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Abstract 

This thesis explores two aspects of optimisation in neural network research. 

The question of how to find the optimal feed-forward neural network architec-

ture for learning a given binary classification is addressed. The so-called construc-

tive approach is reviewed whereby intermediate, hidden, units are built as required 

for the particular problem. Current constructive algorithms are compared, and 

three new methods are introduced. One of these, the Upstart algorithm, is shown 

to outperform all other constructive algorithms of this type. 

This work led on to the ancillary problem of finding a satisfactory procedure for 

changing the weight values of an individual unit in a network. The new thermal 

perceptron rule is described and is shown to compare favorably with its competi-

tors. Finally the spectrum of possible learning rules is surveyed. 

Neurobiologically inspired algorithms for mapping between spaces of different 

dimensions are applied to a classic optimisation problem, the Travelling Salesman 

Problem. Two new methods are described that can tackle the general symmetric 

form of the TSP, thus overcoming the restriction on other neural network algo-

rithms to the geometric case. 
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Prologue 

Introduction 

This thesis describes two types of connectionist or neural network algorithm whose 

common thread is optimisation. The first part is concerned with the design of opti-

mal neural networks for learning binary classifications; the second with algorithms 

for solving a classic combinatorial optimisation problem. 

Learning by Construction 

In the first and major part of the work, attention is focussed on the design of 

optimal feed-forward networks to learn binary classifications. One of the draw-

backs of backpropagation, the best known algorithm for training neural nets, is 

that it does not supply any criteria to specify the architecture of the network to 

which it is applied. This brings both technical and fundamental problems. In 

particular, if the network is given too many intermediate units between input 

and output (hidden units), it will learn only slowly; if it is given too few, then it 

may not learn at all. Such problems are alleviated by the constructive approach: 

units are added during the learning process as and when required. One way in 

which this can be done is to restrict the representations that the network is a!- 

1 



PROLOGUE 	 2 

lowed to use to solve the problem. Two algorithms based on this approach are 

presented, both of which build a purely disjunctive representation. The Whittling 

algorithm constructs a single layer of hidden units, and the Splitting algorithm 

builds a binary tree architecture. For all constructive algorithms the learning rule 

applied to each unit must result in convergence of the weights to stable values. 

The perceptron learning rule does not have this property; the Pocket algorithm 

does, and hence the Splitting and Whittling algorithms are compared with other 

constructive algorithms using the Pocket algorithm to find the weights. 

An altogether different method is to construct new units explicitly to correct the 

errors made by existing units. This idea gives rise to a simple recursive method 

for constructing networks, called the Upstart algorithm. This method has been 

evaluated on a number of different classification problems and is found to out-

perform existing constructive algorithms. 

An unexpected result was the development of a new rule for training individual 

units, called the "thermal perceptron". This rule is simple and local in operation, 

yet is found to be more efficient than the Pocket algorithm for problems of reason-

able size. This in turn led to the examination of the general form of perceptron-like 

rules. A broad class of possible rules is parameterised and simulation studies are 

used to explore the parameter space. 

The Travelling Salesman Problem 

The second topic is the adaptation of neurobiologically inspired parallel algo-

rithms to provide near-optimal solutions to a class of intractable computational 

problems as exemplified by the Travelling Salesman Problem. This problem can 

be viewed as a mapping problem, that of associating each city with a position 

in a tour. The success of the elastic net approach (Durbin & Willshaw 1987) 
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shows that for problems in which the cities lie in a Euclidean space, mappings 

which preserve neighbourhood relationships are appropriate. The major motiva-

tion for the work presented here was to relax the Euclidean restriction. This can 

be done by considering the mapping as between two layers of units in a neural 

network. Two algorithms are developed for this purpose. One is an extension 

of the elastic net algorithm; the second is based on the neural activity model 

(Wilishaw & von der Malsburg 1976), an early proposal for the way in which 

neighbourhood-preserving mappings form in the brain. Both methods use very 

simple learning rules, are intrinsically parallel and find short tours for problems 

in which the inter-city distances are reasonably close to those that would arise 

from a Euclidean metric. In both cases, the performance degrades substantially 

and consistently for highly non-Euclidean problems, suggesting a limitation in the 

general approach. 

Plan of the Thesis 

The first three chapters are concerned with constructive algorithms for learning 

binary classifications. Chapter 1 reviews other constructive algorithms, Chapter 

2 discusses the Upstart algorithm and Chapter 3 investigates learning rules for 

training the weights of an individual unit in the network. 

The next two chapters are concerned with the Travelling Salesman Problem. 

Chapter 4 reviews the problem itself, and the original neural network approach 

to its solution. Chapter 5 is about algorithms based on the topographic mapping 

approach. 

In the epilogue, general characteristics linking neural networks and optimisation 

are discussed. 



Part I 

Pattern Classification by 

Perceptrons 



Chapter 1 

Constructive neural network 

algorithms 

1.1 Overview 

Distinguishing one pattern from another is among the most fundamental of op-

erations for any system which responds to an environment. Learning to do so is 

among the most important of abilities. Connectionism has developed novel ways 

of thinking about both these problems, and has enjoyed a certain amount of suc-

cess at solving them. However there are problems with the way these connectionist 

networks learn: the following chapters are about ways these limitations might be 

overcome by novel learning strategies. 

5 



CHAPTER 1. CONSTRUCTIVE NEURAL NETWORK ALGORITHMS 6 

1.2 Introduction 

Suppose that a given set of patterns consists of two disjoint subsets or classes of 

patterns, A and B, and that some way of discriminating between patterns in A 

and those in B is required. In general this could be done by any system capable 

of assuming at least two states, with sufficient discriminatory power to respond 

to a pattern from A by going into one state, and to a pattern from B by going 

into another state. There are many such systems. In the simplest of all, each 

pattern is stored explicitly, together with a tag denoting the set it came from. 

This look-up table forms a trivial representation of the classification: no use is 

made of commonalities or other relationships between patterns in the same class, 

and the information required to distinguish one class from another is no less than 

that required to store all the patterns of one class explicitly. 

Instead, here the interest is in the discriminatory capabilities of very simple el-

ements known as Linear Threshold Units or perceptrons (Rosenblatt 1958), the 

terms being used synonymously throughout this thesis. These units are connected 

by weights to the inputs across which patterns occur and, in response to a given 

pattern, go into one of two output states given by 

11 (0 N) if4>O 
output 

= 1 o (or') otherwise 

N 

where 	= 	>JW,,  + 0 
1=1 

(1.1) 

The W's are the weights, and , is the value of the i1h  input in the given pattern. 

0 is called the bias, and is commonly treated as just another weight, typically the 

zeroth, from an input which is 1 in every pattern. In other words a perceptron 

is ON if the sum 
N 

E W4 

is positive and OFF otherwise. Note the use of a 'hard' thresholding operation; 
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although there are good reasons for eventually generalising to real-valued smooth 

transfer functions as opposed to step functions, the natural place to start under-

standing discrimination is with the binary decisions, and this restriction applies 

to all that follows. 

There are three main reasons for the recent excitement in networks of such ele-

ments. 

Firstly, they superficially resemble neurons. Real (biological) neurons consist of a 

cell body, with input and output processes called dendrites and axon respectively, 

both of which may be highly branched tree-like structures extending well away 

from the cell body and making contact with many other neurons. These contacts, 

called synapses, enable one neuron to influence another. Individual neurons are 

rarely seen to control others directly; generally a neuron's activity is a result of 

the cooperative action of many contacts from many other neurons. The 'resting' 

or inactive state of a neuron is one in which its cell membrane is electrically 

polarised, this being characterised by a negative cellular potential. If however the 

potential at the cell body exceeds a critical value, a wave of depolarisation sweeps 

rapidly from the cell body along the axon. This wave, called an action potential, 

is an 'all-or-nothing' response, continuing undiminished throughout the entire 

axonal tree. The cell body may reach the necessary trigger potential as a result of 

activity by other cells synapsing with its dendritic tree. Action potentials arriving 

at individual synapses have the effect of causing momentary depolarisations or 

hyperpolarisations (excitation and inhibition respectively) at the cell body, and 

the net result of many synapses is roughly cumulative. The degree to which a 

given synapse is able to affect the potential at the cell body is called the synaptic 

efficacy or strength. There is strong evidence that it is this variable which is altered 

during at least some forms of learning (Bliss and Lomo 1973). The accumulation 

of the effects of many synapses and subsequent triggering of an all-or-nothing 

response is closely reflected in the operation of a perceptron. The hope is that 
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seeking parallels with the brain will have benefits for 'artificial' (ie. non-biological) 

information processing, and conversely that studying the computational properties 

of such simplified yet somewhat 'brain-like' networks can enhance understanding 

of the brain itself. 

Secondly, perceptrons represent an archetypal form of parallelism, because they 

take account of (albeit in a very simple way) many factors and then make a 

decision, based on the total effect of all the factors. This simple summation of 

factors is an intrinsically parallel operation. 

A third and major reason for interest in perceptrons is their capacity to learn 

from examples. The existence of learning algorithms both for individual percep-

trons and for networks of many perceptrons or similar elements is one of their 

most attractive aspects. Such learning algorithms are the subject of this and the 

following two chapters. 

In all that follows, a 'pattern' is taken to mean a set of values defined over a 

finite number of nodes, these nodes possibly being perceptrons themselves. This 

is because whether simulating brain-like processing or implementing a classifier, 

the real interest is in networks of perceptrons, because individual units have very 

limited computational power. It is therefore important to be able to consider the 

inputs to a unit as the outputs of other units. Unless explicitly stated otherwise, 

Part I of this thesis is concerned exclusively with binary inputs and outputs. 

It is often instructive to treat the patterns to be learned across N inputs as points 

in an N dimensional hyperspace (often called 'pattern space'), with some of these 

points being from class A and others from class B. The classification problem is 

then to construct a decision surface such that all the class A patterns are separated 

from all the class B patterns. 



CHAPTER I. CONSTRUCTIVE NEURAL NETWORK ALGORITHMS 9 

1.2.1 Capabilities of single perceptrons 

It is now fairly well understood what perceptron-like elements can discriminate 

in principle. If patterns are pictured as points in a space, the decision boundary 

formed by a perceptron as defined in equation 1.1 is simply a hyperplane in this 

space'. Thus clearly a set of patterns consisting of two classes may or may not be 

correctly classifiable by a single perceptron depending on whether there exists a 

hyperplane which separates all of one class from all of the other. Pattern sets where 

this separation is possible are therefore referred to as being linearly separable. 

Single perceptrons can separate (ie. represent the classification of) any two classes 

which are linearly separable. If there are N inputs, then there are 2N  possible 

patterns, and 
22N 

 possible divisions (or dichotomies as they are called) of the 

space into two classes. However of these only a small subset, less than 2'/N!, 

are linearly separable (Lewis & Coates 1967). Moreover [Cover, 1965] proved 

that the expected number of random patterns in general position (that is, linearly 

independent patterns) classifiable by a perceptron is 2N. Clearly it is not the case 

that all dichotomies of interest are expected to be linearly separable. 

The Perceptron Learning Rule (PLR) 

On presentation of pattern , the Perceptron Learning Rule (Rosenblatt 1962), 

henceforth abbreviated to 'PLR', alters the weights in the following way 2 : 

(1.2) 

'If the bias is considered as another input, the picture is of patterns as points on a hyperplane 

displaced from the origin in an N +1 dimensional space, with the perceptron decision boundary 

being another hyperplane, passing through the origin. 
2 Notation: although here and elsewhere learning rules are stated with an index indicating the 

particular (Ith)  input, the rule is assumed to be implemented for all inputs (i=O..N) convergent 

on the unit, where the zeroth input is understood to provide the necessary bias. 
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where o" is the actual output given by equation 1.1, i" is the desired or target 

output, and a is a positive constant. The Perceptron Convergence Theorem (Block 

1962) states that if a set of weights exists for which the perceptron makes no errors, 

the PLR will converge on such a set after a finite number of pattern presentations. 

Hence perceptrons can learn any dichotomy that they can represent. However if 

no such solution exists, the weights are never stable since they change every time 

an error is made. 

The Pocket algorithm 

A simple extension of perceptron learning for non-separable problems called the 

Pocket algorithm (Gallant 1986a) suffices to make the PLR well behaved, in the 

sense that weights which minimise the number of errors can be found. The Pocket 

algorithm consists of applying the PLR with a randomly ordered presentation of 

patterns, but also keeping a copy of a second set of weights in addition to those 

currently used in the perceptron. These weights are just the set of perceptron 

weights which have lasted for the largest number of consecutive presentations 

without being changed. Since the patterns are presented in random order, good 

sets of weights will have a lower probability of being altered at each presentation, 

and therefore tend to remain unchanged for a longer time than sets of weights 

which engender more errors. This 'pocketed' set of weights will give the minimum 

possible number of errors with a probability approaching unity as the training 

time increases. That is, if a solution giving say p or fewer errors exists then 

the Pocket algorithm can be used to find it. Another attractive aspect is that 

continuously generated data may be used, instead of a training set of fixed size, 

and the unit learns continuously on-line, instead of updating its weights after 

each sweep through an entire training set. The amount of computation involved 

is little more than that of the perceptron alone. Note that if the patterns are 

indeed separable, then the Pocket algorithm's behaviour reduces to the usual 
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PLR. [Gallant 1986a] mentions that the Pocket algorithm out-performs a standard 

technique (Wilks method, in [SPSS-X 1984]), by about 20% for a set of 15 learning 

problems. 

The original algorithm improves the pocketed weights in an entirely stochastic 

fashion - there is nothing to prevent a good set of weights being overwritten by 

an occasional long run of successes involving bad weights. The so-called 'ratchet' 

version of the Pocket algorithm (Gallant 1989) is a simple way to ensure that 

every time the pocket weights change, they actually improve the number of errors 

made. We keep track of another quantity, which is the actual number of errors 

made using these weights if every pattern in the training set is applied to the 

input. Suppose that a certain set of perceptron weights has remained unchanged 

(that is, made no errors) over the last L presentations, and that L is greater than 

the previous longest run. In the simple Pocket algorithm these weights replace the 

existing pocket weights. In the Pocket algorithm with ratchet, at this point we 

run through all the patterns in the training set, and count the number of errors 

made if these weights are used. If this number is less than that associated with 

the existing pocket weights, we replace the pocket weights, the longest run length, 

and the least number of errors, with their new values. 

The algorithms discussed in this chapter rely upon the Pocket algorithm, both 

from the theoretical point of view to show how convergence can be guaranteed and 

in practice to generate the weights. The main strength of the Pocket algorithm is 

the fact that optimal weights are found with probability approaching unity, given 

sufficient training time. 

Unfortunately this method has a number of unattractive aspects. There is no 

bound known for the training time actually required to achieve a given level of 

performance, and this considerably weakens its theoretical appeal. Moreover, in 

practice the weights do not improve much beyond the first few cycles through the 
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training set. Although the weights so obtained are better than many other meth-

ods, they still tend to make many more errors than an 'optimal' set would make. 

To get better weights from the same procedure the 'ratchet' is required. However 

whereas the original doubling of the number of parameters (that is, the weights) 

does not greatly increase the computational cost, the search over all patterns re-

quired in the ratchet version does. In practice, learning over the same number 

of epochs takes orders of magnitude longer to implement using a ratchet than 

without when reasonably difficult problems are attempted. Finally, the Pocket 

algorithm doesn't indicate much of interest about pattern classification: the sim-

ple PLR algorithm operating on non-separable patterns apparently executes little 

more than a random walk around a bounded' region of weight-space, and the 

Pocket algorithm merely samples sequences of points in this weight space at ran-

dom. 

1.2.2 Networks of perceptrons 

Networks of interconnected perceptrons are much more powerful than individual 

ones. If an extra layer of 'hidden' perceptrons is inserted between input and 

output, any consistent' dichotomy can be represented, provided there are enough 

units in this layer. The extra power arises because, unlike the outputs, the hidden 

units do not have their states prescribed externally, but are 'free' to learn to 

respond to the input patterns in a useful way. This type of network is termed 

feed-forward because the activity of each unit depends only on activities of units 

in preceding layers. 

The problem of actually learning with success, generality and simplicity in such 

'This is a corollary to the Perceptron Cycling Theorem (Minsky & Papert 1969). 
'Obviously if the same pattern appears in both classes, no classifier can succeed since the set 

is inconsistent. 
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networks has been one of the major questions confronted by neural networks 

research. The central problem is that although the hidden units are known to be 

necessary in order to perform complex mappings from input to output, it is not 

obvious how best to train them. In 1969, at the end of their highly influential 

book Percept rons, Minsky and Papert wrote pessimistically of the extension to 

hidden layers: 

'The problem of extension is not merely technical. It is also strategic. 

The perceptron has shown itself worthy of study despite (and even 

because of!) its severe limitations. It has many features to attract at-

tention: its linearity; its intriguing learning theorem; its clear paradig-

matic simplicity as a kind of parallel computation. There is no reason 

to suppose that any of these virtues carry over to the many-layered 

version. Nevertheless, we consider it an important research problem 

to elucidate (or reject) our intuitive judgement that the extension is 

sterile. Perhaps some powerful convergence theorem will be discov-

ered, or some profound reason for the failure to produce an interesting 

'learning theorem' for the multilayered machine will be found.' 

To a large degree, the recent resurgence of interest in connectionist systems has 

been due to the development of learning procedures which enable hidden units to 

be trained (see for example [Rumelhart et al. 1986, chapters 7 and 8], [Hinton 

19871, [Lippmann 1987], [Cowan & Sharp 1987]). 

1.3 Networks with fixed architectures. 

The majority of research on neural network learning has concentrated on networks 

whose architecture is fixed before learning occurs. However learning with fixed 
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architectures poses two major problems: 

the representational problem. There is no a priori way of assessing how 

large a network has to be in order to solve a given task (in fact the problem 

of deciding whether a given structure can implement a given mapping has 

recently been shown to be NP-complete (Judd 1987; Blum & Rivest 1988)). 

Use of a fixed architecture therefore means adopting some network structure 

without knowing if it is adequate for the task. 

the learning problem. Even where a network structure is known to be ad-

equate for the given task, fixed networks cannot be guaranteed to achieve 

this level when using the usual learning methods. 

Methods such as backpropagation (Rumeihart, Hinton & Williams 1985; Werbos 

1974) work by attempting to minimise a single global quantity, namely some 

measure of total error made by the network. This measure can be interpreted as 

a surface (the error surface) in the space of free parameters (the weights), with 

the optimal configuration of weights giving the deepest minimum in this surface. 

Such a surface may have many other 'local' minima which are not as deep as 

the 'global' minimum sought. Methods such as backpropagation are described 

as gradient descent methods because they alter the weights so as to move down 

the surface by means of some estimate of the local gradient. The above problems 

may be seen as symptomatic of the pitfalls of this approach, which emphasises 

the view of learning as a search for the global minimum in a space of high but 

fixed dimensionality. The first problem is that even the global minimum may not 

be deep enough for the purposes of the network, and the second is that even if 

it is deep enough, any method which works by moving in small steps across this 

surface is prone to becoming 'stuck' in sub-optimal minima. 5  

5This prompted Minsky and Papert to conclude in the epilogue of the expanded edition of 

'Perceptrons' in 1988 that the quotation I gave above was still applicable. 
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1.4 Networks of minimal size 

While both the above problems may be avoidable if the size of the network is very 

much in excess of that needed in principle, there are good reasons for wanting to 

produce trained networks that are close to the minimal size required for a given 

task. This involves the notion that a network which solves a learning problem 

with as few as possible hidden units is capturing something important about the 

nature of the task. 

Firstly, a network which has in some sense extracted the essence of the task it has 

learned should be better at generalising to novel input patterns drawn from the 

same distribution. This is closely related to the issue of under- vs over-fitting of 

data sets, in that if a data set can be fitted perfectly well by a curve defined using 

a small number of parameters then this is likely to be a better estimator of the 

underlying distribution than a complicated curve. Therefore networks of near-

minimal size might be expected to exhibit better generalisation to novel inputs 

than much larger networks, where both succeed to the same degree in classifying 

the training set. This conjecture is supported by theoretical work such as [Denker, 

Schwartz et al. 1987] and [Baum & Haussler 1989], as well as simulation results 

as in [Le Cun 1989] and [Morgan & Bourlard 1990]. 

Secondly, a succinct representation of a problem is a desirable goal in itself. Part 

of what makes learning in networks so interesting is that they develop their own 

representations instead of merely implementing solutions imposed from outside. 

However if the nets are large the representations are often inscrutable and at worst 

trivial. An overly large network can simply form a look-up table representation, 

whereas a small network must take account of the relationships between patterns 

in order to succeed. 

One way to approach the problem of building optimal sized networks is to train 



CHAPTER 1. CONSTRUCTIVE NEURAL NETWORK ALGORITHMS 16 

very large networks and then remove weights or units wherever possible. Examples 

of this approach can be found in [Chauvin 1989], [Hanson & Pratt 1989], [Mozer 

& Smolensky 1989] and [Le Cun, Denker & Solla 19901, The opposite approach 

is adopted here, namely the building up of a representation from a single unit 

until the task can be solved. This gives rise to so-called constructive learning 

algorithms, which include the capacity to add units to the network as well as to 

train the weights. 

1.5 Building networks incrementally. 

The major appeal of constructive methods is the possibility of generating near-

minimal sized networks. In addition to this there may be other benefits. 

Firstly, learning may be a lot easier if not all the units are learning at the same 

time. This is related to the 'credit assignment problem' encountered in training 

networks with hidden layers. The problem of assigning credit arises because when 

an output is in error it is not clear which of the hidden units should alter its 

weights (and by how much), since potentially every one of them contributed to 

the error. Algorithms for learning in fixed architectures can always be recast in 

terms of heuristics regarding which units were 'to blame'. By learning in only 

a small number of the units at any one time this problem is avoided. The only 

substantial credit assignment is the local one involved in building weights for a 

given individual unit, which is not nearly as hard as deciding which weights in a 

whole network to change, in which direction, and by how much. 

Secondly, it is possible that learning in this way has significantly different prop- 
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erties from that in fixed networks". This may be especially true where the way in 

which weights are altered is intrinsically tied to the way in which units are added 

(rather than say, gradient descent of the usual kind but which merely adds another 

unit). Just as the view of learning as gradient descent of a surface has proved a 

valuable tool for thinking about learning in general, approaches which actually 

combine weight modifications with incorporation of.new units into networks may 

bring out similar insights. 

It is well to keep in mind a notable disadvantage of building networks incremen-

tally: the learning process cannot be as parallel or distributed as it is in a fixed 

architecture. At the very worst the learning can only proceed on one unit at a 

time, instead of on all units at once. 

1.6 Constructive algorithms for perceptrons 

There are two powerful design constraints on constructive algorithms for neural 

networks. 

1. They should provide a guarantee for convergence on the training set. This is 

important because the most immediately interesting quality of incremental 

methods is that they get better; the proof that this occurs is important 

whatever the procedure in question. The hope is that in this way one may 

avoid the kinds of 'fuzzy' convergence properties of algorithms based on 

gradient descent in fixed architectures. 

6 For example a network constructed from a single unit is bound to have some sort of hierar-

chical structure, and this will be reflected in the internal representation formed of the training 

data. 
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2. The algorithm should involve only local computations amongst connected 

units, both for altering weights and classifying input patterns. No other 

external 'control' should be required, apart from the provision of the target 

signal. 

Gradient descent methods can readily be adapted to be constructive, but this 

generally means there is no real guarantee of convergence or worst-case network 

size, and in many cases the second constraint is also stretched. Several workers 

have studied the effect of simply adding units to networks which learn by back-

propagation, the principle issues being when to add a unit, and how to initialise 

its weights (see for example [Honavar & Uhr 19881, [Kruschke 1988], [Ash 1989], 

[Thacker & Mayhew 1990], [Smith 1990]). There are also some gradient descent 

type algorithms which actually use the incremental nature of the algorithm in 

defining weight changes, notably [Sun, Lee & Chen 1988] where a tree of units 

is built based on an information theoretic measure, and the 'Cascade-correlation' 

algorithm (Fahiman & Lebiere 1990) where units are trained to maximise their 

correlation with the output unit's errors. This results in new units which are 

responsive to the errors made by the existing output. The output unit can then 

use the response of the new unit (by learning the appropriate connection weight) 

to decrease its own errors. - - 

There are other procedures, generally referred to as 'geometrical' methods (Rujan 

& Marchand 1989; Ramacher & Wesseling 1989; Hao et al. 1990), which are able 

to guarantee convergence by constructing units but are not implemented using 

local information transfer and hence cannot be said to learn in the usual neural 

network sense. 

