
Small Nets and Short Paths:
Optimising Neural Computation

Marcus Roland Frean

Ph.D.

University of Edinburgh

1990

I

Declaration

I declare that this thesis has been composed by myself and that the research

reported therein has been conducted by myself unless otherwise indicated.

Edinburgh, 23 October 1990.

Marcus Frean

For my parents,

Margaret and Roly

Ill

Acknowledgements

When I began this PhD I was devoid of all confidence, background and good sense,

and accordingly gave myself even odds on completing it; that it ever arrived at

the binders is very much a reflection on the people I have had around me.

I have an enormous amount to thank David Wilishaw for. The environment

fostered by his day to day presence and supervision has without doubt been the

major reason I've got anything done over the last three years. It still amazes me

that I had such good luck in stumbling upon someone whose style and approach

suited me so perfectly. His guidance and understanding made this possible.

For supervision, practical support and encouragement I thank David Wallace.

I owe a great deal to Peter Dayan, for many conversations that shaped my think-

ing, and Jay Buckingham, not least for the luxurious computing environment I

have used and abused here. To both of you, sincere thanks for your support.

David Willshaw and Peter Dayan have read and re-read innumerable drafts; I'm

at once staggered they could justify this to themselves, and extraordinarily grate-

ful. Kate Jeffery provided important criticisms of a late draft, and her friendship,

enthusiasm and criticism have been invaluable.

A special thankyou to Megan McEwan for her constant friendship.

Finally, if Justine Young hadn't been near and dear and given support, strength,

friendship and love for so much of my time here I would never have got this far,

and to her my gratitude is immense. L can't thank her adequately.

This work was funded by a United Kingdom Commonwealth Scholarship through

the British Council and the Association for Commonwealth Universities, and car-

ried out largely at the Center for Cognitive Science, to each of whom I am grateful.

iv

Abstract

This thesis explores two aspects of optimisation in neural network research.

The question of how to find the optimal feed-forward neural network architec-

ture for learning a given binary classification is addressed. The so-called construc-

tive approach is reviewed whereby intermediate, hidden, units are built as required

for the particular problem. Current constructive algorithms are compared, and

three new methods are introduced. One of these, the Upstart algorithm, is shown

to outperform all other constructive algorithms of this type.

This work led on to the ancillary problem of finding a satisfactory procedure for

changing the weight values of an individual unit in a network. The new thermal

perceptron rule is described and is shown to compare favorably with its competi-

tors. Finally the spectrum of possible learning rules is surveyed.

Neurobiologically inspired algorithms for mapping between spaces of different

dimensions are applied to a classic optimisation problem, the Travelling Salesman

Problem. Two new methods are described that can tackle the general symmetric

form of the TSP, thus overcoming the restriction on other neural network algo-

rithms to the geometric case.

Contents

Prologue 	 1

I Pattern Classification by Perceptrons 	 4

1 Constructive neural network algorithms 	 5

	

1.1 	Overview5

	

1.2 	Introduction 6

1.2.1 	Capabilities of single perceptrons9

1.2.2 	Networks of perceptrons 	12

	

1.3 	Networks with fixed architectures13

	

1.4 	Networks of minimal size15

	

1.5 	Building networks incrementally 	16

	

1.6 	Constructive algorithms for perceptrons17

1.6.1 	The Tower algorithm20

1.6.2 	The Tiling algorithm21

V

	

CONTENTS 	 vi

	

1.6.3 	A different approach to this problem 	23

	

1.6.4 	Producing OR by Whittling27

	

1.6.5 	Producing OR by Splitting 	29

1.7 	A Simulation: learning random mappings37

1.8 Comparisons between constructive methods 41

2 	Upstart algorithm 44

2.1 Rationale 44

2.2 Training units to act as correctors 45

2.3 Upstart as a binary tree 	 48

2.3.1 	Equivalence of the tree and layer architectures 	 50

2.4 Simulations 53

2.5 Alternative architectures 60

2.6 Extension to multiple outputs 61

2.7 Are the tree building methods the sam e? 62

2.8 Conclusion 63

3 Learning in single Perceptrons 	 65

3.1 	Introduction65

3.2 Rules derived from global error niinimisation 	66

3.3 The Perceptron Learning Rule (PLR)69

CONTENTS
	

Vu

3.3.1 Which learning rules will converge on separable patterns? . 	70

3.4 A "thermal" perceptron learning rule 	75

3.5 Expressing learning rules as curves84

3.6 Learning rules considered as points in space86

3.6.1 Restrictions on the form of the curves 	88

3.6.2 	Evaluating the curves . 	89

3.6.3 Performance on non-separable training sets 	93

3.6.4 Performance on linearly separable training sets 100

3.6.5 	The effect of MAX . 107

3.6.6 	The effect of OFFSET . 107

3.7 	Conclusions111

3.8 Further work: Constructive methods revisited 112

3.9 	Summary 113

II Topographic mappings and the
Travelling Salesman Problem 	 115

4 Introduction to the TSP
	

116

4.1 	Overview116

4.2 Outline of the problem . 	117

4.2.1 	Why is the TSP interesting?118

	

CONTENTS 	 viii

	

4.2.2 	Conventional methods121

4.3 Neural networks: the method of Hopfield and Tank 124

4.4 Advantages of using neural networks 127

5 Topographic mappings methods for the TSP. 	 129

5.1 	Overview129

	

5.2 The 	Elastic Net method . 	130

5.3 The TSP and layered neural networks133

	

5.3.1 	The network architecture134

5.3.2 Displaying the current state and defining a tour 134

5.4 A Layered Elastic Net method137

5.4.1 Pseudo-distance measures137

	

5.4.2 	Derivation of a rule for changing the weights 140

	

5.4.3 	The LEN algorithm . 	142

	

5.4.4 	An example 	143

5.5 An adaptation of the Neural Activity model to the TSP.143

5.5.1 Background: the modelling of biological mappings. 143

5.5.2 The Neural Activity model 146

5.5.3 Orientation and part-maps148

5.5.4 Details of the original implementation 150

5.5.5 	Relationship to competitive learning151

CONTENTS
	

ix

5.5.6 	Adaptation to the TSP. 152

5.5.7 	Simplifying the model.....................153

5.5.8 	Two problems . 	. 	155

5.5.9 	An example . 	161

5.5.10 Analysis of the linear case 161

	

5.6 	Results 	167

5.6.1 	Euclidean problems . 	168

5.6.2 	Non-Euclidean problems 	168

	

5.7 	Conclusions170

Epilogue 	 172

Bibliography 	 173

Prologue

Introduction

This thesis describes two types of connectionist or neural network algorithm whose

common thread is optimisation. The first part is concerned with the design of opti-

mal neural networks for learning binary classifications; the second with algorithms

for solving a classic combinatorial optimisation problem.

Learning by Construction

In the first and major part of the work, attention is focussed on the design of

optimal feed-forward networks to learn binary classifications. One of the draw-

backs of backpropagation, the best known algorithm for training neural nets, is

that it does not supply any criteria to specify the architecture of the network to

which it is applied. This brings both technical and fundamental problems. In

particular, if the network is given too many intermediate units between input

and output (hidden units), it will learn only slowly; if it is given too few, then it

may not learn at all. Such problems are alleviated by the constructive approach:

units are added during the learning process as and when required. One way in

which this can be done is to restrict the representations that the network is a!-

1

PROLOGUE 	 2

lowed to use to solve the problem. Two algorithms based on this approach are

presented, both of which build a purely disjunctive representation. The Whittling

algorithm constructs a single layer of hidden units, and the Splitting algorithm

builds a binary tree architecture. For all constructive algorithms the learning rule

applied to each unit must result in convergence of the weights to stable values.

The perceptron learning rule does not have this property; the Pocket algorithm

does, and hence the Splitting and Whittling algorithms are compared with other

constructive algorithms using the Pocket algorithm to find the weights.

An altogether different method is to construct new units explicitly to correct the

errors made by existing units. This idea gives rise to a simple recursive method

for constructing networks, called the Upstart algorithm. This method has been

evaluated on a number of different classification problems and is found to out-

perform existing constructive algorithms.

An unexpected result was the development of a new rule for training individual

units, called the "thermal perceptron". This rule is simple and local in operation,

yet is found to be more efficient than the Pocket algorithm for problems of reason-

able size. This in turn led to the examination of the general form of perceptron-like

rules. A broad class of possible rules is parameterised and simulation studies are

used to explore the parameter space.

The Travelling Salesman Problem

The second topic is the adaptation of neurobiologically inspired parallel algo-

rithms to provide near-optimal solutions to a class of intractable computational

problems as exemplified by the Travelling Salesman Problem. This problem can

be viewed as a mapping problem, that of associating each city with a position

in a tour. The success of the elastic net approach (Durbin & Willshaw 1987)

PROLOGUE 	 3

shows that for problems in which the cities lie in a Euclidean space, mappings

which preserve neighbourhood relationships are appropriate. The major motiva-

tion for the work presented here was to relax the Euclidean restriction. This can

be done by considering the mapping as between two layers of units in a neural

network. Two algorithms are developed for this purpose. One is an extension

of the elastic net algorithm; the second is based on the neural activity model

(Wilishaw & von der Malsburg 1976), an early proposal for the way in which

neighbourhood-preserving mappings form in the brain. Both methods use very

simple learning rules, are intrinsically parallel and find short tours for problems

in which the inter-city distances are reasonably close to those that would arise

from a Euclidean metric. In both cases, the performance degrades substantially

and consistently for highly non-Euclidean problems, suggesting a limitation in the

general approach.

Plan of the Thesis

The first three chapters are concerned with constructive algorithms for learning

binary classifications. Chapter 1 reviews other constructive algorithms, Chapter

2 discusses the Upstart algorithm and Chapter 3 investigates learning rules for

training the weights of an individual unit in the network.

The next two chapters are concerned with the Travelling Salesman Problem.

Chapter 4 reviews the problem itself, and the original neural network approach

to its solution. Chapter 5 is about algorithms based on the topographic mapping

approach.

In the epilogue, general characteristics linking neural networks and optimisation

are discussed.

Part I

Pattern Classification by

Perceptrons

Chapter 1

Constructive neural network

algorithms

1.1 Overview

Distinguishing one pattern from another is among the most fundamental of op-

erations for any system which responds to an environment. Learning to do so is

among the most important of abilities. Connectionism has developed novel ways

of thinking about both these problems, and has enjoyed a certain amount of suc-

cess at solving them. However there are problems with the way these connectionist

networks learn: the following chapters are about ways these limitations might be

overcome by novel learning strategies.

5

CHAPTER 1. CONSTRUCTIVE NEURAL NETWORK ALGORITHMS 6

1.2 Introduction

Suppose that a given set of patterns consists of two disjoint subsets or classes of

patterns, A and B, and that some way of discriminating between patterns in A

and those in B is required. In general this could be done by any system capable

of assuming at least two states, with sufficient discriminatory power to respond

to a pattern from A by going into one state, and to a pattern from B by going

into another state. There are many such systems. In the simplest of all, each

pattern is stored explicitly, together with a tag denoting the set it came from.

This look-up table forms a trivial representation of the classification: no use is

made of commonalities or other relationships between patterns in the same class,

and the information required to distinguish one class from another is no less than

that required to store all the patterns of one class explicitly.

Instead, here the interest is in the discriminatory capabilities of very simple el-

ements known as Linear Threshold Units or perceptrons (Rosenblatt 1958), the

terms being used synonymously throughout this thesis. These units are connected

by weights to the inputs across which patterns occur and, in response to a given

pattern, go into one of two output states given by

11 (0 N) if4>O
output

= 1 o (or') otherwise

N

where 	= 	>JW,, + 0
1=1

(1.1)

The W's are the weights, and , is the value of the i1h input in the given pattern.

0 is called the bias, and is commonly treated as just another weight, typically the

zeroth, from an input which is 1 in every pattern. In other words a perceptron

is ON if the sum
N

E W4

is positive and OFF otherwise. Note the use of a 'hard' thresholding operation;

CHAPTER 1. CONSTRUCTIVE NEURAL NETWORK ALGORITHMS 7

although there are good reasons for eventually generalising to real-valued smooth

transfer functions as opposed to step functions, the natural place to start under-

standing discrimination is with the binary decisions, and this restriction applies

to all that follows.

There are three main reasons for the recent excitement in networks of such ele-

ments.

Firstly, they superficially resemble neurons. Real (biological) neurons consist of a

cell body, with input and output processes called dendrites and axon respectively,

both of which may be highly branched tree-like structures extending well away

from the cell body and making contact with many other neurons. These contacts,

called synapses, enable one neuron to influence another. Individual neurons are

rarely seen to control others directly; generally a neuron's activity is a result of

the cooperative action of many contacts from many other neurons. The 'resting'

or inactive state of a neuron is one in which its cell membrane is electrically

polarised, this being characterised by a negative cellular potential. If however the

potential at the cell body exceeds a critical value, a wave of depolarisation sweeps

rapidly from the cell body along the axon. This wave, called an action potential,

is an 'all-or-nothing' response, continuing undiminished throughout the entire

axonal tree. The cell body may reach the necessary trigger potential as a result of

activity by other cells synapsing with its dendritic tree. Action potentials arriving

at individual synapses have the effect of causing momentary depolarisations or

hyperpolarisations (excitation and inhibition respectively) at the cell body, and

the net result of many synapses is roughly cumulative. The degree to which a

given synapse is able to affect the potential at the cell body is called the synaptic

efficacy or strength. There is strong evidence that it is this variable which is altered

during at least some forms of learning (Bliss and Lomo 1973). The accumulation

of the effects of many synapses and subsequent triggering of an all-or-nothing

response is closely reflected in the operation of a perceptron. The hope is that

CHAPTER 1. CONSTRUCTIVE NEURAL NETWORK ALGORITHMS 8

seeking parallels with the brain will have benefits for 'artificial' (ie. non-biological)

information processing, and conversely that studying the computational properties

of such simplified yet somewhat 'brain-like' networks can enhance understanding

of the brain itself.

Secondly, perceptrons represent an archetypal form of parallelism, because they

take account of (albeit in a very simple way) many factors and then make a

decision, based on the total effect of all the factors. This simple summation of

factors is an intrinsically parallel operation.

A third and major reason for interest in perceptrons is their capacity to learn

from examples. The existence of learning algorithms both for individual percep-

trons and for networks of many perceptrons or similar elements is one of their

most attractive aspects. Such learning algorithms are the subject of this and the

following two chapters.

In all that follows, a 'pattern' is taken to mean a set of values defined over a

finite number of nodes, these nodes possibly being perceptrons themselves. This

is because whether simulating brain-like processing or implementing a classifier,

the real interest is in networks of perceptrons, because individual units have very

limited computational power. It is therefore important to be able to consider the

inputs to a unit as the outputs of other units. Unless explicitly stated otherwise,

Part I of this thesis is concerned exclusively with binary inputs and outputs.

It is often instructive to treat the patterns to be learned across N inputs as points

in an N dimensional hyperspace (often called 'pattern space'), with some of these

points being from class A and others from class B. The classification problem is

then to construct a decision surface such that all the class A patterns are separated

from all the class B patterns.

CHAPTER I. CONSTRUCTIVE NEURAL NETWORK ALGORITHMS 9

1.2.1 Capabilities of single perceptrons

It is now fairly well understood what perceptron-like elements can discriminate

in principle. If patterns are pictured as points in a space, the decision boundary

formed by a perceptron as defined in equation 1.1 is simply a hyperplane in this

space'. Thus clearly a set of patterns consisting of two classes may or may not be

correctly classifiable by a single perceptron depending on whether there exists a

hyperplane which separates all of one class from all of the other. Pattern sets where

this separation is possible are therefore referred to as being linearly separable.

Single perceptrons can separate (ie. represent the classification of) any two classes

which are linearly separable. If there are N inputs, then there are 2N possible

patterns, and
22N

 possible divisions (or dichotomies as they are called) of the

space into two classes. However of these only a small subset, less than 2'/N!,

are linearly separable (Lewis & Coates 1967). Moreover [Cover, 1965] proved

that the expected number of random patterns in general position (that is, linearly

independent patterns) classifiable by a perceptron is 2N. Clearly it is not the case

that all dichotomies of interest are expected to be linearly separable.

The Perceptron Learning Rule (PLR)

On presentation of pattern , the Perceptron Learning Rule (Rosenblatt 1962),

henceforth abbreviated to 'PLR', alters the weights in the following way 2 :

(1.2)

'If the bias is considered as another input, the picture is of patterns as points on a hyperplane

displaced from the origin in an N +1 dimensional space, with the perceptron decision boundary

being another hyperplane, passing through the origin.
2 Notation: although here and elsewhere learning rules are stated with an index indicating the

particular (Ith) input, the rule is assumed to be implemented for all inputs (i=O..N) convergent

on the unit, where the zeroth input is understood to provide the necessary bias.

CHAPTER 1. CONSTRUCTIVE NEURAL NETWORK ALGORITHMS 10

where o" is the actual output given by equation 1.1, i" is the desired or target

output, and a is a positive constant. The Perceptron Convergence Theorem (Block

1962) states that if a set of weights exists for which the perceptron makes no errors,

the PLR will converge on such a set after a finite number of pattern presentations.

Hence perceptrons can learn any dichotomy that they can represent. However if

no such solution exists, the weights are never stable since they change every time

an error is made.

The Pocket algorithm

A simple extension of perceptron learning for non-separable problems called the

Pocket algorithm (Gallant 1986a) suffices to make the PLR well behaved, in the

sense that weights which minimise the number of errors can be found. The Pocket

algorithm consists of applying the PLR with a randomly ordered presentation of

patterns, but also keeping a copy of a second set of weights in addition to those

currently used in the perceptron. These weights are just the set of perceptron

weights which have lasted for the largest number of consecutive presentations

without being changed. Since the patterns are presented in random order, good

sets of weights will have a lower probability of being altered at each presentation,

and therefore tend to remain unchanged for a longer time than sets of weights

which engender more errors. This 'pocketed' set of weights will give the minimum

possible number of errors with a probability approaching unity as the training

time increases. That is, if a solution giving say p or fewer errors exists then

the Pocket algorithm can be used to find it. Another attractive aspect is that

continuously generated data may be used, instead of a training set of fixed size,

and the unit learns continuously on-line, instead of updating its weights after

each sweep through an entire training set. The amount of computation involved

is little more than that of the perceptron alone. Note that if the patterns are

indeed separable, then the Pocket algorithm's behaviour reduces to the usual

CHAPTER 1. CONSTRUCTIVE NEURAL NETWORK ALGORITHMS 11

PLR. [Gallant 1986a] mentions that the Pocket algorithm out-performs a standard

technique (Wilks method, in [SPSS-X 1984]), by about 20% for a set of 15 learning

problems.

The original algorithm improves the pocketed weights in an entirely stochastic

fashion - there is nothing to prevent a good set of weights being overwritten by

an occasional long run of successes involving bad weights. The so-called 'ratchet'

version of the Pocket algorithm (Gallant 1989) is a simple way to ensure that

every time the pocket weights change, they actually improve the number of errors

made. We keep track of another quantity, which is the actual number of errors

made using these weights if every pattern in the training set is applied to the

input. Suppose that a certain set of perceptron weights has remained unchanged

(that is, made no errors) over the last L presentations, and that L is greater than

the previous longest run. In the simple Pocket algorithm these weights replace the

existing pocket weights. In the Pocket algorithm with ratchet, at this point we

run through all the patterns in the training set, and count the number of errors

made if these weights are used. If this number is less than that associated with

the existing pocket weights, we replace the pocket weights, the longest run length,

and the least number of errors, with their new values.

The algorithms discussed in this chapter rely upon the Pocket algorithm, both

from the theoretical point of view to show how convergence can be guaranteed and

in practice to generate the weights. The main strength of the Pocket algorithm is

the fact that optimal weights are found with probability approaching unity, given

sufficient training time.

