of the other neurons in the 

network - not their average state. Because the function /(hi) is non-linear it is 

necessary to apply a naive mean..field theory approximation, as shown in equation 

(2.21) (Muller and Reinhardt, 1990, p. 38; Peterson and Hartman, 1989). 

' 
</(h,)> -->/(<h,>) •/( E w,,<s;>) 

j 

Using this approximation, the mean activity of a neuron in a network of 

multiple neurons can be computed using equation (2.22) (Miiller and Reinhardt, 

1990, p. 39; Peterson and Anderson, 1987). 

<s.>- </(+h.)>- </(-h.)> ' . ' 

----+ tanh j 

T 

- v . • 

(2.21) 

(2.22) 
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2.4.2 Validity of the Approximation 

The validity of this approximation depends upon the size of the network and the 

degree of connectivity. 13 For highly connected magnetic systems the approximation 

works very well as accuracy increases as system size grows (Peterson, 1991; Peterson 

and Hartman. 1989). Peterson and Anderson (1987) show that the approximation 

works well using as few as ten neurons with limited connectivity. 

2.4.3 Approximating the Boltzmann Machine Algorithm 

By averaging the co~occurrence statistics collected at equilibrium through the 

use of the mean field approximation there is no need to let the network stochastically 

find equilibrium. The learning algorithm then takes the form: 

1. Environmental patterns are clamped and the network is annealed to its final 

temperature when mean activity is given by: 

(2.23) 

13 The greatest number of synapses connected lO any individual r1emon in the network. 
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2. The output neurons are unclamped, and the network again annealed to its 

final temperature: 

(2.24) 

3. Synaptic weight updating occurs as for the Boltzmann Machine learning 

algorithm- see equation (2.19). 

2.4.4 Advantages of the Approximation 

The mean field approximation provides two advantages over the original Boltzmann 

Machine: 

1. During annealing the Boltzmann Machine requires many learning sweeps 

to bring the network to thennal equilibrium at each temperature step. The 

'· 
mean field approximation only requires one sweep at each temperature to 

generate an average behaviour. 

2. At the final temperature co-occurrence statistics must be collected. To 

reduce the noise in the sample many update sweeps are necessary. The 

mean field approximation requires only a single sweep at the final 

temperature to generate this infonnation. 

This implies that the mean field approximation will learn, and operate, faster than the 

original Boltzmann Machine. 
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Section 3: Review of the Literature 

3.1 Introduction 

Two factors have limited investigation into the performance of the Boltzmann 

Machine (Hinton, 1990a, p. 21 ): 

34 

1. The time to reach thennal equilibrium is proportional to the size of the 

network. This means that it becomes costly to investigate large networks, 

i.e., real-world applications (Hartman, 1991). 

2. Estimating the gradient of G-space is difficult, and introduces 

complications. 

The first problem is inherent to the Boltzmann Machine and is solved by the mean 

field approximation (see 2.4). Controlling the traversal of G-space is complicated by 

several related problems (Hinton, 1990a, p. 21): 

• If thermal equilibrium is not reached a systematic error is introduced into 

the gradient, eventually causing the learning algorithm to fail. 
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• If insufficient samples are taken at equilibrium the estimated gradient will 

be noisy and inaccurate. 

• There is a tendency for hidden neurons to suicide. This takes two fonns, 

(a) the neurons remain inactive and contribute nothing to performance, or 

(b) the neurons become dominant and active despite the input vector 

(Derthick, 1984, p. 24). 

3.1.1 Resolving Problems with the Learning Algorithm 

These pf6blems can be solved empirically for small networks in simple problem 

domains. For larger domains these problems remain difficult "because it is very easy 

to violate the assumptions on which the mathematical results are based" (Hinton and 

Sejnowski, 1986, p. 17). The mean field approximation solves certain problems, 

however, the problem of suicidal behaviour and the difficulty of estimating the 

gradient remains. 
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3.1.2 Major Works Reviewed 

This review concentrates upon the work of Hinton et al. (1984); Derthick 

(1984); Hinton and Sejnowski (1986); Peterson and Anderson (1987); Peterson and 

Anderson (1988); Peterson and Hartman (1989); Peterson (1991); and Hartman 

(1991). The review discusses various solutions to the above problems, and presents 

perfonnance infonnation where relevant 

3.1.3 Measuring Network Performance 

Kibler and Langley (1988) suggest that a suitable performance measure for 

supervised learning algorithms "is the percentage of correctly classified instances11 

(p. 1). For the purposes of this study this measure of performance is expanded, 

consisting of two related items, (a) classification ability ~ the percentage of input 

patterns correctly classified, and (b) the number of operations required to reach this 

level of performance. The latter is important when comparing performance between 

different network models. 
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3.2 Performance of the Boltzmann Machine 

Hinton et al. (1984), and Hinton and Sejnowski (1986) document two 

experiments with the Boltzmann Machine. The Boltzmann Machine proved to he 

very slow and, although learning to solve the problems, often failed to reliably 

classify the input patterns. 

3.2.1 Encoding and Communicating Information 

37 

The encoder problem (Hinton et al., 1984) involves communicating binary 

patterns between two groups of visible neurons through an intervening hidden layer. 

No direct synaptic links exist between the two visible layers, thus the hidden layer 

acts as an infonnation bottleneck. The architecture used for the encoder problem is 

denoted by the fonn VrH-V2• A 4-2-4 encoder network has four input neurons, 

communicating their states to four output neurons through a layer of two hidden 

neurons. 
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The performance of the encoder experiments conducted by Hinton eta!. (1984) 

is shown in Table 3.1. Of note is the number of learning cycles needed to reach the 

required level of classification ability.14 This experiment was repeated by Peterson 

and Anderson (1987; see 3.3.1). 

Table 3.1. Performance of the Boltzmann Machine applied to the encoder problem. 

Architecture Number Successful Cycles to Learn' 
of Trials Trials' 

Mean Maximum 

4-2-4 250 100% 110 1810 

4-3-4 200 100% 270 1090 

8-3-8 20 40% 1570 ? 

40-10-40 I (?) ? 800-850 ? 

Note. Not all infonnation was provided in source- indicated by?. 
a Number of experiments that learnt to communicate through hidden layer. 
b A cycle is application of algorithm for all input patterns. 