There are two aspects to the convergence properties of all the constructive algo- 

rithms for perceptrons discussed here. When a new unit is added, it needs to be 

shown firstly that there exist weights associated with this unit which will result in 
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an improvement in the network's performance, and secondly that such weights can 

be learned by the unit. Although not always explicitly stated in the literature, the 

existence of useful weights depends on the following property of sets of patterns, 

which I will call convexity 7 . A set of patterns will be described as convex if and 

only if each pattern in the set can be separated by an appropriately positioned 

hyperplane from all the rest. Clearly this is true of binary patterns, since they 

are corners of a hypercube, and any such corner can be 'sliced off' from the rest 

of the hypercube. For instance the weights 

Wi 	 for i=1.JV 

N 
with a bias weight Wo  = - q + 1 

j=1 

define a perceptron which is ON for pattern 	and OFF for all other binary pat- 

terns. Another frequently used class of patterns which are convex arises when the 

individual inputs Ci  are real-valued and each pattern is normalised such that 

N 

Such patterns lie on the surface of a hypersphere in N-dimensional space. Any 

individual point on such a surface can be separated from the rest by a hyperplane 

which just touches the hypersphere at that point. Once it can be shown for a given 

algorithm that a useful set of weights does exist for each unit added, convergence 

to zero errors is guaranteed provided the weights algorithm finds such a set in the 

worst case. However this must be tempered by the fact that there is no known 

upper bound on the time required for the Pocket algorithm to find such a set 

of weights: the probabilistic guarantee of the Pocket algorithm is also true of an 

algorithm which simply assigns random weights to a perceptron. In practice either 

the Pocket algorithm must be run for a very long time to ensure weights which 

distinguish at least one pattern from the rest, or an explicit check can be made 

7A convex region is usually defined as one in which a line between any two points in the 

region is itself entirely within the region. This is similar but not identical to the definition used 

here for a set of points to be convex. 
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and training continued if the weights aren't good enough. The second option 

amounts to a 'hack', so the first was adopted in the simulations reported here. 

In the algorithms studied in the following chapters the networks are all feed-

forward, since the inclusion of feedback greatly complicates network analysis. The 

learning tasks are all simple two-way discriminations, and the units themselves 

are all simple perceptrons as defined in equation 1.1. In summary, the follow-

ing discussion concerns feed-forward networks of simple perceptrons, with a single 

output unit, learning convex patterns. 

1.6.1 The Tower algorithm 

[Gallant 1986b] introduces this method and describes its convergence property. 

[Nadal 19891 arrived at the same algorithm independently, as a special case of the 

Tiling algorithm (Mézard & Nadal 1989) which is discussed shortly 

The idea behind the Tower algorithm is very simple. Given a set of input patterns 

and target outputs, a unit (call it A) is generated with weights from each of the 

inputs. This unit is trained on all the patterns using the Pocket algorithm. If 

this unit succeeds the task is solved, but otherwise the Pocket algorithm produces 

a 'good' set of weights, given sufficient training. Then a second unit (say B) 

is generated which is also connected by weights to the inputs, but also has a 

weighted connection from A, and all weights are trained in the same way. If this 

unit doesn't succeed a third unit (C) is added, and so on as shown in figure 1.1. 

In the simple Tower algorithm each new unit receives weights from the inputs and 

only its immediate predecessor, while in a second version it has contact with all 

previous units. It is easy to show that each new unit can make at least one fewer 

errors on the training set than did any of its predecessors, in the case where the 

patterns are convex. For instance, if the first unit, A, is wrongly OFF for pattern 
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Tower architecture 

input connections 

weighted connection 

Figure 1.1: The architecture constructed by the Tower algorithm. In this case 

only the immediately previous unit is available to its successor. The output unit 

is simply the first such unit which makes no errors. 

the second unit, B, can have weights from the inputs which guarantee it is 

active for this pattern alone as shown above, if B also has a large weight from 

A, it behaves just as A does except it gets the pth  pattern correct. A similar 

argument applies to patterns for which A is wrongly ON. 

1.6.2 The Tiling algorithm 

Mézard and Nadal published this algorithm in 1989. The core idea of the Tiling 

algorithm is what they call faithfulness, which they observed to be a necessary 

property of each layer in a feed-forward network. The representation at a given 

layer is said to be faithful provided that both targets are never assigned to the same 

pattern at that layer. Thus unfaithfulness is simply the presence of contradictory 

data. Obviously if the raw input is contradictory it is impossible for any system 
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to get every pattern correct, since there is at least one pattern which tries to map 

to two different targets at once. Mézard and Nadal call the set of patterns at layer 

1 which cause the same pattern at layer 1 + 1 a class, so for the representation 

at that layer to be faithful each class must include patterns of only one target. 

Assuming consistency in the input patterns then, a neural network must maintain 

faithfulness at each successive layer. Mézard and Nadal's idea was to invent a 

learning algorithm which constructed units in such a way that 

• one unit in each layer makes fewer errors than a corresponding unit in the 

previous layer. 

• the set of patterns produced in each completed layer is faithful. 

This combination ensures eventual convergence to zero errors in a number of 

layers which is at most equal to the number of errors made by a single perceptron 

attempting to learn the task. 

In the Tiling algorithm two different types of unit are required: master units and 

ancillary units. Each new layer has a single master unit, whose role is to make 

fewer errors than the master unit in the preceding layer, and as many ancillary 

units as are required to ensure faithfulness of the representations formed in that 

layer, as shown in figure 1.2. The layer 1 = 0 is taken to be the input layer. 

Assuming the representation at layer 1 is faithful then, layer I + 1 is constructed 

as follows: 

Step 1. Generate a master unit M1+1  in the new layer. Train the weights to M1+1 

from all the units in 1 using the Pocket algorithm. It is easy to show that 

M1+1 can make fewer errors than M, (1 > 1), provided the patterns in layer 

1 are faithful. if 1 = 0 the number of errors is just that made by a single 

perceptron trying to learn all the input patterns. 



CHAPTER I. CONSTRUCTIVE NEURAL NETWORK ALGORITHMS 23 

Step 2. Examine the representations of input patterns as they appear in layer 

1+1 (initially there are just two, master ON and master OFF): if any class at 

this layer contains patterns of both targets 8  the representation is unfaithful. 

In this case the largest offending class is assigned to a new ancillary unit. 

This ancillary unit tries to learn only on this restricted set of patterns, using 

the Pocket algorithm. 

Step 2 is repeated until the representation at layer 1 + 1 is faithful. In this way 

the two conditions above are satisfied for each successive layer, so eventually there 

will be a layer in which the master unit makes no errors. This is then taken to be 

the output unit and the problem is solved. 

In fact the conditions can be satisfied without any ancillary units at all, provided 

each master unit is connected directly to the (assumed faithful) inputs (Nadal 

1989), and to the preceding master unit as before. This then is an alternative 

view of the Tower algorithm. 

1.6.3 A different approach to this problem. 

The problem of how to train hidden units is usually thought of as how to get 

the output units to give the correct answer. However, for an output unit to 

succeed, the internal or 'hidden' representations of the input patterns must be of 

the right form. Hence the search for the weights which solve the problem can be 

recast in terms of a search for appropriate hidden representations. This view is 

the basis for various variants and extensions of backpropagation learning (see for 

example [Le Cun 1985], [Plaut et al. 1986], [Rohwer 1990], [Krogh et al. 1990]) 

and also perceptron learning (Grossman et al. 1989, Nabutovsky et al. 1990) 

'Note that this step is not truly local at all since a class is defined using the activities of all 

units in a layer. However it can easily be made so, as will be shown in section 1.6.5. 
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Tiling architecture 

Input 

layer 1 

layer 2 

•.. S 

S 
0 
S 

output 

Figure 1.2: The architecture constructed by the Tiling algorithm. Master units 

are labelled M and ancillary units Al, A2 and so on. The output unit is the first 

master unit which makes no errors. 
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for networks with fixed architectures. Indeed, one view of the Tiling algorithm is 

that it is a method for constructing progressively more useful and compact hidden 

representations. 

We can take this idea one step further: the output unit can only succeed if the 

patterns it sees are actually linearly separable, so the hidden layer has a 'role', 

namely to produce a separable representation of the input patterns. There are 

many dichotomies which are linearly separable (even though in proportion to the 

total number of dichotomies this number is tiny). There is also a large degree of 

redundancy among hidden representations. For example [Denker, Schwartz et al. 

19871 point to an 'ordering' symmetry and a 'polarity' symmetry. The ordering 

symmetry arises because the ordering of hidden units within a layer is arbitrary, so 

any given representation across H hidden units is one of a family of H! essentially 

equivalent representations. The polarity symmetry refers to the fact that if all 

the weights associated with a given hidden unit are multiplied by minus one and 

the output's bias is adjusted appropriately the effect on the output is unchanged, 

giving a further 2 11 -fold symmetry. Moreover, for perceptron units the magnitude 

of the weights vector of any given unit is irrelevant since it is only the sign of 0 

which determines the output response. 

Since a great many different internal representations can be used to solve the 

same problem, one way to get at the problem of learning in networks is to remove 

part of this degeneracy. This involves biasing the network towards one or other 

particular representation instead of allowing it freedom to choose between lots of 

essentially similar solutions. The simplest way to do this is to preassign some 

linearly separable representation and get the hidden layer to produce it. One of 

the simplest hidden representations is where all the patterns in one class map onto 

a single pattern in the hidden layer, and none of the patterns in the other class 

map onto this same pattern. This is a separable representation since a perceptron 

(in this case the output unit) can always respond to this binary pattern and no 
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other. That is, we aim to group all the patterns of one target class together 

in the space of patterns across hidden units ('H-space'), and merely exclude the 

other class from this pattern. The particular pattern chosen here is the origin; 

the object is to map all target 0 input patterns onto the origin in H-space, and 

all the target 1 patterns elsewhere. What is needed is a set of hidden units which 

-are all OFF for any target 0 pattern in the learning set, but at least one of which 

is ON for every target 1 pattern. Therefore two properties are essential: 

Property 1. that each relevant hidden unit should get at least one target 1 

pattern correct, but be OFF for every pattern which is target 0. In the space 

of patterns this amounts to positioning a hyperplane so that it 'slices off' a 

portion of the hypercube which has only target 1 patterns on it. 

Property 2. that each target ON pattern activates at least one such hidden unit. 

Note that in this representation the polarity symmetry is removed. The output 

effectively does a logical OR operation over the outputs of the hidden units, so 

this might be termed 'disjunctive'. From now on it is just referred to as the 

OR-representation. Particular appeals are firstly that the link with boolean logic 

is apparent, secondly that this is in a sense the 'natural' representation if the 

training set is itself composed of the conjunction of several features, and thirdly 

that it is simple enough to suggest constructive algorithms. 

Two new constructive algorithms will now be discussed that incrementally build 

such OR representations. The first generates this in a single hidden layer in a 

manner reminiscent of 'whittling' off one class from another, and the second uses 

hidden units in a tree structure to recursively split up the training set until a set 

of hidden units is arrived at which form the OR representation. 
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1.6.4 Producing OR by Whittling 

Consider the following trivial incremental network method. We have an input 

layer, an initially empty hidden layer and a single output unit with no connections. 

Now a pattern is presented. If the target is 0, there's no change since the output 

was OF F anyway. If the target is 1, a hidden unit is generated and given weights 

such that it is ON for this pattern alone, and its weight to the output is set 

positive. The output unit's bias is zero, so this pattern now turns the output ON 

and corrects the error. This process is repeated for all patterns in the training 

set. Obviously every new unit corrects one error without causing any others to 

occur, so the hidden layer is effectively a look-up table of the target ON patterns, 

and its size is just the number of such patterns in the training set. 

In the above, no use is made of the relationships amongst the patterns themselves. 

To do better, each hidden unit should attempt to get at the very least one target 

1 pattern correct, and preferably many more than one where this is possible. This 

can be seen as an optimisation problem: minimise the number of incorrect target 

l's ( a 'soft' constraint) subject to ensuring that the number of incorrect target 

0's is zero (a 'hard' constraint). One way to produce these units by using the 

Pocket algorithm is as follows. 

Start. Begin with the training set consisting of all the patterns. 

Step 1. Use the pocket algorithm to produce a good set of weights for this train-

ing set. If the weights make no errors on this set then STOP. 

Step 2. From the training set of this unit, remove the target ON patterns which 

give lowest (ie. most negative) 0. A good way to do this is to remove some 

fixed proportion (typically 10-50%) of the target ON patterns. Then repeat 

Step 1. 
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In this way the training set is eventually made linearly separable solely by remov-

ing target 1 patterns, so the final set of weights gets every target 0 pattern correct 

and at least one pattern correctly ON (since in the worst case the last target 1 

pattern is certainly separable from all the other patterns). One drawback is the 

relatively poor performance of the Pocket algorithm, and hence the possibility 

that the set of weights which are found will actually turn the perceptron OFF for 

every pattern. This happens because if there are relatively few target 1 patterns, 

the number of errors made by never being active is relatively small, hence these 

weights are likely to be pocketed. Obviously a unit which is off for every pattern 

is of no use. Another drawback is that the removal of patterns from the training 

set in this way effectively requires that the unit have access to a listing of the 

training set complete with 'tags' denoting patterns to be ignored'. 

Having successfully produced such a unit satisfying the first property given above, 

the construction of units one by one deals with the second property, provided each 

new unit ignores any pattern which activates any of the earlier hidden units. In 

terms of signals passing between units, whenever a completed unit is ON it broad-

casts a 'don't learn' signal to the new cell which is being trained. Algorithmically 

then, the patterns that turn a unit ON are removed from the training set of all fu-

ture hidden units. The next unit then follows the same steps, slicing off a further 

subset of the (remaining) target 1 patterns, and removing them from the training 

set of any later units. This process may be continued until no target 1 patterns 

remain, in which case the layer of added hidden units forms an OR representa-

tion, and an output unit can easily succeed at the task simply by having positive 

weights incident from each hidden unit. In effect we've 'whittled' all the target 1 

patterns off the hypercube, leaving all the target 0 patterns behind. 

'Both of these drawbacks can be dealt with by a simple variant of perceptron learning, 

described in the final section of chapter 3. 
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1.6.5 Producing OR by Splitting. 

This section presents another method for developing an OR representation amongst 

hidden units. There is no need to be restricted to a single hidden layer with no 

connections except to input and output: it's just that there must be some set of 

hidden units for which the above two conditions hold. How this set is arrived at 

is another matter, and could involve other hidden units. In this case it is achieved 

by constructing a tree of units. 

There are three stages involved in the development of this method. The first re-

quirement is that the hidden representation must be faithful. This is dealt with by 

a very simple algorithm for dividing up the training set which produces a binary 

tree of constructed units. Secondly, the representation must ultimately be sepa-

rable, in this case by forming OR. This is readily achieved with no extra training 

from the existing faithful representation if a control structure is assumed which 

allows only a selected part of the tree to respond. Thirdly the network should 

work without any such external 'controller' looking on. This is achievable using 

greater connectivity between hidden units, and at some cost in either algorithmic 

complexity or the size of training set each unit must learn. 

Producing a faithful representation. 

The preliminary aim is to split the training set up into smaller and smaller regions 

until each region contains patterns of either target 1 or 0 but not both. The 

boundaries of regions in pattern space are of course hyperplanes corresponding to 

hidden units, and the positions of these may be learned by the Pocket algorithm 

or other perceptron learning method which converges to satisfactory weights. 

The first unit, say A, is trained for some amount of time on all the patterns, and 
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effectively splits the training set {S} into two subsets: 

{SA} for which A is ON 

{S) where A is OFF 

Note that {SA} now tends to contain a higher proportion of target 1 patterns 

to the total set size than did the original set {S}, while {S-} contains a lower 

proportion. Sets consisting entirely of patterns of one target will be referred to 

as homogeneous. Therefore {S-} is homogeneous if A is never wrongly OFF, and 

conversely { SA} is homogeneous if A is never wrongly ON. 

The weights from the input into A are then frozen. If {S) is not homogeneous, 

a new unit, B is generated. Similarly if {SA} is not homogeneous, a unit C is 

included. For the purposes of training, B sees only the training set {S} and 

C sees {SA}, but otherwise they are trained just as unit A was. This training 

scheme is summarised in figure 1.3. Notably the information that flows from A 

to the new units is a 'learn now' (or alternatively a 'don't learn now' to the other 

branch) signal, but the targets are the same as for A. 

After training, unit B effectively splits {S} into two subsets: {S B } and {S-A-}. 

B may now generate two daughter units of its own to deal with these subsets if 

they are not already homogeneous. This splitting process continues in a recursive 

fashion while any existing subset contains patterns of both targets, producing a 

binary tree of dependencies. if a given unit sees a training set which is separable, 

then the resulting split consists of two homogeneous subsets and no further split-

ting occurs. Hence such 'terminal' units make no errors on the patterns they are 

trained on. To show that the recursive splitting terminates, it is enough to show 

that each split produces two non-empty subsets. Because each of these contains 

fewer patterns than the original, there will eventually be pattern sets which are 

separable. Clearly the perceptron must not be ON for all patterns it is trained on, 

nor oFF; that is, the hyperplane defined by the perceptron's weights must actually 

cut through the convex hull formed by the patterns. Consider a perceptron with 
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Using a perceptron to split the training set 

input connections 

1j control signals 	 {S} 

Figure 1.3: Recursive element for producing a faithful representation by splitting 

up the training set. The signal which is passed from A to its daughters is 'learn 

now'. 

weights such that it responds OFF to every pattern in its training set. The number 

of errors it makes is just the number of patterns with target 1. However provided 

the patterns are convex, the perceptron could instead respond ON to (at least) a 

single target 1 pattern, and thereby make one fewer errors than before. Given that 

the Pocket algorithm can be used to find an optimal set of weights with arbitrary 

probability, the training set will always be (eventually) split in a useful way. Hence 

the tree will eventually terminate. Note that when the tree terminates, there is 

no pattern of activity amongst the hidden units which is engendered by input 

patterns of both targets, since this would prompt further splitting. Hence when 

the branching terminates the accompanying hidden representation is guaranteed 

to be faithful. 

The above method can be used to build the ancillary units in the Tiling algo-

rithm instead of the method used by Mézard and Nadal which requires non-local 

information to train these units. In the Tiling algorithm at this stage a new layer 

is constructed, however as the next section shows, no further units are actually 
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required. Hence in the Tiling algorithm all the layers of hidden units beyond the 

first are in fact expendable. 

Using a 'go-left, go-right' controller. 

The representation formed by the above method is faithful but not necessarily 

separable, because units which were never even trained on a given input pattern 

may still respond to it. Hence there is no way to ascertain which active units are 

the significant ones. However, the same units can be used to produce a separable 

representation by means of a 'react now' signal which propagates down the tree 

in an identical way to the 'learn now' signal used during construction of the tree. 

If upon inputting a learned pattern /i, unit A is ON, then we know that unit C 

was trained on that pattern, whereas B was not. Similarly if C then responds 

OFF we know that C's left-hand daughter unit was trained on p but its right-hand 

daughter was not. Therefore, of all the terminal nodes in the tree, only one saw 

p during training. We would like to have a way of locating the one which was 

actually trained on it since if it is a terminal node its output on presentation of p 

is the target it was trained on, which is what the network is supposed to produce. 

This can be accomplished by means of another kind of signal which is transferred 

down the tree when a pattern is presented, and which merely enables the current 

unit to react to the input. If A responds with ON, control should be transferred 

to C, which is to say that C should be able to react whereas B should be silent. 

Essentially if such a 'go-left, go-right' controller operates at each branch, only one 

terminal unit is able to respond to the input, and this node is the unit which 

learned the pattern if the pattern was in the training set. This is the same as if 

a flag were being passed down the tree, going to the left daughter if the parent 

is inactive and to the right if the parent is active as shown for example in figure 
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Example of a tree of perceptrons 

input connections 

3 learn/react signal 

OFF 

Figure 1.4: Descending the tree of perceptrons by passing a flag. 

1.4. This flag enables a unit to respond to the input, so all units which do not get 

flagged are OFF. An output unit has only to be connected to the terminal units 

and to detect if any of them is ON in order to respond correctly to any learned 

pattern (Frean 1989). That is, the representation on the terminal nodes is OR. 

The 'react' signal must be passed down the tree irrespective of the parents response, 

which only determines which daughter it is passed to. Therefore this signal cannot 

be simply a function of the response of the parent unit.'°. So if we insist on passing 

something down the tree in the way that trees usually work,' 1  the only way to 

achieve this operation is by introducing another unit-to-unit signal besides output 

activity. Hence the network is no longer made up solely of perceptrons. 

' °This isn't true in the case of the 'learn now' signal, because only the latest terminal nodes 

learn, the rest being frozen, so nothing needs to be passed down the tree, and the unit responds 

merely to whether its parent is ON or OFF as the case may be. 
"The algorithm at this stage amounts to a classification free method (Breiman et al. 1984) 

with perceptrons as the classifiers. 
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Weighted connections within the hidden layer can replace the con-

troller. 

How can the above be implemented by a network of simple perceptrons? Without 

a controller or a 'react' signal, many of the hidden units can respond ON to a 

given pattern besides the correct one. The basic operation required is to turn 

OFF the 'don't react' side of the entire tree below each successive branch point. 

Eventually the entire tree except for a single terminal node must be inactive 

following presentation of an input pattern. Consider A,B and C, where both B 

and C may have subtrees below them. If A responds ON, then B and the whole 

tree below it should be strongly inhibited. On the other hand if A is OFF then C 

and its entire subtree should be inhibited. Then by the time the terminal node 

is reached", it is the only unit in the tree which isn't crippled by inhibition: its 

output is the 'decision' of the network as to the classification of the input pattern. 

To achieve this requires that every hidden unit have incoming weights from all 

its ancestors as well as the inputs, as shown for example in figure 1.5. Supposing 

that unit A unit is ON, its left-hand branch is easily inhibited by large negative 

weights from A to all the appropriate units. If A is OFF however, the right-hand 

branch cannot be inhibited directly. Instead, the weights from A to the units in 

this branch must be positive, and each unit must acquire a negative bias such that 

it is definitely on' (ie. inhibits itself) when A is OFF, and exactly counteracts the 

excitation from A when A is ON. 

The weights and biases required to implement this could in principle be 'hard 

wired' at the time the unit is introduced, but it is also of interest to consider 

how they might be learned just as the weights from the input are. To do this it 

12 this terminology suggests that the tree is traversed sequentially: in fact everything could 

react at once, and because hidden units influence each other in a purely feed-forward manner 

the process is equivalent to 'final values' moving down the tree. 



CHAPTER 1. CONSTRUCTIVE NEURAL NETWORK ALGORITHMS 35 

Example of producing OR by weights between hidden units. 

input connections 

weighted connections 

Figure 1.5: Producing OR by weighted connections between hidden units. 

is sufficient to feed the 'learn now' daughter the usual target, but set the other 

daughter's target to be 0. Then, since appropriate weights do exist as described 

above, the Pocket algorithm can be used to learn them. In this view there is no 

need for a 'learn/react' signal at all, since all that is required is for the right-hand 

[left-hand] daughter's target to be reset to 0 if the parent is OFF [ON). However 

this means every unit must now learn the entire training set. This scheme for a 

single unit and daughters is shown in figure 1.6. 

Con currency 

It turns out that at the same time as this work was done, no fewer than four 

groups elsewhere independently arrived at similar algorithms. [Personna2 et al. 