Unfortunately this method has a number of unattractive aspects. There is no

bound known for the training time actually required to achieve a given level of

performance, and this considerably weakens its theoretical appeal. Moreover, in

practice the weights do not improve much beyond the first few cycles through the

CHAPTER 1. CONSTRUCTIVE NEURAL NETWORK ALGORITHMS 12

training set. Although the weights so obtained are better than many other meth-

ods, they still tend to make many more errors than an 'optimal' set would make.

To get better weights from the same procedure the 'ratchet' is required. However

whereas the original doubling of the number of parameters (that is, the weights)

does not greatly increase the computational cost, the search over all patterns re-

quired in the ratchet version does. In practice, learning over the same number

of epochs takes orders of magnitude longer to implement using a ratchet than

without when reasonably difficult problems are attempted. Finally, the Pocket

algorithm doesn't indicate much of interest about pattern classification: the sim-

ple PLR algorithm operating on non-separable patterns apparently executes little

more than a random walk around a bounded' region of weight-space, and the

Pocket algorithm merely samples sequences of points in this weight space at ran-

dom.

1.2.2 Networks of perceptrons

Networks of interconnected perceptrons are much more powerful than individual

ones. If an extra layer of 'hidden' perceptrons is inserted between input and

output, any consistent' dichotomy can be represented, provided there are enough

units in this layer. The extra power arises because, unlike the outputs, the hidden

units do not have their states prescribed externally, but are 'free' to learn to

respond to the input patterns in a useful way. This type of network is termed

feed-forward because the activity of each unit depends only on activities of units

in preceding layers.

The problem of actually learning with success, generality and simplicity in such

'This is a corollary to the Perceptron Cycling Theorem (Minsky & Papert 1969).
'Obviously if the same pattern appears in both classes, no classifier can succeed since the set

is inconsistent.

CHAPTER I. CONSTRUCTIVE NEURAL NETWORK ALGORITHMS 13

networks has been one of the major questions confronted by neural networks

research. The central problem is that although the hidden units are known to be

necessary in order to perform complex mappings from input to output, it is not

obvious how best to train them. In 1969, at the end of their highly influential

book Percept rons, Minsky and Papert wrote pessimistically of the extension to

hidden layers:

'The problem of extension is not merely technical. It is also strategic.

The perceptron has shown itself worthy of study despite (and even

because of!) its severe limitations. It has many features to attract at-

tention: its linearity; its intriguing learning theorem; its clear paradig-

matic simplicity as a kind of parallel computation. There is no reason

to suppose that any of these virtues carry over to the many-layered

version. Nevertheless, we consider it an important research problem

to elucidate (or reject) our intuitive judgement that the extension is

sterile. Perhaps some powerful convergence theorem will be discov-

ered, or some profound reason for the failure to produce an interesting

'learning theorem' for the multilayered machine will be found.'

To a large degree, the recent resurgence of interest in connectionist systems has

been due to the development of learning procedures which enable hidden units to

be trained (see for example [Rumelhart et al. 1986, chapters 7 and 8], [Hinton

19871, [Lippmann 1987], [Cowan & Sharp 1987]).

1.3 Networks with fixed architectures.

The majority of research on neural network learning has concentrated on networks

whose architecture is fixed before learning occurs. However learning with fixed

CHAPTER 1. CONSTRUCTIVE NEURAL NETWORK ALGORITHMS 14

architectures poses two major problems:

the representational problem. There is no a priori way of assessing how

large a network has to be in order to solve a given task (in fact the problem

of deciding whether a given structure can implement a given mapping has

recently been shown to be NP-complete (Judd 1987; Blum & Rivest 1988)).

Use of a fixed architecture therefore means adopting some network structure

without knowing if it is adequate for the task.

the learning problem. Even where a network structure is known to be ad-

equate for the given task, fixed networks cannot be guaranteed to achieve

this level when using the usual learning methods.

Methods such as backpropagation (Rumeihart, Hinton & Williams 1985; Werbos

1974) work by attempting to minimise a single global quantity, namely some

measure of total error made by the network. This measure can be interpreted as

a surface (the error surface) in the space of free parameters (the weights), with

the optimal configuration of weights giving the deepest minimum in this surface.

Such a surface may have many other 'local' minima which are not as deep as

the 'global' minimum sought. Methods such as backpropagation are described

as gradient descent methods because they alter the weights so as to move down

the surface by means of some estimate of the local gradient. The above problems

may be seen as symptomatic of the pitfalls of this approach, which emphasises

the view of learning as a search for the global minimum in a space of high but

fixed dimensionality. The first problem is that even the global minimum may not

be deep enough for the purposes of the network, and the second is that even if

it is deep enough, any method which works by moving in small steps across this

surface is prone to becoming 'stuck' in sub-optimal minima. 5

5This prompted Minsky and Papert to conclude in the epilogue of the expanded edition of

'Perceptrons' in 1988 that the quotation I gave above was still applicable.

CHAPTER 1. CONSTRUCTIVE NEURAL NETWORK ALGORITHMS 15

1.4 Networks of minimal size

While both the above problems may be avoidable if the size of the network is very

much in excess of that needed in principle, there are good reasons for wanting to

produce trained networks that are close to the minimal size required for a given

task. This involves the notion that a network which solves a learning problem

with as few as possible hidden units is capturing something important about the

nature of the task.

Firstly, a network which has in some sense extracted the essence of the task it has

learned should be better at generalising to novel input patterns drawn from the

same distribution. This is closely related to the issue of under- vs over-fitting of

data sets, in that if a data set can be fitted perfectly well by a curve defined using

a small number of parameters then this is likely to be a better estimator of the

underlying distribution than a complicated curve. Therefore networks of near-

minimal size might be expected to exhibit better generalisation to novel inputs

than much larger networks, where both succeed to the same degree in classifying

the training set. This conjecture is supported by theoretical work such as [Denker,

Schwartz et al. 1987] and [Baum & Haussler 1989], as well as simulation results

as in [Le Cun 1989] and [Morgan & Bourlard 1990].

Secondly, a succinct representation of a problem is a desirable goal in itself. Part

of what makes learning in networks so interesting is that they develop their own

representations instead of merely implementing solutions imposed from outside.

However if the nets are large the representations are often inscrutable and at worst

trivial. An overly large network can simply form a look-up table representation,

whereas a small network must take account of the relationships between patterns

in order to succeed.

One way to approach the problem of building optimal sized networks is to train

CHAPTER 1. CONSTRUCTIVE NEURAL NETWORK ALGORITHMS 16

very large networks and then remove weights or units wherever possible. Examples

of this approach can be found in [Chauvin 1989], [Hanson & Pratt 1989], [Mozer

& Smolensky 1989] and [Le Cun, Denker & Solla 19901, The opposite approach

is adopted here, namely the building up of a representation from a single unit

until the task can be solved. This gives rise to so-called constructive learning

algorithms, which include the capacity to add units to the network as well as to

train the weights.

1.5 Building networks incrementally.

The major appeal of constructive methods is the possibility of generating near-

minimal sized networks. In addition to this there may be other benefits.

Firstly, learning may be a lot easier if not all the units are learning at the same

time. This is related to the 'credit assignment problem' encountered in training

networks with hidden layers. The problem of assigning credit arises because when

an output is in error it is not clear which of the hidden units should alter its

weights (and by how much), since potentially every one of them contributed to

the error. Algorithms for learning in fixed architectures can always be recast in

terms of heuristics regarding which units were 'to blame'. By learning in only

a small number of the units at any one time this problem is avoided. The only

substantial credit assignment is the local one involved in building weights for a

given individual unit, which is not nearly as hard as deciding which weights in a

whole network to change, in which direction, and by how much.

Secondly, it is possible that learning in this way has significantly different prop-

CHAPTER 1. CONSTRUCTIVE NEURAL NETWORK ALGORITHMS 17

erties from that in fixed networks". This may be especially true where the way in

which weights are altered is intrinsically tied to the way in which units are added

(rather than say, gradient descent of the usual kind but which merely adds another

unit). Just as the view of learning as gradient descent of a surface has proved a

valuable tool for thinking about learning in general, approaches which actually

combine weight modifications with incorporation of.new units into networks may

bring out similar insights.

It is well to keep in mind a notable disadvantage of building networks incremen-

tally: the learning process cannot be as parallel or distributed as it is in a fixed

architecture. At the very worst the learning can only proceed on one unit at a

time, instead of on all units at once.

1.6 Constructive algorithms for perceptrons

There are two powerful design constraints on constructive algorithms for neural

networks.

1. They should provide a guarantee for convergence on the training set. This is

important because the most immediately interesting quality of incremental

methods is that they get better; the proof that this occurs is important

whatever the procedure in question. The hope is that in this way one may

avoid the kinds of 'fuzzy' convergence properties of algorithms based on

gradient descent in fixed architectures.

6 For example a network constructed from a single unit is bound to have some sort of hierar-

chical structure, and this will be reflected in the internal representation formed of the training

data.

CHAPTER I. CONSTRUCTIVE NEURAL NETWORK ALGORITHMS 18

2. The algorithm should involve only local computations amongst connected

units, both for altering weights and classifying input patterns. No other

external 'control' should be required, apart from the provision of the target

signal.

Gradient descent methods can readily be adapted to be constructive, but this

generally means there is no real guarantee of convergence or worst-case network

size, and in many cases the second constraint is also stretched. Several workers

have studied the effect of simply adding units to networks which learn by back-

propagation, the principle issues being when to add a unit, and how to initialise

its weights (see for example [Honavar & Uhr 19881, [Kruschke 1988], [Ash 1989],

[Thacker & Mayhew 1990], [Smith 1990]). There are also some gradient descent

type algorithms which actually use the incremental nature of the algorithm in

defining weight changes, notably [Sun, Lee & Chen 1988] where a tree of units

is built based on an information theoretic measure, and the 'Cascade-correlation'

algorithm (Fahiman & Lebiere 1990) where units are trained to maximise their

correlation with the output unit's errors. This results in new units which are

responsive to the errors made by the existing output. The output unit can then

use the response of the new unit (by learning the appropriate connection weight)

to decrease its own errors. - -

There are other procedures, generally referred to as 'geometrical' methods (Rujan

& Marchand 1989; Ramacher & Wesseling 1989; Hao et al. 1990), which are able

to guarantee convergence by constructing units but are not implemented using

local information transfer and hence cannot be said to learn in the usual neural

network sense.

There are two aspects to the convergence properties of all the constructive algo-

rithms for perceptrons discussed here. When a new unit is added, it needs to be

shown firstly that there exist weights associated with this unit which will result in

CHAPTER I. CONSTRUCTIVE NEURAL NETWORK ALGORITHMS 19

an improvement in the network's performance, and secondly that such weights can

be learned by the unit. Although not always explicitly stated in the literature, the

existence of useful weights depends on the following property of sets of patterns,

which I will call convexity 7 . A set of patterns will be described as convex if and

only if each pattern in the set can be separated by an appropriately positioned

hyperplane from all the rest. Clearly this is true of binary patterns, since they

are corners of a hypercube, and any such corner can be 'sliced off' from the rest

of the hypercube. For instance the weights

Wi 	 for i=1.JV

N
with a bias weight Wo = - q + 1

j=1

define a perceptron which is ON for pattern 	and OFF for all other binary pat-

terns. Another frequently used class of patterns which are convex arises when the

individual inputs Ci are real-valued and each pattern is normalised such that

N

Such patterns lie on the surface of a hypersphere in N-dimensional space. Any

individual point on such a surface can be separated from the rest by a hyperplane

which just touches the hypersphere at that point. Once it can be shown for a given

algorithm that a useful set of weights does exist for each unit added, convergence

to zero errors is guaranteed provided the weights algorithm finds such a set in the

worst case. However this must be tempered by the fact that there is no known

upper bound on the time required for the Pocket algorithm to find such a set

of weights: the probabilistic guarantee of the Pocket algorithm is also true of an

algorithm which simply assigns random weights to a perceptron. In practice either

the Pocket algorithm must be run for a very long time to ensure weights which

distinguish at least one pattern from the rest, or an explicit check can be made

7A convex region is usually defined as one in which a line between any two points in the

region is itself entirely within the region. This is similar but not identical to the definition used

here for a set of points to be convex.

CHAPTER 1. CONSTRUCTIVE NEURAL NETWORK ALGORITHMS 20

and training continued if the weights aren't good enough. The second option

amounts to a 'hack', so the first was adopted in the simulations reported here.

In the algorithms studied in the following chapters the networks are all feed-

forward, since the inclusion of feedback greatly complicates network analysis. The

learning tasks are all simple two-way discriminations, and the units themselves

are all simple perceptrons as defined in equation 1.1. In summary, the follow-

ing discussion concerns feed-forward networks of simple perceptrons, with a single

output unit, learning convex patterns.

1.6.1 The Tower algorithm

[Gallant 1986b] introduces this method and describes its convergence property.

[Nadal 19891 arrived at the same algorithm independently, as a special case of the

Tiling algorithm (Mézard & Nadal 1989) which is discussed shortly

The idea behind the Tower algorithm is very simple. Given a set of input patterns

and target outputs, a unit (call it A) is generated with weights from each of the

inputs. This unit is trained on all the patterns using the Pocket algorithm. If

this unit succeeds the task is solved, but otherwise the Pocket algorithm produces

a 'good' set of weights, given sufficient training. Then a second unit (say B)

is generated which is also connected by weights to the inputs, but also has a

weighted connection from A, and all weights are trained in the same way. If this

unit doesn't succeed a third unit (C) is added, and so on as shown in figure 1.1.

In the simple Tower algorithm each new unit receives weights from the inputs and

only its immediate predecessor, while in a second version it has contact with all

previous units. It is easy to show that each new unit can make at least one fewer

errors on the training set than did any of its predecessors, in the case where the

patterns are convex. For instance, if the first unit, A, is wrongly OFF for pattern

CHAPTER 1. CONSTRUCTIVE NEURAL NETWORK ALGORITHMS 21

Tower architecture

input connections

weighted connection

Figure 1.1: The architecture constructed by the Tower algorithm. In this case

only the immediately previous unit is available to its successor. The output unit

is simply the first such unit which makes no errors.

the second unit, B, can have weights from the inputs which guarantee it is

active for this pattern alone as shown above, if B also has a large weight from

A, it behaves just as A does except it gets the pth pattern correct. A similar

argument applies to patterns for which A is wrongly ON.

1.6.2 The Tiling algorithm

Mézard and Nadal published this algorithm in 1989. The core idea of the Tiling

algorithm is what they call faithfulness, which they observed to be a necessary

property of each layer in a feed-forward network. The representation at a given

layer is said to be faithful provided that both targets are never assigned to the same

pattern at that layer. Thus unfaithfulness is simply the presence of contradictory

data. Obviously if the raw input is contradictory it is impossible for any system

CHAPTER 1. CONSTRUCTIVE NEURAL NETWORK ALGORITHMS 22

to get every pattern correct, since there is at least one pattern which tries to map

to two different targets at once. Mézard and Nadal call the set of patterns at layer

1 which cause the same pattern at layer 1 + 1 a class, so for the representation

at that layer to be faithful each class must include patterns of only one target.

Assuming consistency in the input patterns then, a neural network must maintain

faithfulness at each successive layer. Mézard and Nadal's idea was to invent a

learning algorithm which constructed units in such a way that

• one unit in each layer makes fewer errors than a corresponding unit in the

previous layer.

• the set of patterns produced in each completed layer is faithful.

This combination ensures eventual convergence to zero errors in a number of

layers which is at most equal to the number of errors made by a single perceptron

attempting to learn the task.

In the Tiling algorithm two different types of unit are required: master units and

ancillary units. Each new layer has a single master unit, whose role is to make

fewer errors than the master unit in the preceding layer, and as many ancillary

units as are required to ensure faithfulness of the representations formed in that

layer, as shown in figure 1.2. The layer 1 = 0 is taken to be the input layer.

Assuming the representation at layer 1 is faithful then, layer I + 1 is constructed

as follows:

Step 1. Generate a master unit M1+1 in the new layer. Train the weights to M1+1

from all the units in 1 using the Pocket algorithm. It is easy to show that

M1+1 can make fewer errors than M, (1 > 1), provided the patterns in layer

1 are faithful. if 1 = 0 the number of errors is just that made by a single

perceptron trying to learn all the input patterns.

CHAPTER I. CONSTRUCTIVE NEURAL NETWORK ALGORITHMS 23

Step 2. Examine the representations of input patterns as they appear in layer

1+1 (initially there are just two, master ON and master OFF): if any class at

this layer contains patterns of both targets 8 the representation is unfaithful.

In this case the largest offending class is assigned to a new ancillary unit.

This ancillary unit tries to learn only on this restricted set of patterns, using

the Pocket algorithm.

Step 2 is repeated until the representation at layer 1 + 1 is faithful. In this way

the two conditions above are satisfied for each successive layer, so eventually there

will be a layer in which the master unit makes no errors. This is then taken to be

the output unit and the problem is solved.

In fact the conditions can be satisfied without any ancillary units at all, provided

each master unit is connected directly to the (assumed faithful) inputs (Nadal

1989), and to the preceding master unit as before. This then is an alternative

view of the Tower algorithm.

1.6.3 A different approach to this problem.

The problem of how to train hidden units is usually thought of as how to get

the output units to give the correct answer. However, for an output unit to

succeed, the internal or 'hidden' representations of the input patterns must be of

the right form. Hence the search for the weights which solve the problem can be

recast in terms of a search for appropriate hidden representations. This view is

the basis for various variants and extensions of backpropagation learning (see for

example [Le Cun 1985], [Plaut et al. 1986], [Rohwer 1990], [Krogh et al. 1990])

and also perceptron learning (Grossman et al. 1989, Nabutovsky et al. 1990)

'Note that this step is not truly local at all since a class is defined using the activities of all

units in a layer. However it can easily be made so, as will be shown in section 1.6.5.

CHAPTER I. CONSTRUCTIVE NEURAL NETWORK ALGORITHMS 24

Tiling architecture

Input

layer 1

layer 2

•.. S

S
0
S

output

Figure 1.2: The architecture constructed by the Tiling algorithm. Master units

are labelled M and ancillary units Al, A2 and so on. The output unit is the first

master unit which makes no errors.

CHAPTER I. CONSTRUCTIVE NEURAL NETWORK ALGORITHMS 25

for networks with fixed architectures. Indeed, one view of the Tiling algorithm is

that it is a method for constructing progressively more useful and compact hidden

representations.

We can take this idea one step further: the output unit can only succeed if the

patterns it sees are actually linearly separable, so the hidden layer has a 'role',

namely to produce a separable representation of the input patterns. There are

many dichotomies which are linearly separable (even though in proportion to the

total number of dichotomies this number is tiny). There is also a large degree of

redundancy among hidden representations. For example [Denker, Schwartz et al.

19871 point to an 'ordering' symmetry and a 'polarity' symmetry. The ordering

symmetry arises because the ordering of hidden units within a layer is arbitrary, so

any given representation across H hidden units is one of a family of H! essentially

equivalent representations. The polarity symmetry refers to the fact that if all

the weights associated with a given hidden unit are multiplied by minus one and

the output's bias is adjusted appropriately the effect on the output is unchanged,

giving a further 2 11 -fold symmetry. Moreover, for perceptron units the magnitude

of the weights vector of any given unit is irrelevant since it is only the sign of 0

which determines the output response.

Since a great many different internal representations can be used to solve the

same problem, one way to get at the problem of learning in networks is to remove

part of this degeneracy. This involves biasing the network towards one or other

particular representation instead of allowing it freedom to choose between lots of

essentially similar solutions. The simplest way to do this is to preassign some

linearly separable representation and get the hidden layer to produce it. One of

the simplest hidden representations is where all the patterns in one class map onto

a single pattern in the hidden layer, and none of the patterns in the other class

map onto this same pattern. This is a separable representation since a perceptron

(in this case the output unit) can always respond to this binary pattern and no

CHAPTER I. CONSTRUCTIVE NEURAL NETWORK ALGORITHMS 26

other. That is, we aim to group all the patterns of one target class together

in the space of patterns across hidden units ('H-space'), and merely exclude the

other class from this pattern. The particular pattern chosen here is the origin;

the object is to map all target 0 input patterns onto the origin in H-space, and

all the target 1 patterns elsewhere. What is needed is a set of hidden units which

-are all OFF for any target 0 pattern in the learning set, but at least one of which

is ON for every target 1 pattern. Therefore two properties are essential:

Property 1. that each relevant hidden unit should get at least one target 1

pattern correct, but be OFF for every pattern which is target 0. In the space

of patterns this amounts to positioning a hyperplane so that it 'slices off' a

portion of the hypercube which has only target 1 patterns on it.