3.2.2 The Relationship Between Two Input Vectors 

The shifter problem (Hinton et al., 1984) requires the network to identify the 

shift applied to a binary pattern. Training data includes two input patterns, the first 

is the original pattern, the second being the shifted version. Each pattern contains 

eight bits and the shifts allowed are left shift, right shift, and no shift. Three output 

• 

14 This level is not defined. 
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neurons allow the network to recognise the shift status. 

The experiment conducted by Hinton et al. (1984) showed that the Boltzmann 

Machine learnt this task extremely slowly, requiring 9,000 learning cycles to learn 

the correct mapping. After learning, the network did not classify patterns well. "If 

the number of on units in V, [original pattern] is 1, 2, 3, 4, 5, 6, 7 the pen:entage of 

correctly recognized [sic] shifts is 50%, 71%, 81%, 86%, 89%, 82%, 66% 

respectively" (Hinton et al., 1984, p. 21). This level of performance could not be 

improved by extending the learning time. Hinton et al. (1984, p. 23) speculate that 

the long learning time is due to the network having to learn a small subset of the 219 

possible input patterns. 

3.3 Reaching Equilibrium Quickly 

The Boltzmann Machine is 11computationally expensive since correlations [co-

occurrences] of stochastically fluctuating quantities <S!i,? have to be measured" 

(Muller and Reinhardt, 1990, p. 124). These quantities are measured after extensive 

annealing, when the network has reached thermal equilibrium. Muller and Reinhardt 

(1990, p. 124) suggest two solutions to this problem: 
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1. Removing the need for the annealing stage by running the network at zero 

temperature. The network is then deterministic, like the Hopfield network, 

offering a learning algorithm for hidden neurons as its only advantage. 

The network would then suffer the same problems as the Hopfield network 

(see 2.2.4). 

2. Constructing a mean field approximation, thus capturing the 

thermodynamic properties - and advantages - of the Boltzmann Machine. 

Peterson and Anderson (1987) report substantial improvements in learning 

speed over the Boltzmann Machine when applied to a variety of problems. 

3.3.1 Performance of the Mean Field Approximation 

Peterson and Anderson ( 1987) detail a series of three experiments comparing 

the perfonnance of the Boltzmann Machine to its mean field approximation: 

1. Learning to compute the binary exclusive-Or function, see 4.4.3 for 

discussion of these results. 

2. The encoder problem, using a 4-2-4 and 4-3-4 network (see 3.2.1). 

3. Detecting the symmetry of an input vector. 
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The encoder problem. Peterson and Anderson (1987, p. 17) observe that the 

mean field approximation provides a factor 3 improvement in learning speed over the 

Boltzmann Machine wh~n perfonnance is measured as the percentage of the input 

space completely learnt. For the 4-3-4 network this improvement is reduced to 2.5. 

See Table 3.1 for the performance of the Boltzmann Machine. 

Dell!cting symmetry. The networks were trained to detect the symmetry of a six 

bit binary pattern. After learning continued for 500 learning cycles the mean field 

approximation showed considerable advantages over the Boltzmann Machine. Most 

significant was the number of successful experiments conducted; 90% of the 

simulations using the mean field approximation were successful in learning the input 

space, only 20% of the Boltzmann Machine simulations succeeded. 

3.4 Controlling the Learning Process 

There are few gnides to setting the parameters that guide the Boltzmann 

Machine learning algorithm. The report by Derthick (1984) is an exception, 

presenting some important analytical results. In the discussion below it is assumed 

that the approaches are valid for the Boltzmann Machine and mean field 

approximation. 
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3.4.1 The Learning Rate 

The learning rate controls the rate of change in the synaptic couplings, thus it 

dictates the rate of movement through G-space. There are two approaches to setting 

the learning rate: 

I. Manhattan Updating - using discrete weight adjustments in the direction of 

the slope (Peterson and Hartman, 1989). The direction of movement is the 

sign of the difference between the two co-occurrence samples, shown in 

equation (3.1). 

(3.1) 

2. Movement proportional to the difference between the co-occurrence 

samples. This is simply the learning rule shown in equation (2.19) 

Manhattan updating. Manhattan updating is used by Hinton et al. (1984) and 

Hinton and Sejnowski (1986) in the encoder problem discussed above (see 3.2.1). 

This is not a steepest descent technique (Derthick, 1984, p. 6) but does offer 

significant advantages. Derthick ( 1984, p. 18) suggests that Manhattan updating 

leads "to wider searching when the gradient is small and there is nothing obvious to 

do". However, this may lead the network a long way from the origin thus causing 

unbounded growth of the synaptic weights. The only way of preventing this 

occurring is to set very small values forK, thus red•·.cing the speed of learning. 
·j·~ , 
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It [Manhattan updating] can make significant progress on dimensions 

where G changes gently without taking very large divergent steps on 

dimensions where G falls rapidly and then rises again. There is no 

suitable value for the e ... in such cases. Any value large enough to 

allow progress along the gently sloping floor of a ravine will cause 

divergent oscillations up and down the steep sides of the ravine. (Hinton 

et al., 1984, p. 9) 
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This situation may occur regularly, but describing G-space is a computationally 

intensive task, especiaJ' when the network is large. This implies that controlling the 

learning rate requires explicit domain knowledge discovered through experiment and 

parameter adjustment. Peterson (1991, p. ll) concludes that Manhattan updating is 

useful when many training patterns are presented to the network before adjusting the 

weights. Deciding how many examples are "many", and what values forK are 

suitable, reduces the worth of this heuristic. 

----------------------------------~~ 
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Steepest descent wilh e. The use of E is a steepest descent technique and uses 

not only information about the direction of the slope in G-space, but also the 

magnitude of the slope. As indicated above, this technique may not be suitable for 

all G-spaces and, as with Manhattan updating, the magnitude of the change must still 

be chosen. Derthick (1984, p. 2) shows that the conservative estimate of the size of 

e: shown in equation (3.2) wat always result in descent; twice this distance can be 

moved without ascending. 

(3.2) 

Estimating the gradient of G-Space. The slope of G-space can be estimated 

using the relationship shown in equation (3.3) (Derthick, 1984, p. 27). 

Unfortunately, the estimated gradient resulting from equation (3.2) and (3.3) 

decreases in proportion to network size, implying slower learning for large networks. 