1990] generate units according to the splitting procedure, which are used as input 

to a further hidden layer which produces a separable representation by another 

(non-local) method. [Sirat & Nadal 1990] use perceptrons in a tree with a 'con- 
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Recursive element for Splitting algorithm 
Input 

target reset signal 
weighted connections 

connections to all 
descendents of A 

Figure 1.6: The recursive element of the Splitting algorithm. 

troller' as described above, but use the Pocket algorithm to maximise a measure 

derived from information theory. [Sun, Lee & Chen 1988] have also presented an 

algorithm (although with no convergence guarantee) in which individual units per-

form gradient ascent of an information measure and are used to split the training 

set into two parts, each of which is dealt with by a separate unit. The recursive 

application of this same procedure to these new nodes results in a decision tree. 

Again, this cannot be said to be a neural network in the usual sense because of 

the necessity of control other than by the units themselves. [Golea & Marchand 

19901 have concurrently developed the algorithm described above, including feed-

back from all ancestors. Like Sirat and Nadal, they use the Pocket algorithm to 

minimise a quantity other than the total number of errors. 
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1.7 A Simulation: learning random mappings 

In this section, the four algorithms described above are compared on a particular 

task: that of learning random mappings from input to output. For N inputs, 

the training set consists of all P = 2N possible binary patterns (this is called 

'exhaustive learning' by [Solla et al 1990]). Each pattern is assigned its target 

output of 0 or 1 at random and with equal probability. Hence approximately N12 

patterns have target 1. This is a difficult problem, as there is no external structure 

to the patterns which a classifier could hope to exploit. 

The weights themselves are trained by the Pocket algorithm (with ratchet). One 

training epoch is taken as the presentation of P patterns, each being chosen at 

random (with replacement) from the training set. 

It must be noted however that this apparently even-handed method of training 

does not put all the algorithms on an equal footing. For example, the Whittling 

algorithm needs to form Pocket weights several times over in order to eliminate 

enough patterns to make the problem separable. In this case the number of 

epochs per elimination cycle is 100, and 10% of the incorrectly classified target 

ON patterns are eliminated after each such cycle, until convergence. For the other 

other algorithms, each unit is trained for 1000 epochs. 

The number of units constructed by each of the algorithms in solving the problem 

(that is, getting the entire training set correct) is shown in figure 1.7, plotted 

against the number of patterns in the training set (2P).  In their paper Golea and 

Marchand quote an average network size of 20.5 units for the case where N = 6, 

P = 64. It is possible that the Tiling algorithm might do better if the number of 

weights was considered instead of the number of units, because in this algorithm 

the number of units per layer tends to decrease as layers are added. However 

figure 1.8 shows that this is not the case for the random problem. 
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Number of units vs Number of patterns 

16 32 	64 	 128 	 256 
Number of patterns 

Figure 1.7: The number of units constructed by each algorithm is shown, plotted 

against the size of the training set. The circles and vertical bars show the mean 

and standard deviation respectively over 25 separate trials, each on a different 

training set. 
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Number of weights vs Number of patterns 
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Figure 1.8: The number of weights in networks constructed by each algorithm is 

shown, plotted against the size of the training set. Statistics are over 25 separate 

trials, each on a different training set. 
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Number of units built by Tower 
vs Number of predecessors contacted 

IE 
	

2 	4 	 6 	 8 	10 

Number of predecessors contacted 

Figure 1.9: Network size generated by the Tower algorithm for the case of N = 6. 

The abscissa shows the number of previously trained units that each new unit can 

have weights from (in addition to those from the input). 

In this case the Tower algorithm has very limited contact between successively 

trained units: each new unit has a weighted connection from its immediate pre-

decessor only (apart from those from the input). Figure 1.9 shows the mean 

performance of the Tower algorithm on the random problem with N = 6, as the 

number of predecessors available to new units is increased. There is no strong 

benefit obtained in terms of the number of units constructed by having greater 

numbers of contacts in the random case. 
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1.8 Comparisons between constructive 

methods. 

In this section a number of key points on which constructive algorithms may be 

compared and contrasted are suggested. The Tiling algorithm is omitted from the 

discussion, as it is essentially a combination of the Tower and Splitting methods. 

Optimal performance on parity. It is not difficult to show how many units 

each algorithm will generate in solving the parity problem if it finds "perfect" 

weights at every stage. In solving N bit parity, the Tower algorithm builds 

..1 units if N is odd, and + 1 if it is even. The Splitting algorithm is less 

efficient, building N + 1 units. Whittling can do no better than 21 units, 

one for each target ON pattern. The Tower algorithm's success arises from 

its ability to use previously constructed units to deal simultaneously with 

patterns of both targets, which neither of the other methods can achieve. 

Whether this property has advantages or disadvantages for other problems 

is an open question. 

Complexity of the architecture. Whittling and Splitting distinguish hidden 

units from the output unit, whereas the Tower algorithm does not. 

Signals passed between units during learning. The Tower algorithm is very 

simple, since each unit only needs the external target signal. Whittling re-

quires a don't learn signal, to be communicated between active hidden units. 

Units in Splitting must interfere with targets of other units deeper in the 

tree, effectively over-riding external target 1 signals for some patterns. 

Number of units which learn separable training sets. The difficulty of the 

training problem presented to units may differ between methods. For ex-

ample in Tower and Whittling, no unit except the last one sees a separable 
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training set, whereas in Splitting many units solve linearly separable prob-

lems. 

Exploitation of reduced training sets. If the classification to be learned is 

available as a training set rather than arriving "on line" from the environ-

ment, some methods can train units on successively smaller training sets. 

This is not true of the Tower algorithm. Whittling can potentially elimi-

nate some patterns from future training sets. Splitting can heavily exploit 

reduced training sets, but only if the weights between hidden units and the 

adjustments to the biases do not need to be learned. 

Parallelism in learning. One possible advantage of any tree-building method 

is that several units can learn at once. In Splitting the number of units that 

can learn in parallel potentially rises exponentially with the tree depth. 

Parallelism in recall. Given a network of say H units, the different architec-

tures will engender different "response times". The Tower architecture re-

quires H time steps before the output unit can be read. Splitting will require 

a number of time steps equal to the depth of the tree. Since Whittling con-

structs a single hidden layer, it takes only two time steps to produce an 

output. 

Sequence of training of the units. If connections between constructed units 

are disrupted, the unit giving fewest errors will be the unit which was trained 

on the original targets, and saw only the inputs. In none of the methods so 

far discussed is this the output unit. 

All the constructive algorithms discussed in this chapter apparently have broadly 

similar performance. The number of hidden units built is not dramatically dif-

ferent from the number of patterns being learned; for larger sized problems the 

number of units may reach unmanageable proportions. In addition, problems of 

larger scale cannot be attempted because the training time required to give conver- 
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gence becomes prohibitive. This demands a more efficient constructive algorithm. 

Such an algorithm is described in the next chapter. 



Chapter 2 

Upstart algorithm 

This chapter describes a different method for constructing and training feed-

forward networks of perceptrons which is based on error correction not at the 

level of weights but of units. The core idea is that a unit may recruit and train 

other units specifically in order to correct its mistakes. The Upstart algorithm is 

described and is found to generate networks which have small size and can gen-

eralise to novel input patterns. This performance is significantly better than the 

constructive algorithms described earlier. 

2.1 Rationale 

In making a binary classification, any unit (say Z) can make two kinds of mistake, 

by being 
"wrongly ON " (o =  1, but t = 0) 

"wrongly o'r" (o = 0, but t = 1) 

where oz  is the perceptron's actual output and tZ is its desired or target output. 

Suppose there exists a unit (say X) which is ON for every pattern for which Z 

44 
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is wrongly ON, but is otherwise OFF. Similarly suppose there is a unit (say Y) 

which is ON when Z is wrongly OFF but not otherwise. By means of a large 

negative weight from X and a large positive weight from Y, all of Z's errors could 

be corrected. The presence of the two extra inputs from .X and Y makes the 

problem linearly separable (since it is now possible for Z to make no errors), so 

the appropriately large weights can easily be learned by the PLR. X and Y's role 

is to effectively override whatever Z's "raw" response to the input pattern was. 

The problem then becomes how to produce units X and Y. 

2.2 Training units to act as correctors 

Assuming the two new units are also connected to the input layer by variable 

weights, they can be trained using targets which depend on Z's response. These 

units might be called "daughters" since they are generated by the established 

"parent" unit, Z. Note however that the direct effect of activity proceeds from 

daughter to parent. Consider, for example, the targets we should assign to X, 

the unit whose role is to inhibit Z. We would like X to be active if Z was 

wrongly ON, and silent if Z was correctly ON. Similarly X should be silent if Z 

was wrongly OFF (to avoid further inhibition of Z). Finally, X could be silent if 

Z was correctly OFF, although if X is active in this case, the effect is merely to 

reinforce Z's response when it was already correct. This doesn't itself cause an 

error, meaning that it doesn't matter how X responds. Therefore these patterns 

can be eliminated from X's training set. This elimination makes the problem 

easier and faster to solve, but is not essential for the error-correcting property 

described below. Similarly, Y should be trained to be ON only when Z is wrongly 

OFF, but if Z is correctly ON the pattern can be eliminated from Y's training set. 

These target assignments are summarised in Figure 2.1. 
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The recursive element of the Upstart algorithm. 
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Figure 2.1: Correcting a parent unit: the left hand table gives the targets, 

for the daughter unit X for each combination of (oz, ti).  For example, the lower 

left-hand entry assigns tx to be 1 when oz  = 1 and tz  = 0: the 'wrongly ON' case. 

Similarly the right hand table gives the values of ty for the daughter unit Y. The 

dotted line represents the flow of this target information. The "starred" entries 

correspond to cases where the pattern could be eliminated from the daughter's 

training set. 
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An important point is that the "raw" output of unit Z is used to set the daugh-

ter's targets, rather than the value of Z after the daughters have exerted any 

effect, since this would introduce feedback. To achieve this the sum from the true 

inputs alone must be available even though the daughters are exerting their effect 

(as indeed it is, since the inputs from daughters arrive in the next time step). 

Alternatively the connections from daughters can be built up only after the direct 

input weights have been learned and "frozen". 

Two useful results follow immediately from this training method, because it es-

sentially gives daughters (X or Y) an easier problem to solve than their parent 

(Z). 

Property I: Daughters can always make fewer errors than their parent. 

Denote Z's errors by 

e(Z) = e(Z)ON + e(Z)OFF  

where e(Z)O N is the number of patterns for which Z is wrongly ON. 

If X responded OFF to every pattern, it would make as many errors as there were 

patterns of target tX = 1. However, X can always do better than this, provided 

the training set is convex. Given that the Pocket algorithm can find the optimal 

weights visited by a perceptron with any given probability, at the very worst 

weights could be found such that a single pattern for which tX  = 1 turns unit X 

ON whereas all other patterns turn it OFF. Therefore 

e(X) < e(Z)ON < e(Z) 	 (2.1) 

A similar argument applies to Y. 
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Property II: Connecting daughter to parent with the appropriate 

weight can always reduce the errors made by the parent. 

It follows from the above that Z's errors are reduced by X, since 

e(Z with X) = e(X)0N + e(X)OFF + e(Z)OFF 

= e(X) + e(Z)OFF 	 (2.2) 

<e(Z) 

and similarly for Y on its own. When the joint action of X and Y is considered, 

the same result holds, i.e. e(Z with X,Y) < e(Z) - 1. 

In the next section an algorithm which uses the first of these results is described. 

Other possibilities are discussed in section 2.5. 

2.3 Upstart as a binary tree. 

Assume we already have a unit Z which sees input patterns 	: i = 1,.., N and 

has associated targets t' - The weights from the input layer to Z are trained to 

minimise the discrepancies between Z's output and target and once trained, these 

weights remain frozen. This "first" unit is actually the eventual output unit, and 

its targets are the classification to be learned. The following two steps are then 

applied: 
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UPSTART AS A BINARY TREE. 

Step 1. If Z makes any "wrongly ON" mistakes, it builds a new unit X, using the 

targets given in Figure 2.1. Similarly if Z is ever "wrongly OFF" it builds 
a unit Y. Apart from the different targets these units are trained and then 

frozen just as Z was. 

Step 2. The outputs of X and Y are connected as inputs to Z. The weight from 

X is large and negative whilst that from Y is large and positive. The size 

of the weight from X [Y] needs to exceed the sum of Z's positive [nega-

tive] input weights, which could either be done explicitly or by using the 

Perceptron learning rule to learn these weights. 

Steps 1 and 2 are now applied recursively to X and Y in place of Z. Thus daughter 
units behave just as Z did, constructing daughter units themselves if they are 

required. In this way a binary branching tree of connected units is constructed, 

as shown for example in figure 2.2. Each unit gets targets from its parent rather 

than from an external signal, and each is capable of acting both as "pupil" and 

"teacher". 

New units are only generated if the parent makes errors, and the number of errors 

decreases at every branching. It follows that eventually none of the terminal 

daughters makes any mistakes, so neither do their parents, and neither do their 

parents and so on. Therefore every unit in the whole tree produces its target 

output, including Z, the output unit. Hence the classification is learned. 
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Example network built by Upstart 

Figure 2.2: Example of a binary tree of units constructed by the Upstart method. 

2.3.1 Equivalence of the tree and layer architectures. 

The architecture generated by this procedure is unconventional in that it has a 

hierarchical tree structure. However in the case where we choose not to eliminate 

any training patterns there is an equivalent structure with the same units arranged 

as a single hidden layer.' To see this, consider two daughters (say X,Y) and their 

parent (Z). With primes denoting "corrected" values, the corrected value O'Z  is 

always equal to 0z - d +4. Now compare these two values in each of the eight 

am grateful to Peter Dayan for pointing this out. 
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possible combinations of o, d and o: 

CASE 0' OZ ]oz—  o+dy 
i 000 0 0 
ii 0 0 1 1 1 

0 1 0 1 1 
iv 1 0 1 0 0 
V 1 0 0 0 -1 
vi 0 1 1 1 2 
vii 1 1 0 undetermined 0 
viii 1 1 1 undetermined 1 

In cases v-viii the values in the last two columns don't agree, but none of these 

cases actually occurs. X would never be correctly ON if Z was OFF (case v), and 

similarly Y would never be correctly ON if Z was ON (case vi). Finally, X and Y 

would never be correctly ON together (cases vii and viii). 

Since this equivalence between o'z and oz - d + o'y  holds for every unit in the 

tree, the final output is simply a sum of the "raw" responses. For example in the 

case of the network shown in figure 2.2: 

output = 
= OZ - o'x + O'y 

OZ — (ox — °u +ov)+(oy +4) 
=oz — ox +OU — OV+Oy + 01' — OS 

Imagine the tree units disconnected from one another and placed in a single 

layer. A new output unit connected to this "hidden" layer can easily calculate the 

appropriate sum by, for example, having weights of +1 from each unit which adds 

to the sum and —1 from each unit that subtracts, with a bias of zero. In effect we 

can convert a binary tree into a single hidden layer architecture which implements 

the same mapping, at the expense of adding one unit and being unable to exploit 

pattern elimination. Figure 2.3 shows the example network converted in this way. 



CHAPTER 2. UPSTART ALGORITHM 
	

52 

Example network as a single hidden layer 

output 

Figure 2.3: Example of conversion to a single layer. The hidden units are the 

same as those shown in the earlier figure ie. their weights to the input are the 

same. 

The algorithm for constructing a single hidden layer architecture is: 

UPSTART AS A SINGLE LAYER (1). 

Construct units as before, omitting Step 2 (where they are connected into a feed-

forward tree). Then connect all the units so constructed to a new output unit. 

The weights to this unit can be learned by PLR (since in this representation the 

patterns are clearly linearly separable), or can be inferred from the tree structure: 

there is a sign reversal for every "X-type" daughter. 



CHAPTER 2. UPSTART ALGORITHM 
	

53 

2.4 Simulations 

In all the simulations shown here the "starred" entries in Figure 2.1 were not 

included in a daughter's training set. If the whole training set is used in every case, 

the number of units produced is relatively unaffected for the problems investigated 

here, but the training time (a combination of the time per epoch and number of 

epochs required to generate a comparable network) is approximately doubled. 

A learning procedure called the Thermal perceptron learning rule was used to 

learn the weights. In this, the weight changes given by the usual PLR are simply 

multiplied by 
T y- exp 

Unless otherwise stated the "temperature" T0  was initially set at 1.5 and reduced 

to zero linearly over 1000 epochs. A full discussion of this rule is deferred until 

chapter 3, where it is dealt with in detail. 

Parity 

In this problem the output should be ON if the number of active inputs is odd, and 

OFF if it is even. Parity is often cited as a difficult problem for neural networks to 

learn. It is also of interest because there is a known solution consisting of a single 

layer of N hidden units projecting to an output unit (Minsky & Papert 1969). It is 

easy to see how the Upstart Algorithm tackles parity (see figure 2.4). Essentially 

the same structure as that shown for N=3 would arise for any N, although for 

large problems the optimal weights become much harder to find. For parity up to 

N=10, in all cases N units are constructed, including the output unit. In all cases 

except N=10, a thousand epochs were sufficient to generate the minimal tree. For 

10-bit parity, the figure was 10,000. 

Random mappings on the complete set of binary patterns 

In this problem the binary classification is defined by assigning each of the 2'' 
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Upstart solution for the Parity problem 
Y, 
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• On (odd) 

• Off (even) 
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Figure 2.4: Solution for 3-bit Parity. The output unit Z on its own can clearly 

make a minimum of two mistakes, when the plane defined by its weights cuts the 

cube as shown. X corrects the wrongly ON pattern by responding to it alone, and 

similarly Y corrects the wrongly OFF pattern. 
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patterns its target 0 or 1 with 50% probability. Again this is a difficult problem, 

due to the absence of correlations and structure in the input for the network to 

exploit. The networks obtained for N up to 10 are summarised in Figure 2.5. The 

Tower algorithm requires a prohibitively large number of training epochs by the 

Pocket algorithm to converge for this problem for N > 8. Instead, results for the 

Tiling algorithm are included for comparison, where the Pocket algorithm is used 

to learn the weights. 

Random mappings on random patterns lying on a hypersphere. 

This experiment looked at the classification of patterns with real-valued compo-

nents. Such a set of patterns do not in general have the essential property of 

convexity, however this property holds if the patterns are constrained to lie on the 

surface of a hypersphere. In the first case up to 1000 real-valued patterns across 

N = 10 inputs were generated, and in the second case up to 5000 patterns across 

100 inputs. Each of the.patterns was generated as follows. Firstly, each of the N 

inputs is chosen at random, uniformly in the interval [4,1]. This gives patterns 

distributed uniformly in the unit hypercube. Secondly, each such pattern is nor-

malised to make >, = 1, and is assigned a target 0 or 1 with equal probability. 

Note that although these pattern vectors lie on the surface of the unit hypersphere 

in N dimensions, they are not distributed uniformly over this surface. 

The size of the networks generated in solving this problem to zero errors using the 

Upstart algorithm are shown in figure 2.6. Even training with large numbers of 

patterns, the slope of the line remains constant at approximately 1/15 for N = 10, 

and 1/100 for N = 100. In other words the "pattern capacity" is respectively 

fifteen and one hundred patterns per unit, under the training conditions described. 

This capacity may be compared with the theoretical result that 2N is the largest 

number of such patterns which can be expected to be separable. 

Using a related method called stereographic projection and a truly parallel imple 
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Number of binary patterns vs Number of units constructed 
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Figure 2.5: Number of units built vs the number of patterns (2') for the random 

mapping problem. The slope of the Upstart line is approximately 1/9. Each point 

is an average of 25 runs, each on a different training set. 
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mentation of the algorithm, [Saffery 1990] has solved the "two spirals problem" 

(Fahlman & Lebiere 1990) using Upstart. 

Generalisation: the "two-or-more clumps" problem 

Neural networks are often ascribed the property of generalisation: the ability to 

perform well on all patterns taken from a given distribution after having seen 

only a subset of them. Several workers (Denker et al. 1987; Mezard and Nadal 

1989) have looked at generalisation using the "2-or-more clumps" predicate. The 

problem is this: given an input pattern, respond ON if the number of clumps 

is 2 or greater and OFF otherwise, where a "clump" is a group of adjacent l's 

bounded on either side by 0's. Circular boundary conditions are used: input 1 is 

"adjacent" to input N. As with parity, there is a solution consisting of a single 

hidden layer of N units which would solve the problem exactly. For instance each 

hidden cell can be associated with one of the N adjacent pairs of inputs, and 

simply detects the presence of a (leading) edge by means a positive weight from 

the lower indexed input and a negative weight from the higher one. The number of 

active hidden units is then just the number of clumps present in the input pattern, 

and the output unit need only detect if this number is 2 or greater (for instance by 

setting all hidden-to-output weights at +1 with a bias —1). Following Mezard and 

Nadal, the patterns were generated by a Monte Carlo method (Binder 1979) such 

that the mean number of clumps is 1.5. I used N = 25 inputs, for which there 

are N(N - 1) + 2 = 602 possible patterns with less than two clumps. Training 

sets consisted of up to 600 patterns. The set used to test the resulting net's 

ability to generalise was a further 600 patterns. The results, with comparisons 

to the Tiling Algorithm, are summarised in Figure 2.7. [Nadal 19891 compared 

the performance of the Tower algorithm with Tiling on this problem, and found 

very similar performance in terms of numbers of units and generalisation ability, 

but with Tower generating approximately twice the number of weights. This is 

in contrast to the random binary problem investigated in chapter 1, where the 

number of weights is not dissimilar in the two methods. 
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Upstart network size for patterns on the unit hypersphere 
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Figure 2.6: Number of units built by the Upstart algorithm vs the number of 

patterns for the random mapping problem on the unit hypersphere. Each point 

is an average of 25 runs, each on a different training set. T0  is 0.5 
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Upstart performance on the clumps problem 
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Figure 2.7: Performance of the method on the "2-or-more clumps" problem. The 

lower graph shows the % generalisation as the size of the training set is increased. 

Plotted above this and with the same abscissa is the size of the corresponding 

network. T0  = 4.0. There were 25 runs per point, each on a different set. Where 

not shown, error bars are smaller than the points. 
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2.5 Alternative architectures 

The algorithm described above constructs a binary tree of units, and uses only 

the first result given in section 2.2, namely that daughters can make fewer errors 

than their parent. However the second result can be used to generate alternative 

architectures using the same idea. 

Consider the following algorithm: 

UPSTART AS A SINGLE LAYER (II). 

Start. Begin with an output unit with no connections to the inputs. Trivially 

this unit makes only "wrongly OFF errors and as many errors as there are 

target 1 patterns. 

Step 1. Evaluate the errors made by the output unit. If e(out) = 0 then STOP. 

Step 2. If e(out)OFF > e(out)ori generate a Y unit in the hidden layer with 

connections to the inputs, and train it as described previously. Otherwise 

do the same for an X unit. 

Step 3. Build a weight from the new hidden unit to the output unit, positive for 

a Y, negative for an X. The weight must be large enough to override any 

other input which the output unit may receive. Return to step 1. 

Hence a single hidden layer is constructed. Since the errors made by a parent 

are reduced by an appropriately trained daughter (even though the daughter may 

itself still be in error), each new hidden unit can reduce the output unit's errors 

by at least one. 



CHAPTER 2. UPSTART ALGORITHM 	 61 

The third step can be accomplished by explicitly assigning a weight of the appro-

priate sign whose magnitude is sure to be greater than the sum of the hidden to 

output weights of the opposite sign. Alternatively the new weight can be learned 

in the usual way. 

Note that this method results in an apparently exponential rise in the magnitudes 

of hidden to output weights, due to the "override" operation that each unit must 

perform. However this need not be a restriction since hybrid methods will also 

work. Since each unit has an explicit target, we can decide at any stage which 

unit to correct: a single hidden layer is generated by always correcting the parent, 

and a binary tree is built by always correcting the (terminal) daughters. Trees of 

variable width can be built by including both these possibilities. For instance an 

initial layer of say h units could be constructed as above, and then each of these 

hidden units could build (up to) h units of its own, and so on. 