Property 2. that each target ON pattern activates at least one such hidden unit.

Note that in this representation the polarity symmetry is removed. The output

effectively does a logical OR operation over the outputs of the hidden units, so

this might be termed 'disjunctive'. From now on it is just referred to as the

OR-representation. Particular appeals are firstly that the link with boolean logic

is apparent, secondly that this is in a sense the 'natural' representation if the

training set is itself composed of the conjunction of several features, and thirdly

that it is simple enough to suggest constructive algorithms.

Two new constructive algorithms will now be discussed that incrementally build

such OR representations. The first generates this in a single hidden layer in a

manner reminiscent of 'whittling' off one class from another, and the second uses

hidden units in a tree structure to recursively split up the training set until a set

of hidden units is arrived at which form the OR representation.

CHAPTER I. CONSTRUCTIVE NEURAL NETWORK ALGORITHMS 27

1.6.4 Producing OR by Whittling

Consider the following trivial incremental network method. We have an input

layer, an initially empty hidden layer and a single output unit with no connections.

Now a pattern is presented. If the target is 0, there's no change since the output

was OF F anyway. If the target is 1, a hidden unit is generated and given weights

such that it is ON for this pattern alone, and its weight to the output is set

positive. The output unit's bias is zero, so this pattern now turns the output ON

and corrects the error. This process is repeated for all patterns in the training

set. Obviously every new unit corrects one error without causing any others to

occur, so the hidden layer is effectively a look-up table of the target ON patterns,

and its size is just the number of such patterns in the training set.

In the above, no use is made of the relationships amongst the patterns themselves.

To do better, each hidden unit should attempt to get at the very least one target

1 pattern correct, and preferably many more than one where this is possible. This

can be seen as an optimisation problem: minimise the number of incorrect target

l's (a 'soft' constraint) subject to ensuring that the number of incorrect target

0's is zero (a 'hard' constraint). One way to produce these units by using the

Pocket algorithm is as follows.

Start. Begin with the training set consisting of all the patterns.

Step 1. Use the pocket algorithm to produce a good set of weights for this train-

ing set. If the weights make no errors on this set then STOP.

Step 2. From the training set of this unit, remove the target ON patterns which

give lowest (ie. most negative) 0. A good way to do this is to remove some

fixed proportion (typically 10-50%) of the target ON patterns. Then repeat

Step 1.

CHAPTER I. CONSTRUCTIVE NEURAL NETWORK ALGORITHMS 28

In this way the training set is eventually made linearly separable solely by remov-

ing target 1 patterns, so the final set of weights gets every target 0 pattern correct

and at least one pattern correctly ON (since in the worst case the last target 1

pattern is certainly separable from all the other patterns). One drawback is the

relatively poor performance of the Pocket algorithm, and hence the possibility

that the set of weights which are found will actually turn the perceptron OFF for

every pattern. This happens because if there are relatively few target 1 patterns,

the number of errors made by never being active is relatively small, hence these

weights are likely to be pocketed. Obviously a unit which is off for every pattern

is of no use. Another drawback is that the removal of patterns from the training

set in this way effectively requires that the unit have access to a listing of the

training set complete with 'tags' denoting patterns to be ignored'.

Having successfully produced such a unit satisfying the first property given above,

the construction of units one by one deals with the second property, provided each

new unit ignores any pattern which activates any of the earlier hidden units. In

terms of signals passing between units, whenever a completed unit is ON it broad-

casts a 'don't learn' signal to the new cell which is being trained. Algorithmically

then, the patterns that turn a unit ON are removed from the training set of all fu-

ture hidden units. The next unit then follows the same steps, slicing off a further

subset of the (remaining) target 1 patterns, and removing them from the training

set of any later units. This process may be continued until no target 1 patterns

remain, in which case the layer of added hidden units forms an OR representa-

tion, and an output unit can easily succeed at the task simply by having positive

weights incident from each hidden unit. In effect we've 'whittled' all the target 1

patterns off the hypercube, leaving all the target 0 patterns behind.

'Both of these drawbacks can be dealt with by a simple variant of perceptron learning,

described in the final section of chapter 3.

CHAPTER 1. CONSTRUCTIVE NEURAL NETWORK ALGORITHMS 29

1.6.5 Producing OR by Splitting.

This section presents another method for developing an OR representation amongst

hidden units. There is no need to be restricted to a single hidden layer with no

connections except to input and output: it's just that there must be some set of

hidden units for which the above two conditions hold. How this set is arrived at

is another matter, and could involve other hidden units. In this case it is achieved

by constructing a tree of units.

There are three stages involved in the development of this method. The first re-

quirement is that the hidden representation must be faithful. This is dealt with by

a very simple algorithm for dividing up the training set which produces a binary

tree of constructed units. Secondly, the representation must ultimately be sepa-

rable, in this case by forming OR. This is readily achieved with no extra training

from the existing faithful representation if a control structure is assumed which

allows only a selected part of the tree to respond. Thirdly the network should

work without any such external 'controller' looking on. This is achievable using

greater connectivity between hidden units, and at some cost in either algorithmic

complexity or the size of training set each unit must learn.

Producing a faithful representation.

The preliminary aim is to split the training set up into smaller and smaller regions

until each region contains patterns of either target 1 or 0 but not both. The

boundaries of regions in pattern space are of course hyperplanes corresponding to

hidden units, and the positions of these may be learned by the Pocket algorithm

or other perceptron learning method which converges to satisfactory weights.

The first unit, say A, is trained for some amount of time on all the patterns, and

CHAPTER 1. CONSTRUCTIVE NEURAL NETWORK ALGORITHMS 30

effectively splits the training set {S} into two subsets:

{SA} for which A is ON

{S) where A is OFF

Note that {SA} now tends to contain a higher proportion of target 1 patterns

to the total set size than did the original set {S}, while {S-} contains a lower

proportion. Sets consisting entirely of patterns of one target will be referred to

as homogeneous. Therefore {S-} is homogeneous if A is never wrongly OFF, and

conversely { SA} is homogeneous if A is never wrongly ON.

The weights from the input into A are then frozen. If {S) is not homogeneous,

a new unit, B is generated. Similarly if {SA} is not homogeneous, a unit C is

included. For the purposes of training, B sees only the training set {S} and

C sees {SA}, but otherwise they are trained just as unit A was. This training

scheme is summarised in figure 1.3. Notably the information that flows from A

to the new units is a 'learn now' (or alternatively a 'don't learn now' to the other

branch) signal, but the targets are the same as for A.

After training, unit B effectively splits {S} into two subsets: {S B } and {S-A-}.

B may now generate two daughter units of its own to deal with these subsets if

they are not already homogeneous. This splitting process continues in a recursive

fashion while any existing subset contains patterns of both targets, producing a

binary tree of dependencies. if a given unit sees a training set which is separable,

then the resulting split consists of two homogeneous subsets and no further split-

ting occurs. Hence such 'terminal' units make no errors on the patterns they are

trained on. To show that the recursive splitting terminates, it is enough to show

that each split produces two non-empty subsets. Because each of these contains

fewer patterns than the original, there will eventually be pattern sets which are

separable. Clearly the perceptron must not be ON for all patterns it is trained on,

nor oFF; that is, the hyperplane defined by the perceptron's weights must actually

cut through the convex hull formed by the patterns. Consider a perceptron with

CHAPTER I. CONSTRUCTIVE NEURAL NETWORK ALGORITHMS 31

Using a perceptron to split the training set

input connections

1j control signals 	 {S}

Figure 1.3: Recursive element for producing a faithful representation by splitting

up the training set. The signal which is passed from A to its daughters is 'learn

now'.

weights such that it responds OFF to every pattern in its training set. The number

of errors it makes is just the number of patterns with target 1. However provided

the patterns are convex, the perceptron could instead respond ON to (at least) a

single target 1 pattern, and thereby make one fewer errors than before. Given that

the Pocket algorithm can be used to find an optimal set of weights with arbitrary

probability, the training set will always be (eventually) split in a useful way. Hence

the tree will eventually terminate. Note that when the tree terminates, there is

no pattern of activity amongst the hidden units which is engendered by input

patterns of both targets, since this would prompt further splitting. Hence when

the branching terminates the accompanying hidden representation is guaranteed

to be faithful.

The above method can be used to build the ancillary units in the Tiling algo-

rithm instead of the method used by Mézard and Nadal which requires non-local

information to train these units. In the Tiling algorithm at this stage a new layer

is constructed, however as the next section shows, no further units are actually

CHAPTER I. CONSTRUCTIVE NEURAL NETWORK ALGORITHMS 32

required. Hence in the Tiling algorithm all the layers of hidden units beyond the

first are in fact expendable.

Using a 'go-left, go-right' controller.

The representation formed by the above method is faithful but not necessarily

separable, because units which were never even trained on a given input pattern

may still respond to it. Hence there is no way to ascertain which active units are

the significant ones. However, the same units can be used to produce a separable

representation by means of a 'react now' signal which propagates down the tree

in an identical way to the 'learn now' signal used during construction of the tree.

If upon inputting a learned pattern /i, unit A is ON, then we know that unit C

was trained on that pattern, whereas B was not. Similarly if C then responds

OFF we know that C's left-hand daughter unit was trained on p but its right-hand

daughter was not. Therefore, of all the terminal nodes in the tree, only one saw

p during training. We would like to have a way of locating the one which was

actually trained on it since if it is a terminal node its output on presentation of p

is the target it was trained on, which is what the network is supposed to produce.

This can be accomplished by means of another kind of signal which is transferred

down the tree when a pattern is presented, and which merely enables the current

unit to react to the input. If A responds with ON, control should be transferred

to C, which is to say that C should be able to react whereas B should be silent.

Essentially if such a 'go-left, go-right' controller operates at each branch, only one

terminal unit is able to respond to the input, and this node is the unit which

learned the pattern if the pattern was in the training set. This is the same as if

a flag were being passed down the tree, going to the left daughter if the parent

is inactive and to the right if the parent is active as shown for example in figure

CHAPTER I. CONSTRUCTIVE NEURAL NETWORK ALGORITHMS 33

Example of a tree of perceptrons

input connections

3 learn/react signal

OFF

Figure 1.4: Descending the tree of perceptrons by passing a flag.

1.4. This flag enables a unit to respond to the input, so all units which do not get

flagged are OFF. An output unit has only to be connected to the terminal units

and to detect if any of them is ON in order to respond correctly to any learned

pattern (Frean 1989). That is, the representation on the terminal nodes is OR.

The 'react' signal must be passed down the tree irrespective of the parents response,

which only determines which daughter it is passed to. Therefore this signal cannot

be simply a function of the response of the parent unit.'°. So if we insist on passing

something down the tree in the way that trees usually work,' 1 the only way to

achieve this operation is by introducing another unit-to-unit signal besides output

activity. Hence the network is no longer made up solely of perceptrons.

' °This isn't true in the case of the 'learn now' signal, because only the latest terminal nodes

learn, the rest being frozen, so nothing needs to be passed down the tree, and the unit responds

merely to whether its parent is ON or OFF as the case may be.
"The algorithm at this stage amounts to a classification free method (Breiman et al. 1984)

with perceptrons as the classifiers.

CHAPTER I. CONSTRUCTIVE NEURAL NETWORK ALGORITHMS 34

Weighted connections within the hidden layer can replace the con-

troller.

How can the above be implemented by a network of simple perceptrons? Without

a controller or a 'react' signal, many of the hidden units can respond ON to a

given pattern besides the correct one. The basic operation required is to turn

OFF the 'don't react' side of the entire tree below each successive branch point.

Eventually the entire tree except for a single terminal node must be inactive

following presentation of an input pattern. Consider A,B and C, where both B

and C may have subtrees below them. If A responds ON, then B and the whole

tree below it should be strongly inhibited. On the other hand if A is OFF then C

and its entire subtree should be inhibited. Then by the time the terminal node

is reached", it is the only unit in the tree which isn't crippled by inhibition: its

output is the 'decision' of the network as to the classification of the input pattern.

To achieve this requires that every hidden unit have incoming weights from all

its ancestors as well as the inputs, as shown for example in figure 1.5. Supposing

that unit A unit is ON, its left-hand branch is easily inhibited by large negative

weights from A to all the appropriate units. If A is OFF however, the right-hand

branch cannot be inhibited directly. Instead, the weights from A to the units in

this branch must be positive, and each unit must acquire a negative bias such that

it is definitely on' (ie. inhibits itself) when A is OFF, and exactly counteracts the

excitation from A when A is ON.

The weights and biases required to implement this could in principle be 'hard

wired' at the time the unit is introduced, but it is also of interest to consider

how they might be learned just as the weights from the input are. To do this it

12 this terminology suggests that the tree is traversed sequentially: in fact everything could

react at once, and because hidden units influence each other in a purely feed-forward manner

the process is equivalent to 'final values' moving down the tree.

CHAPTER 1. CONSTRUCTIVE NEURAL NETWORK ALGORITHMS 35

Example of producing OR by weights between hidden units.

input connections

weighted connections

Figure 1.5: Producing OR by weighted connections between hidden units.

is sufficient to feed the 'learn now' daughter the usual target, but set the other

daughter's target to be 0. Then, since appropriate weights do exist as described

above, the Pocket algorithm can be used to learn them. In this view there is no

need for a 'learn/react' signal at all, since all that is required is for the right-hand

[left-hand] daughter's target to be reset to 0 if the parent is OFF [ON). However

this means every unit must now learn the entire training set. This scheme for a

single unit and daughters is shown in figure 1.6.

Con currency

It turns out that at the same time as this work was done, no fewer than four

groups elsewhere independently arrived at similar algorithms. [Personna2 et al.

1990] generate units according to the splitting procedure, which are used as input

to a further hidden layer which produces a separable representation by another

(non-local) method. [Sirat & Nadal 1990] use perceptrons in a tree with a 'con-

CHAPTER 1. CONSTRUCTIVE NEURAL NETWORK ALGORITHMS 36

Recursive element for Splitting algorithm
Input

target reset signal
weighted connections

connections to all
descendents of A

Figure 1.6: The recursive element of the Splitting algorithm.

troller' as described above, but use the Pocket algorithm to maximise a measure

derived from information theory. [Sun, Lee & Chen 1988] have also presented an

algorithm (although with no convergence guarantee) in which individual units per-

form gradient ascent of an information measure and are used to split the training

set into two parts, each of which is dealt with by a separate unit. The recursive

application of this same procedure to these new nodes results in a decision tree.

Again, this cannot be said to be a neural network in the usual sense because of

the necessity of control other than by the units themselves. [Golea & Marchand

19901 have concurrently developed the algorithm described above, including feed-

back from all ancestors. Like Sirat and Nadal, they use the Pocket algorithm to

minimise a quantity other than the total number of errors.

CHAPTER 1. CONSTRUCTIVE NEURAL NETWORK ALGORITHMS 37

1.7 A Simulation: learning random mappings

In this section, the four algorithms described above are compared on a particular

task: that of learning random mappings from input to output. For N inputs,

the training set consists of all P = 2N possible binary patterns (this is called

'exhaustive learning' by [Solla et al 1990]). Each pattern is assigned its target

output of 0 or 1 at random and with equal probability. Hence approximately N12

patterns have target 1. This is a difficult problem, as there is no external structure

to the patterns which a classifier could hope to exploit.

The weights themselves are trained by the Pocket algorithm (with ratchet). One

training epoch is taken as the presentation of P patterns, each being chosen at

random (with replacement) from the training set.

It must be noted however that this apparently even-handed method of training

does not put all the algorithms on an equal footing. For example, the Whittling

algorithm needs to form Pocket weights several times over in order to eliminate

enough patterns to make the problem separable. In this case the number of

epochs per elimination cycle is 100, and 10% of the incorrectly classified target

ON patterns are eliminated after each such cycle, until convergence. For the other

other algorithms, each unit is trained for 1000 epochs.

The number of units constructed by each of the algorithms in solving the problem

(that is, getting the entire training set correct) is shown in figure 1.7, plotted

against the number of patterns in the training set (2P). In their paper Golea and

Marchand quote an average network size of 20.5 units for the case where N = 6,

P = 64. It is possible that the Tiling algorithm might do better if the number of

weights was considered instead of the number of units, because in this algorithm

the number of units per layer tends to decrease as layers are added. However

figure 1.8 shows that this is not the case for the random problem.

4-

.0
U)
4-

C

0

.0
E
z

CHAPTER 1. CONSTRUCTIVE NEURAL NETWORK ALGORITHMS 38

Number of units vs Number of patterns

16 32 	64 	 128 	 256
Number of patterns

Figure 1.7: The number of units constructed by each algorithm is shown, plotted

against the size of the training set. The circles and vertical bars show the mean

and standard deviation respectively over 25 separate trials, each on a different

training set.

CHAPTER 1. CONSTRUCTIVE NEURAL NETWORK ALGORITHMS 39

Number of weights vs Number of patterns

(I)
-c
0)
a)

I.-

0
I-

G) -o
E
Z

Tower

Tiling
- - -. Whittling

Splitting

1632 	64 	 128 	 256
Number of patterns

Figure 1.8: The number of weights in networks constructed by each algorithm is

shown, plotted against the size of the training set. Statistics are over 25 separate

trials, each on a different training set.

-s

.0
• 	8
C

0

.0
E

12

10

z 4

CHAPTER 1. CONSTRUCTIVE NEURAL NETWORK ALGORITHMS 40

Number of units built by Tower
vs Number of predecessors contacted

IE
	

2 	4 	 6 	 8 	10

Number of predecessors contacted

Figure 1.9: Network size generated by the Tower algorithm for the case of N = 6.

The abscissa shows the number of previously trained units that each new unit can

have weights from (in addition to those from the input).

In this case the Tower algorithm has very limited contact between successively

trained units: each new unit has a weighted connection from its immediate pre-

decessor only (apart from those from the input). Figure 1.9 shows the mean

performance of the Tower algorithm on the random problem with N = 6, as the

number of predecessors available to new units is increased. There is no strong

benefit obtained in terms of the number of units constructed by having greater

numbers of contacts in the random case.

CHAPTER 1. CONSTRUCTIVE NEURAL NETWORK ALGORITHMS 41

1.8 Comparisons between constructive

methods.

In this section a number of key points on which constructive algorithms may be

compared and contrasted are suggested. The Tiling algorithm is omitted from the

discussion, as it is essentially a combination of the Tower and Splitting methods.

Optimal performance on parity. It is not difficult to show how many units

each algorithm will generate in solving the parity problem if it finds "perfect"

weights at every stage. In solving N bit parity, the Tower algorithm builds

..1 units if N is odd, and + 1 if it is even. The Splitting algorithm is less

efficient, building N + 1 units. Whittling can do no better than 21 units,

one for each target ON pattern. The Tower algorithm's success arises from

its ability to use previously constructed units to deal simultaneously with

patterns of both targets, which neither of the other methods can achieve.

Whether this property has advantages or disadvantages for other problems

is an open question.

Complexity of the architecture. Whittling and Splitting distinguish hidden

units from the output unit, whereas the Tower algorithm does not.

Signals passed between units during learning. The Tower algorithm is very

simple, since each unit only needs the external target signal. Whittling re-

quires a don't learn signal, to be communicated between active hidden units.

Units in Splitting must interfere with targets of other units deeper in the

tree, effectively over-riding external target 1 signals for some patterns.