(3.3) 

3.4.2 The Annealing Schedule 

The annealing schedule must provide (a) sufficient time for the network to reach 

thermal equilibrium, and (b) enough thermal noise for the network to escape local 

minima. Xu and Oja (1990, p. I) suggest three problems that are often faced when 

implementing large networks: 
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1. The time spent at each temperature step is inadequate for the network to 

reach thermal equilibrium. MUller and Reinhardt (1990, p. 106) suggest 

that an infmite amount of time is required to preserve equilibrium. 

However, the learning algorithm is relatively insensitive to noise and can 

accommodate fluctuations in equilibrium. 

2. The speed of annealing is too fast. 
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3. The final temperature used to gather co-occurrence samples is not low 

enough to guarantee global equilibrium, as required by equation (2.13). 

The learning algorithm is not adversely affected by the first two problems 

if the final temperature is reasonable and the network can reach 

equilibrium before collecting co-occurrence statistics (Peterson and 

Hartman, 1989, p. 5). 

Determining the speed of annealing. Peterson and Hartman (1989, p. 5) 

suggest two methods for determining the annealing schedule: 

I. A fixed, geometrically determined schedule. Each temperature is a 

percentage of the preceding value. 

2. Calculating the local energy for a given synapse and setting the initial 

temperature to this value; the final temperature step is one third of this 

value. The schedule is calculated every learning cycle. 
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Both methods provide satisfactory performance (Peterson and Hartman, 1989) and 

provide faster learning than the theoretical optimum. Wassermann (1989) suggests 

that the rate of temperature reduction must be in proportion to the reciprocal 

logarithm of the current time step. This would result in greatly extended learoing 

times. 
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Determining a suitable final temperature. As shown in Figure 3.1 the 

activation functions become detenninistic when the temperature approaches zero - see 

equation (2.14). Campbell, Sherrington, and Wong (1989, p. 9) conclude that there 

are no stable states above a temperature of one, below one there are always minima 

and stable states. 
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For the mean field approximation the critical temperature, m temperature at 

which the network effectively ceases to be detenninistic, occurs at approximately 

T • 0.46 (Miiller and Reinhardt, 1990, p. 43). Empirical investigations (Miiller and 

Reinhard~ 1990; Peterson and Anderson, 1987) have detennined that the final 

temperature should be slightly above this value. Figure 3.1 indicates that the critical 

temperature for the Boltzmann Machine is lower (approximately T • 0.23) than that . 

of the mean field approximation. 
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Figure 3.1. Activation probabilities as a function of temperature, showing phase 
transition point for the mean field approximation and the Boltzmann Machine 
equivalent. 
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3.4.3 Binary and Bipolar Representation 

Each neuron can take output states in [0,1] or [-1,1], where the Boltzmann 

Machine uses discrete states and the mean field approximation uses continuous states. 

Hopfield and Tank (1985) criticise the use of discrete states because it "ignores the 

very important use that can made of analog variables to represent probabilities, 

expectation values, or the superposition of many possibilities" (p. 11). 

The literature reviewed generally disregards the issue of representation. 

Pewrson and Anderson (1987), and Peterson and Hartman (1989) provide the only 

genuine discussion of the effects of representation choice. 

Advantages of bipolar representation. The use of bipolar representation means 

that correlation statistics, not co-occurrence statistics, drive the learning algorithm -

see equation (2.17). Instead of reinforcing synapses between neurons that are 

simultaneously active, correlation measurements provide reinforcement between 

neurons with identical states. This doubles the learning rate E, achieving faster 

learning (Peterson and Anderson, 1987; Peterson and Harnnan, 1989). Whether this 

leads to oscillatory behaviour is unknown (see 3.4.1). 
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Advantages of binary representation. Peterson and Anderson (1987) suggest 

that the use of a bipolar representation is detrimental to the network's generalisation 

properties. This results from a lack of reinforcement when the neuron states are 

undecided (s;(t) • 0), using binary representation undecided states are approximately 

0.5, resulting in some learning. There are, however, no definitive studies on the use 

of these two representations. 

3.4.4 Controlling Weight Growth 

There is no boundary condition in the learning algorithm preventing the creation 

of large positive or negative weights, eventually leading to the suicidal behaviour 

discussed by Denhick (Denhick, 1984; Hinton et al., 1984; see 3.1 and 3.4.1). 

Energy landscapes containing these weights have large barriers that may prevent the 

network reaching equilibrium, thus causing the learning algorithm to fail. 

Decaying weights towards zero. Hinton et al. ( 1984, p. 22) claims that 

continually decaying all weights towards zero using a small ( • 0.0005) constant will 

prevent unbounded weight growth. This ensures that all synapses not contributing to 

network perfonnance tend towards having a zero weight. A possible disadvantage of 

this method is the bounding of the search of G-space to a small area around the 

origin -where there are only shallow minima (Denhick, 1984). 
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Synaptic clipping. MUller and Reinhardt (1990, p. 98) discuss synaptic 

clipping, which is used extensively for Hopfield networl<s. The most extreme form 

of clipping is to identify synaptic connections only by their sign, using a fixed and 

absolute magnitude. A more reasonable approach is to use a "bounding weight 

function" (Miiller and Reinhardt, 1990, p. 99) to control the magnitude of synaptic 

connections. When used with an associative memory there is a blurring effect as the 

number of stored patterns increases. This is in contrast to the dramatic capacity loss · 

exhibited by the Hopfield network (Miiller and Reinhardt, 1990, p. 99). Experiments 

using synaptic clipping and bnunding have not been conducted with either the 

Boltzmann Machine or the mean field approximation. 

Characteristics of networks requiring weight control. Derthick (1984, p. 24) 

suggests that networks containing more hidden than visible neurons will tend to 

create large weights. Hartman (1991) supports this conclusion, drawing evidence 

from investigations into memory systems requiring large numbers of hidden neurons. 

This behaviour arises because most of the synaptic interaction is between hidden 

neurons, not between visible and hidden neurons. Peterson and Anderson (1987), 

Petersnn and Hartman (1989), and Hartman (1991) make extensive use of Manhattan 

updating (see 3.4.1) to control weight growth during their investigations. 
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3.4.5 The Network Architecture 

The issue of network architecture receives surprisingly little coverage in the 

literature reviewed. Lee (1991) discusses the i'!'portance of an:hitectural decisions: 

Because an artificial neural network can only change the interconnection 

[synaptic] weights, and its structure has to remain fixed, the network 

designer faces the difficult task of figuring out the optimum structure of 

the network, thus placing a very tight limitation on its adaptability. (p. 2) 

There are two architectural decisions to be made: 

(1) The number, and function, of input, output, and hidden neurons. 