An important potential advantage of building such "wide" trees concerns the 

parallelism of the learning process: each of the first generation can go about 

training daughters independent of the others, so there can be h units learning 

in parallel (ie. h = 2 in the binary tree version). For the second generation of 

daughters there is a potential for training h 2  units in parallel, and so on. 

2.6 Extension to multiple outputs 

These algorithms can be extended to problems involving multiple output units. 

A good method should build considerably fewer units than would be obtained by 

treating each output separately (especially if the output targets are correlated); in 

other words, maximum mutual use should be made of hidden units. The following 

algorithm could be used, where steps 1 and 2 are repeated until every output unit 

makes no mistakes 
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MULTIPLE OUTPUTS. 

Start. There are no hidden units and no connections, so the output units are 

always OFF. 

Step 1. Choose an output unit (say, the one which makes the most errors). Build 

the appropriate hidden unit to correct some of the mistakes being made by 

this output unit, as described above. Connect this new unit to all the output 

units. 

Step 2. Train the weights from each unit in this enlarged hidden layer to each of 

the output units. Re-evaluate the numbers of errors made by each output 

unit. 

Hence a single hidden layer is constructed. This is one possible method for the 

case of multiple outputs, and represents work to be done in the future. 

2.7 Are the tree building methods the same? 

The Upstart algorithm and the procedure for obtaining OR by Splitting are clearly 

very similar, even though their motivations are very different: the strategy of 

Splitting is to "divide and conquer" whereas that of Upstart is "enlist help". 

Notably the criterion determining inclusion of new units is identical. However the 

two algorithms are not the same. Notably, 

• the training sets learned by units in the two methods are different. This can 

be readily seen by putting the targets learned by daughter units in Splitting 

into the same form as those for Upstart (figure 2.1), as is shown in figure 

2.8. The two are not equivalent. 
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tc 

Figure 2.8: Targets assigned to daughter units by the Splitting algorithm: the left 

hand table gives the targets, tB,  for the daughter unit B for each combination 

Of (OA, tA). Similarly the right hand table gives the values of tc  for the daughter 

unit C. 

• the connectivity between constructed units is very sparse in Upstart (one 

connection per unit), whereas it needs to be relatively dense in Splitting. 

• if both methods are trained without any elimination of patterns, then the 

Upstart network can be transformed into a single layer, whereas the Splitting 

network cannot. 

2.8 Conclusion 

In this chapter the Upstart constructive algorithm has been described, and seen 

to perform well on large problems, and produce fewer units than other types of 

constructive algorithm. For example, in the random mapping problem Upstart 

builds half as many units as the Tiling algorithm, and in the clumps problem the 
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ratio is one fifth. 

Aside from the simulation results, Upstart may be compared with other algo-

rithms along the lines suggested in section 1.8 in the previous chapter. In solving 

N bit Parity, N units are constructed. Upstart does not distinguish algorith-

mically between hidden and output units: these follow exactly the same training 

procedure. The signals passed between units are targets, rather than "don't learn" 

or "over-ride" signals. Because Upstart alters the training sets seen by successive 

units, many units learn separable training sets. Another advantage is the poten-

tial to eliminate patterns from the training set of successive units. In addition, 

many units can learn in parallel, especially if trees of appropriate width are de-

veloped as indicated in section 2.5. Regarding the time required for the output to 

respond to an input pattern, Upstart as a tree will take a number of time steps 

equal to the maximum depth of the tree. However, when implemented as a single 

layer architecture only two time steps are needed. Finally, the tree version of 

the Upstart algorithm is unique among the constructive algorithms considered, 

in that the output unit is the first unit to be trained. This feature is intuitively 

appealing, and also confers a degree of robustness to the networks built; if all the 

connections between constructed units were lost, the unit which would make the 

smallest number of errors on the training set is in fact the output unit. This is 

not true of the constructive methods described earlier. 

Just as for all constructive algorithms, a suitable rule for learning the weights of 

the individual units is required. During the course of the work on Upstart, a new 

learning rule was developed which may play a crucial role in the success of the 

method. In the next chapter this learning rule is looked at in more detail, and 

the spectrum of possible rules is investigated. 



Chapter 3 

Learning in single Perceptrons 

3.1 Introduction 

Suppose we are given a binary classification to be learned by a single perceptron 

unit, wherein each input pattern of N binary values has an associated target, 

being zero or one, which is the desired output of the perceptron. 

A very simple learning rule is the associative rule: 

iW1 	=crI' 

( 	1 	if 	
(3.1) 

where t' = 
	. if V' = 

Alpha is a small positive constant controlling the rate of learning. This rule builds 

an association between pattern and its (signed) target IL.  Starting with all the 

weights at zero strength, after one presentation of each pattern, the ith  weight 

corresponds to the correlation between the z 1h  input and the target. Subsequent 

pattern presentations do not improve the weights vector any more than this, since 

65 
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the weight change is independent of the unit's history. More powerful learning 

rules involve the actual output of the unit, which effectively enables previous 

learning to be taken account of. For example, there is no need to change the 

weights if the unit's output is already correct on a given pattern. Historically 

there are two ways that this has been done: rules derived to minimise a global 

error measure, and the Perceptron Learning Rule. 

3.2 Rules derived from global 

error minimisation. 

On presentation of pattern , a unit sums up its weighted inputs to give , and 

its output is some function y() of this quantity. If the output function is differ-

entiable, then one approach to learning is to consider the total error attributable 

to the unit in its present state, 

EE" 

where EM is some measure of how well the unit's actual output y' matches the 

desired output t'. The most common forms used for E are the squared error 

EM = ( t i, - yP)2 

from classical statistics (giving rise to "least-mean-squared" or LMS methods), 

and the cross entropy error 

EM=iMlog2yM + ( 1_tP)109 2 (1_yM) 

from information theory (Pearimutter & Hinton 1986, Hinton 1987). The most 

obvious way to reduce the error is to move down the gradient of E with respect 

to W. That is, 
OE 

L' W = -  
P awi 
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If the rule is used "on-line", where the weights are altered in response to each in-

put pattern as it is presented (rather than "batch" mode where the above sum can 

be calculated explicitly and then the weights altered), the error measure isn't de-

creased at every step, but tends to do so over many steps, provided a is sufficiently 

small. This is known as stochastic gradient descent. 

[Widrow & Hoff 19601 and [Kohonen 1977] considered the case of the LMS error 

measure for linear units, where the output function is just y" = 4)". This gives 

the so called "adaline" or "delta" or "Linear LMS" rule, 

= a (t" - y") ' 

which is the same as Rosenblatt's "non-quantized error-correction procedure" ex-

cept that in this case it is applied for every presented pattern. Notably E has no 

local minima that are not also global minima, because the contribution E" is a 

quadratic well in weight space, and the sum of any number of such wells is just 

another quadratic well (Hinton 1987). Although this may be a sensible criterion 

for training units with linear output functions, such units are not particularly in-

teresting, because the linear mappings they implement can only map similar input 

patterns onto similar output patterns, and are thus not sufficiently powerful to 

enable arbitrary classification tasks to be achieved. Furthermore, multiple layers 

of such units are no more computationally powerful than single layers: each layer 

performs a linear transformation of the input pattern, and the result of a linear 

transformation of this is equivalent to a single linear transformation of the original 

pattern. 

If the units have a differentiable, nonlinear but monotonic output function then 

if there exist weights such that E = 0, then likewise E has no local minimal and 

"perfect" gradient descent is therefore guaranteed to find this minimum. However 

if no such weights exist then local minima can arise (Hinton 1987; Sontag 1988). 

'This is because altering the unit's output function in this way cannot build "walls" in weight 

space where there were none before. 
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[Brady et at. 1988] show that even if the training set is separable, the LMS 

minimum may not separate the patterns. [Wittner & Denker 1988] give a simple 

example of this for the linear case, noting that it is equally true for smooth, 

monotonic non-linear output functions. They further suggest a modification to E 

so that gradient descent of this measure does succeed on a separable training set. 

[Sontag and Sussmann 1988a] suggest a very similar modification also, but show 

that even with this criterion, local minima may be generated if the training set 

is not separable. In a later paper (Sontag & Sussmann 1988b) they present an 

example of such a local minimum with exclusively binary inputs and outputs. 

The smooth nonlinear function most commonly used is the "sigmoid" or "logistic 

function": 

Y= 1 / (1 + e) 

Use of the LMS measure with this output function gives the following "sigmoidal 

LMS" rule: 

LW 1  = a (tTM - !IM)y'(l - i 

If the cross-entropy error measure is used instead of LMS, we have the "sigmoidal 

cross-entropy" rule 

= a (tTM - y M ) 

as in the original delta rule. Notably, a great deal of added generality arises 

because E can be differentiated with respect to any weight in a whole network 

of interconnected units. This idea in conjunction with the sigmoidal LMS rule 

forms the basis of the Generalised delta or backpropagation rule  (Werbos 1974; 

Rummeihart Hinton & Williams 1985). 

For perceptron units with threshold output functions, E cannot be differentiated 

to obtain a rule as it stands. However the differential can be done for a modified 

2The generality doesn't arise in the case of linear units because there is no computation 

possible in multiple layers of such units that cannot be achieved in a single layer. 
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E which is "threshold LMS", such as in [Hinton, 19871: 

0 	if output is correct and 	> m 
E" = (m - 4 1 ) 

if P= 1 but 
(m+)2  ifVS=O but 4">—m 

This predates but satisfies the conditions suggested in [Wittner and Denker 1988] 

and [Sontag and Sussmann 1988a] as necessary for gradient descent to separate 

where this is possible. Differentiation of this measure gives essentially the same 

rule as Rosenblatt's "non-quantized error-correcting rule" except that the learning 

rate a should be a small constant, to move the weights a small amount in the right 

direction, rather than 1/I1II 2 , the amount required to actually correct the output 

due to pattern . 

Finally, it can be argued that if the units are indeed linear threshold perceptrons 

and the goal is to misclassify as few patterns as possible, minimising a sum of 

squared errors in 0 is of no consequence, since the actual output for pattern ' 

bears no relation to how large 4 is in error. Hence this may in fact be a bad 

strategy for minimising the total number of perceptron errors. 

3.3 The Perceptron Learning Rule (PLR) 

On presentation of pattern 	the Perceptron Learning Rule (Rosenblatt 1962) 

alters the weights only when the target VS differs from the actual output 3  

= a (VS - o') 
	

(3.2) 

where a is the overall learning rate and is a constant. Thus a correct response 

engenders no change, making this a strictly error correcting rule. Note that this is 

3Notation: although here and elsewhere learning rules are stated with an index indicating the 

particular (itI)  input, the rule is assumed to be implemented for all inputs (izO..N) convergent 

on the unit, where the zeroth input is understood to provide the necessary bias. 
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equivalent to the associative rule of equation (3.1) except that now the change is 

only made in the event of an error. This rule constitutes a powerful but restricted 

procedure for learning to distinguish between classes of input patterns. It is 

powerful, in that the Perceptron Convergence Theorem (Minsky and Papert 1969) 

states that if a set of weights exists for which the perceptron makes no errors, the 

PLR will converge on such a set after a finite number of pattern presentations. 

It is restricted however with respect to learning, in that if such a perfect solution 

does not exist, the PLR never stabilises the weights. 

3.3.1 Which learning rules will converge on separable 

patterns? 

Theorems of perceptron convergence on separable sets of patterns have been 

proved and improved in several different ways over the years. In the initial per-

ceptron paper (Rosenblatt 1958) there's no hint of such a theorem at all. [Block 

1961] gave an early and somewhat complicated version. In [Rosenblatt 1962] it is 

split into two proofs, one for the classical PLR (Rosenblatt calls this the "quan-

tized error-correcting rule"), and another for what he calls the "non-quantized 

error-correcting rule". Here, the magnitude of the weight change is set so that the 

current (incorrect) response is only just corrected. That is, the weights are altered 

so that the summed input 0 itself exactly equals the target output, implying that 

the actual output obtained by thresholding 0 will now be corrected. If an error is 

made on presentation of (the appropriate weight change is EW1  = a(t - q) with 

a set at 1/11JI 2 . [Nilsson 1965] and [Duda & Hart 1973] discuss these convergence 

results in some detail. 

The best known and most elegant proof of convergence of the PLR appears in 

Minsky and Papert's book "Perceptrons", a tour de force of novel analysis into 

what perceptrons can represent (and to a lesser extent what they can learn). The 
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proof works by assuming there exists a set of weights 1 which would solve the 

problem and then showing the cosine of the angle between 1" and the actual 

weights 1' will exceed 1 after a finite number of weight changes. Since the above 

cannot occur and weight changes are always made in response to errors, the algo-

rithm must converge on a correct set of weights after a finite number of updates. 

Hence the PLR essentially learns by decreasing (an upper bound on) an angle in 

weight space. In this section the Perceptron Convergence Theorem is reviewed, 

closely following the proof given in "Perceptrons" (Minsky and Papert 1969) with 

some added generality to see which attributes of the PLR are flexible without 

losing its convergence property. The conditions turn out to be quite flexible. 

For convenience we begin by defining 	= 1(', so the learning task becomes 

"find weights W such that W . X' > 0 for all patterns IA " . 

Learning Algorithm: 

START: Set ii' = ; all the weights are zero. 

TEST: Choose an input, fou 
 

if jj.)jP > fgoto TEST. 

else go to ADD. 

ADD: 

Theorem: 

The algorithm given above will go to ADD only a finite number of times if the 

following conditions hold. 

1. There exist weights W-  for which ii' . 	> 0 for all J'. In other words 
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the patterns (' must be linearly separable by some hyperplane in pattern 

space. 

Every)? must be able to be chosen an arbitrarily large number of times. 

e > 0 and is bounded above. 

Whenever weights are altered f() > € and is bounded above. 

Proof: 

Assume there exist weights W*  and b > 0 such that 1' . ?> S for all patterns 

i. Also assume the values of f are bounded such that 

f<frnsn!5f:5frnax 

Define G as the square of the cosine" of the angle between j*  and the actual 

weights j,j;r, 
(W*. 

G(i')= 	... 	2 11W *112 IIVII2 - 
Now examine how this measure changes each time the learning algorithm goes to 

ADD. For convenience another index is introduced. This index, r, starts at zero 

and is incremented after each ADD. 

Numerator: 
= 

= 

> jZ/*j%4 + fS 

"Minsky and Papert use the cosine itself, showing that it must eventually increase above 1. 

However, the square is used here because it simplifies presentation. 
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because of the assumption that 	J?,. > 6. Therefore, after n ADD 'S we have 

r*j;r1 
~ 8 f-1 

2 	 n- i 	2 

	

(j,j,r*jr) 
~ 62(f) 	(since ö>O) 

> 82n2f 	(since f ~! frnin > 0) 

Denominator: 

Note first that going to ADD means we must have encountered a pattern for which 

I jl, ',.+ II 

= (i'1+f,.&).(11+f,.&) 

= 	
. 	 .+ 2f,.Wr  . X,. + 

~ II"II 2 + f,2 	2 + 2f,. 

Therefore, after n AD D'S we have 

II1 n II 2  < N>f + 2ff,. 

< Nn 12maz + 2flfmax 	 :5(since 0 <1 f) — 	J  

Since both numerator and denominator are positive, we have a lower bound for 

C after n ADD'S of 

Gn>( 	

52 (2 
J mm 

- 
 11 W*  11 2(Nfmax  + 2f)fmax) 

fl  

The expression in the brackets is constant, so there is an n for which G n  exceeds 

1. However we know this cannot occur. Therefore, the algorithm must go to 

ADD only a finite number of times. Thus convergence is guaranteed under the 

conditions given in the theorem. QED. 
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Note that e need not be a constant, but must be non-negative' and bounded 

above, meaning there must be some value of ". W above which no change 

occurs. Also note that the conditions given above are sufficient only. In particular 

the condition that f be bounded above may be unnecessary, since for example 

Rosenblatt's "non-quantized error-correcting rule" is guaranteed to succeed on 

separable patterns yet f is a linear function of 4. The classical PLR corresponds 

to fmin = fmax = 1 with e = 0. 

In fact convergence of the the "threshold LMS" algorithm can be deduced from the 

Perceptron Convergence theorem. To guarantee success on a separable problem 

it is sufficient that the algorithm be able to present each pattern an arbitrary 

number of times: there is no restriction on the order of presentation. Therefore 

every time an error is made the PLR step can be implemented repeatedly some 

arbitrary, but finite, number of times before another pattern is chosen, which (for 

sufficiently small a) is trivially the same as the threshold learning rules above, 

and the perceptron convergence result still holds. In a sense this gives "stronger" 

convergence, because proofs of convergence using the Perceptron Convergence 

Theorem do not fall prey to the following problem associated with any gradient 

descent, that the finite step size a makes any real algorithm only an approximation 

to gradient descent. If a is too large the minimum is no longer guaranteed to be 

found, while on the other hand making a too small slows convergence down. 

The perceptron with PLR never stabilises for pattern sets which aren't linearly 

separable because it alters the weights every time an error is made. lithe pat-

terns are separable we know from the Perceptron Convergence theorem that a 

lower bound on the agreement between the actual weights and a set of desired 

weights is increased, but perceptron behaviour in the non-separable case is not 

well understood. Minsky and Papert (among others) proved a theorem which they 

'From the learning algorithm, this is required in order that the weights change at all from 

their initial values of zero. 
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called the Perceptron Cycling Theorem, stating that a perceptron with linearly 

separable patterns will never visit the same weights vector twice, whereas there is 

no limit to the number of times that this will occur for the non-separable case. 6  

3.4. A "thermal" perceptron learning rule. 

The PLR on its own does not work for non-separable patterns: the weights are 

neither stable nor "good on average". One rationale goes as follows: the trouble 

is that the PLR does the same thing for every error made. Instead, the benefit 

from improving P should be tempered by the possibility that the new weights 

now misclassify patterns they previously got right'. Firstly since (given an error 

has been made) the change in 4 is independent of the value itself, an error with 

a large associated 4 is less likely to be corrected in this step than an error where 

is small. The weight changes necessary to correct a large error are themselves 

large, and hence much more likely to corrupt the existing correct responses of the 

unit. We can say that errors due to small 101 are more likely to be cured without 

altering the response to other patterns than those due to large 101, and the weight 

changes made should be biased accordingly towards errors where 101 is small. 

A simple way to do this is to make the PLR weight changes tail off exponentially 

for large 141: 
AW = c (t - os') 	' 	 (3.3) 

61n principle this can be used as a positive test for non-separability of the patterns, but in 

practice requires enormous amounts of memory. 
70f course this check cannot be made exact without going through all the patterns and 

counting the numbers of errors. This is precisely the function of the "ratchet" in the Pocket 

algorithm. In that case the cost of doing it all the time is avoided by only checking if the run 

length exceeds the best so far. We would like to avoid this, and see what can be done within 

the simple perceptron framework itself, rather than inventing flourishes to add onto it. 
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The "temperature" T controls how strongly the changes are attenuated for large 

IqfI• At high T the PLR is recovered, since the exponential becomes almost unity 

for any input. Also, at any given T the conditions for convergence given in section 

3.3.1 are satisfied. 

One picture of the way this rule works is given by considering the patterns as points 

in a space and the weights as defining a decision surface which is a hyperplane 

in this space. This hyperplane moves every time an error is made. In the usual 

PLR, it moves by approximately the same amount whenever there is an error, 

whereas in the thermal PLR (henceforth just called "Thermal") it moves by an 

amount which is large if the pattern causing the error is close to the hyperplane, 

and small if the pattern is distant. As an approximation, one can imagine a zone 

immediately to either side of the hyperplane, within which an error will cause 

movement of the hyperplane. The perceptron will be relatively stable if there 

are no errors occurring in this zone. A natural extension to this is to anneal 

the thermal effect by gradually reducing the temperature from high T where the 

usual PLR behaviour is seen to T = 0, where there are no more weights changes. 

The annealing of the temperature is then the gradual reduction of the extent of 

the "sensitive" zone. In the limit of T - 0 the zone disappears altogether and 

the perceptron is stable. This gradual freezing is particularly desirable because it 

stabilises the weights in a natural way over a finite learning period. One possible 

problem which could arise is that patterns for which 101 is very small continue to 

cause comparatively large weight changes even at low temperatures, so the effect 

of gradually reducing the learning rate a was also investigated. 

The effects of annealing one or both of the temperature and the rate are plotted 

in figure 3.1. In this case the problem used is highly non-separable: all 1024 of 

the binary patterns across 10 inputs are used, .and each is assigned a target 0 or 

1 with equal probability. Exactly half the patterns are target 1, so a unit with no 

weights at all gets 50% of the patterns correct by default. This is also the average 
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level attained by the threshold LMS algorithm. In the annealed cases the relevant 

quantity was reduced from its starting value down to zero linearly over the entire 

training time. This time was 1000 epochs; that is, each pattern was presented 

an average of 1000 times although the actual order of presentation was random. 

It should be remembered that the Pocket algorithm with ratchet involves much 

heavier computation per epoch (of the order of ten times longer in real time for 

this problem) than either the Pocket algorithm alone or Thermal. The latter two 

run at approximately the same speed. 

First consider the simplest case where there is no annealing: both the temperature 

and rate are held fixed at their starting values. Clearly including the exponential 

weighting has greatly improved the perceptron's performance. The Thermal rule 

can perform much better than the Pocket algorithm (which has double the number 

of parameters and a "longest run" checker), and considerably better than even the 

Pocket algorithm with ratchet method (which has still more parameters and an 

explicit check of the entire training set at each update of the pocketed weights). 

Since the weights are not stable (they still change every time there is an error 

and since the problem is non-separable this is always occurring), the observed 

improvement implies that good sets of weights are being visited preferentially, or 

in other words the perceptron using the Thermal rule spends far more time in the 

good regions of weight space than the pure PLR. Also, it can potentially locate 

good regions of weight space more quickly due to the use of real-valued weight 

changes. Although integer weights as used in the Pocket algorithm can approx-

imate a real-valued weights vector arbitrarily closely (because the magnitude of 

a weights vector is irrelevant for threshold units) and require less storage on a 

computer, they may take much longer to build up from initial weights of zero 

strength. However there is a strong temperature dependence: in this case the 

performance peaks at around T = 1.0 and, as expected, reduces to that of the 

standard PLR as T grows large. 
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Performance of Thermal PLR vs starting temperature 
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Figure 3.1: Performance of various algorithms on a highly non-separable prob-

lem produced by assigning targets at random to binary patterns. The abscissa 

denotes the starting temperature, T0 , while the starting value for a is always 1. 

The ordinate denotes the percentage of patterns being classified correctly at the 

end of 1000 epochs of training. Each plotted point is the average of 100 indepen-

dent trials. Also shown are the levels attained by the standard PLR, the Pocket 

algorithm and the Pocket algorithm with ratchet after 1000 epochs. 
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% correct 
Temperature-annealed thermal PLR: 

performance vs starting temperature 

-... 
••.. 

52 

0 	 5 	 10 	 iS 	- 	20 
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Figure 3.2: The curve shows the performance of the temperature-annealed Ther-

mal rule over a wider range of starting temperatures. 

Annealing the rate alone gives good results provided the temperature is just right, 

but is very sensitive to this parameter. Apart from a small improvement for low 

temperature, the score in this case is considerably worse than the "no annealing" 

case at the same temperature, so annealing the rate is actually detrimental. 