Number of units which learn separable training sets. The difficulty of the

training problem presented to units may differ between methods. For ex-

ample in Tower and Whittling, no unit except the last one sees a separable

CHAPTER I. CONSTRUCTIVE NEURAL NETWORK ALGORITHMS 42

training set, whereas in Splitting many units solve linearly separable prob-

lems.

Exploitation of reduced training sets. If the classification to be learned is

available as a training set rather than arriving "on line" from the environ-

ment, some methods can train units on successively smaller training sets.

This is not true of the Tower algorithm. Whittling can potentially elimi-

nate some patterns from future training sets. Splitting can heavily exploit

reduced training sets, but only if the weights between hidden units and the

adjustments to the biases do not need to be learned.

Parallelism in learning. One possible advantage of any tree-building method

is that several units can learn at once. In Splitting the number of units that

can learn in parallel potentially rises exponentially with the tree depth.

Parallelism in recall. Given a network of say H units, the different architec-

tures will engender different "response times". The Tower architecture re-

quires H time steps before the output unit can be read. Splitting will require

a number of time steps equal to the depth of the tree. Since Whittling con-

structs a single hidden layer, it takes only two time steps to produce an

output.

Sequence of training of the units. If connections between constructed units

are disrupted, the unit giving fewest errors will be the unit which was trained

on the original targets, and saw only the inputs. In none of the methods so

far discussed is this the output unit.

All the constructive algorithms discussed in this chapter apparently have broadly

similar performance. The number of hidden units built is not dramatically dif-

ferent from the number of patterns being learned; for larger sized problems the

number of units may reach unmanageable proportions. In addition, problems of

larger scale cannot be attempted because the training time required to give conver-

CHAPTER 1. CONSTRUCTIVE NEURAL NETWORK ALGORITHMS 43

gence becomes prohibitive. This demands a more efficient constructive algorithm.

Such an algorithm is described in the next chapter.

Chapter 2

Upstart algorithm

This chapter describes a different method for constructing and training feed-

forward networks of perceptrons which is based on error correction not at the

level of weights but of units. The core idea is that a unit may recruit and train

other units specifically in order to correct its mistakes. The Upstart algorithm is

described and is found to generate networks which have small size and can gen-

eralise to novel input patterns. This performance is significantly better than the

constructive algorithms described earlier.

2.1 Rationale

In making a binary classification, any unit (say Z) can make two kinds of mistake,

by being
"wrongly ON " (o = 1, but t = 0)

"wrongly o'r" (o = 0, but t = 1)

where oz is the perceptron's actual output and tZ is its desired or target output.

Suppose there exists a unit (say X) which is ON for every pattern for which Z

44

CHAPTER 2. UPSTART ALGORITHM 	 45

is wrongly ON, but is otherwise OFF. Similarly suppose there is a unit (say Y)

which is ON when Z is wrongly OFF but not otherwise. By means of a large

negative weight from X and a large positive weight from Y, all of Z's errors could

be corrected. The presence of the two extra inputs from .X and Y makes the

problem linearly separable (since it is now possible for Z to make no errors), so

the appropriately large weights can easily be learned by the PLR. X and Y's role

is to effectively override whatever Z's "raw" response to the input pattern was.

The problem then becomes how to produce units X and Y.

2.2 Training units to act as correctors

Assuming the two new units are also connected to the input layer by variable

weights, they can be trained using targets which depend on Z's response. These

units might be called "daughters" since they are generated by the established

"parent" unit, Z. Note however that the direct effect of activity proceeds from

daughter to parent. Consider, for example, the targets we should assign to X,

the unit whose role is to inhibit Z. We would like X to be active if Z was

wrongly ON, and silent if Z was correctly ON. Similarly X should be silent if Z

was wrongly OFF (to avoid further inhibition of Z). Finally, X could be silent if

Z was correctly OFF, although if X is active in this case, the effect is merely to

reinforce Z's response when it was already correct. This doesn't itself cause an

error, meaning that it doesn't matter how X responds. Therefore these patterns

can be eliminated from X's training set. This elimination makes the problem

easier and faster to solve, but is not essential for the error-correcting property

described below. Similarly, Y should be trained to be ON only when Z is wrongly

OFF, but if Z is correctly ON the pattern can be eliminated from Y's training set.

These target assignments are summarised in Figure 2.1.

*
0 0

1 0

o 1

o
*

0 1

,_0

1

CHAPTER 2. UPSTART ALGORITHM

The recursive element of the Upstart algorithm.

Input

0 Z's target 	 0 Z's target

46

tx
	

ty

Figure 2.1: Correcting a parent unit: the left hand table gives the targets,

for the daughter unit X for each combination of (oz, ti). For example, the lower

left-hand entry assigns tx to be 1 when oz = 1 and tz = 0: the 'wrongly ON' case.

Similarly the right hand table gives the values of ty for the daughter unit Y. The

dotted line represents the flow of this target information. The "starred" entries

correspond to cases where the pattern could be eliminated from the daughter's

training set.

CHAPTER 2. UPSTART ALGORITHM 	 47

An important point is that the "raw" output of unit Z is used to set the daugh-

ter's targets, rather than the value of Z after the daughters have exerted any

effect, since this would introduce feedback. To achieve this the sum from the true

inputs alone must be available even though the daughters are exerting their effect

(as indeed it is, since the inputs from daughters arrive in the next time step).

Alternatively the connections from daughters can be built up only after the direct

input weights have been learned and "frozen".

Two useful results follow immediately from this training method, because it es-

sentially gives daughters (X or Y) an easier problem to solve than their parent

(Z).

Property I: Daughters can always make fewer errors than their parent.

Denote Z's errors by

e(Z) = e(Z)ON + e(Z)OFF

where e(Z)O N is the number of patterns for which Z is wrongly ON.

If X responded OFF to every pattern, it would make as many errors as there were

patterns of target tX = 1. However, X can always do better than this, provided

the training set is convex. Given that the Pocket algorithm can find the optimal

weights visited by a perceptron with any given probability, at the very worst

weights could be found such that a single pattern for which tX = 1 turns unit X

ON whereas all other patterns turn it OFF. Therefore

e(X) < e(Z)ON < e(Z) 	 (2.1)

A similar argument applies to Y.

CHAPTER 2. UPSTART ALGORITHM 	 48

Property II: Connecting daughter to parent with the appropriate

weight can always reduce the errors made by the parent.

It follows from the above that Z's errors are reduced by X, since

e(Z with X) = e(X)0N + e(X)OFF + e(Z)OFF

= e(X) + e(Z)OFF 	 (2.2)

<e(Z)

and similarly for Y on its own. When the joint action of X and Y is considered,

the same result holds, i.e. e(Z with X,Y) < e(Z) - 1.

In the next section an algorithm which uses the first of these results is described.

Other possibilities are discussed in section 2.5.

2.3 Upstart as a binary tree.

Assume we already have a unit Z which sees input patterns 	: i = 1,.., N and

has associated targets t' - The weights from the input layer to Z are trained to

minimise the discrepancies between Z's output and target and once trained, these

weights remain frozen. This "first" unit is actually the eventual output unit, and

its targets are the classification to be learned. The following two steps are then

applied:

CHAPTER 2. UPSTART ALGORITHM 	 49

UPSTART AS A BINARY TREE.

Step 1. If Z makes any "wrongly ON" mistakes, it builds a new unit X, using the

targets given in Figure 2.1. Similarly if Z is ever "wrongly OFF" it builds
a unit Y. Apart from the different targets these units are trained and then

frozen just as Z was.

Step 2. The outputs of X and Y are connected as inputs to Z. The weight from

X is large and negative whilst that from Y is large and positive. The size

of the weight from X [Y] needs to exceed the sum of Z's positive [nega-

tive] input weights, which could either be done explicitly or by using the

Perceptron learning rule to learn these weights.

Steps 1 and 2 are now applied recursively to X and Y in place of Z. Thus daughter
units behave just as Z did, constructing daughter units themselves if they are

required. In this way a binary branching tree of connected units is constructed,

as shown for example in figure 2.2. Each unit gets targets from its parent rather

than from an external signal, and each is capable of acting both as "pupil" and

"teacher".

New units are only generated if the parent makes errors, and the number of errors

decreases at every branching. It follows that eventually none of the terminal

daughters makes any mistakes, so neither do their parents, and neither do their

parents and so on. Therefore every unit in the whole tree produces its target

output, including Z, the output unit. Hence the classification is learned.

output

CHAPTER 2. UPSTART ALGORITHM
	

50

Example network built by Upstart

Figure 2.2: Example of a binary tree of units constructed by the Upstart method.

2.3.1 Equivalence of the tree and layer architectures.

The architecture generated by this procedure is unconventional in that it has a

hierarchical tree structure. However in the case where we choose not to eliminate

any training patterns there is an equivalent structure with the same units arranged

as a single hidden layer.' To see this, consider two daughters (say X,Y) and their

parent (Z). With primes denoting "corrected" values, the corrected value O'Z is

always equal to 0z - d +4. Now compare these two values in each of the eight

am grateful to Peter Dayan for pointing this out.

CHAPTER 2. UPSTART ALGORITHM
	

51

possible combinations of o, d and o:

CASE 0' OZ]oz— o+dy
i 000 0 0
ii 0 0 1 1 1

0 1 0 1 1
iv 1 0 1 0 0
V 1 0 0 0 -1
vi 0 1 1 1 2
vii 1 1 0 undetermined 0
viii 1 1 1 undetermined 1

In cases v-viii the values in the last two columns don't agree, but none of these

cases actually occurs. X would never be correctly ON if Z was OFF (case v), and

similarly Y would never be correctly ON if Z was ON (case vi). Finally, X and Y

would never be correctly ON together (cases vii and viii).

Since this equivalence between o'z and oz - d + o'y holds for every unit in the

tree, the final output is simply a sum of the "raw" responses. For example in the

case of the network shown in figure 2.2:

output =
= OZ - o'x + O'y

OZ — (ox — °u +ov)+(oy +4)
=oz — ox +OU — OV+Oy + 01' — OS

Imagine the tree units disconnected from one another and placed in a single

layer. A new output unit connected to this "hidden" layer can easily calculate the

appropriate sum by, for example, having weights of +1 from each unit which adds

to the sum and —1 from each unit that subtracts, with a bias of zero. In effect we

can convert a binary tree into a single hidden layer architecture which implements

the same mapping, at the expense of adding one unit and being unable to exploit

pattern elimination. Figure 2.3 shows the example network converted in this way.

CHAPTER 2. UPSTART ALGORITHM
	

52

Example network as a single hidden layer

output

Figure 2.3: Example of conversion to a single layer. The hidden units are the

same as those shown in the earlier figure ie. their weights to the input are the

same.

The algorithm for constructing a single hidden layer architecture is:

UPSTART AS A SINGLE LAYER (1).

Construct units as before, omitting Step 2 (where they are connected into a feed-

forward tree). Then connect all the units so constructed to a new output unit.

The weights to this unit can be learned by PLR (since in this representation the

patterns are clearly linearly separable), or can be inferred from the tree structure:

there is a sign reversal for every "X-type" daughter.

CHAPTER 2. UPSTART ALGORITHM
	

53

2.4 Simulations

In all the simulations shown here the "starred" entries in Figure 2.1 were not

included in a daughter's training set. If the whole training set is used in every case,

the number of units produced is relatively unaffected for the problems investigated

here, but the training time (a combination of the time per epoch and number of

epochs required to generate a comparable network) is approximately doubled.

A learning procedure called the Thermal perceptron learning rule was used to

learn the weights. In this, the weight changes given by the usual PLR are simply

multiplied by
T y- exp

Unless otherwise stated the "temperature" T0 was initially set at 1.5 and reduced

to zero linearly over 1000 epochs. A full discussion of this rule is deferred until

chapter 3, where it is dealt with in detail.

Parity

In this problem the output should be ON if the number of active inputs is odd, and

OFF if it is even. Parity is often cited as a difficult problem for neural networks to

learn. It is also of interest because there is a known solution consisting of a single

layer of N hidden units projecting to an output unit (Minsky & Papert 1969). It is

easy to see how the Upstart Algorithm tackles parity (see figure 2.4). Essentially

the same structure as that shown for N=3 would arise for any N, although for

large problems the optimal weights become much harder to find. For parity up to

N=10, in all cases N units are constructed, including the output unit. In all cases

except N=10, a thousand epochs were sufficient to generate the minimal tree. For

10-bit parity, the figure was 10,000.

Random mappings on the complete set of binary patterns

In this problem the binary classification is defined by assigning each of the 2''

CHAPTER 2. UPSTART ALGORITHM 	 54

Upstart solution for the Parity problem
Y,

x

• On (odd)

• Off (even)
r

S
S

S
S

S

I

Figure 2.4: Solution for 3-bit Parity. The output unit Z on its own can clearly

make a minimum of two mistakes, when the plane defined by its weights cuts the

cube as shown. X corrects the wrongly ON pattern by responding to it alone, and

similarly Y corrects the wrongly OFF pattern.

CHAPTER 2. UPSTART ALGORITHM 	 55

patterns its target 0 or 1 with 50% probability. Again this is a difficult problem,

due to the absence of correlations and structure in the input for the network to

exploit. The networks obtained for N up to 10 are summarised in Figure 2.5. The

Tower algorithm requires a prohibitively large number of training epochs by the

Pocket algorithm to converge for this problem for N > 8. Instead, results for the

Tiling algorithm are included for comparison, where the Pocket algorithm is used

to learn the weights.

Random mappings on random patterns lying on a hypersphere.

This experiment looked at the classification of patterns with real-valued compo-

nents. Such a set of patterns do not in general have the essential property of

convexity, however this property holds if the patterns are constrained to lie on the

surface of a hypersphere. In the first case up to 1000 real-valued patterns across

N = 10 inputs were generated, and in the second case up to 5000 patterns across

100 inputs. Each of the.patterns was generated as follows. Firstly, each of the N

inputs is chosen at random, uniformly in the interval [4,1]. This gives patterns

distributed uniformly in the unit hypercube. Secondly, each such pattern is nor-

malised to make >, = 1, and is assigned a target 0 or 1 with equal probability.

Note that although these pattern vectors lie on the surface of the unit hypersphere

in N dimensions, they are not distributed uniformly over this surface.

The size of the networks generated in solving this problem to zero errors using the

Upstart algorithm are shown in figure 2.6. Even training with large numbers of

patterns, the slope of the line remains constant at approximately 1/15 for N = 10,

and 1/100 for N = 100. In other words the "pattern capacity" is respectively

fifteen and one hundred patterns per unit, under the training conditions described.

This capacity may be compared with the theoretical result that 2N is the largest

number of such patterns which can be expected to be separable.

Using a related method called stereographic projection and a truly parallel imple

CHAPTER 2. UPSTART ALGORITHM
	

56

Number of binary patterns vs Number of units constructed

V
CD
-S

a)
a)
C)

C

I-.

0

a)
.0
E
':4

0 3264 128 	256 	 512 	 1024

Number of training patterns

Figure 2.5: Number of units built vs the number of patterns (2') for the random

mapping problem. The slope of the Upstart line is approximately 1/9. Each point

is an average of 25 runs, each on a different training set.

CHAPTER 2. UPSTART ALGORITHM 	 57

mentation of the algorithm, [Saffery 1990] has solved the "two spirals problem"

(Fahlman & Lebiere 1990) using Upstart.

Generalisation: the "two-or-more clumps" problem

Neural networks are often ascribed the property of generalisation: the ability to

perform well on all patterns taken from a given distribution after having seen

only a subset of them. Several workers (Denker et al. 1987; Mezard and Nadal

1989) have looked at generalisation using the "2-or-more clumps" predicate. The

problem is this: given an input pattern, respond ON if the number of clumps

is 2 or greater and OFF otherwise, where a "clump" is a group of adjacent l's

bounded on either side by 0's. Circular boundary conditions are used: input 1 is

"adjacent" to input N. As with parity, there is a solution consisting of a single

hidden layer of N units which would solve the problem exactly. For instance each

hidden cell can be associated with one of the N adjacent pairs of inputs, and

simply detects the presence of a (leading) edge by means a positive weight from

the lower indexed input and a negative weight from the higher one. The number of

active hidden units is then just the number of clumps present in the input pattern,

and the output unit need only detect if this number is 2 or greater (for instance by

setting all hidden-to-output weights at +1 with a bias —1). Following Mezard and

Nadal, the patterns were generated by a Monte Carlo method (Binder 1979) such

that the mean number of clumps is 1.5. I used N = 25 inputs, for which there

are N(N - 1) + 2 = 602 possible patterns with less than two clumps. Training

sets consisted of up to 600 patterns. The set used to test the resulting net's

ability to generalise was a further 600 patterns. The results, with comparisons

to the Tiling Algorithm, are summarised in Figure 2.7. [Nadal 19891 compared

the performance of the Tower algorithm with Tiling on this problem, and found

very similar performance in terms of numbers of units and generalisation ability,

but with Tower generating approximately twice the number of weights. This is

in contrast to the random binary problem investigated in chapter 1, where the

number of weights is not dissimilar in the two methods.

60

40
.0

C
D 30

0

a,
.0
E 20
z

10

0
0 1000 	2000 	3000 	4000 	5000

Number of patterns

CHAPTER 2. UPSTART ALGORITHM
	

58

Upstart network size for patterns on the unit hypersphere

80

60

40

E

z
20

0

0
	

200 	400 	600 	800 	1000

Number of patterns

Figure 2.6: Number of units built by the Upstart algorithm vs the number of

patterns for the random mapping problem on the unit hypersphere. Each point

is an average of 25 runs, each on a different training set. T0 is 0.5

CHAPTER 2. UPSTART ALGORITHM
	

59

Upstart performance on the clumps problem

	

80 	• Tiling

OUpstail

60
4-

.0
cn
4-

40

0

a,
.0

	

E 20 	 .. 	

o

	

0 	
0

100

90

80

27°
Cl)
a,
4-

50

0 	100 	200 	300 	400 	500 	600
Number of training patterns

Figure 2.7: Performance of the method on the "2-or-more clumps" problem. The

lower graph shows the % generalisation as the size of the training set is increased.

Plotted above this and with the same abscissa is the size of the corresponding

network. T0 = 4.0. There were 25 runs per point, each on a different set. Where

not shown, error bars are smaller than the points.

CHAPTER 2. UPSTART ALGORITHM
	

60

2.5 Alternative architectures

The algorithm described above constructs a binary tree of units, and uses only

the first result given in section 2.2, namely that daughters can make fewer errors

than their parent. However the second result can be used to generate alternative

architectures using the same idea.

Consider the following algorithm:

UPSTART AS A SINGLE LAYER (II).

Start. Begin with an output unit with no connections to the inputs. Trivially

this unit makes only "wrongly OFF errors and as many errors as there are

target 1 patterns.

Step 1. Evaluate the errors made by the output unit. If e(out) = 0 then STOP.

Step 2. If e(out)OFF > e(out)ori generate a Y unit in the hidden layer with

connections to the inputs, and train it as described previously. Otherwise

do the same for an X unit.

Step 3. Build a weight from the new hidden unit to the output unit, positive for

a Y, negative for an X. The weight must be large enough to override any

other input which the output unit may receive. Return to step 1.

Hence a single hidden layer is constructed. Since the errors made by a parent

are reduced by an appropriately trained daughter (even though the daughter may

itself still be in error), each new hidden unit can reduce the output unit's errors

by at least one.

CHAPTER 2. UPSTART ALGORITHM 	 61

The third step can be accomplished by explicitly assigning a weight of the appro-

priate sign whose magnitude is sure to be greater than the sum of the hidden to

output weights of the opposite sign. Alternatively the new weight can be learned

in the usual way.

Note that this method results in an apparently exponential rise in the magnitudes

of hidden to output weights, due to the "override" operation that each unit must

perform. However this need not be a restriction since hybrid methods will also

work. Since each unit has an explicit target, we can decide at any stage which

unit to correct: a single hidden layer is generated by always correcting the parent,

and a binary tree is built by always correcting the (terminal) daughters. Trees of

variable width can be built by including both these possibilities. For instance an

initial layer of say h units could be constructed as above, and then each of these

hidden units could build (up to) h units of its own, and so on.