(2) The connectivity of the neurons. 
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Each decision affects the generality, the knowledge representation, and the biological 

plausibility of the model. Unfortuna[ely, these decisions remain domain dependent, 

forcing the network designer to encode global a priori knowledge, thus biasing the 

solution method. 

Determining network size. The size of the network is crucial to the 

performance of the learning algorithm. Unfortunately there is little guidance in the 

literature, yet it "is important to have a minimal architecture for a given problem" 

(Peterson and Hartman, 1989, p. 16). 
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By not using the smallest possible architecture two problems arise: 

1. As the proportion of hidden neurons to visible neurons rises there is an 

increased tendency for suicidal or dominant behaviour (see 3.4.3). 

2. Learning times are proportional to the network size, networks larger than 

necessary waste computational resources. 

Judging the optimal size network is a matter of experience and empirical evidence. 
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Determining network connectivity. The encoder and shifter problems described 

by Hinton et al. (1984) make use of specialist connection architectures. The same 

architectures are used to produce satisfactory performance by Peterson and Anderson 

(1987); Peterson and Hartman (1989); Peterson (1991); and Hartman (1991). The 

networks contain no connections between hidden neurons or between input and 

output neurons. This is in contradiction to the definition of the Boltzmann Machine 

as a fully connected network (see 2.2.5), although it is an important point that the 

learning algorithm is flexible enough to train various architectures. 

Hartman (1991, p. 8) proves empirically that the presence of cc.nnections 

between hidden neurons reduces the pattern storage capacity of a mean field 

approximation network used as an associative memory. This is similar to the 

behaviour described by Derthick (1984; see 3.4.4). 
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The lack of connections between hidden neurons leads to a layering effect with 

hidden neurons distinguished from visible neurons. This type of architecture, shown 

in Figure 3.2, leads to hidden neurons acting as grandmother neurons, each specific 

to a particular input pattern. The idea of a grandmother neuron is based upon a 

biological theory that is probably incorrect (MUller and Reinhardt, 1990, p. 56). 

Network knowledge is no longer distributed, and performance will degrade when 

grandmother neurons are damaged. 

•••• Input Layer 

Hidden Layer 

•••• Output Layer 

Figure 3.2. Layered architecture resulting from removal of hidden-hidden 
synapses. 
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Synaptic dilution and exhaustion. Synaptic dilution has been used with 

Hopfield networks. It is done by randomly eliminating a percentage of the synaptic 

connections (MUller and Reinhardt, 1990). Unlike the purposeful removal discussed 

above this degrades the perfonnance of the network, although only marginally, and it 

is biologically plausible (MUller and Reinhardt, 1990, p. 100). Death by exhaustion 

occurs when synaptic connections are removed if they fall below a certain threshold 

level. MUller and Reinhardt (1990, p. 100) report that, when used with synaptic 

clipping, network performance is enhanced. Neither of these methods have been 

investigated for the Boltzmann Machine learning algorithm. 

3.5 Comparisons with Back Propagation 

The Boltzmann Machine cannot compete for efficiency with the back 

propagation network. The mean field approximation is competitive and, although 

slower in serial simulations, has tremendous advantages as an asynchronous machine. 

Peterson and Hartman (1989), and Peterson (1991), document two comparative 

studies: 

(I) Mirror symmetty - the networks were required to find the axis of 

symmetry of a line in a NxN input matrix. 
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(2) Statistical pattern recognition - the networks were required to classify 

patterns generated by two overlapping Gaussian functions in eight 

dimensions. 

Their conclusions were as follows (Peterson and Hartman, 1989, p. 9): 

• Generalisation capabilities of both paradigms were similar although the 

mean field approximation performed better using bipolar representation. 

The mean field approximation was less sensitive to the representation 

choice than the back propagation network. 

• The mean field approximation learns in fewer learning cycles than back 

propagation; with Manhattan updating the learning times were similar. 

• For the statistical pattern recognition problem both networks classified 

well, approaching the theoretical maximum in approximately the same 

number of learning cycles. 

Peterson (1991) summarises the comparison as follows (p. 27): 

For serial simulations MFI' [mean field approximation] takes a factor 2~5 

longer time than BP [back propagation] to learn. The real gain is in 

real-time applications when custom-made hardware is required. 
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Section 4: Experimental Procedures 

4J Introduction 

The perfonnance of the Boltzmann Machine learning algorithm was investigated 

by applying it to learning the exclusive-Or function. Although a 'mall problem, it 

exhibits higher-order constraints requiring the use of hidden neurons, and it has been 

extensively studied in the literature. 

The learning algorithm was used to train a Boltzmann Machine and its mean 

field approximarlon. An implementation" of a feed-forward, back propagarlon 

network was also applied to learning the task, allowing for a comparison between the 

three models, and between the two learning paradigms. 

15 The implementation used was PERBOOL, a software simulation provided by Mflller and 
Reinhardt (1991). Details of lhe simulation can be found in this reference. 
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4.2 Experimental Hypotheses 

Direction for the testing process was provided by the following hypotheses: 

1. The Boltzmann Machine learns slower, i.e., requires more learning cycles, 

than its mean field approximation to learn an input function. 

2. Increasing the number of hidden neurons beyond the minimum required to 

solve the problem, i.e., introducing redundancy, will reduce the number of 

learning cycles required to learn the exclusive-Or function. 

3. Increasing the learning mte beyond the value suggested by Derthick (1984; 

see 3.4.1) will reduce the number of learning cycles required to learn the 

exclusive-Or; it also will lead to instability during learning as shown by 

the deviation from average learning times and the dynamic behaviour of 

the network. 

4. Dynamically reducing the learning rate will lead to snwother learning for 

the Boltzmann Machine, reducing the influence of thermal and stochastic 

noise when the network has learnt to solve the exclusive-Or function. 