However the performance seen by annealing the temperature alone not only ap-

proaches that of the "no annealing" case for low temperatures, but only drops 

away gradually above this region. Figure 3.2 confirms this effect over a wider 

range of T0 . Ultimately this curve must return to the level of the PLR, since 

annealing from higher and higher temperatures means spending more time effec-

tively implementing the PLR, and less time exploiting the exponential weighting 

in the useful region (in this case T <2.0, from the "no annealing" curve). The fact 

that the curve drops so slowly therefore suggests that the benefits of annealing 

the temperature arise from the low temperature region, and that the time spent 
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Temperature-annealled thermal PLR: 
Comparison of two starting temperatures 
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Epochs of training 

Figure 3.3: The curve shows the performance of the temperature-annealed Ther-

mal rule over 1000 epochs for two different starting temperatures. Each point is 

an average over 100 trials. - 
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in this region can be quite brief. Figure 3.3 shows the time course of learning by 

annealing the temperature alone for two different starting temperatures, To  .= 1 

and T0  = 20. Indeed, the improvement in the weights where T0  = 20 only occurs 

after 900 epochs, which is as temperature goes through the region T < 2. This 

relative independence from To  is an important characteristic, because the optimal 

value to use for To  may vary from problem to problem (although this is generally 

close to unity for training sets of all binary patterns with N < 10) for the other 

cases. 

Annealing the temperature and the rate however gives the highest scores of all. 

In this case, compared to the "break even" point of 50%, performance is a full ten 

times better than the Pocket algorithm, and almost double that where a ratchet is 

included. The temperature dependence roughly follows that of the no-annealing 

curve, and in this case both curves peak at temperatures close to 1. 

The time course of the learning is shown for T = 1.0 in figure 3.4. Although the 

Pocket algorithm (with ratchet) reaches a moderate set of weights quickly, it fails 

to continue the improvement, whereas the perceptron using the Thermal rule goes 

on increasing considerably further. The main advantage of annealing lies in being 

able to "force" a good solution quickly. For example, annealing over 200 epochs 

reaches the same level as not annealing over 1000 epochs, as shown in the figure. 

Finally, the performance vs training time on a linearly separable training set is 

shown in figure 3.5, again with T0  = 1. if there is no annealing, the scores for 

Thermal and the usual PLR (or equivalently, Thermal at high temperature) are 

similar. The low temperature case scores slightly lower, although the convergence 

time is almost the same. However a striking speed-up is possible by annealing the 

rate and temperature together: in this case the solution can be reliably found in 

approximately a tenth of the usual training time. 
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Time course of the thermal perceptron's 
performance on a highly non-separable problem. 

% correct 
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Anneal both 
temperature and rate 

	

58 
	 over 1000 epochs 

Anneal both 
temperature and rate 
over 200 epochs 	 No annealling 

56 
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Figure 3.4: Performance on a highly non-separable problem plotted vs the training 

time for the T0  = 1 case over 1000 epochs. Each point is an average over 25 trials. 
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Performance of the thermal perceptron 
on a separable problem. 
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Figure 3.5: Performance on a linearly separable problem, plotted vs the training 

time for the T0  = 1 case over 1000 epochs. Each point is an average over 25 trials. 
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It is interesting to compare the rationale behind Thermal with that of the LMS 

procedures. In the former, it is argued that large errors (in ) should be pe-

nalised lightly, since endeavouring to correct these errors means corrupting exist-

ing weights to a large degree. In the latter, large errors are supposed to be more 

heavily penalised than small ones 8 , since these large errors contribute proportion-

ally more to the quantity being minimised (the sum of squared errors in ). Hence 

these two approaches have opposite motivations. 

3.5 Expressing learning rules as curves. 

In the remainder of this chapter, other learning rules for the perceptron architec-

ture are considered. One approach would be to derive rules which minimise some 

measure of the total error, as was outlined in section 3.2. Another is to define 

learning rules in terms of a small number of parameters, and then investigate 

the merits of particular combinations of parameter values. This is the approach 

adopted here. 

How might the possible learning rules for the Perceptron architecture be parame-

tensed? A learning rule for a perceptron is simply a single-valued function LW 1 , 

the change to be made to weight W1  upon presentation of the ji' input pattern. 

This could depend on 

• W, the existing weight value. 

• 	, the sum of weighted inputs. 

• 	, the input activity. 

81t is often said to be a "drawback" of the sigmoidal LMS compared to the cross-entropy rule 

that really large errors do not engender large weight changes (eg. Hinton 1987). 
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. tL, the target output. 

and also an overall factor specifying the learning rate. 

In most accounts of synaptic error-correcting learning rules, the output activity of 

the post-synaptic unit is present explicitly. In general this is some monotonically 

increasing function of qP  alone. However for perceptrons an error is understood 

as being made whenever the sign of 00 is positive [negative] where the target is 

OFF [ON], so it is superfluous to include the intermediary step of evaluating the 

actual output since this is itself a single valued function of OP. The following are 

true of the supervised learning rules commonly in use: 

the existing weight value is not taken into account. That the weight's mag-

nitude should not matter in learning is no surprise, since the unit's output 

is only a function of a linear sum of weights. If bounds on weights are to be 

taken seriously, the existing weight may be included as a way of preventing 

their size growing beyond some limit. However for most purposes it can be 

ignored. 

the weight change contains a multiplication by '. Therefore changes are 

only made to the 1th  weight if , is active. 

errors of both types (wrongly ON and wrongly OFF) are treated symmet-

rically. The only difference is in the sign of the weight change incurred: 

weights should increase [decrease] if 0 is too low [high]. That is, 

AAW
f(çP'.its ift'-1 

= 	J v'r /' 	- 

	

I.. -f(-") 	if t'4  = 0 	
(3.4) 

or equivalently, 	"i'' = 1 f(1Lq5I) 

The advantage of these restrictions is that they cut down the number of free 

parameters controlling learning, so it is possible to ignore many of the possible 
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functions of input, output and target, and concentrate on those that conform 

to the general features of known rules such as PLR, sigmoidal LMS and Cross-

entropy. In other words not much generality is lost if the weight change is treated 

as a single function of 0 alone together with equation (3.4). This function, f, is 

the weight change the perceptron makes if the target t = 1 and the input , is 

active. 

Figure 3.6 shows this function for the Perceptron learning rule, Thermal percep-

tron rule, sigmoidal LMS, threshold LMS and sigmoidal cross-entropy rules for 

comparison. 

Which curves correspond to rules which are guaranteed to converge on separable 

data? The convergence conditions can be stated graphically, since the function 

f introduced above is the same as that used in section 3.3.1. Weights must only 

change if ..?. W < 4E, so f(q) must go to zero above some positive value of 0, and 

below this value f() should be greater than zero and bounded above. Note that 

this implies a discontinuity in the weight change function at . From figure 3.6, 

clearly the PLR. and Thermal meet these conditions. 

3.6 Learning rules considered as points in space. 

In this section the learning function f is given a specific form controlled by just 

four parameters. The possible learning rules may then be viewed as points in a 

four-dimensional parameter space. Whereas associative rules can be parametrised 

and investigated analytically (Wilishaw & Dayan 1990), for error-correcting rules 

this is much more difficult. Instead, an essentially empirical approach is adopted 

here, where rules are evaluated by testing them on real problems. There are 

many possible rules and the ability of each to optimise a very simple criterion 

(the number of errors made on the training set) is simply measured. We may 
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Figure 3.6: The plotted function f is the change to be made where the target is 

1 and the input is active, shown for several learning rules. The vertical scale has 

been normalised. 
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expect to see some structure, in that nearby points in this space of rules should 

have similar learning properties. The discussion which follows presents the general 

features of this space, rather than attempting an exhaustive evaluation. 

3.6.1 Restrictions on the form of the curves. 

Attempting to evaluate the whole range of possible curve shapes is out of the 

question. However there is no need to do this, since the curves we know of already 

are really of a simple form: they are all single-valued, with a single maximum. 

In fact they can all be closely approximated as "hump-shaped" curves, where 

"hump-shaped" is taken to mean f(4') is positive definite and differentiable with 

a single maximum, tending to zero in the limit of large II. The PLR and Thermal 

perceptron rules are not differentiable but the curves can be approximated by a 

smooth function, to an arbitrary degree if necessary. The PLR and Cross-entropy 

curves do not return to zero as 0 tends to —oo, but again this can be approximated 

arbitrarily closely if need be'. Further, it seems evident that only a very simple 

function is expected to perform well, given the inherent variability possible in even 

well defined learning tasks. 

Given the above, we can immediately define a parameter for such curves, namely 

the value of at which f() is maximum, hereafter referred to as the OFFSET. 

The actual value of this maximum is another parameter, referred to as MAX. A 

way of varying the curves to either side of OFFSET is also required. The simplest 

form is definable by two parameters, controlling the rate of decrease at either side. 

Of 0 = OFFSET. The particular function chosen here is the gaussian since it is 

simple, and flat at x = 0 and ±00. Following the analogy of temperature used 

91n support of this, the Perceptron Cycling Theorem tells us that 4 is bounded in the non- 

separable case (because the weights themselves are, since the number of possible configurations 

is finite), so a curve may always be found which is virtually fiat for negative 0 above this bound. 
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earlier (although now there's nothing so appealing as the Boltzmann distribution) 

these are named T1,f t  and Ti g ht. The family of functions considered are given by: 

MAX X exp[—$( - OFFSET)'/T, 1 ] 	if 0 OFFSET 

f()= 
MAX X exp[—/3(i - OFFSET) 2 /T, D ht} if 0 > OFFSET 

If /3 is set to log2, then the "temperatures" are just the half-height half-widths 

of the gaussians. 

The four parameters OFFSET, MAX, Tiejt and T,-ight  correspond to a learning rule. 

These parameters are shown in figure 3.7. For instance, the learning rules depicted 

in figure 3.6, with the exception of threshold LMS, can be approximated by the 

following parameter given below. 10  

Parameter values approximating known rules 

LEARNING RULE OFFSET MAX Tieji Trighi  

Perceptron (PLR) 0 1 00 0 
Thermal 0 1 variable 0 

sigmoidal LMS - loge  2 = —0.693 4/27 2.0 1.3 
sigmoidal cross-entropy —3.5 1.45 00 3.5 

3.6.2 Evaluating the curves. 

Having defined a "learning rule" by setting the four parameters, the rule's per-

formance may be evaluated on a given learning problem. Learning problems 

are either (linearly) "separable" or "non-separable" (that is, patterns which are 

not separable by a single hyperplane). The PLR's behaviour undergoes a sud-

den change between these two regimes: convergence of the weights is guaranteed 

in the separable case, cycling is guaranteed otherwise. For separable problems, 

'Note however that the sigmoidal rules are supposed to implement stochastic gradient descent 

and therefore generally have MAX at a much smaller value than that given here, which is that 

obtained by differentiating the global error without any multiplying factor. 
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f(Ø) 

OFFSET (0,0) 

Figure 3.7: Parameters specifying a family of learning rules as "hump-shaped" 

curves. The curve is the change to be made where the target is 1 and the input 

is active. 



CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS 	 91 

learning rules similar in character to the PLR are expected to perform well. These 

correspond to curves where the ratio Tight: T1 is small. For non-separable prob-

lems one intuitively expects "smoother" curves to outperform those with sudden 

changes near 0 = 0, on account of a capacity to "balance out" effects in the way 

that the sigmoidal LMS rule does in contrast to the PLR, for example. 

For each learning problem, a given learning rule has a performance characterised 

by a number of measures, most directly the ratio of correctly classified patterns 

to the total number of patterns in a given problem. In this study the training 

sets consist of all 2N  possible patterns across the N inputs, and the N = 8 case is 

studied. The performance as the number of iterations is increased is not examined 

in detail except for separable patterns; rather, the weights are evaluated after an 

average 100 presentations of each pattern. It should be noted that the "good" 

rules may well be of a different character if the evaluation is performed after (for 

instance) a single presentation of each pattern, and there could be interesting 

effects that occur at lower densities of patterns than those studied here. 

The procedure is as follows. A set of test patterns and associated targets is gen-

erated. If there are P patterns in the training set then P pattern presentations 

constitutes one epoch. There is some evidence that neural nets learn faster if an 

epoch instead consists of exactly one presentation of each pattern, that is, the 

patterns are chosen at random but without replacement. This seems somewhat 

artificial (ie. nothing in the real world is so obliging) so here the patterns are cho-

sen at random, with replacement. At each presentation of a pattern the summed 

input 0 is calculated and the weights updated according to the curve and equation 

(3.4). 

The pattern sets used here are attributed either linearly separable or random 

targets. A useful way to see these two extremes in the same framework is the 

following. One method of generating sets of patterns is to construct a feed-forward 
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network of perceptrons with one hidden layer of say H units and a single output 

unit. The weights from inputs to hidden units are set at random values, and each 

hidden unit's bias is set so that some non-trivial number of input patterns will 

turn the unit ON. The output unit simply calculates the 'majority function' of the 

hidden units' activities: it is ON only in the case where at least half the hidden 

units are ON. The output response of this network to a given input pattern is then 

taken to be the target for that pattern. If H = 1 a linearly separable training 

set is produced since the network is effectively just a perceptron. If H = 2 the 

target ON class is composed of the union of two half-spaces in pattern space. Also, 

whatever the mapping produced from inputs to output by this network is, H is 

the upper bound on the number of hidden units required to learn the mapping 

using a strictly feed-forward architecture where there are no weights between non-

adjacent layers". In the limit of large H the mapping becomes effectively random 

(but still consistent), as if each input pattern were assigned its target 0 or 1 

entirely at random. 

The original idea was to use the methods of Genetic Algorithms to "evolve" good 

curves in a population where survival depends on the ability to learn a training 

set. In this analogy the four parameters (on which the usual genetic algorithm 

operators act) constitute the "genotype", a perceptron endowed with the curve 

they represent is the "phenotype", and the world in which they thrive or otherwise 

is one of inputs and targets, with a perceptron's "fitness" being its performance 

on the learning task. However the much more straightforward approach of di-

rectly searching the parameter space is adopted here because the computation is 

tractable and the information obtained covers the whole space rather than being 

dependent on the particular properties a genetic algorithm might or might not 

have. 

11 1f this is relaxed then the network is computationally more powerful and fewer units may be 

necessary. For example a single hidden unit becomes sufficient in order to solve XOR, whereas 

two are required in the restricted geometry. 
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Each plot shows Tie it versus Tight,  for constant OFFSET and MAX. Hence each 

grid point represents a particular learning rule. Note that points on the diagonal 

Trighi = Tiq t with OFFSET = 0 are symmetric curves. The size of the circle at a 

grid point always represents the relative degree of success at the task. Circles are 

discretised to one of five sizes (or zero). Every data point is an average taken over 

twenty-five trials on the same task. 

3.6.3 Performance on non-separable training sets. 

The most obvious way to assess the curve's performance after some number of 

learning epochs is to count the number of correctly classified patterns in the 

training set, relative to the total number of patterns in that set: 

# patterns correct 
total # patterns 

A plot using this measure is shown in Figure 3.8. The training set consists of all 

256 patterns, with their targets assigned 0 or 1 at random with 50% probability. 

Exactly half the patterns are target 1. In this plot OFFSET = 0 and MAX = 1. 

Firstly, rules where Tight  is appreciably greater than T1j1  do not perform well at 

all, but those where Tight = Tleft are very successful. The most successful of all 

rules he on this line, and virtually any point above the line has some success at 

this task. 

Secondly, the curves do not appear to be getting much worse along this line. It 

turns out that even the rule corresponding to (oo, oo) performs reasonably well. 

This corresponds to the "curve" becoming a horizontal line at f = 1. This is 

surprising, because this rule is now just 

which is independent of the value of qS. This is exactly the associative rule, where 
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Figure 3.8: Performance on the random target problem using 256 patterns across 

8 inputs with 50% of the targets set to 1. The range denoted by circles is from 

50% to 64% of the training set correct after 100 epochs of training. OFFSET = 0, 

MAX = 1. 
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the association being formed is between the input vector and the target output. 

The relative success of such a simple rule strongly suggests that it is somehow 

"cheating": perhaps it is the high degree of symmetry in this problem which 

makes this possible. Figures 3.9 to 3.12 show the same type of plot for the same 

problem except that only a, , and respectively of the input patterns are 

targeted to 1, with the remaining targets set to 0. 

Two differences from the 50:50 case are evident. Firstly, although the most suc-

cessful rules he on a line, this line is no longer that of the symmetric curves as 

it was in the 50:50 case. The presence of the line tells us that it is the ratio 

Of Tiet to TTIDhg  which dominates performance over a fairly large range in their 

absolute magnitudes. Its slope confirms that T11 1  should be larger than Trighi. 

Why should symmetric curves be best for the 50:50 case, and left-skewed ones be 

best otherwise? The answer to this lies in the fact that these rules treat patterns 

of either target the same way, yet there are now more patterns of one target than 

the other. Consider what happens for a symmetric rule (Tjejg  = T19h) in the 

"skewed" case. Initially all the weights are zero. The weights are decreased when 

is 0 and increased when V' is 1. Since there are many more t = 0 patterns 

being presented to the network, the average values of the weights are decreased, 

and hence the average value of 0 decreases. The downward trend in the weights 

will continue, unless a sufficient number of the t = 1 patterns elicit high 0 (that 

is, close to zero); however since this is a difficult problem, the patterns of both 

targets remain more or less evenly distributed across the range of 0 elicited. The 

result is that the values of 0 for all patterns continue to decrease, with no pattern 

having 4 > 0. Therefore all rules to the right of the line give "default" scores by 

responding OFF to every pattern. 

Secondly there is a definite fading as this line moves too far from the origin. 

This is comforting, since the implication otherwise is that the limit situation of a 

virtually flat curve at f = 1 is a successful rule even though it is essentially only 
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Non-separable problem with 1/4 of the targets set to 1 
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Figure 3.9: Performance on the random target problem with a quarter of the 

targets set to 1. The range denoted by circles is from 75% to 79.1% of the training 

set correct after 100 epochs of training. OFFSET - 0, MAX = 1. 
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Non-separable problem with 1/8 of the targets set to 1 
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Tright 

Figure 3.10: Performance on the random target problem with an eighth of the 

targets set to 1. The range denoted by circles is from 87.5% to 89.2% of the 

training set correct after 100 epochs of training. OFFSET = 0, MAX = 1. Note 

that the scale has changed from that used in the previous figure. 



CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS 	 98 

Tright 

Figure 3.11: Performance on the random target problem with one sixteenth of the 

targets set to 1. The range denoted by circles is from 93.75% to 94.53% of the 

training set correct after 100 epochs of training. OFFSET = 0, MAX = 1. Note 

that the scale (0-10) is very much smaller than that of the 50:50 case (0-200). 
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Non-separable problem with 1/32 of the targets set to 1 
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Figure 3.12: Performance on the random target problem with 1/32 of the targets 

set to 1. The range denoted by circles is from 96.875% to 97.27% of the training 

set correct after 100 epochs of training. OFFSET = 0, MAX = 1. 
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associative. Although the ratio Tlefg/Tyjghg  dominates performance up to a point, 

eventually the curves get too wide and begin to degrade. This effect is more and 

more pronounced as the density of target 1 patterns is decreased. 

3.6.4 Performance on linearly separable training sets. 

The usual score measurement is shown in figure 3.13, after training on a separable 

problem for 100 epochs. The training set was produced as described in section 

3.6.2 using H = 1, and consists of the complete set of binary patterns (ie. all 

= 256) for N = 8. Half the patterns have target 1, so the range of score 

is from 50%, representing no improvement over a random choice of weights, to 

100%, which corresponds to successful learning of the entire training set. 

Figures 3.14 to 3.17 show the corresponding plots for linearly separable problems 

with only a, , j and respectively of the input patterns targeted to 1 and 

the remaining targets set to zero. 

However, this doesn't tell us how quickly this level of performance was achieved. 

A more descriptive measure for this task would be the number of epochs taken to 

find a separating hyperplane. There are actually two such measures of interest: 

the earliest time that weights occur which give no errors 

the latest time that any error occurs 

These turn out to be very different in character, because a rule which quickly finds 

a separating solution is not necessarily stable. Consider figure 3.18, which shows 

the "earliest separate" case compared to the "last not separate" case. Firstly, the 

speed with which the first "perfect" plane is found looks very much like the usual 
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Separable problem with 1/8 of the targets set to 1 
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Figure 3.15: Performance on a linearly separable problem with 1/8 of the targets 

set to 1. The range denoted by circles is from 87.5% to 100% of the training set 

correct after 100 epochs of training. OFFSET = 0, MAX = 1. 
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Separable problem with 1/32 of the targets set to 1 

50 	 100 	 150 	 200 

Trigizt 

Figure 3.17: Performance on a linearly separable problem with 1/32 of the targets 

set to 1. The range denoted by circles is from 96.875% to 100% of the training 

set correct after 100 epochs of training. OFFSET = 0, MAX = 1. 



OFFSET =0 
	

OFFSET =2 

0 
OGG 

0 • 0 • 

0 • • • 0 • • 
0 • • • 0 • • 
0 • • • 0 • • 

0. 
0. 
0 . 

0 .. 0 

0 

10 

8 

6 

4 

2 

0 

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS 
	

106 

Earliest epoch at which no errors are made. 

10 

8 

2 
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OFFSET = -2 
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Tright 

Last epoch at which any error is made. 

OFFSET = -2 
	

OFFSET =0 	 OFFSET =2 
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Figure 3.18: The earliest epoch at which no errors are made, compared to the last 

epoch at which any errors are made. The range is from 0 epochs (large circles) to 

1000 (no circle) epochs. MAX is 1. 
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score shown in figure 3.13. Secondly, even though a broad range of curves find 

separating hyperplanes quickly, only those with T 9ht  = 0 are actually stable at 

this point. 

3.6.5 The effect of MAX. 

Recall that the parameter MAX plays the part of a learning rate for a curve of 

given OFFSET,  Tie ji and Tight.  Figure 3.19 shows the non-separable problem for 

N = 8 as MAX is varied (with OFFSET = 0). It's not obvious what the effect 

is - is it a broadening or simple translation of the curves as MAX is increased, 

or something else? Figure 3.20, which shows the performance for different rates 

with rescaled axes, makes it apparent that the effect is simply one of scaling the 

widths linearly with the rate: the effect seen in the previous figures is actually 

due simply to magnifying the pictures up. This makes perfect sense, because the 

two axes are linearly related: since 0 is just a linear sum of weights, doubling the 

weight changes doubles the rate of build up of q.  Therefore by blowing up both 

dimensions of the curve, for example by doubling MAX, T jg  and precisely 

the same weights vector would be generated given the same order of patterns, 

but with twice the magnitude. Since the unit calculates its output by a threshold 

operation the relative magnitude is of no consequence, so the scores are the same. 

In the simulations shown the order of presentation of the patterns is random and 

different in each trial, but on average the performance is the same. 

3.6.6 The effect of OFFSET. 

Figure 3.21 shows the effect of varying the value of OFFSET.  The same diagonal 

feature appears shifted, with its intersection with the line T1,f t  = 0 moving by 

approximately the amount of the offset. Suppose that the curves used were ac- 
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Effect of varying MAX 

Figure 3.19: Effect of varying the value of MAX, over T from 0 to 200. Performance 

is shown for the random target problem using 256 patterns across 8 inputs with 

25% of the targets set to 1. The range denoted by circles is from 75% to 79.3%. 

OFFSET is 0. 
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The scaling effect of MAX 

MAX = 1 MAX = 10 

0 	Tright 
	20 	0 	 200 	 0-71001 

Figure 3.20: Effect of varying the value of MAX: the axes are scaled in each case in 

proportion to the value of MAX. Because all three pictures are similar, the effect 

is simply one of rescaling. The range denoted by circles is from 75% to 78.4%, 

and OFFSET is 0. 

tually "flat" out to a threshold at 0 = (OFFSET - Tjej * ) and (OFFSET + T9h) 

respectively. If the OFFSET is altered by 

OFFSET - OFFSET+L 

then changing 
Tieji _4Tj fg _1X 

Tight --+ Tight + L 

reproduces the original curve. This corresponds to a shift of the line seen in the 

figures up and to the left by amounts equal to the increase in OFFSET. This is 

the apparent direction of the shift (however the actual movement is somewhat less 

than this). Hence a possible explanation for the observed shift is that an important 

feature determining performance is the simply the area under the curve to either 

side of the origin. 
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Effect of varying OFFSET 

40 

Figure 3.21: Effect of varying the OFFSET. Performance on the random target 

problem using 256 patterns across 8 inputs with 25% of the targets set to 1. The 

range denoted by circles is from 75% to 78.4%. MAX is 1. 
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3.7 Conclusions 

It is easy to see why the Pocket algorithm is so slow in the highly non-separable 

case by looking at the mean errors made by the PLR perceptron: the "good" 

weights configurations are very infrequently visited by any rule with large T1ft 

and small T19hj. 