An important potential advantage of building such "wide" trees concerns the

parallelism of the learning process: each of the first generation can go about

training daughters independent of the others, so there can be h units learning

in parallel (ie. h = 2 in the binary tree version). For the second generation of

daughters there is a potential for training h 2 units in parallel, and so on.

2.6 Extension to multiple outputs

These algorithms can be extended to problems involving multiple output units.

A good method should build considerably fewer units than would be obtained by

treating each output separately (especially if the output targets are correlated); in

other words, maximum mutual use should be made of hidden units. The following

algorithm could be used, where steps 1 and 2 are repeated until every output unit

makes no mistakes

CHAPTER 2. UPSTART ALGORITHM
	

62

MULTIPLE OUTPUTS.

Start. There are no hidden units and no connections, so the output units are

always OFF.

Step 1. Choose an output unit (say, the one which makes the most errors). Build

the appropriate hidden unit to correct some of the mistakes being made by

this output unit, as described above. Connect this new unit to all the output

units.

Step 2. Train the weights from each unit in this enlarged hidden layer to each of

the output units. Re-evaluate the numbers of errors made by each output

unit.

Hence a single hidden layer is constructed. This is one possible method for the

case of multiple outputs, and represents work to be done in the future.

2.7 Are the tree building methods the same?

The Upstart algorithm and the procedure for obtaining OR by Splitting are clearly

very similar, even though their motivations are very different: the strategy of

Splitting is to "divide and conquer" whereas that of Upstart is "enlist help".

Notably the criterion determining inclusion of new units is identical. However the

two algorithms are not the same. Notably,

• the training sets learned by units in the two methods are different. This can

be readily seen by putting the targets learned by daughter units in Splitting

into the same form as those for Upstart (figure 2.1), as is shown in figure

2.8. The two are not equivalent.

o 1

o 0

o o

o 1 1

-o
&

1

CHAPTER 2. UPSTART ALGORITHM

0 A's target 	 0 A's target

tc

Figure 2.8: Targets assigned to daughter units by the Splitting algorithm: the left

hand table gives the targets, tB, for the daughter unit B for each combination

Of (OA, tA). Similarly the right hand table gives the values of tc for the daughter

unit C.

• the connectivity between constructed units is very sparse in Upstart (one

connection per unit), whereas it needs to be relatively dense in Splitting.

• if both methods are trained without any elimination of patterns, then the

Upstart network can be transformed into a single layer, whereas the Splitting

network cannot.

2.8 Conclusion

In this chapter the Upstart constructive algorithm has been described, and seen

to perform well on large problems, and produce fewer units than other types of

constructive algorithm. For example, in the random mapping problem Upstart

builds half as many units as the Tiling algorithm, and in the clumps problem the

CHAPTER 2. UPSTART ALGORITHM
	

64

ratio is one fifth.

Aside from the simulation results, Upstart may be compared with other algo-

rithms along the lines suggested in section 1.8 in the previous chapter. In solving

N bit Parity, N units are constructed. Upstart does not distinguish algorith-

mically between hidden and output units: these follow exactly the same training

procedure. The signals passed between units are targets, rather than "don't learn"

or "over-ride" signals. Because Upstart alters the training sets seen by successive

units, many units learn separable training sets. Another advantage is the poten-

tial to eliminate patterns from the training set of successive units. In addition,

many units can learn in parallel, especially if trees of appropriate width are de-

veloped as indicated in section 2.5. Regarding the time required for the output to

respond to an input pattern, Upstart as a tree will take a number of time steps

equal to the maximum depth of the tree. However, when implemented as a single

layer architecture only two time steps are needed. Finally, the tree version of

the Upstart algorithm is unique among the constructive algorithms considered,

in that the output unit is the first unit to be trained. This feature is intuitively

appealing, and also confers a degree of robustness to the networks built; if all the

connections between constructed units were lost, the unit which would make the

smallest number of errors on the training set is in fact the output unit. This is

not true of the constructive methods described earlier.

Just as for all constructive algorithms, a suitable rule for learning the weights of

the individual units is required. During the course of the work on Upstart, a new

learning rule was developed which may play a crucial role in the success of the

method. In the next chapter this learning rule is looked at in more detail, and

the spectrum of possible rules is investigated.

Chapter 3

Learning in single Perceptrons

3.1 Introduction

Suppose we are given a binary classification to be learned by a single perceptron

unit, wherein each input pattern of N binary values has an associated target,

being zero or one, which is the desired output of the perceptron.

A very simple learning rule is the associative rule:

iW1 	=crI'

(1 	if 	
(3.1)

where t' =
	. if V' =

Alpha is a small positive constant controlling the rate of learning. This rule builds

an association between pattern and its (signed) target IL. Starting with all the

weights at zero strength, after one presentation of each pattern, the ith weight

corresponds to the correlation between the z 1h input and the target. Subsequent

pattern presentations do not improve the weights vector any more than this, since

65

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS 	 66

the weight change is independent of the unit's history. More powerful learning

rules involve the actual output of the unit, which effectively enables previous

learning to be taken account of. For example, there is no need to change the

weights if the unit's output is already correct on a given pattern. Historically

there are two ways that this has been done: rules derived to minimise a global

error measure, and the Perceptron Learning Rule.

3.2 Rules derived from global

error minimisation.

On presentation of pattern , a unit sums up its weighted inputs to give , and

its output is some function y() of this quantity. If the output function is differ-

entiable, then one approach to learning is to consider the total error attributable

to the unit in its present state,

EE"

where EM is some measure of how well the unit's actual output y' matches the

desired output t'. The most common forms used for E are the squared error

EM = (t i, - yP)2

from classical statistics (giving rise to "least-mean-squared" or LMS methods),

and the cross entropy error

EM=iMlog2yM + (1_tP)109 2 (1_yM)

from information theory (Pearimutter & Hinton 1986, Hinton 1987). The most

obvious way to reduce the error is to move down the gradient of E with respect

to W. That is,
OE

L' W = -
P awi

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS 	 67

If the rule is used "on-line", where the weights are altered in response to each in-

put pattern as it is presented (rather than "batch" mode where the above sum can

be calculated explicitly and then the weights altered), the error measure isn't de-

creased at every step, but tends to do so over many steps, provided a is sufficiently

small. This is known as stochastic gradient descent.

[Widrow & Hoff 19601 and [Kohonen 1977] considered the case of the LMS error

measure for linear units, where the output function is just y" = 4)". This gives

the so called "adaline" or "delta" or "Linear LMS" rule,

= a (t" - y") '

which is the same as Rosenblatt's "non-quantized error-correction procedure" ex-

cept that in this case it is applied for every presented pattern. Notably E has no

local minima that are not also global minima, because the contribution E" is a

quadratic well in weight space, and the sum of any number of such wells is just

another quadratic well (Hinton 1987). Although this may be a sensible criterion

for training units with linear output functions, such units are not particularly in-

teresting, because the linear mappings they implement can only map similar input

patterns onto similar output patterns, and are thus not sufficiently powerful to

enable arbitrary classification tasks to be achieved. Furthermore, multiple layers

of such units are no more computationally powerful than single layers: each layer

performs a linear transformation of the input pattern, and the result of a linear

transformation of this is equivalent to a single linear transformation of the original

pattern.

If the units have a differentiable, nonlinear but monotonic output function then

if there exist weights such that E = 0, then likewise E has no local minimal and

"perfect" gradient descent is therefore guaranteed to find this minimum. However

if no such weights exist then local minima can arise (Hinton 1987; Sontag 1988).

'This is because altering the unit's output function in this way cannot build "walls" in weight

space where there were none before.

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS 	 68

[Brady et at. 1988] show that even if the training set is separable, the LMS

minimum may not separate the patterns. [Wittner & Denker 1988] give a simple

example of this for the linear case, noting that it is equally true for smooth,

monotonic non-linear output functions. They further suggest a modification to E

so that gradient descent of this measure does succeed on a separable training set.

[Sontag and Sussmann 1988a] suggest a very similar modification also, but show

that even with this criterion, local minima may be generated if the training set

is not separable. In a later paper (Sontag & Sussmann 1988b) they present an

example of such a local minimum with exclusively binary inputs and outputs.

The smooth nonlinear function most commonly used is the "sigmoid" or "logistic

function":

Y= 1 / (1 + e)

Use of the LMS measure with this output function gives the following "sigmoidal

LMS" rule:

LW 1 = a (tTM - !IM)y'(l - i

If the cross-entropy error measure is used instead of LMS, we have the "sigmoidal

cross-entropy" rule

= a (tTM - y M)

as in the original delta rule. Notably, a great deal of added generality arises

because E can be differentiated with respect to any weight in a whole network

of interconnected units. This idea in conjunction with the sigmoidal LMS rule

forms the basis of the Generalised delta or backpropagation rule (Werbos 1974;

Rummeihart Hinton & Williams 1985).

For perceptron units with threshold output functions, E cannot be differentiated

to obtain a rule as it stands. However the differential can be done for a modified

2The generality doesn't arise in the case of linear units because there is no computation

possible in multiple layers of such units that cannot be achieved in a single layer.

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS 	 69

E which is "threshold LMS", such as in [Hinton, 19871:

0 	if output is correct and 	> m
E" = (m - 4 1)

if P= 1 but
(m+)2 ifVS=O but 4">—m

This predates but satisfies the conditions suggested in [Wittner and Denker 1988]

and [Sontag and Sussmann 1988a] as necessary for gradient descent to separate

where this is possible. Differentiation of this measure gives essentially the same

rule as Rosenblatt's "non-quantized error-correcting rule" except that the learning

rate a should be a small constant, to move the weights a small amount in the right

direction, rather than 1/I1II 2 , the amount required to actually correct the output

due to pattern .

Finally, it can be argued that if the units are indeed linear threshold perceptrons

and the goal is to misclassify as few patterns as possible, minimising a sum of

squared errors in 0 is of no consequence, since the actual output for pattern '

bears no relation to how large 4 is in error. Hence this may in fact be a bad

strategy for minimising the total number of perceptron errors.

3.3 The Perceptron Learning Rule (PLR)

On presentation of pattern 	the Perceptron Learning Rule (Rosenblatt 1962)

alters the weights only when the target VS differs from the actual output 3

= a (VS - o')
	

(3.2)

where a is the overall learning rate and is a constant. Thus a correct response

engenders no change, making this a strictly error correcting rule. Note that this is

3Notation: although here and elsewhere learning rules are stated with an index indicating the

particular (itI) input, the rule is assumed to be implemented for all inputs (izO..N) convergent

on the unit, where the zeroth input is understood to provide the necessary bias.

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS 	 70

equivalent to the associative rule of equation (3.1) except that now the change is

only made in the event of an error. This rule constitutes a powerful but restricted

procedure for learning to distinguish between classes of input patterns. It is

powerful, in that the Perceptron Convergence Theorem (Minsky and Papert 1969)

states that if a set of weights exists for which the perceptron makes no errors, the

PLR will converge on such a set after a finite number of pattern presentations.

It is restricted however with respect to learning, in that if such a perfect solution

does not exist, the PLR never stabilises the weights.

3.3.1 Which learning rules will converge on separable

patterns?

Theorems of perceptron convergence on separable sets of patterns have been

proved and improved in several different ways over the years. In the initial per-

ceptron paper (Rosenblatt 1958) there's no hint of such a theorem at all. [Block

1961] gave an early and somewhat complicated version. In [Rosenblatt 1962] it is

split into two proofs, one for the classical PLR (Rosenblatt calls this the "quan-

tized error-correcting rule"), and another for what he calls the "non-quantized

error-correcting rule". Here, the magnitude of the weight change is set so that the

current (incorrect) response is only just corrected. That is, the weights are altered

so that the summed input 0 itself exactly equals the target output, implying that

the actual output obtained by thresholding 0 will now be corrected. If an error is

made on presentation of (the appropriate weight change is EW1 = a(t - q) with

a set at 1/11JI 2 . [Nilsson 1965] and [Duda & Hart 1973] discuss these convergence

results in some detail.

The best known and most elegant proof of convergence of the PLR appears in

Minsky and Papert's book "Perceptrons", a tour de force of novel analysis into

what perceptrons can represent (and to a lesser extent what they can learn). The

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS 	 71

proof works by assuming there exists a set of weights 1 which would solve the

problem and then showing the cosine of the angle between 1" and the actual

weights 1' will exceed 1 after a finite number of weight changes. Since the above

cannot occur and weight changes are always made in response to errors, the algo-

rithm must converge on a correct set of weights after a finite number of updates.

Hence the PLR essentially learns by decreasing (an upper bound on) an angle in

weight space. In this section the Perceptron Convergence Theorem is reviewed,

closely following the proof given in "Perceptrons" (Minsky and Papert 1969) with

some added generality to see which attributes of the PLR are flexible without

losing its convergence property. The conditions turn out to be quite flexible.

For convenience we begin by defining 	= 1(', so the learning task becomes

"find weights W such that W . X' > 0 for all patterns IA " .

Learning Algorithm:

START: Set ii' = ; all the weights are zero.

TEST: Choose an input, fou

if jj.)jP > fgoto TEST.

else go to ADD.

ADD:

Theorem:

The algorithm given above will go to ADD only a finite number of times if the

following conditions hold.

1. There exist weights W- for which ii' . 	> 0 for all J'. In other words

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS 	 72

the patterns (' must be linearly separable by some hyperplane in pattern

space.

Every)? must be able to be chosen an arbitrarily large number of times.

e > 0 and is bounded above.

Whenever weights are altered f() > € and is bounded above.

Proof:

Assume there exist weights W* and b > 0 such that 1' . ?> S for all patterns

i. Also assume the values of f are bounded such that

f<frnsn!5f:5frnax

Define G as the square of the cosine" of the angle between j* and the actual

weights j,j;r,
(W*.

G(i')= 	... 	2 11W *112 IIVII2 -
Now examine how this measure changes each time the learning algorithm goes to

ADD. For convenience another index is introduced. This index, r, starts at zero

and is incremented after each ADD.

Numerator:
=

=

> jZ/*j%4 + fS

"Minsky and Papert use the cosine itself, showing that it must eventually increase above 1.

However, the square is used here because it simplifies presentation.

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS 	 73

because of the assumption that 	J?,. > 6. Therefore, after n ADD 'S we have

r*j;r1
~ 8 f-1

2 	 n- i 	2

	

(j,j,r*jr)
~ 62(f) 	(since ö>O)

> 82n2f 	(since f ~! frnin > 0)

Denominator:

Note first that going to ADD means we must have encountered a pattern for which

I jl, ',.+ II

= (i'1+f,.&).(11+f,.&)

= 	
. 	 .+ 2f,.Wr . X,. +

~ II"II 2 + f,2 	2 + 2f,.

Therefore, after n AD D'S we have

II1 n II 2 < N>f + 2ff,.

< Nn 12maz + 2flfmax 	 :5(since 0 <1 f) — 	J

Since both numerator and denominator are positive, we have a lower bound for

C after n ADD'S of

Gn>(

52 (2
J mm

-
 11 W* 11 2(Nfmax + 2f)fmax)

fl

The expression in the brackets is constant, so there is an n for which G n exceeds

1. However we know this cannot occur. Therefore, the algorithm must go to

ADD only a finite number of times. Thus convergence is guaranteed under the

conditions given in the theorem. QED.

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS 	 74

Note that e need not be a constant, but must be non-negative' and bounded

above, meaning there must be some value of ". W above which no change

occurs. Also note that the conditions given above are sufficient only. In particular

the condition that f be bounded above may be unnecessary, since for example

Rosenblatt's "non-quantized error-correcting rule" is guaranteed to succeed on

separable patterns yet f is a linear function of 4. The classical PLR corresponds

to fmin = fmax = 1 with e = 0.

In fact convergence of the the "threshold LMS" algorithm can be deduced from the

Perceptron Convergence theorem. To guarantee success on a separable problem

it is sufficient that the algorithm be able to present each pattern an arbitrary

number of times: there is no restriction on the order of presentation. Therefore

every time an error is made the PLR step can be implemented repeatedly some

arbitrary, but finite, number of times before another pattern is chosen, which (for

sufficiently small a) is trivially the same as the threshold learning rules above,

and the perceptron convergence result still holds. In a sense this gives "stronger"

convergence, because proofs of convergence using the Perceptron Convergence

Theorem do not fall prey to the following problem associated with any gradient

descent, that the finite step size a makes any real algorithm only an approximation

to gradient descent. If a is too large the minimum is no longer guaranteed to be

found, while on the other hand making a too small slows convergence down.

The perceptron with PLR never stabilises for pattern sets which aren't linearly

separable because it alters the weights every time an error is made. lithe pat-

terns are separable we know from the Perceptron Convergence theorem that a

lower bound on the agreement between the actual weights and a set of desired

weights is increased, but perceptron behaviour in the non-separable case is not

well understood. Minsky and Papert (among others) proved a theorem which they

'From the learning algorithm, this is required in order that the weights change at all from

their initial values of zero.

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS 	 75

called the Perceptron Cycling Theorem, stating that a perceptron with linearly

separable patterns will never visit the same weights vector twice, whereas there is

no limit to the number of times that this will occur for the non-separable case. 6

3.4. A "thermal" perceptron learning rule.

The PLR on its own does not work for non-separable patterns: the weights are

neither stable nor "good on average". One rationale goes as follows: the trouble

is that the PLR does the same thing for every error made. Instead, the benefit

from improving P should be tempered by the possibility that the new weights

now misclassify patterns they previously got right'. Firstly since (given an error

has been made) the change in 4 is independent of the value itself, an error with

a large associated 4 is less likely to be corrected in this step than an error where

is small. The weight changes necessary to correct a large error are themselves

large, and hence much more likely to corrupt the existing correct responses of the

unit. We can say that errors due to small 101 are more likely to be cured without

altering the response to other patterns than those due to large 101, and the weight

changes made should be biased accordingly towards errors where 101 is small.

A simple way to do this is to make the PLR weight changes tail off exponentially

for large 141:
AW = c (t - os') 	' 	 (3.3)

61n principle this can be used as a positive test for non-separability of the patterns, but in

practice requires enormous amounts of memory.
70f course this check cannot be made exact without going through all the patterns and

counting the numbers of errors. This is precisely the function of the "ratchet" in the Pocket

algorithm. In that case the cost of doing it all the time is avoided by only checking if the run

length exceeds the best so far. We would like to avoid this, and see what can be done within

the simple perceptron framework itself, rather than inventing flourishes to add onto it.

GRAFTER 3. LEARNING IN SINGLE PERCEPTRONS 	 76

The "temperature" T controls how strongly the changes are attenuated for large

IqfI• At high T the PLR is recovered, since the exponential becomes almost unity

for any input. Also, at any given T the conditions for convergence given in section

3.3.1 are satisfied.

One picture of the way this rule works is given by considering the patterns as points

in a space and the weights as defining a decision surface which is a hyperplane

in this space. This hyperplane moves every time an error is made. In the usual

PLR, it moves by approximately the same amount whenever there is an error,

whereas in the thermal PLR (henceforth just called "Thermal") it moves by an

amount which is large if the pattern causing the error is close to the hyperplane,

and small if the pattern is distant. As an approximation, one can imagine a zone

immediately to either side of the hyperplane, within which an error will cause

movement of the hyperplane. The perceptron will be relatively stable if there

are no errors occurring in this zone. A natural extension to this is to anneal

the thermal effect by gradually reducing the temperature from high T where the

usual PLR behaviour is seen to T = 0, where there are no more weights changes.

The annealing of the temperature is then the gradual reduction of the extent of

the "sensitive" zone. In the limit of T - 0 the zone disappears altogether and

the perceptron is stable. This gradual freezing is particularly desirable because it

stabilises the weights in a natural way over a finite learning period. One possible

problem which could arise is that patterns for which 101 is very small continue to

cause comparatively large weight changes even at low temperatures, so the effect

of gradually reducing the learning rate a was also investigated.