5. A serial implementation of the mean field approximation compares well 

with the feed-forward back propagation network - in terms of learning 

quality and the amount of processing power required to learn the input 

space. 
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4.3 The Simulations 

4.3.1 Software Implementation 

1\vo software machines were constructed to produce the perfonnance 

infonnation required· to examine the hypotheses listed above (see 4.2). One machine 

simulated the mean field approximation, the other the Boltzmann Machine. Both 

implementations supported a fully connected recurrent network allowing either 

discrete or continuous neurons, and simulating simple asynchronous updating.16 

4.3.2 External Variables 

The external environment influenced the network simulations through, (a) the 

method that the training data was presented to the network, and (b) the random 

number generator required to support a simulated network.17 There are two 

methods of presenting training information to the network:18 

I. One-shot training - updating of the synaptic weights occurs after 

presentation of each training pair. This does not affect the ability of the 

network to learn but reduces storage capacity (Hinton et al., 1984, p. 24). 

16 The implementations, written in c, use serial updating to ensure that all neurons are updated at 
least once each learning sweep. This is not required by the learning algorithm. 

17 Several implemenrations of the Boltzmann Machine learning a!goritlun are hardware based, 
using electrical noise to provide the random number generation. 

18 Noisy training, discussed in Hinton et al. (1984, p.9), is another method of presentation
designed to prevent synaptic weights growing exponentially. As it introduces additional noise it has a 
negative influence upon learning perfonnance. 
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2. Averaged learning - updating of the synaptic weights occurs after all 

training patterns have been presented to the network. The change in 

synaptic weights is then based upon the influence of all training patterns. 

This is used in the software implementations. 

Gemrating random numbers. Random number generation is required by both 

simulations and has a serious influence upon perfonnance. The Boltzmann Machine 

requires random number generation to provide values against which the activation 

probabilities provided by equation (2.11) are compared. The mean field 

approximation contains no thermal noise and requires stimulation of the synaptic 

weights to begin searching G-space. To control the influence of the random number 

generator ten random number seQuences were selected and used for all 

experiments.19 For the mean field approximation the initial weights were set to 

very small values - a range of -1 0"2 
- + 1 o-2 was used. 

u The random number generator used is more properly called a pseudo-random number generator. 
To produce a sequence of numbers the generator requires a seed value; ten seeds were used throughout 
the experiments. 
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4.3.3 Internal Variables 

The annealing schedule. The annealing schedule shown in Table 4.1 was used 

for all experiments. This schedule is similar to the one used by Peterson and 

Anderson (1987, p. 13), however, the Boltzmann Machine is taken to a lower fmal 

temperature to account for the critical temperature shown in Figure 3.1. 

Table 4.1. Annealing schedule used to learn the exclusive-Or for the Boltzmann 
Machine and the mean field approximation. 

Boltzmann Machine Mean-field Theory Approximation 

Temperature Number of Updates Temperature Number of Updates 

30 1 30 I 

25 2 25 I 

20 4 20 I 

15 8 15 I 

10 8 10 I 

5 8 5 I 

I 16 I 1 

0.4 20' 0.5 I 

• Network was assumed to be in thermal equilibrium and all sweeps were used 
to collect co-occurrence information. 
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Altering the learning rates (e). The initial learning rate was estimated using 

Derthick's equation (Derthick, 1984, p. 2; see 3.4.1). A range of multipliers, shown 

in Table 4.2, were applied to this rate for use with the simulations. 

Table 4.2. Values used for the learning rate (E) during the simulations. 

Multiple of Derthick Estimate 

Network Size No.Synapses lx 2x 3x 

Four Neurons 7 0.76 1.51 2.27 

Five Neurons 12 0.58 1.15 1.73 

Six Neurons 18 0.47 0.97 1.46 

Representation of neuron states. Preliminary experiments indicated that the 

use of bipolar states produced local minima that caused extreme problems during 

learning.20 This behaviour was not observed when a binary representation was 

used. Although it may negatively influence learning times the binary representation 

was used for the simulations (see 3.4.3). 

:w This problem is apparent in the failure mte of the back-propagation simulation, which was 
restricted to using a bipolar representation. 
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The range of synaptic weights. For a small problem, such as learning the 

exclusive-Or function, there is no need for mechanisms to prevent the growth of 

large weights (see 3.4.4). The synaptic matrix was simulated as an array of 80 bit 

floating point numbers, giving the weights a large rang• of possible values." 

Network size and connectivity. The minimum network req.uired to solve the 
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exclusive-Or function contains one hidden neuron, as shown in Figure 4.1. Networks 

containing two and three hidden neurons were also used to discover if redundancy 

improved learning perfonmance, shown in Figure 4.2 and Figure 4.3. Note that tlte 

network architectures are fully connected, having connectivities of three, four, and 

five respectively. 22 

21 The c data type long double was used, providing 10 bytes for representation. 

22 The bias neuron is not counted in regard to network connectivity, but it is used to estimate fhe 
optimal learning rate. 
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Figure 4.1. Network architecture for 
simulations using four neurons. 

Figure 4.2. Network architecture for 
simulations using five neurons. 

Figure 4.3. Network architecture for 
simulations using six neurons. 
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4.4 The Exclusive-Or Function 

The exclusive-Or function is a special case of the parity function.23 Feed-

forward networks, like back propagation, suffer two problems when solving parity 

functions (Minsky and Papert, 1969): 

1. The smallest number of synaptic connections to any neuron in the network, 

i.e., its connectivity, must be at least equal to the number of external 

inputs (p. 56). This implies that the connectivity required to solve 

problems in large domains is essentially unbounded. As biological neural 

networks have up to 1 OS synapses leading into a single neuron (Schwartz, 

1988, p. 3) this problem may be unavoidable. 

2. Synaptic weights grow exponentially with the size of the input set (Minsky 

and Papert, 1969, p. 153). As the synaptic weights encode the knowledge 

of the network a large problem domain would require exponential storage 

and accuracy. This is in contrast to biological systems that use average 

activation rates to transmit information, relying upon one or two significant 

figures of accuracy (Sejnowski, 1989, p. 1). 

These limitations are important when considering the experimental hypotheses and 

the data produced by the simulations. A complete examination of these issues was 

beyond the scope of this study. 

D The parity function is formally defined as follows (Minsky and Papert, 1969, p56): 
'l'eAROY (X) = r IX I is an odd number l 

It is a binary function that returns a true vaJue when the number of active _inputs is odd. 
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4.4.1 The Exclusive-Or Truth-table 

The exclusive-Or function can be characterised by the truth-table shown in 

Table 4.3. The function outputs an active value only when the number of active 

inputs is odd, i.e., it is the simplest example of the parity function. 