It may seem surprising then that the Thermal rule works as well as it does, given 

that it has Ti ght = 0. However, it was seen that the performance without any 

annealing depends on the value of T, which is best set at close to unity for the 

problem used for figure 3.1, and this is also true for the N = 8 cases investigated 

here. 7eft  and the parameter T used in Thermal are roughly comparable, being 

the value of 101 at which the weight change is 1/2 and l/e respectively of the 

maximum. Therefore the Thermal rule works best at approximately T11 = 1, 

T7 9ht = 0, which is in the region of "reasonably good" rules as shown in figures 3.11 

and 3.12. The annealing corresponds to moving slowly down the T19ht = 0 line 

through the region where good weights are visited. Performance is less sensitive 

to the initial temperature in the annealed case because the "good" region is so 

close to T1  ,ft  = Tight = 0, which is why the lower curve in figure 3.3 rises only 

at the very end of the annealing schedule. It would be interesting to investigate 

the effects of annealing in the two gaussian widths, as similar benefits would be 

expected to those seen for Thermal. 

In summary, rules where T,J/T 9hj 4/3 are best for the non-separable prob-

lems investigated here, whereas Ti ght should be close to zero for fast and stable 

convergence on separable problems. However there appears to be an intersection 

or "middle ground" in which performance on either type of problem is good. The 

parameter OFFSET can be varied over a large range but is as well set at zero as 

anywhere. The learning rate MAX is linearly related to the width of the curve and 

must be set accordingly to maximise performance. 
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3.8 Further work: 

Constructive methods revisited. 

Chapter 2 showed the Upstart algorithm has improved performance over the al-

gorithms discussed previously, and in the present chapter the Thermal perceptron 

rule has been shown to generate better weights than the Pocket algorithm for 

difficult problems. Hence it is not yet clear which of the constructive algorithms 

is really the best and under what conditions. This question requires a careful 

theoretical and practical evaluation of all the various approaches. A complicating 

factor is that the two issues of how best to train the weights and how best to 

construct the network may be coupled. That is, a particular weights algorithm 

may well favour a particular constructive approach and vice versa. 

This work remains to be done. Preliminary results of applying the Thermal rule 

to other algorithms are given here, purely as a pointer to future work. The learn-

ing task is the "two or more clumps" problem discussed in Chapter 2. The Tiling 

algorithm is not included since it may be viewed as a combination of the Splitting 

and Tower methods. Tower and Splitting can be implemented using the Thermal 

rule with no other changes. An adaptation is required for use in Whittling; this 

method requires that weights be learned which make only "wrongly OFF" errors, 

so a hidden unit which makes a single "wrongly ON" error is unusable. The mod-

ification (which replaces a complicated method based on the Pocket algorithm) is 

simply to apply the original PLR to patterns whose target is 0 and the Thermal 

rule to those whose target is 1. 

The "clumps" problem used here is exactly the same as that used to demonstrate 

the Upstart algorithm. The results are shown in figure 3.22, where the Upstart 

results are included for comparison. Somewhat surprisingly, the Whittling algo-

rithm produces the smallest networks of all, and shows the best generalisation 
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performance. This might be expected if the problem consisted of an obvious con-

junction of several separable features, but this is not the case with the clumps 

problem. Also noteworthy is the fact that although the Tower algorithm con-

sistently builds smaller networks than either Split or Upstart, its generalisation 

performance is slightly worse. Further simulations were done confirming that this 

is not improved by allowing more connections between Tower units than one to 

each unit's immediate predecessor. 

3.9 Summary 

Constructive algorithms constitute an important addition to the field of neural 

networks. They are powerful methods for producing networks to perform clas-

sification tasks, and do this by learning in a way which is quite different from 

the majority of network methods presently in use. An understanding of learning 

rules for individual perceptrons is an enterprise of comparable importance, given 

the striking extent to which the performance of these constructive methods is 

dominated by the choice of such a rule. 
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Performance on the clumps problem using Thermal 

o 50 100 	200 	 400 	 600 
Number of patterns 

Figure 3.22: Comparison of the constructive algorithms incorporating the Thermal 

rule on the "two or more clumps" problem. The graphs show the size of the 

networks and their generalisation performance, vs the size of the training set. 

The circles and vertical bars show the mean and standard deviation respectively 

over 25 trials. T0  = 1.5 for all methods except Whittle, where it is 2.5 
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Chapter 4 

Introduction to the TSP 

4.1 Overview 

The following two chapters are concerned with the Travelling Salesman Problem 

(TSP), a well known and widely studied problem in combinatorial optimisation. 

Finding the optimal solution is a computationally intractable task, hence heuris-

tics for finding good solutions in reasonable time are of more practical interest. 

In this chapter, the TSP and the conventional methods for solving at are briefly 

reviewed, and the key concepts introduced by Hopfield and Tank relating neural 

networks to the problem are pointed out. 

Chapter 5 is motivated by the success of the topographic mapping approach as 

embodied in the Elastic Net algorithm (Durbin & Willshaw 1987). A proposal is 

put forward to overcome a restriction inherent in the Elastic Net approach, which 

leads to two novel algorithms for the TSP. 

116 
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4.2 Outline of the problem. 

'Given a set of cities and the distances between them, construct a closed 

tour of minimal length which visits each city exactly once.' 

This is the usual statement of the Travelling Salesman Problem. In other words, 

given N elements (for example cities, processes, or states) and the set of N 2  scalars 

relating one to another (for example distances, costs or differences) construct a 

closed cycle including each element exactly once such that the sum of the scalars is 

as small as possible. The TSP can also be stated as the decision problem: "Given 

a set of cities and the distances between them, does there exist a tour of length 

less than L?" 

Only in certain cases can the TSP be formulated in terms of the actual positions 

of cities. An N-by-N matrix specifying all the distances between the N cities is 

sufficient to specify an instance of the problem. The most general case is called 

the Asymmetric TSP (see figure 4.1). For this, the matrix elements are arbitrary 

positive quantities, and the distance from A to B need not necessarily equal that 

from B to A. This could be visualised in terms of real cities, connected by one-

way roads (ie. the lengths aren't symmetric) which are not straight. Important 

subclasses are problems for which the distances are symmetric (two-way roads), 

and those where distances between any three cities obey the triangle inequality (ie. 

the distance between two cities must be less than the sum of the distances from any 

third city to each of them), and also problems for which both conditions are true. 

A further constraint may be that the distance matrix correspond to straight-line 

distances between cities lying in some Euclidean hyperspace. The TSP in the plane 

is the simplest and most often quoted example of these, corresponding to perfectly 

straight, two-way roads. At first sight it might appear that the non-Euclidean 

problems could be Euclidean but in a space with a higher number of dimensions, 

provided the triangle rule is not violated. However, as the example in figure 4.2 
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Figure 4.1: The Hierarchy of TSP's. 

shows, this is not true in general: even slight perturbations of the distances in a 

Euclidean instance of the TSP turn it into a non-Euclidean problem. This has 

important consequences for the algorithms put forward in the next chapter. 

4.2.1 Why is the TSP interesting? 

The TSP combines simplicity of statement with difficulty of solution. Even for 

small numbers of cities a complete search is out of the question. The number 

of possible tours for N cities is (N-1)!/2. For only 50 cities there are of the or-

der of 1065  valid tours, which would require billions of years of computing time 

for an exhaustive search. More importantly no algorithm has been found which 

can produce the shortest tour in a time which scales reasonably with the number 
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Ii 	 -- 

V 

Figure 4.2: Problems that obey the triangle rule are not necessarily Euclidean. 

For example, suppose we have five cities in the 2D plane as shown. Now consider 

altering only one distance, that from U to V, by putting "bends in the road". 

This cannot be recast in terms of straight-line distances in a higher dimensional 

Euclidean space, because the (unchanged) distances from X, Y and Z specify that 

both U and V must remain in exactly the same 2D plane as these cities. 



CHAPTER 4. INTRODUCTION TO THE TSP 	 120 

of cities. For comparison, consider the Minimal Spanning Tree problem (MST): 

"Given a set of N points and the distances between them, construct the minimal 

length graph spanning the points". The TSP is a restriction of this problem in 

which this graph must be a cycle. Equivalently a search of all N 2  possible 

trees quickly becomes unfeasible, but unlike the TSP there does exist an algo-

rithm which finds the minimal spanning graph in time proportional to N 2 . The 

differences in algorithmic scaling between these two problems are captured by the 

notion of the class NP-Complete, of which the TSP is a member but the MST 

problem is not. The class P is the set of problems, such as the MST, for which 

algorithms exist which complete in polynomial time (that is, a number of steps 

which is some polynomial function of the problem size). Now consider a decision 

problem, and an algorithm which constructs a solution in a non-deterministic way 

and tests the decision condition. If such an algorithm can form a solution with 

some (perhaps negligible) probability of satisfying the condition and test it in 

polynomial time, then the problem is in NP. Note that P itself is part of NP. 

The so-called SAT problem (standing for 'satisfiability') is the 'hardest' problem 

in NP, since every other problem in NP can be transformed to it in polynomial 

time. Further, it is possible to show whether a given problem in NP is as hard as 

SAT, which then defines the class NP-Complete: the hardest problems in NP. 

Since the advent of this idea, a large number of problems long suspected of being 

intractable have been shown to be members of this class. Examples of other 

important problems in NP-Complete are: 

• Multiprocessor Scheduling Problem. Given tasks to be performed and times 

for each, minimise the total time involved for a given number of sequential 

processors operating concurrently. 

• Hamiltonian Circuit Problem. Given a partially connected graph, is there a 

closed circuit visiting each node exactly once? 
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• Map Colouring Problem. Is it possible to colour a given map using 3 colours 

so no border has the same colour on both sides? 

Since all problems in NP-Complete are equally hard, and all are reducible to SAT, 

in effect all are mutually transformable. This means that if a polynomial-time 

algorithm exists for any one of them, then there exists such an algorithm for every 

one of them. Although this doesn't preclude the possibility that such an algorithm 

does exist, it is generally agreed to be extremely unlikely. 

The TSP itself is an important practical problem since it has applications in 

many different fields, from silicon chip layout design to commercial transportation 

routing and airline personnel timetabling. Also, given the close formal relationship 

between all members of NP-Complete, it is hoped that successful approaches to 

TSP may carry over to these other problems of similar complexity. 

Finally, the TSP has become a standard by which various general approaches 

to combinatorial optimisation problems are measured. When a new approach 

is proposed to such problems, it is common for its potential to be evaluated by 

attempting this problem. 

4.2.2 Conventional methods 

These can be divided into heuristics for finding good tours and exact methods for 

finding the optimal tour. 

Since guaranteed optimal solutions to NP-Complete problems cannot be found in 

polynomial time at present (and there are strong doubts they can be in principle) 

there inevitably arises a trade-off between the quality of solutions and the speed 

with which they can be found. A lot of interest naturally focuses on heuristics for 
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finding good solutions quickly. An enormous amount of effort has been expended 

on such suboptimal methods for the TSP in particular. Some examples of such 

heuristics are: 

Tour Construction procedures. Examples are: 

Nearest neighbour or 'greedy' algorithm. Starting from an arbitrary 

city, simply connect to the nearest cities not already included until 

a tour is formed with the last link. This is the most naive way of 

constructing a tour and, not surprisingly, generates very bad tours. 

Minimal Spanning Tree (MST) methods. These work by construct-

ing the MST and converting it into a tour. The best way of doing this 

is known as Christofides Algorithm, which doubles every edge of the 

MST to produce an Eulerian graph (ic. one in which each vertex has 

an even number of edges attached to it), finds a tour for this graph, 

and converts it to a Travelling Salesman tour by using shortcuts. For 

any TSP instance where the city distances obey the Triangle Inequal-

ity, this guarantees a tour of not more than 2  of the optimal. This is 

the best such 'worst case' condition known for such a heuristic. 

Tour Improvement procedures. In general these work by repeating the fol-

lowing two steps: 

Step 1. Modify an existing tour Q of length L slightly, producing Qnew 

Step 2. Compare Q with  Qnew and adopt Qnew under some condition in-

volving the difference between the tour lengths. 

Step 1 is often done using a procedure called f-opt (Lin 1965) which involves 

making r cuts in the tour and reassembling the pieces in all the various com-

binations. In that case the condition in Step 2 is simply that the new tour 

be shorter. An 'r-opt' tour is the shortest tour found by trying all possible 
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combinations of r cuts. Empirically it is found that the probability of a 3-opt 

tour being optimal is about 5% for 50 cities (Lin 1965). Genetic algorithms 

(Holland 1975) have recently been applied to perform Step 1 by dealing with 

mutations and combinations within large populations of tours (Mühlenbein 

et al. 1988). In the method of Simulated Annealing (Kirkpatrick et al. 

1983) the condition in Step 2 is evaluated nondeterministically, so there is 

some probability of longer tours being accepted. if the new tour length L new  

is shorter than L it is always accepted, but if it is longer then it is only ac-

cepted with probability e_()m_I41T. In the exponential, T plays the role of 

• "simulated temperature". This value may be "annealed" very slowly from 

• high temperature where virtually every change is accepted, to a low one 

where only strict improvements are accepted. 

Composite procedures. The best known of these is due to Lin and Kernighan 

(Lin & Kernighan 1973). The method is fairly complex, with the core idea 

being the dynamical setting of r, the number of cuts made when using r-opt. 

For exact solutions the problem is treated very differently by so-called polyhedral 

methods typified by the branch and bound and cutting plane procedures. In these a 

geometric space is examined in which the tours are seen as points, and an initially 

all-enclosing bounded region of this space is considered. The idea is progressively 

to shrink the volume of this region by rejecting more and more potential tours, 

making sure an optimal tour is never rejected. In this way we can know that the 

last tour left in the region is the optimum. A dominant characteristic of these 

methods is their high degree of complexity. As well as being very specialised and 

complex, several techniques usually need to be combined into hybrids to make 

them work effectively. [Lawler et al. 1985] describes the polyhedral methods in 

detail. 

All of the algorithms mentioned above are concerned with manipulating links 

between cities in a 'binary' fashion: cities are either linked in the tour or not. In a 
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sense then they conduct a search in the binary hyperspace of possible links. The 

current tour is representable as a point at one of the vertices of this hypercube, 

with the algorithm jumping from vertex to vertex in the heuristics, or working to 

enclose as few as possible vertices in the polyhedral methods. 

4.3 Neural networks: the method of Hopfield 

and Tank. 

Hopfield and Tank proposed a new method for finding short tours in the TSP 

(Hopfield & Tank 1985), using a neural network approach. Their method in-

troduced two important new approaches to solving optimisation problems using 

networks: searching a continuous state space for solutions to a discrete problem, 

and the use of energy functions. 

Assume a given problem can be stated in terms of some finite number of variables 

bounded between zero and one. If these state variables are represented by mutu-

ally orthogonal vectors then we have a Cartesian or configuration space which is 

a hypercube. Hopfield and Tank introduced the idea that searching a continuous 

state space can have advantages even when the valid solutions exist only at the 

vertices of the hypercube. In a sense this is a more general approach than methods 

which deal only with operations concerning corners of the hypercube. In effect, 

additional degrees of freedom have been introduced, which the algorithm must 

ultimately remove for the system to converge to a valid solution. 

Hopfield and Tank's technique was first to express the quantity to be optimised, 

and the various constraints of the problem, as minimisation problems over con-

tinuous variables. That is, they found a scalar function for which the optimal 

solution (ie. the shortest tour length) of the given problem corresponds to a mm- 
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imum, and similarly they found functions at whose minima the constraints of the 

problem are satisfied (ie. valid tours). They called the sum of these functions an 

energy function, since the optimal solution (which should be stable) is attained 

if and only if the function's value reaches its global minimum. This is analogous 

to the ground state energy in physics. The problem is then to move through the 

space of possible states from the starting point towards the energy minimum. 

If the free variables are denoted by s i  with E some function of all 3, and the 

dynamics of a system are such that 

dsi 	OE 
- 

dt 
with K >0 

(4.1) 

then changes to the system move it towards states of lower E, provided the "step 

size" c, is very small. Dynamics such as this are known as gradient descent in E. 

Identifying E with the energy function described above enables the appropriate 

equations of motion in s to be deduced. The energy function assigns a scalar value 

to every point in this space, and equation 4.1 determines the resulting motion. In 

this way combinatorial optimisation problems can be formulated in terms of the 

descent of some energy surface in a continuous space of possible configurations. 

A solution to the TSP is an ordering over cities, and one way of expressing this is by 

a square matrix whose rows correspond to cities and whose columns denote their 

ordered position in the tour. A valid tour is then defined if this is a permutation 

matrix wherein exactly one element of every row and every column is 1, and all 

other elements are 0. Hopfield and Tank associated each matrix element with a 

unit of a neural network. If there are N cities there are N 2  units, each denoting 

a particular city (here indexed in upper case) at a given position in the tour 

(indexed in lower case and assumed modulo N). The presence or absence of city 

A at position i is represented by the activation VAI of the appropriate unit, which 

is bounded to between zero (signifying absence) and one (presence) by the sigmoid 
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function: 

VAi 	
1 

- 

1 + exp(—/3çiAI) 

The "gain" parameter 8 can be varied. The function is approximately linear over 

a wide range of q if 9 is low, but turns into a step function as 8 is increased. The 

unit's potential, denoted OAi  is a weighted sum of all the other units' activations: 

Ai = 	 VB3 
B' 

This architecture is known as a recurrent network due to the bidirectional interac-

tions between all connected units. [Hopfield 1982] and [Hopfield 1984] showed that 

recurrent networks with symmetric connections have energy functions of a simple 

form. The object then as far as the TSP is concerned was to make the stable states 

of such networks correspond firstly to valid tours (permutation matrices) and sec-

ondly to short tours. This in turn can be done by setting the interconnections in 

the right way or equivalently by choosing a particular form for E: 

E = Econstrain  + Ei rlengih 

Unfortunately the existence of an energy function of this type is by no means a 

guarantee of success for the algorithm. Most importantly, the two terms are lin-

early additive even though the first is a constraint and the second is the condition 

to be optimised given that the constraints hold. The relative strengths chosen 

for the constraint and tour length terms are therefore of critical importance. if 

they are incorrectly chosen it is possible to trade-off the tour length against the 

constraints which make the network's configuration represent a valid tour. This 

problem afflicts the above method, to the extent that it is unusable in practice. 

[Wilson & Pawley 1988] tried unsuccessfully to reproduce the original results, 

obtaining valid tours in only 8 % of trials using 10-city Euclidean problems, for 

example. A search of possible parameter settings produced no combination which 

gave a valid tour for problems with 16 cities. In addition [Hegde et al. 19881 

concluded that the space of usable parameters rapidly shrinks as the number of 
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cities is increased. [Peterson & Sôderberg 1989] report on a closely related ap-

proach called a "Potts neural network", in which the constraint that the sum of 

the activities of all units in a column be unity is enforced exactly, instead of be-

ing just one of several terms being minimised, as was true of the original model. 

Recent results (Peterson 1990) indicate that provided the gain parameter 3 and 

its annealing regime are carefully chosen, the method gives tours of the order of 

20 % longer than optimal for Euclidean problems of up to 200 cities. 

4.4 Advantages of using neural networks. 

The use of continuous variables as described is a novel way of solving the TSP 

which may have advantages over conventional methods. As [Hopfield & Tank 1985] 

point out, values lying between the extrema at which a tour is defined represent 

a preference for a set of related tours rather than a particular tour. Hence such 

intermediate states may be interpreted as the simultaneous consideration of many 

similar possible tours, one of which eventually wins out. Two other important 

advantages of using neural networks are: 

Parallelism. 

A potential advantage of using neural networks is that the computations they 

perform are intrinsically parallel: instead of designing a serial algorithm in the 

usual way and then attempting to parallelise it, which is neither easy nor nec-

essarily successful, the form of the algorithm is constrained to be parallel from 

the start. Parallel computers are beginning to revolutionise computation, and 

methods which can exploit their power are naturally of great interest. 

Algorithmic simplicity. 

In almost any real application, the exact nature of the trade-off between the 

quality of a solution and the time required to find it is crucial: we may want good 
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solutions in minutes in one case, and very good solutions in hours in another, or as 

good a tour as possible in say 14 seconds in a third case. As will become apparent 

the "neurally inspired" methods, particularly those which involve an annealed 

parameter, are easily adapted to the different cases. This is not so true of the 

conventional methods (perhaps excepting Simulated Annealing), which tend to be 

very good at one or other limit of the trade-off. 



Chapter 5 

Topographic mappings methods 

for the TSP. 

5.1 Overview 

In this chapter a new approach to the TSP is examined, based on the formation 

of a topographic or neighbourhood-preserving mapping by a feed-forward neural 

network. A topographic mapping between two regions is one in which points which 

are neighbours in one region project to points which are themselves neighbours in 

the second region. 

The new approach follows on from the Elastic Net (EN) method (Durbin & Will-

shaw 1987), which can produce impressive solutions to the TSP by forming a 

topographic mapping. However it is limited to the case where the cities lie in a 

Euclidean space. It is proposed that this restriction is surmountable by apply-

ing similar ideas to the development of a mapping between two distinct layers of 

units in a neural network; this enables the general symmetric TSP to be tackled. 

129 
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Forming the mapping amounts to learning the weights connecting the two layers 

of units. After showing how such a mapping can be interpreted as a tour of the 

cities, two new methods for solving the TSP by developing such a neighbourhood-

preserving mapping are investigated. The first of these is a direct application of 

the Elastic Net procedure to the layered architecture, which results in a simple 

local learning rule for the weights. The second is an adaptation of an early model 

for the development of topographic mappings in the brain. Finally, the two meth-

ods are tested on a number of problems ranging from perfectly Euci dean to highly 

non-Euclidean. 

5.2 The Elastic Net method. 

In 1987 Durbin and Willshaw found a new approach applicable to Euclidean 

TSP's. Their idea hinged on the observation that a valid solution to the TSP is a 

mapping between cities and positions in a loop, and that short tours correspond 

to neighbourhood-preserving mappings. This is because in such a mapping nearby 

cities assume nearby positions on the loop, giving a short tour. The EN method 

has its origins in biologically realistic neural network models for the formation of 

topographic mappings in the brain; [Willshaw & von der Malsburg 19761 proposed 

the Neural Activity model (section 5.5), followed by the Tea Trade model (Will-

shaw & von der Malsburg 1979) which was adapted to become the EN method 

for the TSP. The method heavily exploits the restriction that the city distances 

correspond to points in some Euclidean space, usually the 2D plane. The loop is 

positioned in this space along with the cities, and each loop point is free to move 

about under the influence of two kinds of force. The first kind pulls it towards 
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the cities. For the j°  loop point situated at position il, in the plane this force is: 

	

ir 	=>b(i— ilj) 

	

where ?&j• 	= 	
- y 31,K) 

(I1-I,K) 
k 

Here 	is the position of the i' city, and 4(d, K) (not to be confused with the 

potential used elsewhere) is a positive bounded decreasing function of d that 

approaches zero for d> K. An important factor is the normalisation by l'jj of 

the total influence of each city. Provided there are a large number of loop points, 

this guarantees that each city will gain a position on the tour. The second kind 

of force pulls each loop point towards its immediate neighbours in the loop in 

proportion to their separation, hence it is analogous to tension: 

ptension = K( 1  - 2 + 	 (5.2) 

This force acts to minimise the total length of the loop. 