The effects of annealing one or both of the temperature and the rate are plotted

in figure 3.1. In this case the problem used is highly non-separable: all 1024 of

the binary patterns across 10 inputs are used, .and each is assigned a target 0 or

1 with equal probability. Exactly half the patterns are target 1, so a unit with no

weights at all gets 50% of the patterns correct by default. This is also the average

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS 	 77

level attained by the threshold LMS algorithm. In the annealed cases the relevant

quantity was reduced from its starting value down to zero linearly over the entire

training time. This time was 1000 epochs; that is, each pattern was presented

an average of 1000 times although the actual order of presentation was random.

It should be remembered that the Pocket algorithm with ratchet involves much

heavier computation per epoch (of the order of ten times longer in real time for

this problem) than either the Pocket algorithm alone or Thermal. The latter two

run at approximately the same speed.

First consider the simplest case where there is no annealing: both the temperature

and rate are held fixed at their starting values. Clearly including the exponential

weighting has greatly improved the perceptron's performance. The Thermal rule

can perform much better than the Pocket algorithm (which has double the number

of parameters and a "longest run" checker), and considerably better than even the

Pocket algorithm with ratchet method (which has still more parameters and an

explicit check of the entire training set at each update of the pocketed weights).

Since the weights are not stable (they still change every time there is an error

and since the problem is non-separable this is always occurring), the observed

improvement implies that good sets of weights are being visited preferentially, or

in other words the perceptron using the Thermal rule spends far more time in the

good regions of weight space than the pure PLR. Also, it can potentially locate

good regions of weight space more quickly due to the use of real-valued weight

changes. Although integer weights as used in the Pocket algorithm can approx-

imate a real-valued weights vector arbitrarily closely (because the magnitude of

a weights vector is irrelevant for threshold units) and require less storage on a

computer, they may take much longer to build up from initial weights of zero

strength. However there is a strong temperature dependence: in this case the

performance peaks at around T = 1.0 and, as expected, reduces to that of the

standard PLR as T grows large.

58

56:

Pocket
+

ratchet

54

52

Pockeç

PLR

50
0

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS
	

78

Performance of Thermal PLR vs starting temperature

% correct
60i

..s...temperaturec

no
annealing

I'
I 	' anneal.
I rate 	 %

only

Starting temperature

anneal both
ternperature and 	-

I 	 I

anneal
rnly

3

Figure 3.1: Performance of various algorithms on a highly non-separable prob-

lem produced by assigning targets at random to binary patterns. The abscissa

denotes the starting temperature, T0 , while the starting value for a is always 1.

The ordinate denotes the percentage of patterns being classified correctly at the

end of 1000 epochs of training. Each plotted point is the average of 100 indepen-

dent trials. Also shown are the levels attained by the standard PLR, the Pocket

algorithm and the Pocket algorithm with ratchet after 1000 epochs.

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS 	 79

% correct
Temperature-annealed thermal PLR:

performance vs starting temperature

-...
••..

52

0 	 5 	 10 	 iS 	- 	20
Starting temperature

Figure 3.2: The curve shows the performance of the temperature-annealed Ther-

mal rule over a wider range of starting temperatures.

Annealing the rate alone gives good results provided the temperature is just right,

but is very sensitive to this parameter. Apart from a small improvement for low

temperature, the score in this case is considerably worse than the "no annealing"

case at the same temperature, so annealing the rate is actually detrimental.

However the performance seen by annealing the temperature alone not only ap-

proaches that of the "no annealing" case for low temperatures, but only drops

away gradually above this region. Figure 3.2 confirms this effect over a wider

range of T0 . Ultimately this curve must return to the level of the PLR, since

annealing from higher and higher temperatures means spending more time effec-

tively implementing the PLR, and less time exploiting the exponential weighting

in the useful region (in this case T <2.0, from the "no annealing" curve). The fact

that the curve drops so slowly therefore suggests that the benefits of annealing

the temperature arise from the low temperature region, and that the time spent

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS 	 80

% correct
60

58

56

54

52

50
U

Temperature-annealled thermal PLR:
Comparison of two starting temperatures

20) 	 400 	 600 	 800 	 1000
Epochs of training

Figure 3.3: The curve shows the performance of the temperature-annealed Ther-

mal rule over 1000 epochs for two different starting temperatures. Each point is

an average over 100 trials. -

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS 	 81

in this region can be quite brief. Figure 3.3 shows the time course of learning by

annealing the temperature alone for two different starting temperatures, To .= 1

and T0 = 20. Indeed, the improvement in the weights where T0 = 20 only occurs

after 900 epochs, which is as temperature goes through the region T < 2. This

relative independence from To is an important characteristic, because the optimal

value to use for To may vary from problem to problem (although this is generally

close to unity for training sets of all binary patterns with N < 10) for the other

cases.

Annealing the temperature and the rate however gives the highest scores of all.

In this case, compared to the "break even" point of 50%, performance is a full ten

times better than the Pocket algorithm, and almost double that where a ratchet is

included. The temperature dependence roughly follows that of the no-annealing

curve, and in this case both curves peak at temperatures close to 1.

The time course of the learning is shown for T = 1.0 in figure 3.4. Although the

Pocket algorithm (with ratchet) reaches a moderate set of weights quickly, it fails

to continue the improvement, whereas the perceptron using the Thermal rule goes

on increasing considerably further. The main advantage of annealing lies in being

able to "force" a good solution quickly. For example, annealing over 200 epochs

reaches the same level as not annealing over 1000 epochs, as shown in the figure.

Finally, the performance vs training time on a linearly separable training set is

shown in figure 3.5, again with T0 = 1. if there is no annealing, the scores for

Thermal and the usual PLR (or equivalently, Thermal at high temperature) are

similar. The low temperature case scores slightly lower, although the convergence

time is almost the same. However a striking speed-up is possible by annealing the

rate and temperature together: in this case the solution can be reliably found in

approximately a tenth of the usual training time.

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS 	 82

Time course of the thermal perceptron's
performance on a highly non-separable problem.

% correct
60

Anneal both
temperature and rate

	

58
	 over 1000 epochs

Anneal both
temperature and rate
over 200 epochs 	 No annealling

56

Pocket algorithm with ratchet
pIssIflts.*suu_Im..u.t.*&...*sIt..s*i..p

54
I

7

52

Pocket algorithm

50'

	

0 	 200 	 400 	 600 	 800 	 1000
Epochs of training

Figure 3.4: Performance on a highly non-separable problem plotted vs the training

time for the T0 = 1 case over 1000 epochs. Each point is an average over 25 trials.

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS 	 83

Performance of the thermal perceptron
on a separable problem.

% correct
100

DI

70

80

50
0
	

100 	200 	300 	400 	500 	600
Epochs of training

Figure 3.5: Performance on a linearly separable problem, plotted vs the training

time for the T0 = 1 case over 1000 epochs. Each point is an average over 25 trials.

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS 	 84

It is interesting to compare the rationale behind Thermal with that of the LMS

procedures. In the former, it is argued that large errors (in) should be pe-

nalised lightly, since endeavouring to correct these errors means corrupting exist-

ing weights to a large degree. In the latter, large errors are supposed to be more

heavily penalised than small ones 8 , since these large errors contribute proportion-

ally more to the quantity being minimised (the sum of squared errors in). Hence

these two approaches have opposite motivations.

3.5 Expressing learning rules as curves.

In the remainder of this chapter, other learning rules for the perceptron architec-

ture are considered. One approach would be to derive rules which minimise some

measure of the total error, as was outlined in section 3.2. Another is to define

learning rules in terms of a small number of parameters, and then investigate

the merits of particular combinations of parameter values. This is the approach

adopted here.

How might the possible learning rules for the Perceptron architecture be parame-

tensed? A learning rule for a perceptron is simply a single-valued function LW 1 ,

the change to be made to weight W1 upon presentation of the ji' input pattern.

This could depend on

• W, the existing weight value.

• 	, the sum of weighted inputs.

• 	, the input activity.

81t is often said to be a "drawback" of the sigmoidal LMS compared to the cross-entropy rule

that really large errors do not engender large weight changes (eg. Hinton 1987).

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS 	 85

. tL, the target output.

and also an overall factor specifying the learning rate.

In most accounts of synaptic error-correcting learning rules, the output activity of

the post-synaptic unit is present explicitly. In general this is some monotonically

increasing function of qP alone. However for perceptrons an error is understood

as being made whenever the sign of 00 is positive [negative] where the target is

OFF [ON], so it is superfluous to include the intermediary step of evaluating the

actual output since this is itself a single valued function of OP. The following are

true of the supervised learning rules commonly in use:

the existing weight value is not taken into account. That the weight's mag-

nitude should not matter in learning is no surprise, since the unit's output

is only a function of a linear sum of weights. If bounds on weights are to be

taken seriously, the existing weight may be included as a way of preventing

their size growing beyond some limit. However for most purposes it can be

ignored.

the weight change contains a multiplication by '. Therefore changes are

only made to the 1th weight if , is active.

errors of both types (wrongly ON and wrongly OFF) are treated symmet-

rically. The only difference is in the sign of the weight change incurred:

weights should increase [decrease] if 0 is too low [high]. That is,

AAW
f(çP'.its ift'-1

= 	J v'r /' 	-

	

I.. -f(-") 	if t'4 = 0 	
(3.4)

or equivalently, 	"i'' = 1 f(1Lq5I)

The advantage of these restrictions is that they cut down the number of free

parameters controlling learning, so it is possible to ignore many of the possible

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS 	 86

functions of input, output and target, and concentrate on those that conform

to the general features of known rules such as PLR, sigmoidal LMS and Cross-

entropy. In other words not much generality is lost if the weight change is treated

as a single function of 0 alone together with equation (3.4). This function, f, is

the weight change the perceptron makes if the target t = 1 and the input , is

active.

Figure 3.6 shows this function for the Perceptron learning rule, Thermal percep-

tron rule, sigmoidal LMS, threshold LMS and sigmoidal cross-entropy rules for

comparison.

Which curves correspond to rules which are guaranteed to converge on separable

data? The convergence conditions can be stated graphically, since the function

f introduced above is the same as that used in section 3.3.1. Weights must only

change if ..?. W < 4E, so f(q) must go to zero above some positive value of 0, and

below this value f() should be greater than zero and bounded above. Note that

this implies a discontinuity in the weight change function at . From figure 3.6,

clearly the PLR. and Thermal meet these conditions.

3.6 Learning rules considered as points in space.

In this section the learning function f is given a specific form controlled by just

four parameters. The possible learning rules may then be viewed as points in a

four-dimensional parameter space. Whereas associative rules can be parametrised

and investigated analytically (Wilishaw & Dayan 1990), for error-correcting rules

this is much more difficult. Instead, an essentially empirical approach is adopted

here, where rules are evaluated by testing them on real problems. There are

many possible rules and the ability of each to optimise a very simple criterion

(the number of errors made on the training set) is simply measured. We may

-10 -5 	0 	5 	10 	-10 	-5 	0 5 	10

Perceptron
Learning Rule

(PLR)

10 '-10

Sigmoidal LMS
(back propagation)

-5 	0 	5 	10 -10

Sigmoidal
Cross-entropy

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS 	 87

-10 	-5 	0 	5 	10

Figure 3.6: The plotted function f is the change to be made where the target is

1 and the input is active, shown for several learning rules. The vertical scale has

been normalised.

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS 	 88

expect to see some structure, in that nearby points in this space of rules should

have similar learning properties. The discussion which follows presents the general

features of this space, rather than attempting an exhaustive evaluation.

3.6.1 Restrictions on the form of the curves.

Attempting to evaluate the whole range of possible curve shapes is out of the

question. However there is no need to do this, since the curves we know of already

are really of a simple form: they are all single-valued, with a single maximum.

In fact they can all be closely approximated as "hump-shaped" curves, where

"hump-shaped" is taken to mean f(4') is positive definite and differentiable with

a single maximum, tending to zero in the limit of large II. The PLR and Thermal

perceptron rules are not differentiable but the curves can be approximated by a

smooth function, to an arbitrary degree if necessary. The PLR and Cross-entropy

curves do not return to zero as 0 tends to —oo, but again this can be approximated

arbitrarily closely if need be'. Further, it seems evident that only a very simple

function is expected to perform well, given the inherent variability possible in even

well defined learning tasks.

Given the above, we can immediately define a parameter for such curves, namely

the value of at which f() is maximum, hereafter referred to as the OFFSET.

The actual value of this maximum is another parameter, referred to as MAX. A

way of varying the curves to either side of OFFSET is also required. The simplest

form is definable by two parameters, controlling the rate of decrease at either side.

Of 0 = OFFSET. The particular function chosen here is the gaussian since it is

simple, and flat at x = 0 and ±00. Following the analogy of temperature used

91n support of this, the Perceptron Cycling Theorem tells us that 4 is bounded in the non-

separable case (because the weights themselves are, since the number of possible configurations

is finite), so a curve may always be found which is virtually fiat for negative 0 above this bound.

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS 	 89

earlier (although now there's nothing so appealing as the Boltzmann distribution)

these are named T1,f t and Ti g ht. The family of functions considered are given by:

MAX X exp[—$(- OFFSET)'/T, 1] 	if 0 OFFSET

f()=
MAX X exp[—/3(i - OFFSET) 2 /T, D ht} if 0 > OFFSET

If /3 is set to log2, then the "temperatures" are just the half-height half-widths

of the gaussians.

The four parameters OFFSET, MAX, Tiejt and T,-ight correspond to a learning rule.

These parameters are shown in figure 3.7. For instance, the learning rules depicted

in figure 3.6, with the exception of threshold LMS, can be approximated by the

following parameter given below. 10

Parameter values approximating known rules

LEARNING RULE OFFSET MAX Tieji Trighi

Perceptron (PLR) 0 1 00 0
Thermal 0 1 variable 0

sigmoidal LMS - loge 2 = —0.693 4/27 2.0 1.3
sigmoidal cross-entropy —3.5 1.45 00 3.5

3.6.2 Evaluating the curves.

Having defined a "learning rule" by setting the four parameters, the rule's per-

formance may be evaluated on a given learning problem. Learning problems

are either (linearly) "separable" or "non-separable" (that is, patterns which are

not separable by a single hyperplane). The PLR's behaviour undergoes a sud-

den change between these two regimes: convergence of the weights is guaranteed

in the separable case, cycling is guaranteed otherwise. For separable problems,

'Note however that the sigmoidal rules are supposed to implement stochastic gradient descent

and therefore generally have MAX at a much smaller value than that given here, which is that

obtained by differentiating the global error without any multiplying factor.

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS 	 90

f(Ø)

OFFSET (0,0)

Figure 3.7: Parameters specifying a family of learning rules as "hump-shaped"

curves. The curve is the change to be made where the target is 1 and the input

is active.

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS 	 91

learning rules similar in character to the PLR are expected to perform well. These

correspond to curves where the ratio Tight: T1 is small. For non-separable prob-

lems one intuitively expects "smoother" curves to outperform those with sudden

changes near 0 = 0, on account of a capacity to "balance out" effects in the way

that the sigmoidal LMS rule does in contrast to the PLR, for example.

For each learning problem, a given learning rule has a performance characterised

by a number of measures, most directly the ratio of correctly classified patterns

to the total number of patterns in a given problem. In this study the training

sets consist of all 2N possible patterns across the N inputs, and the N = 8 case is

studied. The performance as the number of iterations is increased is not examined

in detail except for separable patterns; rather, the weights are evaluated after an

average 100 presentations of each pattern. It should be noted that the "good"

rules may well be of a different character if the evaluation is performed after (for

instance) a single presentation of each pattern, and there could be interesting

effects that occur at lower densities of patterns than those studied here.

The procedure is as follows. A set of test patterns and associated targets is gen-

erated. If there are P patterns in the training set then P pattern presentations

constitutes one epoch. There is some evidence that neural nets learn faster if an

epoch instead consists of exactly one presentation of each pattern, that is, the

patterns are chosen at random but without replacement. This seems somewhat

artificial (ie. nothing in the real world is so obliging) so here the patterns are cho-

sen at random, with replacement. At each presentation of a pattern the summed

input 0 is calculated and the weights updated according to the curve and equation

(3.4).

The pattern sets used here are attributed either linearly separable or random

targets. A useful way to see these two extremes in the same framework is the

following. One method of generating sets of patterns is to construct a feed-forward

CHAPTER 3. LEARNING IN SINGLE PERCEPTRQNS 	 92

network of perceptrons with one hidden layer of say H units and a single output

unit. The weights from inputs to hidden units are set at random values, and each

hidden unit's bias is set so that some non-trivial number of input patterns will

turn the unit ON. The output unit simply calculates the 'majority function' of the

hidden units' activities: it is ON only in the case where at least half the hidden

units are ON. The output response of this network to a given input pattern is then

taken to be the target for that pattern. If H = 1 a linearly separable training

set is produced since the network is effectively just a perceptron. If H = 2 the

target ON class is composed of the union of two half-spaces in pattern space. Also,

whatever the mapping produced from inputs to output by this network is, H is

the upper bound on the number of hidden units required to learn the mapping

using a strictly feed-forward architecture where there are no weights between non-

adjacent layers". In the limit of large H the mapping becomes effectively random

(but still consistent), as if each input pattern were assigned its target 0 or 1

entirely at random.

The original idea was to use the methods of Genetic Algorithms to "evolve" good

curves in a population where survival depends on the ability to learn a training

set. In this analogy the four parameters (on which the usual genetic algorithm

operators act) constitute the "genotype", a perceptron endowed with the curve

they represent is the "phenotype", and the world in which they thrive or otherwise

is one of inputs and targets, with a perceptron's "fitness" being its performance

on the learning task. However the much more straightforward approach of di-

rectly searching the parameter space is adopted here because the computation is

tractable and the information obtained covers the whole space rather than being

dependent on the particular properties a genetic algorithm might or might not

have.

11 1f this is relaxed then the network is computationally more powerful and fewer units may be

necessary. For example a single hidden unit becomes sufficient in order to solve XOR, whereas

two are required in the restricted geometry.

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS 	 93

Each plot shows Tie it versus Tight, for constant OFFSET and MAX. Hence each

grid point represents a particular learning rule. Note that points on the diagonal

Trighi = Tiq t with OFFSET = 0 are symmetric curves. The size of the circle at a

grid point always represents the relative degree of success at the task. Circles are

discretised to one of five sizes (or zero). Every data point is an average taken over

twenty-five trials on the same task.

3.6.3 Performance on non-separable training sets.

The most obvious way to assess the curve's performance after some number of

learning epochs is to count the number of correctly classified patterns in the

training set, relative to the total number of patterns in that set:

patterns correct
total # patterns

A plot using this measure is shown in Figure 3.8. The training set consists of all

256 patterns, with their targets assigned 0 or 1 at random with 50% probability.

Exactly half the patterns are target 1. In this plot OFFSET = 0 and MAX = 1.

Firstly, rules where Tight is appreciably greater than T1j1 do not perform well at

all, but those where Tight = Tleft are very successful. The most successful of all

rules he on this line, and virtually any point above the line has some success at

this task.

Secondly, the curves do not appear to be getting much worse along this line. It

turns out that even the rule corresponding to (oo, oo) performs reasonably well.

This corresponds to the "curve" becoming a horizontal line at f = 1. This is

surprising, because this rule is now just

which is independent of the value of qS. This is exactly the associative rule, where

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS 	 94

Figure 3.8: Performance on the random target problem using 256 patterns across

8 inputs with 50% of the targets set to 1. The range denoted by circles is from

50% to 64% of the training set correct after 100 epochs of training. OFFSET = 0,

MAX = 1.

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS 	 95

the association being formed is between the input vector and the target output.

The relative success of such a simple rule strongly suggests that it is somehow

"cheating": perhaps it is the high degree of symmetry in this problem which

makes this possible. Figures 3.9 to 3.12 show the same type of plot for the same

problem except that only a, , and respectively of the input patterns are

targeted to 1, with the remaining targets set to 0.