Table 4.3. Truth-table for the boolean exclusive-Or function. 

Input1• Input, Input1 ll. Input, 

I I 0 

I 0 I 

0 I I 

0 0 0 

a 1 = active, 0 = inactive 
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The connectivity limitation of feed-fmward networks. as formulated by Minsky 

and Papert (1969), requires that at least one neuron in the network accesses the truth 

value of all inputs24
• This requirement is avoided by introducing hidden neurons, 

resulting in a reduction in the difficulty of the problem (Hinton et a!., 1984, p. 27): 

24 This is in contradiction to neural networks using only local infonnation. 
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One can view the set of states of the visible units on which the machine is 

trained as a single, very high-order, disjunctive constraint. To perfonn 

search efficiently, the machine must reduce this constraint to a large set of 

first and second-order constraints, and to do this it must typically use extra 

"hidden" units that are not mentioned in the task specification. 

Learning the exclusive-Or function is hard because the truth table does not reveal 

how these hidden neurons should be used. 

4.4.2 Advantages 
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The exclusive-Or function is interesting because the ability to learn it suggests 

an ability to learn the more general parity function. The exclusive-Or function is 

especially useful for exploring the properties of a learning algorithm because: 

• The algorithm can be trained upon the entire truth table. 

• The required network is small enough for an empirical analysis of the 

behaviour of the learning algorithm. 

• Few external variables can affect the algorithm and they are easily 

controlled. 

The advantages provided by the exclusive-Or function are unique for a problem of 

this size. The ability to solve the exclusive-Or is important when examining the 

efficiency of a connectionist learning algorithm. 
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4.4.3 Previous Investigations 

Peterson and Anderson ( 1987) describe the use of the Boltzmann Machine 

learning algorithm to learn the exclusive-Or function. The experiments used a 

layered architecture (see 3.4.5) with four neurons in the hidden layer.25 The 

experiments indicate that the mean field approximation learns "asymptotically better" 

than the Boltzmann Machine (p. 14 ). The mean field approximation learnt at least 

10-15% faster than the Boltzmann Machine. Similar results for the Boltzmann 

Machine are reported by MUller and Reinhardt (1990, p. 124). 

25 This is a clear example of the use of grandmother neurons - each hidden neuron detects a 
single set of input values. 
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4.5 Generating Performance Information 

4.5.1 Data Produced by the Simulations 

Testing Ike success of the algorithm. The simulations were given 250 learning 

cycles to learn the exclusive-Or function. After each learning cycle the network was 

presented with the entire input set and allowed to generate its response. The network 

was considered successful if it was able to correctly identify all four input patterns. 

Due to the stochastic nature of the Boltzmann Machine this test was repeated 30 

times every learning cycle, whereas the mean field approximation was only tested 20 

times. The number of errors made in each test was recorded. 

Observing the movement of the network. The magnitude of the individual 

synaptic changes made after each learning cycle was recorded. This data indicates 

the general movement of the network through G-space. Synaptic change data is 

more infonnative during learning than observations of movement through E-space, as 

used by Tsang and Bellard (1990; see 2.2.3).26 

Data from the back-propagation simulations. As little direct control was 

available with the back propagation implementation, only the number of learning 

26 Changes 10 the synaptic weighiS depend upon the learning rate and the co-occurrence 
information, as shown in equation (2.19). The data used by Tsang and Bellard (1990) is generaled by 
equation (2.8), which depends upon the magnitude of w;i; as learning continues this value naturally 
becomes larger (more negative). 



An Analysis of the Boltzmann Machine 69 

cycles required to learn the problem was observed. A learning rate (11) of 0.05, a 

momentum factor (a) of 0.9, and a steepness parameter <Pl of 1.0, were found to be 

the most suitable values for controlling the learning (Rumelhart, Hinton, and 

Williams, 1984). 

4.5.2 Comparing the Performance of the Networks 

A measure of the learning speed of a connectionist model is the number of 

synaptic connections updated (<) before the problem is learnt. This is approximately 

equal to the number of operations required (Peten;on, 1991, p. 13). For the networks 

used in the experiments the calculations are shown in equation (4.1). 

tMFTtBM- 2NLn, ( 2n11 + n,no +~n;n11 +nino + n(J- 1) 

'tap • 2NL [nil + no + nh( no + ni) J 

Where: n, = number of temperature steps used for annealing 

n;, n11 , n0 = number of input, hidden, and output neurons respectively 

NL = number of learning cycles required to learn problem 

(4.1) 

This value can be used to calculate R, the perfonnance ratio between two different 

network models (Peten;on, 1991, p. 13). The value of <oM should be multiplied by 

the number of update sweeps made at each temperature step, see Table 4.1. 
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Section 5: Results of the Simulations 

5.1 Introduction 

Five experiments generated the data to test the hypotheses detailed in the 

previous section, see 4.2: 
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1. The Boltzmann Machine and the mean field approximation were simulated 

using four neurons and a learning rate calculated as described by Derthick 

(1984; see 4.3.3). 

2. Experiment one was repeated using one, two, and three hidden neurons 

(see 4.3.3). 

3. Experiment two was repeated for three multiples of the original learning 

rate. 

4. The Boltzmann Machine simulations were repeated; every ten learning 

cycles the learning rate was reduced by 10%. 

5. The back propagation network was simulated 30 times using two hidden 

neurons and the parameter values previously described (see 4.5). 
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5.2 Experiment One - Speed of Learning 

Table 5.1. Number of cycles required by the Boltzmann Machine and mean field 
approximation using four neurons and single multiple estimated gradient. 

Network Average Deviation Min. Max. Number 
Learning of 

Time• Failures 

Boltzmann 96.8 46.1 57 205 2 

Mean Field 59.2 2.9 55 63 0 

• The Boltzmann Machine was considered to have learnt the problem 
when it reached 90% classification ability. The mean field approximation 
was required to reach I 00%. 
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Of particular note in Table 5.1 is (a) the average ti;ne required to learn the input 

space, and (b) the minimum time required by an individual simulation. Note that the 

Boltzmann Machine is a stochastic device and has a small level of thermal noise 

preventing it from reaching 100% classification ability (see 3.4.2). 
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5.3 Experiment Two - Increasing Redundancy 
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Figure 5.1. Average number of learning cycles required to learn the exclusiveMOr 
function for the Boltzmann Machine and the mean-field theory approximation using 
three different sizes of network. 