At every iteration each loop point j moves a small distance along the resultant of 

these two forces: 

	

= P. Fity + /3 tension 	 (5.3) 

If K is held constant, after many iterations the points would assume a stable 

positions where the forces balance each other out. Instead however, K is slowly 

reduced towards zero. This means that initially the tension force dominates but 

gradually these forces weaken. At the same time the loop-to-city forces become 

stronger at progressively shorter ranges about each city. Eventually the loop 

relaxes into a valid tour as the tension and the ranges of the city forces both tend 

to zero. Further, if (d, K) is taken as the gaussian function 

	

4(d, K) = exp(—d 2 /2K 2 ) 	 (5.4) 

an energy function can be defined: 

E = —aK>1n>(iZ - I,K) + 	 (5.5) 
i 	3 	 j 
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underlying statistical mechanics foundation, and that the difference between them 

arises because of the more direct way that the EN imposes constraints. [Yuille 

19901 has also derived both algorithms from a statistical mechanics framework. 

In sharp contrast to Hopfield and Tank's method, the EN method can always 

produce valid tours. Further, the tour lengths obtained are very close to those 

obtained by Simulated Annealing and the best of repeated trials of 3-opt. Being 

derived from the Tea Trade model for the formation of mappings in the brain, the 

EN method has the same advantages (ie. continuous variables, parallelism and 

simplicity) as neural network methods. However, the requirement that the cities 

be embedded in a geometric space is a strong one, since a slight change to any of 

the straight-line inter-city distances destroys this metric, making the EN method 

inapplicable. The removal of this restriction was the major motivation for the 

approach to be described in the next section. 

5.3 The TSP and layered neural networks 

An alternative approach is to separate the loop from the cities by representing 

them as separate sets of units in a neural network, and then attempt to form a 

neighbourhood-preserving mapping between them through modifiable weights'. 

Besides the advantages of neural network methods in general, this approach has 

a number of desirable properties: 

• There is no external "coordinate system" required, so the mappings need 

not be between Euclidean vector spaces. 

• By varying the number of weights in the network, the total number of degrees 

of freedom present can be easily manipulated. 

1 1 am grateful to David Wilishaw for suggesting this approach. 
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. There are algorithms for developing the mapping in a biologically realistic 

way (for instance the Neural Activity model, discussed in section 5.5). 

The proposal is therefore to consider the TSP in terms of developing a topographic 

mapping between one layer of units which represent the tour positions, and an-

other layer which represent the cities. This architecture and its interpretation as 

a solution of the TSP are now introduced. 

5.3.1 The network architecture. 

The algorithms to be described are methods for altering the weights in the ar-

chitecture shown in figure 5.1. There are M units in one layer, arranged in a 

loop. The N units in the other layer represent the cities. The two layers are fully 

connected, with the initial weights chosen at random from a narrow gaussian dis-

tribution centered on 11M, with no negative weights. All loop units are indexed 

modulo M and in lower case, with cities in upper case. For instance, the weight 

between loop unit i and city A is written WA,1.  It will often be useful to refer to 

the selectivity of a city unit, which is at a maximum when the unit in question 

is connected only to units in the other layer which themselves have no non-zero 

weights to other cities, and minimum when its connections are evenly distributed. 

5.3.2 Displaying the current state and defining a tour. 

A tour is clearly defined when each city has non-zero weights to one group of 

adjacent loop units only, but the ordering is not so obvious when loop points have 

weights to more than one city. To define a tour, a representation of the weights 

matrix is used in which the ordering of cities is apparent. This is shown in figure 

5.2, in which A,B,C,D represent cities and i represents one of the loop units. For 
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M loop units 

Wd  

A N city units 

Figure 5.1: Architecture for TSP as a topographic mapping problem between two 

layers of units. The algorithms work by altering the variable weights shown. The 

possible fixed feedback connections between cities are not shown. 

Figure 5.2: Display. 
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any given city, the strength of the weight to any loop unit is represented by a vector 

from the center of the circle pointing towards the loop point and of magnitude 

proportional to the weight. The position of the city is then given by the sum 

of these vectors taken over all loop points. The scale is such that the radius of 

the displayed loop corresponds to the maximum possible weight. The distance 

of A from the center is then a measure of its selectivity for one region of the 

loop, while its angular coordinate "points to" its position in the tour. Initially 

all cities appear in the centre. As they become selective they move outwards, 

eventually touching the loop at maximum selectivity. Although information about 

the distances between cities is not indicated explicitly, this representation has the 

appeal that the ordering is purely dependent on the angular coordinate while 

selectivity appears as the radial coordinate. Hence a tour is definable at any stage 

but its significance is clear from the radial coordinates of the cities. 

Where the distance matrix corresponds to cities lying in a plane their actual 

positions can be shown, along with a projection of the loop onto the plane formed 

similarly as a summation of 2D vectors. That is, if city A is at position iA in the 

plane, the j" loop point is shown positioned at 

> WA, XA 

E WB 
B 

This can be deceptive, since for instance a city unit with equal weights to only 

two cities will be displayed half way between them, and may therefore appear very 

close to a third city even though its weight to this city is negligible. However at 

maximum selectivity the loop so displayed follows the tour as defined above, and 

well before this stage the broad form of the tour is clear. This makes it useful as 

a development tool. 

This representation of the weights is now used in conjunction with two algorithms 

which develop the mapping appropriate to the TSP. 
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5.4 A Layered Elastic Net method 

The EN method is a successful approach to solving the TSP in the plane which 

is based on the idea of forming a topographic mapping. The following is an 

attempt to apply a similar method to learn the weights in a layered neural network 

architecture as described above. First, quantities are defined which are analogous 

to the distances between loop points and cities, and the distances between adjacent 

loop points of the EN. These are used to motivate a learning rule for forming a 

neighbourhood-preserving mapping between the layers. Some approximations are 

necessarily made to keep the method simple, but it is found that the EN approach 

can be applied to a layer of weights with success. 

5.4.1 Pseudo-distance measures 

In the elastic net, loop points are influenced by two types of attractive force, the 

first between loop and cities, the second between adjacent loop points. To apply 

the EN idea to a layer of weights we require measures which I call pseudo-distances 

between 

• loop point j and city X, called Sx 3  

• j and  j + 1, called 

for all X, j in terms of 

• weights W 

• city-to-city distances D 
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Suppose we take the weight W, to represent the proximity of j to X. An essential 

property is that it should be impossible for j to be in two places at once, or more 

generally, moving j towards X must have direct consequences on j's proximity to 

other cities. This will be enforced by the constraint 

>2Wyj z1 
Y 

for all loop points j. A weight of Wx, = 1 may then be interpreted as meaning 

point j is exactly at city X. The normalisation means that j must always move 

away from some cities in order to get closer to others. Now consider 

sxj = 2 Wy,Dxy 	 (5.6) 
Y 

as the pseudo-distance between j and X. The final state of the network should 

be one in which each loop point is either at a city or directly between two cities. 

If j is at X, its pseudo-distance to other cities should be just the actual inter-city 

distance. This is true of S as defined above, ie. 

5Aj - DXA as WXj - 1 

Alternatively if j has weights to only two cities A and B then 

SA2 + SBJ = DAB( WA3 + WBJ) 
= DAB 

so j is indeed directly between the two cities. Notice that increasing a single 

weight, say Wc 3 , means we think of j as moving closer to C, but does not on its 

own alter Sc3.  Normalisation then is crucial. It is effectively competition between 

the S's as to which ones can decrease. Consider three cities A, B and C. In the 

non-Euclidean case there is no direct sense in which moving from B towards C 

necessarily implies moving towards or away from A, for instance. Recall that in 

the EN method this problem doesn't arise, since a loop point's movement in the 

plane implicitly changes all its distances to cities (that is, positions are fundamen-

tal, while the distances are inferred). Instead, here there are no positions; the 

competition replaces the distance changes implicit in the Euclidean problem. 



CHAPTER 5. TOPOGRAPHIC MAPPINGS METHODS FOR THE TSP. 139 

Using S as defined above, a "force" on loop units can be defined in analogy with 

that of the EN. The component of this force on loop unit j, pulling it towards 

city X is then 
F 3  = Wx 3 Sx 

. 

2 
where W, = -_. x .7 

Xk 
k 

with cIX 	(Sj, K), a monotonically decreasing function of pseudo-distance 

Sx,. In this case, as in the EN method, the chosen function is the gaussian: 

(S, K) = exp(—S 2/2K 2 ) 

Some measure of pseudo-distance between points on the loop is also needed. Hop-

field and Tank used the following 'tour length' term in their energy function, here 

rewritten in terms of dynamical variables W: 

Eour1enggh = 	E Wx(Wy, + Wy,_1)Dxy 
i x,Y 

= ,8  E E Wx,1Wy,1+1Dxy 
i x,Y 

In the desired limit situation wherein W forms a permutation matrix this term is 

just /9 times the length of the tour, so it can be written as 

Eiourlength = 	L•,, 1  

with L,3 	= > WxWy,Dxy 
x,Y 

For this reason it is tempting to identify L, with the pseudo-distance between 

the two points since if Wy1 , = 1 and W12  = 1 then L, = Dxy, which is sensible 

given that such weights are taken to mean that i is at X and j is at Y. However 

it should also be true that 

= 0 

which is never obeyed by the above definition of L I ,)  except in the limit. If instead 

we define 

- Wx2)(Wy, - Wy1)Dxy 	 (5.7) 
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then the limit distance is unchanged but L, 1  is always zero, so this is now adopted 

as the pseudo-distance between i and j. 

5.4.2 Derivation of a rule for changing the weights. 

In the EN method there are two terms, one which enforces the constraints of the 

problem and one which favours a short loop. One way to produce a weight change 

rule is simply to differentiate the EN energy function using the pseudo-distances 

in place of the original Euclidean distances. This yields the following rule: 

AWxi=—CtE1PyiSyiDxy - Kf3[L,,,+(Sx+i - Sx,,) + 	 - SX,j)] 
Y 

This rule has no intuitive appeal, and also takes no account of the crucial nor-

malisation. Instead, in the following I derive a simple rule that retains the basic 

character of the EN. 

The constraint term. 

Suppose that the unnormalised weight change caused by the "force" F, is simply 

a positive change (say 6) in the weight Wx,. The normalisation reduces the 

weights between j and all other cities Y 54 X: 

new _ 	Y J  

1+6 

- —owYj 
or 	W 3  

- 	1-i-S 

The resulting change to pseudo-distance 5X3  is 

L\Sxj  
Y 
—6 

= 

In the EN method, the loop point j moves under the force Fx3  such that, were 

there no other forces present, the distance between j and X decreases in proportion 
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to the magnitude of the force. Therefore a desirable property of the weight change 

is that it causes S to change by 

SXj = —aFx, 

Equating the two expressions for AS xj  readily gives the appropriate weight change 

M. 

1wxi == 1 1  
&4, xi 

Since both o and 'I' are much less than 1 this may be approximated by 

LaWj = aWx, 

Does this number Txj bear any relationship to the usual quantities calculated by 

neural networks? Suppose that all of the cities interact via feedback connections, 

with the connection between cities X and Y having an associated weight wxy, 
of magnitude equal to their separation Dxy.  In that case, if the jt 1' loop unit is 

activated at a given time (and then turned off), then Sxj  is the sum of the input 

to city X (ie. its potential) one time step later. 4bxi is a monotonically decreasing 

function of this potential (in this case it is a gaussian). Wx,  is simply the ratio 

of this to the sum of 4Xj  over all inputs, i, or equivalently it is 'I' 3  relative to 

(M times) the mean of Wx over all inputs. Hence the weight change AWx j  is a 

simple function of the input to X due to j. 

The tour length term. 

Unlike the method of Hopfield and Tank, the EN energy contains a sum of squared 

inter-loop distances, ie: 

Etourlength = 

Each term is the energy of a spring of extension L,+1  and spring constant 

hence the associated force is a tension. The tension force means that (in the 

absence of any other forces), the distance L,,+1 should decrease in proportion to 

itself, or 

cx —L,11 
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Suppose the two weights vectors Wj  and I+ are simply moved towards one 

another by an amount proportional to their difference, ic. 

Awxj =  (Wx ,3+ -Wx ) 

and EWx,, +i = 	- Wx,,+1) 

for all X. The resulting change in L,,, +1  is found to be 

= —f3'L,,, 1  

So this simple way of altering weights does result in a tension-like effect on 

Since loop unit j is pulled towards both j —1 and j +1, the net change is actually 

	

Wxj = 	+ Wxj+i - 2Wx,,) 

5.4.3 The LEN algorithm. 

The layered elastic net (LEN) develops a mapping which is a solution to the TSP 

by changing its weights in the following way. 

For each iteration, 

The weights are altered for every city X and loop point j by 

LtWxj = cl(K) + 	 + Wx,i +i - 2Wx,,) 	(5.8) 

The sum of all j's weights is restored to unity by rescaling: 

scaled = 

	

where 	 1 = 
	 (5.9) 

The parameter K is gradually reduced to zero over many iterations, as in EN. 
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5.4.4 An example. 

The example shown here is one of the 50 city problems tested by [Durbin & 

Willshaw 1987] (their city set 'b'). There are 125 units in the loop layer. The 

parameters used were a = 0.15 and 8 = 2.0. K starts at 0.2, remaining at this 

value for 1000 iterations. K is then reduced linearly to 0.002 over a further 1000 

iterations. Figure 5.3 shows the projection onto the loop of this mapping after 

500 1  1000, 1500 and 2000 iterations. The solid line indicates the ordering of the 

cities given by best of 100 trials of 3-opt. Hence large differences between 3-opt 

and the tour derived from the mapping after 2000 iterations would appear as lines 

cutting across the circle. In this case a tour is found which is only 1 % longer than 

the best 3-opt tour, and the two tours are very similar in form. This is confirmed 

by projecting the loop points back onto the plane in which the cities lie, as shown 

in figure 5.4. 

5.5 An adaptation of the Neural Activity model 

to the TSP. 

5.5.1 Background: the modelling of biological mappings. 

Topographic mappings between groups of nerve cells occur frequently in the ner-

vous systems of both invertebrates and vertebrates; indeed they may be the most 

striking accessible evidence of order in the structure of these systems. The con-

nections from cochlear membrane to auditory cortex in mammals form a one di-

mensional mapping, but most models have concentrated on the two dimensional 

mapping from retina to optic tectum in vertebrates such as Xenopus (Gaze 1970), 

or the connections from the retina to the lateral geniculate nucleus and thence to 
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LEN: Projection onto the loop 

1000 

Figure 5.3: Example of LEN on a 50 city Euclidean problem, shown after 500, 

1000 7  1500 and 2000 iterations. The small circles dispersed inside each picture 

are the cities projected as described earlier. Their movement outwards indicates 

that each is increasing its selectivity for a particular portion of the loop, and their 

angular coordinate determines their ordering in the tour. For the purposes of 

comparison, the straight lines joining them denote the ordering of cities in the 

best tour obtained by 3-opt. The degree of folding in this line indicates how 

different the two tours are. 
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LEN: euclidean problem projected onto the plane 
o 0 

500 0 

b0 
1000 	0 

0 o 0 
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Figure 5.4: Example of LEN on a Euclidean problem. The loop is shown projected 

into the plane in which the cities lie. For comparison, the best 3-opt tour obtained 

is also shown. It is interesting to note the similarity between the shape of the final 

tour and the projection onto the loop after 1000 iterations in the previous figure. 
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striate cortex in higher animals, although these are not so accessible to experiment 

and are more complex. These are shown schematically in figure 5.5. The map-

pings are demonstrable by naturally or artificially exciting a small region of the 

retina, and then measuring the pattern of neural activity in the tectum. There is 

a wealth of literature on the nature of these connections, their formation in devel-

oping animals under various regimes, and their reorganisation following surgical 

interference. The basic experimental finding is that the retinotectal connections 

form a topographic mapping; any pattern presented to the retina essentially reap-

pears as a pattern of activation across the tectum. The two regions are well 

separated from one another, and the fibres connecting them are not necessarily 

topographically ordered en route. In fact the fibres seem to re-organise themselves 

into their correct positions where they arrive at the tectum. Substantial research 

effort is expended on discovering the rules they use to do this during development. 

5.5.2 The Neural Activity model. 

[Willshaw & von der Malsburg 1975] propose a model to account for the formation 

of such topographic mappings. Each axon of a pre-synaptic cell conducts a search 

in the post-synaptic region for the cells which its neighbours project to, and so 

the appropriate mapping develops. In the Neural Activity (NA) model this search 

is conducted purely on the basis of correlated neural activity. 

It is obvious that the notion of a neighbourhood is logically dependent on there 

being some metric present in the layer in which it resides. In the model this is 

provided by "on-centre-off-surround" lateral feedback. Feedback of this type is 

common in many regions of the brain, including the retina. Suppose that the 

two layers are fully connected to one another by synapses with initially random 

but positive synaptic efficacy (ie. weight). A tectal cell's potential (or membrane 

depolarisation) is taken to be the sum of all its inputs (including those from 
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Random mapping 	 Topographic mapping 

Figure 5.5: Retino-tectal projection. 

other tectal cells), each weighted by its synaptic efficacy. Wilishaw and von der 

Malsburg assumed that the cell's actual activity increased linearly along with its 

potential, provided this was above some threshold. Below the threshold there 

would be no activity. 

Suppose some random activity arises in the retina. The effect of the feedback 

in the retina itself is to accentuate simultaneous activity in nearby cells. There-

fore neighbouring cells will tend to have correlated activity, cells at intermediate 

distances will tend to have anticorrelated activities, and distant cells will remain 

uncorrelated. The overall effect is that retinal activity tends to become concen-

trated in patches. Given initially random connections, in the absence of feedback 

within the tectum the resultant activity amongst tectal cells would be expected 

to be randomly distributed. However the effect of feedback in the tectum this 

time is to accentuate activity only when the active cells are neighbours, so tectal 
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activity also tends to become concentrated in patches. 

Altogether then, there is a tendency for activity to occur in small patches of both 

the retina and tectum, and this is precisely the pattern of connection which needs 

to be enhanced in order to produce a topographic mapping. The obvious way 

to increase this link is the simple Hebbian rule derived from the postulate (Hebb 

1949) that simultaneous activation in both the pre-synaptic and post-synaptic 

cells should lead to an increase in synaptic efficacy. 

Clearly in this case the weights will always increase. To keep the weights from 

increasing without bound while avoiding simply setting a ceiling level to which 

all weights will saturate, there must be some means of reducing weights as well. 

This introduces the requirement for some kind of competition among weights, de-

termining which of them might increase, if we are to retain the Hebbian principle. 

Willshaw and von der Malsburg achieved this by postulating that each tectal cell 

attempts to keep the total of its incoming weights at a constant value; in that case 

a Hebbian increase to the weight from an active retinal cell implies a decrease of 

the weights from inactive cells. 

5.5.3 Orientation and part-maps 

There are two problems with the proposal as it stands 

Firstly, there is nothing so fax to give the mapping its overall orientation. Since 

NA was put forward as the possible principle by which actual mappings arose, and 

those mappings do have a definite orientation, it was important that this come 

out of the model in a plausible way. Secondly, there is the problem that several 

clumps of activity in the tectum may well occur at one time, even if there were 

only a single retinal region active. This would give rise to several regions in the 
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mapping which are correctly ordered in themselves, but which don't fit together 

properly. Willshaw and von der Malsburg overcame these by 

• postulating a small number of 'marker cells' in either layer whose position 

was genetically predetermined. Each retinal marker cell had a specific tectal 

counterpart with some means of recognition (for example a chemical affinity) 

such that they could form a strong synaptic connection prior to development 

of the full mapping. 

• introducing a threshold into the weight change, similar to that applied to 

potentials. Below this threshold which there is no Hebbian weight change. 

The markers give the mapping its orientation, and the threshold is set so that 

isolated activity elsewhere is unlikely to alter the weights. In combination, these 

produce a region of nucleation around the markers since initially the activity is 

not high enough to cause change elsewhere. Development then expands over the 

entire surface as one consistent map. 

This model produces topographically correct maps. However on its own it does not 

account for all the experimental findings concerning retinotectal mappings. This 

led Wilishaw and von der Malsburg to propose a different method which they 

called the Tea Trade Model (von der Malsburg & Willshaw 1977; Willshaw & von 

der Malsburg 1979) which accorded better with the experimental data. In this 

proposal, a small number of molecule types diffuse throughout each layer. These 

in effect can act as coordinates: a cell 'knows where it is' by the concentrations 

of these molecules in its vicinity. The Tea Trade Model later formed the basis of 

the Elastic Net method for the TSP. 
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5.5.4 Details of the original implementation. 

In the NA model the variable weights (W) from retina to tectum are initially ran-

dom, apart from a small number of large weights serving as markers. The fixed 

weights (w) between tectal cells are positive between cells which are immediate 

neighbours, negative between cells in the medium range, and zero between distant 

cells. An input (ie. retinal) pattern (consisting of a pair of adjacent units is ap-

plied, and each output (ie. tectal) unit's activation 4 is evaluated by numerically 

solving N coupled equations (one for each tectal cell A): 

Tt OA(t) = WA + wq(t) - 

(5.10) 
I 4-9 if>O 

where 	
0 	otherwise 

These equations are iterated until some criterion of stability is met. The first term 

is the direct effect of the input activation and the second is the effect of feedback 

from other output units. 

The Hebbian weight change to be made is 

AWAi = 71qi 

which is itself thresholded so that only the largest changes take effect: 

AWA'i 
	

ifWA1> 

- 0 	otherwise 

Finally the condition 

• >WAI=S 

for each output unit A is restored by rescaling all its weights by the appropriate 

amount. These steps are followed for many presentations of many input patterns, 

and a topographic mapping gradually forms. 
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5.5.5 Relationship to competitive learning. 

The Neural Activity model is a direct descendant of the self-organising model due 

to [von der Malsburg 1973], and was itself a precursor of a currently popular unsu-

pervised learning paradigm known as competitive learning used in many models of 

self-organising systems (see for example [Rumeihart & Zipser 1986] and [Kohonen 

1982]). Suppose that the weight changes for a particular output unit are LW1 for 

all inputs j prior to normalising. All the weights are then multiplied by a single 

factor to keep their sum constant, giving 

w ' 

3 	1+EkLW,. 

Provided the changes are small at each step ( 77 << 01 

W(w+w)(1_Wk) 

and keeping linear terms in LW, the overall change denoted by ,&W is 

Awi  = 	 — Wk 
k 

This obeys the sum rule exactly. If the normalisation occurs after each input 

	

pattern as in the original NA model, then LW1 is just 	so the net change is 

AW =  

This specifies a movement towards the input pattern by an amount proportional 

to the unit's activation q'i. There are two senses in which this is "competitive" 

learning. The first is that the weights compete with one another to increase, 

because the normalisation drives weights from inactive inputs down. The second 

is the competition between output cells themselves. Often in these models this 

competition takes the form of resetting some fixed number of the largest potentials 

to 1 and all others to zero (referred to as "k-winners take all" networks), without 

any topological information (as for example in [Rumelhart & Zipser 1986]). This 

is akin to having inhibitory feedback connections of uniform strength between 
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all units in the output layer. In other models, the largest potential is reset to 1 

together with some of its neighbours in the output layer, and all others are set 

to 0 (Kohonen 1982). This is an idealisation of the effect of short-range lateral 

feedback in the NA model. 

5.5.6 Adaptation to the TSP. 

There are two ways to implement the Neural Activity model as a TSP network: 

the loop can be treated as either the input (retinal) or the output (tectal) layer. 

Firstly, all the cities should be able to influence one another to a degree dependent 

on their distance, whereas the loop cells need only interact with those adjacent 

to them. Secondly in the EN method it was seen that a normalisation giving 

each city equal "influence" is important. In the NA model the local feedback 

between retinal cells was not modelled explicitly, but instead each pattern of 

activity consisted simply of two adjacent retinal cells having activity 1 and all 

others activity 0. Also each tectal cell has weights which are normalised to the 

same amount, making all of them equally "strong". Together these make the 

presynaptic layer the most natural choice for the loop. Thus the loop topology 

enters via presentation of input patterns consisting of contiguous sections of the 

loop, and inter-city distances are encoded as feedback between the city units in 

the output layer. 

Tours have also been obtained by the other option, in which the cities act as 

input. This is done by normalising the weights from each city unit and varying 

the magnitude of the input activation of two cities as a function of their separation. 

The tours are unimpressive and the method shows no particular advantages, and 

so will not be considered further. 
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5.5.7 Simplifying the model. 