Two differences from the 50:50 case are evident. Firstly, although the most suc-

cessful rules he on a line, this line is no longer that of the symmetric curves as

it was in the 50:50 case. The presence of the line tells us that it is the ratio

Of Tiet to TTIDhg which dominates performance over a fairly large range in their

absolute magnitudes. Its slope confirms that T11 1 should be larger than Trighi.

Why should symmetric curves be best for the 50:50 case, and left-skewed ones be

best otherwise? The answer to this lies in the fact that these rules treat patterns

of either target the same way, yet there are now more patterns of one target than

the other. Consider what happens for a symmetric rule (Tjejg = T19h) in the

"skewed" case. Initially all the weights are zero. The weights are decreased when

is 0 and increased when V' is 1. Since there are many more t = 0 patterns

being presented to the network, the average values of the weights are decreased,

and hence the average value of 0 decreases. The downward trend in the weights

will continue, unless a sufficient number of the t = 1 patterns elicit high 0 (that

is, close to zero); however since this is a difficult problem, the patterns of both

targets remain more or less evenly distributed across the range of 0 elicited. The

result is that the values of 0 for all patterns continue to decrease, with no pattern

having 4 > 0. Therefore all rules to the right of the line give "default" scores by

responding OFF to every pattern.

Secondly there is a definite fading as this line moves too far from the origin.

This is comforting, since the implication otherwise is that the limit situation of a

virtually flat curve at f = 1 is a successful rule even though it is essentially only

100.

aq
4,

/

/

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS 	 96

Non-separable problem with 1/4 of the targets set to 1

	

• 	 S • • 	 • 0. •..

	

• 	 . S

/

	

• 	 . . 	 0 	0 • • •0

S 	 5 0 	0 	0 • • 00 .00. . 	 //

• 	 . 	 0 • • S 0 	 6•JI

	

• S S • 0 • 0 . a •
S S 	 000. S 	 /

..... 0 e• 0 0 .

• 00000.

	

• 	 . S •• I •l.ØØ• 	 //

	

• 	 0 	 S 	0• •'. • 0000Q. 	 I

	

• . 	. 	 I 	• • • . 000000 . 	 4,'

...... •G0o .

	

..• 	•••••o00..
• 	 0000..

• 	 •••°00 0000
• 	 4,

0 	 50 	 100 	 150 	 200
Trig lit

Figure 3.9: Performance on the random target problem with a quarter of the

targets set to 1. The range denoted by circles is from 75% to 79.1% of the training

set correct after 100 epochs of training. OFFSET - 0, MAX = 1.

150

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS 	 97

Non-separable problem with 1/8 of the targets set to 1

0 	 20 	 40 	 60 	 80
Tright

Figure 3.10: Performance on the random target problem with an eighth of the

targets set to 1. The range denoted by circles is from 87.5% to 89.2% of the

training set correct after 100 epochs of training. OFFSET = 0, MAX = 1. Note

that the scale has changed from that used in the previous figure.

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS 	 98

Tright

Figure 3.11: Performance on the random target problem with one sixteenth of the

targets set to 1. The range denoted by circles is from 93.75% to 94.53% of the

training set correct after 100 epochs of training. OFFSET = 0, MAX = 1. Note

that the scale (0-10) is very much smaller than that of the 50:50 case (0-200).

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS 	 99

Non-separable problem with 1/32 of the targets set to 1

/
/

7
7

7
/

7
7

/
7

7
/

7
7

	

7.5 	 7
7

7
7

• 	 7

0 7 7
. 	 7

/
•0 	 7

7
7

7 • .0. 	 7

	

• 	 00 	 7
7

•0• 	 7 0

• 	 7

	

F—i 5 	 .•.•0 	 /

o

000..Q

• .00Q. 	 7
/

• 0.0.00 	7
7

• 00 0.00 	F

000000. 	' F

7

	

.000000 	- 7
•00000

• •00000e /
F

	

2.5 	.00000 ,
• 00000 • ,'
000000 7

• 0000. ,'
00,00 ,'
0000
0 0 0

• 	7
7

F
/

F

	

1'. 	F

	

2.5 	
5
	 7.5

Trighi 	
10

Figure 3.12: Performance on the random target problem with 1/32 of the targets

set to 1. The range denoted by circles is from 96.875% to 97.27% of the training

set correct after 100 epochs of training. OFFSET = 0, MAX = 1.

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS 	 100

associative. Although the ratio Tlefg/Tyjghg dominates performance up to a point,

eventually the curves get too wide and begin to degrade. This effect is more and

more pronounced as the density of target 1 patterns is decreased.

3.6.4 Performance on linearly separable training sets.

The usual score measurement is shown in figure 3.13, after training on a separable

problem for 100 epochs. The training set was produced as described in section

3.6.2 using H = 1, and consists of the complete set of binary patterns (ie. all

= 256) for N = 8. Half the patterns have target 1, so the range of score

is from 50%, representing no improvement over a random choice of weights, to

100%, which corresponds to successful learning of the entire training set.

Figures 3.14 to 3.17 show the corresponding plots for linearly separable problems

with only a, , j and respectively of the input patterns targeted to 1 and

the remaining targets set to zero.

However, this doesn't tell us how quickly this level of performance was achieved.

A more descriptive measure for this task would be the number of epochs taken to

find a separating hyperplane. There are actually two such measures of interest:

the earliest time that weights occur which give no errors

the latest time that any error occurs

These turn out to be very different in character, because a rule which quickly finds

a separating solution is not necessarily stable. Consider figure 3.18, which shows

the "earliest separate" case compared to the "last not separate" case. Firstly, the

speed with which the first "perfect" plane is found looks very much like the usual

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS 	 103

Separable problem with 1/8 of the targets set to 1

U 	 50 	 100 	 150 	 200
Trigi,j

Figure 3.15: Performance on a linearly separable problem with 1/8 of the targets

set to 1. The range denoted by circles is from 87.5% to 100% of the training set

correct after 100 epochs of training. OFFSET = 0, MAX = 1.

0

cI

c
i

z

0

I-

0

E
.0

0

1 0

.

.0

cl
so cc
0
.

U) .?
4.)

Q) O
b
O

U

)

~

•1

'I
-

o

3)

%

S.
'-4

44_
0

 S. S.

-

'-4

S.

0
0
.
 	

5
.

•
0
0
0
.

E
-

0

5.
-

.5

5. S.
0

1-4
5. S.

0

•
U

.5

•
o
e
0
0
0
0
0
0
..

S
.

E
• 2

0.4
CI)

S.
. U

)

\

bb
O

O
O

O
•

O
G

O
O

•O
j.

\

.

\

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
9

6
6

6
6

6
0

6

°

O
@

O
O

.

'S
.

G
o
e
s
 	

s
o
 	

0

G
o
o

r
cd

Q)
Q

1 o

V

bO

0..
V

f-4
CD

—

bO

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS 	 105

Separable problem with 1/32 of the targets set to 1

50 	 100 	 150 	 200

Trigizt

Figure 3.17: Performance on a linearly separable problem with 1/32 of the targets

set to 1. The range denoted by circles is from 96.875% to 100% of the training

set correct after 100 epochs of training. OFFSET = 0, MAX = 1.

OFFSET =0
	

OFFSET =2

0
OGG

0 • 0 •

0 • • • 0 • •
0 • • • 0 • •
0 • • • 0 • •

0.
0.
0 .

0 .. 0

0

10

8

6

4

2

0

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS
	

106

Earliest epoch at which no errors are made.

10

8

2

0

OFFSET = -2

0 2 4 6 8 10
Tright

Last epoch at which any error is made.

OFFSET = -2
	

OFFSET =0 	 OFFSET =2

0 2 4 6 8 10

Figure 3.18: The earliest epoch at which no errors are made, compared to the last

epoch at which any errors are made. The range is from 0 epochs (large circles) to

1000 (no circle) epochs. MAX is 1.

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS 	 107

score shown in figure 3.13. Secondly, even though a broad range of curves find

separating hyperplanes quickly, only those with T 9ht = 0 are actually stable at

this point.

3.6.5 The effect of MAX.

Recall that the parameter MAX plays the part of a learning rate for a curve of

given OFFSET, Tie ji and Tight. Figure 3.19 shows the non-separable problem for

N = 8 as MAX is varied (with OFFSET = 0). It's not obvious what the effect

is - is it a broadening or simple translation of the curves as MAX is increased,

or something else? Figure 3.20, which shows the performance for different rates

with rescaled axes, makes it apparent that the effect is simply one of scaling the

widths linearly with the rate: the effect seen in the previous figures is actually

due simply to magnifying the pictures up. This makes perfect sense, because the

two axes are linearly related: since 0 is just a linear sum of weights, doubling the

weight changes doubles the rate of build up of q. Therefore by blowing up both

dimensions of the curve, for example by doubling MAX, T jg and precisely

the same weights vector would be generated given the same order of patterns,

but with twice the magnitude. Since the unit calculates its output by a threshold

operation the relative magnitude is of no consequence, so the scores are the same.

In the simulations shown the order of presentation of the patterns is random and

different in each trial, but on average the performance is the same.

3.6.6 The effect of OFFSET.

Figure 3.21 shows the effect of varying the value of OFFSET. The same diagonal

feature appears shifted, with its intersection with the line T1,f t = 0 moving by

approximately the amount of the offset. Suppose that the curves used were ac-

E 0.1

0.3

• • •

:00!
3

10

Ii1

E4 ee owes ee weeee ee

0 	irI,1,Z1# 	 200
I

• • • . eQe .
• • • • 	e

9 86 6
• •
• •
•00

•o.

•0

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS 	 108

Effect of varying MAX

Figure 3.19: Effect of varying the value of MAX, over T from 0 to 200. Performance

is shown for the random target problem using 256 patterns across 8 inputs with

25% of the targets set to 1. The range denoted by circles is from 75% to 79.3%.

OFFSET is 0.

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS
	

109

The scaling effect of MAX

MAX = 1 MAX = 10

0 	Tright
	20 	0 	 200 	 0-71001

Figure 3.20: Effect of varying the value of MAX: the axes are scaled in each case in

proportion to the value of MAX. Because all three pictures are similar, the effect

is simply one of rescaling. The range denoted by circles is from 75% to 78.4%,

and OFFSET is 0.

tually "flat" out to a threshold at 0 = (OFFSET - Tjej *) and (OFFSET + T9h)

respectively. If the OFFSET is altered by

OFFSET - OFFSET+L

then changing
Tieji _4Tj fg _1X

Tight --+ Tight + L

reproduces the original curve. This corresponds to a shift of the line seen in the

figures up and to the left by amounts equal to the increase in OFFSET. This is

the apparent direction of the shift (however the actual movement is somewhat less

than this). Hence a possible explanation for the observed shift is that an important

feature determining performance is the simply the area under the curve to either

side of the origin.

200 • 900686
• . . . 00000
• . 0 0 0 0
• . • 0 0 0

-80

Tright
• 	. 	• 	• 0
• 	• 	• 00
• • • • 0 0 09
• 	• 	• o o
• 	• 	• 0 0
• 	•..Oo
•
• 	• 00

-60
••00 	•
• 	0 	•0

• 	0 	0

• • • Goes-
• . . 0 0660
• 0 •

• • J
oe 0

• 0

ziJ

000
0 00
000

00
•0

0

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS 	 110

Effect of varying OFFSET

40

Figure 3.21: Effect of varying the OFFSET. Performance on the random target

problem using 256 patterns across 8 inputs with 25% of the targets set to 1. The

range denoted by circles is from 75% to 78.4%. MAX is 1.

CHAPTER 3. LEARNING iN SINGLE PERCEPTRONS 	 111

3.7 Conclusions

It is easy to see why the Pocket algorithm is so slow in the highly non-separable

case by looking at the mean errors made by the PLR perceptron: the "good"

weights configurations are very infrequently visited by any rule with large T1ft

and small T19hj.

It may seem surprising then that the Thermal rule works as well as it does, given

that it has Ti ght = 0. However, it was seen that the performance without any

annealing depends on the value of T, which is best set at close to unity for the

problem used for figure 3.1, and this is also true for the N = 8 cases investigated

here. 7eft and the parameter T used in Thermal are roughly comparable, being

the value of 101 at which the weight change is 1/2 and l/e respectively of the

maximum. Therefore the Thermal rule works best at approximately T11 = 1,

T7 9ht = 0, which is in the region of "reasonably good" rules as shown in figures 3.11

and 3.12. The annealing corresponds to moving slowly down the T19ht = 0 line

through the region where good weights are visited. Performance is less sensitive

to the initial temperature in the annealed case because the "good" region is so

close to T1 ,ft = Tight = 0, which is why the lower curve in figure 3.3 rises only

at the very end of the annealing schedule. It would be interesting to investigate

the effects of annealing in the two gaussian widths, as similar benefits would be

expected to those seen for Thermal.

In summary, rules where T,J/T 9hj 4/3 are best for the non-separable prob-

lems investigated here, whereas Ti ght should be close to zero for fast and stable

convergence on separable problems. However there appears to be an intersection

or "middle ground" in which performance on either type of problem is good. The

parameter OFFSET can be varied over a large range but is as well set at zero as

anywhere. The learning rate MAX is linearly related to the width of the curve and

must be set accordingly to maximise performance.

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS 	 112

3.8 Further work:

Constructive methods revisited.

Chapter 2 showed the Upstart algorithm has improved performance over the al-

gorithms discussed previously, and in the present chapter the Thermal perceptron

rule has been shown to generate better weights than the Pocket algorithm for

difficult problems. Hence it is not yet clear which of the constructive algorithms

is really the best and under what conditions. This question requires a careful

theoretical and practical evaluation of all the various approaches. A complicating

factor is that the two issues of how best to train the weights and how best to

construct the network may be coupled. That is, a particular weights algorithm

may well favour a particular constructive approach and vice versa.

This work remains to be done. Preliminary results of applying the Thermal rule

to other algorithms are given here, purely as a pointer to future work. The learn-

ing task is the "two or more clumps" problem discussed in Chapter 2. The Tiling

algorithm is not included since it may be viewed as a combination of the Splitting

and Tower methods. Tower and Splitting can be implemented using the Thermal

rule with no other changes. An adaptation is required for use in Whittling; this

method requires that weights be learned which make only "wrongly OFF" errors,

so a hidden unit which makes a single "wrongly ON" error is unusable. The mod-

ification (which replaces a complicated method based on the Pocket algorithm) is

simply to apply the original PLR to patterns whose target is 0 and the Thermal

rule to those whose target is 1.

The "clumps" problem used here is exactly the same as that used to demonstrate

the Upstart algorithm. The results are shown in figure 3.22, where the Upstart

results are included for comparison. Somewhat surprisingly, the Whittling algo-

rithm produces the smallest networks of all, and shows the best generalisation

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS 	 113

performance. This might be expected if the problem consisted of an obvious con-

junction of several separable features, but this is not the case with the clumps

problem. Also noteworthy is the fact that although the Tower algorithm con-

sistently builds smaller networks than either Split or Upstart, its generalisation

performance is slightly worse. Further simulations were done confirming that this

is not improved by allowing more connections between Tower units than one to

each unit's immediate predecessor.

3.9 Summary

Constructive algorithms constitute an important addition to the field of neural

networks. They are powerful methods for producing networks to perform clas-

sification tasks, and do this by learning in a way which is quite different from

the majority of network methods presently in use. An understanding of learning

rules for individual perceptrons is an enterprise of comparable importance, given

the striking extent to which the performance of these constructive methods is

dominated by the choice of such a rule.

a

I

It

CHAPTER 3. LEARNING IN SINGLE PERCEPTRONS 	 114

Performance on the clumps problem using Thermal

o 50 100 	200 	 400 	 600
Number of patterns

Figure 3.22: Comparison of the constructive algorithms incorporating the Thermal

rule on the "two or more clumps" problem. The graphs show the size of the

networks and their generalisation performance, vs the size of the training set.

The circles and vertical bars show the mean and standard deviation respectively

over 25 trials. T0 = 1.5 for all methods except Whittle, where it is 2.5

Part II

Topographic mappings and the

Travelling Salesman Problem

115

Chapter 4

Introduction to the TSP

4.1 Overview

The following two chapters are concerned with the Travelling Salesman Problem

(TSP), a well known and widely studied problem in combinatorial optimisation.

Finding the optimal solution is a computationally intractable task, hence heuris-

tics for finding good solutions in reasonable time are of more practical interest.

In this chapter, the TSP and the conventional methods for solving at are briefly

reviewed, and the key concepts introduced by Hopfield and Tank relating neural

networks to the problem are pointed out.

Chapter 5 is motivated by the success of the topographic mapping approach as

embodied in the Elastic Net algorithm (Durbin & Willshaw 1987). A proposal is

put forward to overcome a restriction inherent in the Elastic Net approach, which

leads to two novel algorithms for the TSP.

116

CHAPTER 4. INTRODUCTION TO THE TSP
	

117

4.2 Outline of the problem.

'Given a set of cities and the distances between them, construct a closed

tour of minimal length which visits each city exactly once.'

This is the usual statement of the Travelling Salesman Problem. In other words,

given N elements (for example cities, processes, or states) and the set of N 2 scalars

relating one to another (for example distances, costs or differences) construct a

closed cycle including each element exactly once such that the sum of the scalars is

as small as possible. The TSP can also be stated as the decision problem: "Given

a set of cities and the distances between them, does there exist a tour of length

less than L?"

Only in certain cases can the TSP be formulated in terms of the actual positions

of cities. An N-by-N matrix specifying all the distances between the N cities is

sufficient to specify an instance of the problem. The most general case is called

the Asymmetric TSP (see figure 4.1). For this, the matrix elements are arbitrary

positive quantities, and the distance from A to B need not necessarily equal that

from B to A. This could be visualised in terms of real cities, connected by one-

way roads (ie. the lengths aren't symmetric) which are not straight. Important

subclasses are problems for which the distances are symmetric (two-way roads),

and those where distances between any three cities obey the triangle inequality (ie.

the distance between two cities must be less than the sum of the distances from any

third city to each of them), and also problems for which both conditions are true.

A further constraint may be that the distance matrix correspond to straight-line

distances between cities lying in some Euclidean hyperspace. The TSP in the plane

is the simplest and most often quoted example of these, corresponding to perfectly

straight, two-way roads. At first sight it might appear that the non-Euclidean

problems could be Euclidean but in a space with a higher number of dimensions,

provided the triangle rule is not violated. However, as the example in figure 4.2

CHAPTER 4. INTRODUCTION TO THE TSP 	 118

Asymmetric
TSP

Non-

	

Asymmetric, 	
Symmetric 	

(Euclidean

	

Triangle Rule 	 I___________________ I

problems

I 	
Symmetric,

Triangle Rule
Increasing
Specificity 	

Euclidean

1
TSP in the

Plane

Figure 4.1: The Hierarchy of TSP's.

shows, this is not true in general: even slight perturbations of the distances in a

Euclidean instance of the TSP turn it into a non-Euclidean problem. This has

important consequences for the algorithms put forward in the next chapter.

4.2.1 Why is the TSP interesting?

The TSP combines simplicity of statement with difficulty of solution. Even for

small numbers of cities a complete search is out of the question. The number

of possible tours for N cities is (N-1)!/2. For only 50 cities there are of the or-

der of 1065 valid tours, which would require billions of years of computing time

for an exhaustive search. More importantly no algorithm has been found which

can produce the shortest tour in a time which scales reasonably with the number

CHAPTER 4. INTRODUCTION TO THE TSP 	 119

Ii 	 --

V

Figure 4.2: Problems that obey the triangle rule are not necessarily Euclidean.

For example, suppose we have five cities in the 2D plane as shown. Now consider

altering only one distance, that from U to V, by putting "bends in the road".

This cannot be recast in terms of straight-line distances in a higher dimensional

Euclidean space, because the (unchanged) distances from X, Y and Z specify that

both U and V must remain in exactly the same 2D plane as these cities.