It can clearly be seen in Figure 5.1 that both networks respond positively to 

increased redundancy. It is interesting to note that the J~arning speed of the 

Boltzmann machine is continuing to improve whereas the mean field approximation 

seems to reach a plateau at 40 learning cycles. Further experimentation is required 

to determine if this trend continues, and to determine at what level the internal noise 

begins to dominate the training patterns. leading to suicidal behaviour (see 3.1). 
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5.4 Experiment Three - Increasing the Learning Rate 
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Figure 5.2. Average number of learning cycles required to learn exclusive-Or 
function for the mean field approximation for different learning rates, network sizes, 
and showing deviation from mean perfonnance. 

Figure 5.2 shows the behaviour of the mean field approximation using three 

different network sizes and three multiples of the estimated gradient. The mean field 

theory approximation decreases in speed and stability as the learning rate is 

increased, although increasing the level of redundancy improves this behaviour. The 

number of simulations that failed to learn the problem also increased. 
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Figure 5.3. Average number of learning cycles required to learn exclusive-Or 
function for the Boltzmann Machine for different learning rates, network sizes, and 
showing deviation from mean perfonnance. 

The Boltzmann Machine simulations, see Figure 5.3, show an opposite trend to 

the mean field approximation. Learning speed and stability increases as the learning 

rate is increased. Tripling the learning rate does not seem to improve performance, 

in fact it leads to a slowing in learning speed. 
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5.5 Experiment Four- Dynamic Learning Rate 
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Figure 5.4. Behaviour of the Boltzmann Machine using five neurons and a fixed 
learning rate. 

Figure 5.4 and Figure 5.5 show the magnitude of synaptic changes and the 

average levels of classification ability for sets of network simulations. Figure 5.4 

shows the result of holding the learning rate constant throughout training. Figure 5.5 

is the result of dynamically reducing this rate (see 5.1). The results of dynantically 

reducing the learning rate are also summarised in Figure 5.6. 
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Figure 5.5. Behaviour of the Boltzmann Machine using five neurons and 
dynamically reducing the learning rate after discrete time intervals. 

5.6 Experiment Five - Back Propagation 
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The back propagation network learnt the exclusive-Or function in an average of 

53.6 learning cycles, with a standard deviation of 27.8 cycles. The number of 

failures was high - 40 simulations were required to collect 30 successful experiments. 
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Figure 5.6. Average number of learning cycles required to learn exclusive-Or 
function for the Boltzmann Machine using dynamically reducing learning rates, two 
network sizes, and showing deviation from mean performance. 

5.7 Interpretation of the Data 

5.7.1 Peiformance of the Learning Algorithm 

Experiment one and two clearly show that the mean field approximation learns 

in approximately half the number of learning cycles required by the Boltzmann 

Machine. When the number of sweeps made at each temperature is taken into 

consideration the mean field approximation learns over 100 times faster than the 

Boltzmann Machine. 
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Table 5.2 summarises the performance ratios for the experiments. In all cases 

the mean field approximation learnt faster than the Boltzmann Machine. 

Table 5.2. Performance ratios for the Boltzmann Machine compared to the mean
field theory approximation for different network sizes. 

Performance Ratio (R) 

Network Size Without Annealing With Annealing 
Schedule Schedule 

Four Neurons 1.6 109.6 

Five Neurons 2.2 148.8 

Six Neurons 1.8 121.9 

5.7.2 Increasing Network Size 

The results shown in Figure 5.1 indicate that the speed of learning improves 

when redundant neurons are introduced. Whether this trend continues is not clear 

from the available data, however the Boltzmann Machine simulations appear to be 

continuing to improve with each level of redundancy. Figure 5.3 indicates that the 

stability of the mean field approximation is improving as additional neurons are 

added to the network. This improvement is to be expected as the approximation 

becomes increasingly accurate (see 2.4.2). 
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5.7.3 Increasing the Learning Rate 

Figure 5.3 shows that the learning speed of the mean field approximation does 

not improve when the learning rate is increased. This result is surprising, although 

the increased instability indicated by the clearly separated standard deviations, was 

expected. There are two possible reasons for these results, (a) the estimation of G

space used to approximate the learning was not valid for the mean field 

approximation, or (b) the approximation is too inaccurate for small networks to 

remain stable when the learning rate is increased. 

The results shown in Figure 5.2 for the Boltzmann Machine are as expected, 

• although the behaviour of network stability is difficult to decipher. The estimate of 

the gradient improves in accuracy as network size increases, this is indicated in 

Figure 5.2 by the linear reduction in the deviation from average learning times for 

IX the estimate. The estimate can clearly be doubled, reducing the number of cycles 

required by half, however, stability seems to be decreasing. This trend is also shown 

when the rate is tripled. 

5.7.4 Dynamically Reducing the Learning Rate 

The difference between Figure 5.4 and Figure 5.5 indicates that dynamically 

reducing the learning rate does lead to smoother learning. Surprisingly, the average 

time required to reach a level of 90% was not significantly affected by reducing the 

learning rate, although the final level of classification ability was reduced. 
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Changes to the synaptic matrix are greatly reduced in later learning cycles and, 

consequently, there are no significant changes in classification perfonnance in later 

learning cycles. The result of adjusting the learning rate is to restrict the influence of 

stochastic and sampling noise - thus making learning stable. The standard deviation 

shown in Figure 5.6 indicates that there was no significant change in the stability of 

the algorithm. 

5.7.5 Comparisons with Back Propagation 

Comparison of the average number of lc~arning cycles required by the mean 

field approximation using five neurons to tha1 of the back propagation experiment 

produces a performance ratio of 8.2 (see 4.5.2). This indicates that the back 

propagation network learns a factor 8 faster than the mean field approximation. 

However, the following points must be considered: 

1. The mean field approximation was fully connected, perfonnance studies 

conducted by Peterson (1991, p. 27) indicate that performance ratios of 

between two and five can be achieved using restricted connectivity. 

2. The mean field theory approximation is naturally asynchronous and is 

easily transferred to a parallel implementation - the back propagation 

network is serial and would not gain the same benefits from such an 

implementation. 
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3. The annealing schedule used for the simulations was primarily selected to 

ensure that the Boltzmann Machine obtained thermal equilibrium. The 

mean field approximation may not require such extensive annealing, hence 

reducing the number of synaptic updates required and improving the 

perfonnance ratio. 