This model can be considerably simplified for the purposes of the TSP. 

Firstly, it is not essential to solve equation 5.10 iteratively to stability. Instead, 

a single iteration of feedback amongst the cities suffices. This does not adversely 

affect the tour lengths produced, and is both faster to implement and easier to 

analyse. 

Secondly the threshold 0 ensures that the activation of cities, and hence the Heb-

bian weight change before normalisation, is never negative. This can be set to its 

minimum possible value of zero. Likewise, for now we assume that c can also be 

set to zero, in which case it is made redundant by 0. 

Thirdly the particular form of the feedback chosen in the original model was 

influenced by the known biological fact of short-range excitation and medium-

range inhibition. This is not appropriate for the TSP, since it is likely to be 

important for cities at large separations to influence one another directly. Instead, 

in lieu of a better motivation, the simplest function relating influence to distance 

is just linear inhibition: 

WAB = - ADAB 

where DAB  is the known distance between cities A and B. 

Finally the input patterns need not consist of activity in only two adjacent units, 

and it is not necessary that the presentation of patterns be in a random sequence 

with normalisation of the weights after every pattern. Instead all the patterns 

containing some number (say in) of adjacent units can be presented and the 

weight changes accumulated. These changes can then be made and the weights 

renormalised once all the M such patterns have been presented. Moreover this 

increases the potential parallelism of the method. 
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The above points lead to a simplified algorithm. Assume the loop cells are labelled 

in a cyclic fashion (0 to M - 1) so that k maps to k modulo M (if k > M). The 

rn cells that are 'on' (starting at cell i) have activity = 1 and all others are 'off' 

= 0). The algorithm for using the NA model to solve the TSP is as follows: 

For each iteration: 

Start with all weight changes iW at zero. 

Complete the following steps for each of the M input patterns of width in: 

Step (a): Calculate the sum of the weighted inputs into every city X 

0 aw 
XI,  = Wxjj 

3 

Step (b): Find the potential of every city X by including feedback from 

the other cities 

I tOW ox  = /jraW + >Wxyp y  
Y 

Step (c): Eliminate negative potentials to give the "activity" of each city 

x 
( *_fcbx ifqx>0 

X 
- 0 otherwise 

Step (d): Accumulate the weight change for each X,j 

AWxj = t&wxj  + j70* ~j  

Add the change LWx 3  into each weight Wx, 

Rescale the weights into each city X by the amount 

1 

to restore the condition >j  Wy, = 1. 
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Together, these steps constitute one iteration. 

.X, the constant of proportionality of the the linear inhibition, is set such that the 

lowest potential that could be generated by uniform weights is small but positive. 

In that case, çt'' = , so Ox = (1 + Ey wxy) for each city X. Therefore for 

positive potentials, 

—1<>wxy <O  
Y 

Thus we require 0 < ,\ >Jy  Dxy :!~, 1, so .A is set slightly less than the maximum 

over all  of 1 />yDxy 

5.5.8 Two problems. 

Simulations using the algorithm were carried out using M = N and m = 2, as 

in the original model. Two problems become apparent, which are essentially the 

appearance of part-maps and the 'fuzziness' in the mappings. 

The problem of part-maps. 

In the NA model the first few units to develop selectivity determine the broad form 

of the mapping, because increased selectivity itself encourages self-organisation 

around these units. However this means that several small but locally ordered 

regions of the mapping form and are stable, even though they don't fit together 

with other such regions. Because the initial conditions are random, this leads to 

major errors at this early stage which cannot be corrected later. In the application 

to retinotectal mappings, these result in misaligned part-maps. In the TSP, part-

maps are manifested as segments of tours which are short in their own right but 

which cannot be connected together to form a tour without using long paths. In 

the case of cities in the plane, a crossed tour is a good example of a part-map: it 

is known that a tour which crosses itself can always be shortened by uncrossing 

the offending links, and this operation amounts to merely reversing the order of 
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a large segment of the tour. 

The use of a 'marker' (ie. a bias strongly associating one loop point with a 

particular city), as in the original Neural Activity model, might seem a good idea 

since it removes the 2N-fold degeneracy of possible tours (N start points and 

2 directions). This degeneracy was noted by [Wilson & Pawley 1988] as being 

problematic for algorithms of this type. However in this case it is inappropriate 

because it gives a certain (presumably arbitrary) city a special status; development 

of the mapping would spread from the 'marked' city, making the method akin to 

the nearest-neighbour algorithm, which is known to be very ineffective (see Lawler 

et al. 1985). 

Problem of defining the final tour. 

After weight changes have stabilised, even if the broad form of the tour is good, 

it remains unfinished on small scales. Consider the situation shown in figure 5.6 

for a Euclidean TSP. In this case cities B, C and D have become more selective 

than E and F, as is shown by their positions close to the loop in the display. E 

and F are in more central positions because their weights are distributed over a 

wider range of loop units. This creates a problem because if the tour is evaluated 

at this stage it alternates between the two groups as shown in the figure, and this 

is clearly not the optimal ordering. 

Both these problems can be seen as being related to the degree of selectivity at-

tained by cities. The first problem arises essentially because some cities become 

selective too quickly. The second problem arises because cities don't become se-

lective enough to guarantee a sensible tour. Hence one approach to both problems 

is to attempt to control the selectivity directly, through the learning rule. Two 
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Cities projected onto a circle 

GO 

Cities in the plane 

optimum path 
	

path derived from display 

Figure 5.6: Part of a bad tour for a Euclidean problem. The upper picture shows 

the cities as they appear in the display from which the tour ordering is taken. The 

lower pictures show the actual positions of the cities in the plane. 
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possibilities for this are: 

• Define a modification threshold fe as was done in the original model, so the 

Hebbian rule becomes 

LWAJ f'iq 	if> = 
0 	otherwise 

Recall that at present c = 0 to prevent negative weights occurring. As 

is raised the number of patterns able to cause (positive) weight changes 

decreases. 

• Use a non-linear Hebb rule, for example 

AWAj = (*)P 
. 

At present p = 1. As p is raised, the weight changes for patterns causing 

large potentials become much larger. 

In both these rules, as the relevant parameter is raised, higher potentials become 

progressively more accentuated compared with lower ones. These methods do 

improve the tours, mainly by alleviating the second problem. They also raise 

a new difficulty however. Single loop units tend to become mapped to several 

cities which themselves have negligible weights from other loop units; that is, all 

the cities become connected to only a few of the loop units. When this happens 

there is nothing to tell these cities their overall orientation in the tour as a whole. 

Hence crucial contacts relating groups of cities together can be lost. For example 

with the cities shown in figure 5.6, if A has no connections to loop units that are 

common to groups (B,C,D) or (E,F), it no longer influences their orientation, 

which could lead to the ordering A,D,C,B,F,E,G. Broadly speaking the tour 

information becomes encoded onto too few loop points, and the multiple cities 

connected to a single loop point may lose their overall ordering with respect to 

the rest of the cities, leading to poor as well as poorly defined tours. 
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One way to prevent this occurring is to ensure an even distribution of weights by 

including a normalisation of the weights originating from each loop unit. However, 

this is not compatible with the existing normalisation of weights into each city. As 

might be expected, this second normalisation seems to interfere too strongly with 

the first, resulting in poor tours. Another method is to vary the 'competitiveness' 

of loop units, thereby ensuring that each unit gains its share of the weights to 

cities. This can be done by making the activity , a decreasing function of either 

the mean weight associated with j, or the mean potential in the output layer 

when j is active, making 'greedy' cells less competitive. These methods are only 

partially successful, and in many cases the original problems remain. 

Another approach is to regard both the problems as being caused by interactions 

between units occurring at inappropriate ranges. Thus part-maps arise because 

units interact on too local a scale and hence are not bound to adopt a global 

ordering. Likewise the difficulty in defining a tour at the end is caused by the 

city units not competing vigorously enough for the available loop units, which 

is a result of the range of interaction between units in one or both layers being 

too broad. In this view, the solution is to vary the range of interaction in one 

or both layers, beginning with long range interactions which establish the broad 

form of the mapping, and proceeding to short range where each city has a strong 

association with one part of the loop, but the regions of association still overlap. 

Furthermore, this is akin to what happens with the EN method: as the annealed 

parameter K is reduced, tension forces (ie. the degree of interaction between 

loop units) decrease, while at the same time the range of the city forces becomes 

progressively shorter. 

The range of feedback between cities. 

In the non-Euclidean case the "range" of the city forces cannot be given explicitly 

due to the absence of a metric, but instead is encoded in the form of interactions 

between units representing cities. This in turn is controlled by the magnitude 
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I II 
feedback weight 

- distance 

Figure 5.7: Varying the shape of the feedback function. 

and form of the curve relating feedback between two cities to the given distance 

between them. The shape of the curve determines at which range the inter-

city distances are most influential. For example in figure 5.7, feedback curve (I) 

accentuates competition between distant cities whereas in (II) it is nearby cities 

that are in competition the most. The tours may be improved in some cases 

by beginning with feedback of the form of (I) and gradually altering it to (II). 

However which feedback function is optimal appears to be rather dependent on 

the particular TSP instance, and in many cases no improvement is seen. 

Controlling the range of interaction in the loop. 

The relevant quantity determining the range of interaction in the loop is m/M. 

To avoid part-maps it is best to begin with m/M = 1/3, intuitively because four 

objects can be wrongly ordered but three cannot. To ensure each city gains a valid 

place on the tour, m/M is reduced. However there is no point in decreasing m 

below 2 (since at m = 1 there are no longer any interactions to give the units the 

topology of a loop) and with M = N the second problem remains. Therefore M 

needs to be greater than the number of cities to allow the ratio m/M to decrease 

further. 

This method of controlling development (by varying m) was adopted in preference 

to those discussed earlier. It is simple and reliable, and deals successfully with 

both of the problems. In practice if M = 2.5N, then by reducing m linearly 
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M13 to 2 over 1000 iterations and then continuing with rn = 2 for a further 1000 

iterations, part maps (at least for Euclidean problems) are almost eliminated, and 

all cities gain an unambiguous position in the tour. 

5.5.9 An example. 

The cities used here are the same as those in the example of the LEN method. 

The input width, rn, was varied as described above. The rate of change, 77, is 

set at 1/rn, which counters the decrease in accumulated Hebbian changes as m 

is reduced. Figure 5.8 shows the projection of the cities onto the loop after 500, 

1000 and 2000 iterations. By this stage the tour defined by the mapping is 8 % 

longer than the best tour obtained by 3-opt. As in the LEN example, the solid 

lines shown the ordering of cities in the 3-opt tour, and the small number of lines 

crossing the large circle indicates that most of the tour defined by the mapping 

agrees with that of 3-opt. 

Figure 5.9 shows the development of the same mapping, projected back into the 

plane of the cities. Note that the mapping after 2000 iterations appears unfin-

ished since it does not conform exactly to the city positions. However, the loop 

representation of the same weights matrix (Figure 5.8) shows that interpretation 

of the tour is clear, since all the cities are positioned unambiguously on the outer 

circle. 

5.5.10 Analysis of the linear case. 

A problem with any analysis of the algorithm's behaviour is the difficulty of dealing 

with the threshold, which is applied to the potentials. In looking at the condition 

under which the weights will increase, the analysis is therefore restricted to the 
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NA: Projection onto the loop 

Figure 5.8: Example of NA on a 50 city Euclidean problem, shown after 500, 

1000 and 2000 iterations. The dispersed circles in the three pictures denote the 

cities, which are projected onto a circle representing the loop. For comparison, the 

straight lines connecting cities indicate their ordering in the best tour obtained by 

3-opt. A, B and C are the main points at which the tour defined by the mapping 

(which is given by ordering the cities according to their angular coordinate) differs 

from the 3-opt tour. 
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NA: Euclidean problem projected onto the plane 
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Figure 5.9: Example of NA on a Euclidean problem. The loop is shown projected 

into the plane in which the cities lie. The lower right picture shows the tour 

defined by the mapping after 2000 iterations. This may be compared with the 

3-opt tour shown in the LEN figure earlier. Cities A, B and C, mentioned in the 

previous figure are also indicated. 
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-w 
i i+1 	 i+m-1 

m active units 	
30 1 

Figure 5.10: The input pattern labelled by (i). 

case in which all the potentials are positive. Although this is only true at the early 

stages in the development of the mapping, it should point to qualitative features 

of the algorithm's behaviour in general. 

An input pattern always consists of m adjacent cells in the loop, as indicated in 

figure 5.10. The pattern starting at the i' input as shown is to be denoted by a 

superscripted i on the relevant variable. 

The change to the weight from loop unit j to city A after each pattern has been 

presented once but prior to normalising is 

M-1 
k 	(k) (k) WA = 	 with 	() = 

k=O 

='i 
kj-m+1 

where 0 can be used instead of 4' since all potentials are assumed positive. From 

steps 1 and 2 of the simplified algorithm, 

k-fm-i 	 k-fm-i 
= 	WA: + > "-'AB 

11=k 
WBII 

k-fm-I 
(k) 	-' * 	v-.' ,, or A 	LS WAB 

B 	l=k 
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where WAB = WAB + (S(A=B). This gives the weight change before normalisation as 

j 	kfrn—i 

EWAJ = v 	 WBI 
B 	k=j—m4-i l=k 

which is the same as 

(rn—i) 

AWAj = >WAB 	(m - II) WBj+q 	 (5.12) 
B 	q—(rn—i) 

Now suppose that all the cities apart from A have uniform weights W = 11M, 

and that the i' weight to A is slightly different from the others, that is: 

WAI =;1j+y 

1 	7 with WA.)O1 = - 
M - 1  

to keep the sum of weights equal to one. It is interesting to consider whether 

this fluctuation will be increased after one iteration, or whether it will fade back 

towards uniformity. 

For city A, after making the Hebbian weight changes, normalisation rescales all 

its weights: 

S  

- WAI + IIWA1 

$ 	 1+>WA, 

The overall weight change is therefore 

L izinew 	ill 
Ai 	VVAi - YVAi 

- LWA - WAi Ek LWAk 	
(5.13) 

- 	l+E,EWA, 

The denominator is positive. The sign of the numerator indicates what happens 

to the perturbed weight. 

Noting that 
(rn—i) 

(m-q)=m2 
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the following are easily obtained from equation 5.12: 

WAI 	= !(1 + 	+ 7m70 - M-1) 
B 

>2LWAj =, 1jm2 (1 + >:WAB) 
I 	 B 

By substituting these values into equation 5.13, the numerator is found to be 

numerator = m{Mm2 - mfA} 

where 	fZA 	= 1 + >.::WAB 

	 (5.14) 

B 

Notice that -y is just a multiplicative factor. From equation 5.11, 11A  lies between 

zero and one. If A is an isolated city, 11A 0 and the bracketed term in equation 

5.14 is positive. In that case any initial perturbation will be accentuated and A's 

selectivity increased: if y is positive the city becomes more selective for loop unit 

i, and if 'y is negative the normalisation ensures that it selects for the rest of the 

loop instead. Conversely if A is part of a close grouping of cities, 11A - 1 so the 

bracketed term is negative. Hence the .weight change for -y > 0 is negative, and that 

for y <0 is positive: the perturbation is damped out. The increase in selectivity 

of a given cell therefore depends on its activity in a somewhat counterintuitive 

way, in that the post-synaptic cells which are least active are most selective. 

Given an initial random distribution of weights, the isolated cities are the first to 

select a place on the tour. As the weights to an isolated city change, the response 

of the city to inputs at that part of the loop grows, eventually inhibiting other 

cities from selecting that region, causing grouped cities to select other parts of 

the loop en masse. These cities in turn become able to selectively inhibit one 

another, breaking the group up further. Broadly speaking the algorithm can be 

said to organise the distant cities first followed by successively smaller groupings 

of cities. That is, the development of the mapping proceeds from large scale to 

small scale. 

Of course this only applies where all the potentials are positive, which is only true 
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in the initial stages. What then is the effect of resetting negative potentials to 

zero? As a given city becomes more selective, its potential for rejected parts of 

the loop becomes negative. This makes the purely Hebbian change zero, so in 

effect the unit begins to ignore this part of the loop. This makes sense: we do not 

want effects at distant parts of the tour to continue to interfere with development 

elsewhere once the broad form of the mapping has been established. 

5.6 Results. 

Both algorithms were tested on a number of Euclidean and non-Euclidean prob-

lems. 

The figures quoted are the percentage increase of the tour length L over the 

presumed optimal tour length L* :  

_ 
100 x L* L  

L* is the length of the shortest tour found in 100 independent runs of 3-opt, 

starting from random tour configurations. 

In both methods the inter-city distances are first rescaled to make the maximum 

distance unity, and the number of loop cells M = 2.5N. In simulations of the LEN 

method, a = 0.15, 3 = 2.0. The annealed parameter K begins at 0.15 for the 30 

city problem and 0.2 for the 50 city problems, unless noted otherwise. K is held 

constant at this value for the first 1000 iterations and is then reduced linearly to 

0.002 over a further 1000 iterations, at which time the tour is evaluated. For the 

NA algorithm, the number of inputs active at any one time (m) begins at M13 

and decreases linearly over 1000 iterations to 2 1  remaining at 2 for a further 1000 

iterations, after which the tour is evaluated. Both algorithms were run five times 

on each problem. 
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5.6.1 Euclidean problems. 

Hopfield and Tank quote a best tour for a set of 30 cities of 19% longer than 

optimum. Using the same cities, both NA and LEN produce tours only 2-5% 

longer than optimum (taken from 10 runs of each algorithm). 

The algorithms were tested on the set of five 50-city problems used by [Durbin & 

Wilishaw 19871 to evaluate the EN. Each of these consists of cities distributed at 

random in the unit square. The table below shows L for these problems, with the 

EN results (means over 5 trials, from [Durbin & Willshaw 1987]) for comparison. 

Cities in the plane 

Cities Elastic Net LEN NA 
min max min I  max 

a 2.3 4.2 10.1 3.3 4.7 
b 0.7 0.7 0.7 7.8 7.8 
c 3.1 3.9 3.9 5.2 1 11.7 1  

8.2 
d 3.5 7.1 8.8 4.9. 6.3 
e 5.2 3.4 7.3 15.1 

5.6.2 Non-Euclidean problems. 

In order to evaluate the methods on non-Euclidean problems, Euclidean city sets 

were first generated by placing cities at random positions in the unit square and 

forming the matrix of inter-city distances. Each of these distances was then in-

creased by a random number within some percentage of the original distance. The 

reverse distance was altered by the same amount to keep the matrix symmetric. 

This is the same as taking a map consisting of roads that are straight lines be-

tween cities and putting bends in some of the roads. Hence these problems could 

be described as "approximately Euclidean". The results for perturbations of up 

to 1%, 10%, 100% and 1000% are shown below: 
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Perturbed Euclidean matrices. 	j 
Perturbation Cities LEN NA 

min max min I  max 
1 % a 4.2 7.1 5.8 6.4 

b 8.1 8.1 15.2 21.9 
C 7.4 7.4 5.3 7.4 
d 3.2 3.9 3.2 3.2 
e 2.3 16.0 14.1 14.3 

10% a 10.9 20.1 6.0 6.4 
b 4.4 5.3 8.9 8.9 
c 2.4 13.7 8.6 8.7 
d 6.6 18.1 13.2 13.2 
e 4.1 4.4 3.2 

1 	
3.5 

100 % a 4.4 5.9 11.2 13.8 
b 6.6 7.1 13.0 13.5 
c 3.6 9.4 7.1 11.7 
d 34.0 59.1 27.8 27.8 
e 6.1 38.9 12.5 15.0 

1000 % a 83.3 119.4 57.2 57.2 
b 56.9 73.4 88.5 97.7 
c 27.6 28.9 74.1 74.2 
d 56.7 149.2 33.3 34.9 
e 	1 31.1 92.1 	1 62.5 66.2 

Another method of generating a non-Euclidean symmetric problem is simply to 

choose the inter-city distances at random (uniformly) within some range while 

keeping the matrix symmetric. The algorithms were tested on five problems gen-

erated in this way, with the following results: 

Random symmetric distance matrices.] 

Cities LEN NA 
min max mm max 

a 126.9 147.8 137.7 251.1 
b 145.2 174.3 173.1 194.7 
c 164.5 185.1 187.4 194.4 
d 197.1 224.0 186.4 234.1 
e 189.1 233.8 259.0 283.2 
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The average percentage increases, taken over 5 runs on each of the five city sets 

are: 

Average performance over all runs. 7:71 
Cities LEN NA 

Euclidean 7.1 ± 6.6 .7.4 ± 3.3 
Perturbed by 1 % 6.3 ± 3.9 8.3 ± 5.6 

10 % 10.4 ± 9.2 7.8 ± 3.6 
100% 15.6 ± 12.8 14.8 ± 6.3 

1000 % 70.3 ± 36.7 57.2 ± 19.8 
Non-Euclidean 166.7 ± 31.7 209.6 ± 39.9 

5.7 Conclusions 

For Euclidean problems both LEN and NA find tours with lengths which are 

reasonably close to those of the EN method. This is very encouraging, as neither 

method is able to exploit the Euclidean nature of the problem in the way that EN 

does. 

The performance of both algorithms degrades considerably for large distortions of 

the inter-city distances, which suggests that the general approach is inappropriate 

for dealing with highly non-Euclidean instances of the TSP. In such problems the 

Triangle Inequality is frequently broken. This rule is a bound on what might 

be called "common sense" spatial relationships; it is broken if the shortest path 

between A and B is not the direct one, but rather through (say) C. Since the 

topographic mapping approach is intrinsically spatial, it is not entirely surprising 

that it should break down in these cases. 

However there is a middle ground, where the distance matrix is "nearly Eu- 

clidean". Even for small perturbations of this type the EN method can no longer 

be used, but LEN and NA still find short tours in these cases. This would appear 
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to be the domain in which algorithms based on the formation of a topographic 

mapping can be used for non-Euclidean problems. 



Epilogue 

This thesis is about learning algorithms which attempt to maximise performance 

on pattern classification and combinatorial optimisation tasks. These are distinct 

problems and the neural network methods employed to solve them are very dif-

ferent. However, they derive their power from the same source - radically local 

computation. Indeed, it is the essential idea of neural networks, borrowed from 

real nervous systems, that complex calculations might be performed more effi-

ciently by large numbers of simple processors acting in parallel and interacting 

locally, rather than a single processor performing extended serial calculations. 

Understanding this requires understanding the multiple levels of computational 

analysis. The same computation can be implemented by different algorithms, each 

of which in turn might be implemented either serially or in parallel. The field of 

neural networks is not merely about parallel mechanisms for the lowest level, it is 

rather the search for wholly different classes of algorithm. 

Associated with these multiple levels of computation are multiple levels of locality. 

Some purely low-level local mechanisms (eg tension in a rubber band) implement 

higher-level global goals (eg minisiming its length). The methods in this thesis 

are local. Even the global measure to be optimised only figures implicitly, never 

explicitly, in the operation of the algorithm. 
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Consider the networks in Part I. Generic backpropagation solves the problem 

of minimising performance error subject to a particular architecture, and using 

a non-local error measure during learning. This is not necessarily the task of 

interest, given that units and connections are taken to be "cheap"; more often it 

is poor network performance that is costly. The networks in Part I solve the dual 

of this; they minimise the size of the network subject to a particular criterion of 

error, and use only local measures. Optimisation of the whole network follows 

directly from the local optimisation carried out by each unit. Not only is the 

added locality advantageous in itself for implementation, but also the problem 

being solved is more relevant. 

Locality is equally significant for the networks in Part II. Conventional methods 

for the TSP involve non-local computation, because entire tours are rejected or 

entire sections are rearranged at every step. Here, though, minimisation of the 

tour length is achieved by the formation of a topographic mapping, which itself is 

the result of purely local and thus highly parallelisable computations. The global 

constraint that the tour be valid is merely implicit in the running of the networks. 

The algorithms and results presented here show how radically local computa-

tion can be applied succesfully to difficult problems. Impressive global solutions 

emerge. 
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