4. The reliability of the mean field approximation is higher than the back 

propagation network - no experiments failed unless the learning rate was 

increased beyond the original estimate. 

It can be concluded that the mean field approximation learns more slowly than back 

propagation, but would be competitive in a suitable environment. 

5.8 Conclusions 

The experimental hypothesis described in the previous section (see 4.2) have proven 

to be correct, with few exceptions. The following conclusions can be drawn from 

the results of the simulations: 

I. The mean field approximation learns 2-100 times faster than the 

Boltzmann Machine. 

2. Redundancy in the hidden neurons makes the learning task easier. 

------------ -
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3. Increasing the learning rate beyond the estimated gradient improves the 

perfonnance of the Boltzmann Machine but damages the performance of 

the mean field approximation. 
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4. Reducing the learning rate during learning leads to very stable learning by 

reducing the effects of stochastic and sampling noise. 

5. The back propagation network learns up to 8 times faster than the mean 

field approximation but it is very unstable. 



An Analysis of the Boltzmann Machine 83 

Section 6: Summary 

6.1 Generalisation of Results 

6.1.1 Objectives 

The original hypothesis (see 1.3.1) was successfully tested and shown to be a 

reasonable generalisation. The Boltzmann Machine learning algorithm, when used to 

train the mean field approximation, is efficient, reliable, and flexible. 

Efficiency. The mean field approximation learns at least twice as fast as the 

Boltzmann .Machine (see Table 5.2). This is a conservative estimate that is lower 

than the difference reported by Peterson and Anderson (1987, see 4.4.3). However, 

this ratio ignores the number of update sweeps required by the Boltzmann Machine 

and the measure used by Peterson and Anderson (1987) is not fully defined. 

The mean field approximation learns slower than back propagation by a factor 

of eight (see 5.7 .5). This is a pessimistic estimate as the annealing schedule used in 

the experiments allowed the Boltzmann Machine to reach thennal equilibrium. 

Given the advantages provided by the mean field approximation the addi tiona! 

computational cost might be considered negligible. 
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Reliability. The algorithm is extremely stable when applied to the mean field 

approximation. The deviation from average learning times and the number of failed 

simulations under normal circumstances was very low (see 5.7.1). Stability improved 

as the approximation became more accurate, i.e., as the size of the network was 

increased. The results of Hartman (1991) suggests that stability remains high as the 

network becomes larger. 

Fkxibility. The networks used in the simulations were fully connected, while 

the results discussed in the literature were for layered architectures. Obviously the 

algorithm can train at least two different architectures. The use of synaptic dilution 

techniques for Hopfield networks (see 3.4.5) suggests that the algorithm could train 

networks of any connectivity. 

Unfortunately, the mean field approximation seems very sensitive to the 

learning rate (see 5.7.3). As the network becomes larger the approximation becomes 

more accurate, and sensitivity to the learning rate diminishes. The cause of this 

behaviour cannot be determined due to the limited nature of this study. 

6.1.2 Generalised Conclusions 

The following conclusions can be made because of this study: 

1. The Boltzmann Machine is more accurate and robust than the mean field 

approximation but is too slow for large applications. 
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2. The Boltzmann Machine learning algorithm is competitive with back 

propagation when used with the mean field approximation. 

3. The estimate of the learning rate is crucial to ~he perfonnance of the 

learning algorithm, especially for the mean field approximation. 

4. The learning algorithm can train layered, or fully connected, networks. 

6.1.3 Implications 

The learning rate and the architecture are crucial to the perfonnance of the 

learning algorithm. Reliable estimates are available for the learning rate, however 

the architecture requires the network designer to encode a priori knowledge. The 

range of architectures that can be trained indicates that the algorithm might work 

with a structural adaption algorithm. 

6.2 Limitations of the Study 

The results of the study are limited because: 

• Only supervised learning was considered. 

• Only a simple function from a single problem domain, i.e., the parity 

problem, was examined. 
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• The exclusive~Or function, while being indicative of an ability to solve the 

more general parity problem, is small and the issues of scalability cannot 

be fully examined. 

• The results have not been compared to alternative models of machine 

learning. 

• The experimental hypotheses were limited by the computation time 

required by the Boltzmann Machine. 

6.3 Future Research Directions 

6.3.1 Structural Adoption 

It is well known that biological neural systems use synaptic and structural 

adaption to respond to the environment. Most connectio,tist learning algorithms, 

including the Boltzmann Machine learning algorithm, are limite.d to synaptic 

adjustment. The domain independence, structural flexibility, and learning speed, 

shown by the mean field approximation suggests that it is a potential candidate for 

use as a structurally adaptive neural network. 

6.3.2 Scalability 

The mean field approximation has been implemented for a small problem 

domain; to find out if the results of Minsky and Papert (1969; see 4.4) are 
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unavoidable requires the implementation of much larger problems. Peterson and 

Anderson (1988) explore the use of the approximation for large optimisation 

problems and suggest that the convergence time, i.e., the number of learning cycles 

required, increases linearly with the size of the network (p. 4). Hartman (1991) has 

explored the use of the mean field approximation for content-addressable memories, 

showing that the capacity of the network scales linearly with the number of hidden 

neurons (p. 15). 

6.3.3 Parameter Settings 

Heuristics for specifyirlg the learning rate, the annealing schedule, and the 

representation used for neuron states should be developed because they have such a 

major role in the performance of the algorithm. The results of the study show that 

the mean field approximation is very sensitive to the learning rate. Although an 

estimate using Derthick's fonnula can be used it is obviously not optimal for the 

network. 

6.3.4 Synaptic Modelling 

The techniques of synaptic clipping, dilution, and death by exhaustion should be 

applied to the mean field approximation. These techniques have been used with 

Hopfield networks (see 3.4.5), indicating that all recurrent networks may benefit fmm 

their use. These techniques may work well when used with structural adaption. 
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6.4 Conclusions 

The study has been successful. The original hypothesis has proven to be 

reasonable, and some heuristics have been described for specifying the domain 

dependent parameters of the algorithm. These results should make it easier to apply 

the Boltzmann Machine learning algorithm to real problems. The fle.ibility and 

genericity of the algorithm makes it a more attractive option than back propagation, 

and it may have additional advantages for a structurally adaptive paradigm. 
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