CHAPTER 4. INTRODUCTION TO THE TSP 	 120

of cities. For comparison, consider the Minimal Spanning Tree problem (MST):

"Given a set of N points and the distances between them, construct the minimal

length graph spanning the points". The TSP is a restriction of this problem in

which this graph must be a cycle. Equivalently a search of all N 2 possible

trees quickly becomes unfeasible, but unlike the TSP there does exist an algo-

rithm which finds the minimal spanning graph in time proportional to N 2 . The

differences in algorithmic scaling between these two problems are captured by the

notion of the class NP-Complete, of which the TSP is a member but the MST

problem is not. The class P is the set of problems, such as the MST, for which

algorithms exist which complete in polynomial time (that is, a number of steps

which is some polynomial function of the problem size). Now consider a decision

problem, and an algorithm which constructs a solution in a non-deterministic way

and tests the decision condition. If such an algorithm can form a solution with

some (perhaps negligible) probability of satisfying the condition and test it in

polynomial time, then the problem is in NP. Note that P itself is part of NP.

The so-called SAT problem (standing for 'satisfiability') is the 'hardest' problem

in NP, since every other problem in NP can be transformed to it in polynomial

time. Further, it is possible to show whether a given problem in NP is as hard as

SAT, which then defines the class NP-Complete: the hardest problems in NP.

Since the advent of this idea, a large number of problems long suspected of being

intractable have been shown to be members of this class. Examples of other

important problems in NP-Complete are:

• Multiprocessor Scheduling Problem. Given tasks to be performed and times

for each, minimise the total time involved for a given number of sequential

processors operating concurrently.

• Hamiltonian Circuit Problem. Given a partially connected graph, is there a

closed circuit visiting each node exactly once?

CHAPTER 4. INTRODUCTION TO THE TSP
	

121

• Map Colouring Problem. Is it possible to colour a given map using 3 colours

so no border has the same colour on both sides?

Since all problems in NP-Complete are equally hard, and all are reducible to SAT,

in effect all are mutually transformable. This means that if a polynomial-time

algorithm exists for any one of them, then there exists such an algorithm for every

one of them. Although this doesn't preclude the possibility that such an algorithm

does exist, it is generally agreed to be extremely unlikely.

The TSP itself is an important practical problem since it has applications in

many different fields, from silicon chip layout design to commercial transportation

routing and airline personnel timetabling. Also, given the close formal relationship

between all members of NP-Complete, it is hoped that successful approaches to

TSP may carry over to these other problems of similar complexity.

Finally, the TSP has become a standard by which various general approaches

to combinatorial optimisation problems are measured. When a new approach

is proposed to such problems, it is common for its potential to be evaluated by

attempting this problem.

4.2.2 Conventional methods

These can be divided into heuristics for finding good tours and exact methods for

finding the optimal tour.

Since guaranteed optimal solutions to NP-Complete problems cannot be found in

polynomial time at present (and there are strong doubts they can be in principle)

there inevitably arises a trade-off between the quality of solutions and the speed

with which they can be found. A lot of interest naturally focuses on heuristics for

CHAPTER 4. INTRODUCTION TO THE TSP
	

122

finding good solutions quickly. An enormous amount of effort has been expended

on such suboptimal methods for the TSP in particular. Some examples of such

heuristics are:

Tour Construction procedures. Examples are:

Nearest neighbour or 'greedy' algorithm. Starting from an arbitrary

city, simply connect to the nearest cities not already included until

a tour is formed with the last link. This is the most naive way of

constructing a tour and, not surprisingly, generates very bad tours.

Minimal Spanning Tree (MST) methods. These work by construct-

ing the MST and converting it into a tour. The best way of doing this

is known as Christofides Algorithm, which doubles every edge of the

MST to produce an Eulerian graph (ic. one in which each vertex has

an even number of edges attached to it), finds a tour for this graph,

and converts it to a Travelling Salesman tour by using shortcuts. For

any TSP instance where the city distances obey the Triangle Inequal-

ity, this guarantees a tour of not more than 2 of the optimal. This is

the best such 'worst case' condition known for such a heuristic.

Tour Improvement procedures. In general these work by repeating the fol-

lowing two steps:

Step 1. Modify an existing tour Q of length L slightly, producing Qnew

Step 2. Compare Q with Qnew and adopt Qnew under some condition in-

volving the difference between the tour lengths.

Step 1 is often done using a procedure called f-opt (Lin 1965) which involves

making r cuts in the tour and reassembling the pieces in all the various com-

binations. In that case the condition in Step 2 is simply that the new tour

be shorter. An 'r-opt' tour is the shortest tour found by trying all possible

CHAPTER 4. INTRODUCTION TO THE TSP
	

123

combinations of r cuts. Empirically it is found that the probability of a 3-opt

tour being optimal is about 5% for 50 cities (Lin 1965). Genetic algorithms

(Holland 1975) have recently been applied to perform Step 1 by dealing with

mutations and combinations within large populations of tours (Mühlenbein

et al. 1988). In the method of Simulated Annealing (Kirkpatrick et al.

1983) the condition in Step 2 is evaluated nondeterministically, so there is

some probability of longer tours being accepted. if the new tour length L new

is shorter than L it is always accepted, but if it is longer then it is only ac-

cepted with probability e_()m_I41T. In the exponential, T plays the role of

• "simulated temperature". This value may be "annealed" very slowly from

• high temperature where virtually every change is accepted, to a low one

where only strict improvements are accepted.

Composite procedures. The best known of these is due to Lin and Kernighan

(Lin & Kernighan 1973). The method is fairly complex, with the core idea

being the dynamical setting of r, the number of cuts made when using r-opt.

For exact solutions the problem is treated very differently by so-called polyhedral

methods typified by the branch and bound and cutting plane procedures. In these a

geometric space is examined in which the tours are seen as points, and an initially

all-enclosing bounded region of this space is considered. The idea is progressively

to shrink the volume of this region by rejecting more and more potential tours,

making sure an optimal tour is never rejected. In this way we can know that the

last tour left in the region is the optimum. A dominant characteristic of these

methods is their high degree of complexity. As well as being very specialised and

complex, several techniques usually need to be combined into hybrids to make

them work effectively. [Lawler et al. 1985] describes the polyhedral methods in

detail.

All of the algorithms mentioned above are concerned with manipulating links

between cities in a 'binary' fashion: cities are either linked in the tour or not. In a

CHAPTER 4. INTRODUCTION TO THE TSP 	 124

sense then they conduct a search in the binary hyperspace of possible links. The

current tour is representable as a point at one of the vertices of this hypercube,

with the algorithm jumping from vertex to vertex in the heuristics, or working to

enclose as few as possible vertices in the polyhedral methods.

4.3 Neural networks: the method of Hopfield

and Tank.

Hopfield and Tank proposed a new method for finding short tours in the TSP

(Hopfield & Tank 1985), using a neural network approach. Their method in-

troduced two important new approaches to solving optimisation problems using

networks: searching a continuous state space for solutions to a discrete problem,

and the use of energy functions.

Assume a given problem can be stated in terms of some finite number of variables

bounded between zero and one. If these state variables are represented by mutu-

ally orthogonal vectors then we have a Cartesian or configuration space which is

a hypercube. Hopfield and Tank introduced the idea that searching a continuous

state space can have advantages even when the valid solutions exist only at the

vertices of the hypercube. In a sense this is a more general approach than methods

which deal only with operations concerning corners of the hypercube. In effect,

additional degrees of freedom have been introduced, which the algorithm must

ultimately remove for the system to converge to a valid solution.

Hopfield and Tank's technique was first to express the quantity to be optimised,

and the various constraints of the problem, as minimisation problems over con-

tinuous variables. That is, they found a scalar function for which the optimal

solution (ie. the shortest tour length) of the given problem corresponds to a mm-

CHAPTER 4. INTRODUCTION TO THE TSP 	 125

imum, and similarly they found functions at whose minima the constraints of the

problem are satisfied (ie. valid tours). They called the sum of these functions an

energy function, since the optimal solution (which should be stable) is attained

if and only if the function's value reaches its global minimum. This is analogous

to the ground state energy in physics. The problem is then to move through the

space of possible states from the starting point towards the energy minimum.

If the free variables are denoted by s i with E some function of all 3, and the

dynamics of a system are such that

dsi 	OE
-

dt
with K >0

(4.1)

then changes to the system move it towards states of lower E, provided the "step

size" c, is very small. Dynamics such as this are known as gradient descent in E.

Identifying E with the energy function described above enables the appropriate

equations of motion in s to be deduced. The energy function assigns a scalar value

to every point in this space, and equation 4.1 determines the resulting motion. In

this way combinatorial optimisation problems can be formulated in terms of the

descent of some energy surface in a continuous space of possible configurations.

A solution to the TSP is an ordering over cities, and one way of expressing this is by

a square matrix whose rows correspond to cities and whose columns denote their

ordered position in the tour. A valid tour is then defined if this is a permutation

matrix wherein exactly one element of every row and every column is 1, and all

other elements are 0. Hopfield and Tank associated each matrix element with a

unit of a neural network. If there are N cities there are N 2 units, each denoting

a particular city (here indexed in upper case) at a given position in the tour

(indexed in lower case and assumed modulo N). The presence or absence of city

A at position i is represented by the activation VAI of the appropriate unit, which

is bounded to between zero (signifying absence) and one (presence) by the sigmoid

CHAPTER 4. INTRODUCTION TO THE TSP
	

126

function:

VAi 	
1

-

1 + exp(—/3çiAI)

The "gain" parameter 8 can be varied. The function is approximately linear over

a wide range of q if 9 is low, but turns into a step function as 8 is increased. The

unit's potential, denoted OAi is a weighted sum of all the other units' activations:

Ai = 	 VB3
B'

This architecture is known as a recurrent network due to the bidirectional interac-

tions between all connected units. [Hopfield 1982] and [Hopfield 1984] showed that

recurrent networks with symmetric connections have energy functions of a simple

form. The object then as far as the TSP is concerned was to make the stable states

of such networks correspond firstly to valid tours (permutation matrices) and sec-

ondly to short tours. This in turn can be done by setting the interconnections in

the right way or equivalently by choosing a particular form for E:

E = Econstrain + Ei rlengih

Unfortunately the existence of an energy function of this type is by no means a

guarantee of success for the algorithm. Most importantly, the two terms are lin-

early additive even though the first is a constraint and the second is the condition

to be optimised given that the constraints hold. The relative strengths chosen

for the constraint and tour length terms are therefore of critical importance. if

they are incorrectly chosen it is possible to trade-off the tour length against the

constraints which make the network's configuration represent a valid tour. This

problem afflicts the above method, to the extent that it is unusable in practice.

[Wilson & Pawley 1988] tried unsuccessfully to reproduce the original results,

obtaining valid tours in only 8 % of trials using 10-city Euclidean problems, for

example. A search of possible parameter settings produced no combination which

gave a valid tour for problems with 16 cities. In addition [Hegde et al. 19881

concluded that the space of usable parameters rapidly shrinks as the number of

CHAPTER 4. INTRODUCTION TO THE TSP 	 127

cities is increased. [Peterson & Sôderberg 1989] report on a closely related ap-

proach called a "Potts neural network", in which the constraint that the sum of

the activities of all units in a column be unity is enforced exactly, instead of be-

ing just one of several terms being minimised, as was true of the original model.

Recent results (Peterson 1990) indicate that provided the gain parameter 3 and

its annealing regime are carefully chosen, the method gives tours of the order of

20 % longer than optimal for Euclidean problems of up to 200 cities.

4.4 Advantages of using neural networks.

The use of continuous variables as described is a novel way of solving the TSP

which may have advantages over conventional methods. As [Hopfield & Tank 1985]

point out, values lying between the extrema at which a tour is defined represent

a preference for a set of related tours rather than a particular tour. Hence such

intermediate states may be interpreted as the simultaneous consideration of many

similar possible tours, one of which eventually wins out. Two other important

advantages of using neural networks are:

Parallelism.

A potential advantage of using neural networks is that the computations they

perform are intrinsically parallel: instead of designing a serial algorithm in the

usual way and then attempting to parallelise it, which is neither easy nor nec-

essarily successful, the form of the algorithm is constrained to be parallel from

the start. Parallel computers are beginning to revolutionise computation, and

methods which can exploit their power are naturally of great interest.

Algorithmic simplicity.

In almost any real application, the exact nature of the trade-off between the

quality of a solution and the time required to find it is crucial: we may want good

CHAPTER 4. INTRODUCTION TO THE TSP
	

128

solutions in minutes in one case, and very good solutions in hours in another, or as

good a tour as possible in say 14 seconds in a third case. As will become apparent

the "neurally inspired" methods, particularly those which involve an annealed

parameter, are easily adapted to the different cases. This is not so true of the

conventional methods (perhaps excepting Simulated Annealing), which tend to be

very good at one or other limit of the trade-off.

Chapter 5

Topographic mappings methods

for the TSP.

5.1 Overview

In this chapter a new approach to the TSP is examined, based on the formation

of a topographic or neighbourhood-preserving mapping by a feed-forward neural

network. A topographic mapping between two regions is one in which points which

are neighbours in one region project to points which are themselves neighbours in

the second region.

The new approach follows on from the Elastic Net (EN) method (Durbin & Will-

shaw 1987), which can produce impressive solutions to the TSP by forming a

topographic mapping. However it is limited to the case where the cities lie in a

Euclidean space. It is proposed that this restriction is surmountable by apply-

ing similar ideas to the development of a mapping between two distinct layers of

units in a neural network; this enables the general symmetric TSP to be tackled.

129

CHAPTER 5. TOPOGRAPHIC MAPPINGS METHODS FOR THE TSP. 130

Forming the mapping amounts to learning the weights connecting the two layers

of units. After showing how such a mapping can be interpreted as a tour of the

cities, two new methods for solving the TSP by developing such a neighbourhood-

preserving mapping are investigated. The first of these is a direct application of

the Elastic Net procedure to the layered architecture, which results in a simple

local learning rule for the weights. The second is an adaptation of an early model

for the development of topographic mappings in the brain. Finally, the two meth-

ods are tested on a number of problems ranging from perfectly Euci dean to highly

non-Euclidean.

5.2 The Elastic Net method.

In 1987 Durbin and Willshaw found a new approach applicable to Euclidean

TSP's. Their idea hinged on the observation that a valid solution to the TSP is a

mapping between cities and positions in a loop, and that short tours correspond

to neighbourhood-preserving mappings. This is because in such a mapping nearby

cities assume nearby positions on the loop, giving a short tour. The EN method

has its origins in biologically realistic neural network models for the formation of

topographic mappings in the brain; [Willshaw & von der Malsburg 19761 proposed

the Neural Activity model (section 5.5), followed by the Tea Trade model (Will-

shaw & von der Malsburg 1979) which was adapted to become the EN method

for the TSP. The method heavily exploits the restriction that the city distances

correspond to points in some Euclidean space, usually the 2D plane. The loop is

positioned in this space along with the cities, and each loop point is free to move

about under the influence of two kinds of force. The first kind pulls it towards

CHAPTER 5. TOPOGRAPHIC MAPPINGS METHODS FOR THE TSP. 131

the cities. For the j° loop point situated at position il, in the plane this force is:

	

ir 	=>b(i— ilj)

	

where ?&j• 	= 	
- y 31,K)

(I1-I,K)
k

Here 	is the position of the i' city, and 4(d, K) (not to be confused with the

potential used elsewhere) is a positive bounded decreasing function of d that

approaches zero for d> K. An important factor is the normalisation by l'jj of

the total influence of each city. Provided there are a large number of loop points,

this guarantees that each city will gain a position on the tour. The second kind

of force pulls each loop point towards its immediate neighbours in the loop in

proportion to their separation, hence it is analogous to tension:

ptension = K(1 - 2 + 	 (5.2)

This force acts to minimise the total length of the loop.

At every iteration each loop point j moves a small distance along the resultant of

these two forces:

	

= P. Fity + /3 tension 	 (5.3)

If K is held constant, after many iterations the points would assume a stable

positions where the forces balance each other out. Instead however, K is slowly

reduced towards zero. This means that initially the tension force dominates but

gradually these forces weaken. At the same time the loop-to-city forces become

stronger at progressively shorter ranges about each city. Eventually the loop

relaxes into a valid tour as the tension and the ranges of the city forces both tend

to zero. Further, if (d, K) is taken as the gaussian function

	

4(d, K) = exp(—d 2 /2K 2) 	 (5.4)

an energy function can be defined:

E = —aK>1n>(iZ - I,K) + 	 (5.5)
i 	3 	 j

UV Aq 3JUlej put, pla!jdOH jo potin aql Puv N3 Qq1 qoq 1,eqj pamOqs[0661
anuiSj ino jou II!M si 	reR2 qmpt 701# oii aqj jo aOtoq3 gqj UO

JM SUL1SUO3 psA IOU axe 6-1 awos tPU.TA& ul leTuturull Itnol Isixa ajaqj

oiz Ol spual X m wq uMoqs pu 'sip ol suiod doo1 Jo 2uiq3jetU aqj uo llnsai

,itaqj pjrçenb sq [0661 uUiUHg] pa3npal SI y sre uorunJ 1thuo aqj jo su!od

uotJnJiq guipunj pue lslstxa wnuuurui al2ims H JO anIVA Ivoll!JJ v aAoqv 1eqj

u!Moqs 'puetp si x sre UOipUflj Maua aqj Jo .rnOtAtpq aqj posXreuv osre '11
rnod dool auo Ajuo q pqm smoq 	qosa tptqt 1pun suotl!puoo ptrnoj

puv Ituql!.io2re N3 aqj jo uoilvlaidialutsq 	7V j uqin]

srsu ol alqeuauresv jou axe pule

s.inol iuoj Xlllq2qs aAt2nq 'N3 ueql ¶uui1duri 02 ie; aq ol pual spotjww

sqj1 doo1 aqj 2uojeuesrp qM sasTanap qtqM unouie tie Xq Inq srAt3It1

op sinoqqiu 2' piie 'i3 Qqj SPJVtAOj pom st jutod sqj iMJ12Up! 2! Oj isasop

2u!od doo1 33 pue UsOtp S! Alp ? XUvjidXj 's3q2 UI (8861 "I"qs 2

886I 12tJJ 8861 20 886T iv ja I0!UUy) psodoid uq ose aAeq (861

uuotjo),) sdew arnwaj uisrue2io-jjs,, pe re jvyA uo pesui psq an

tTtJM ISL aqi '°J N3 aql ol spoqu I!111!S 	'SJflSai poo IçLM 'jdtuo3

-dN OSe Si tpq '(ux3qoi zur;s) uxjqoid j!no.Tp ql2ual f'-'!-" aqj appvjo

poqu aq7 P9PUaX 	q [0661 eny] '(0661 AeqS! 	tqpoo) mss Jt1SiA

31qpA Q7qj Ui sdu2s aouleurLuop iejno jo 2uu1dojAp aq7 2uiuivldxa Jo 1eqj

'mqoid 	2urxjdid e 02 pqdde uq osi eq poqw qj, (0661 -'-'!S

8861 llnH) psns uq 3Aeq mquoje N3 aiseq alql Jo SUO!4e1eA TUJaAaS

-inol wnuui2do aqj ol spuodsaijoa wial puos aiql

Jo uInuuuui jvqo 	'paullap st inol pqvAv q3ns aialqAN 'OiZ °2 spualIfi -
3tI2 tj3flS (2u!od dool '2P q J! °Z ol spual H sT ppunoq rnemi Sluo

uza 2! a3uis 'Jno2 pf[A e sainsua, wial ¶4S1J alql s2u!od dooj Jo siqmnu a2xel JoI

P' aq 1Ifl2UA ffiA% WntU!U!uJ j?30j e molaq papunoq si ¶ asnvaaq puv '3

jo juaosap 2utpe12 ULIOJI3d S2U!od doo1 aqj Jo UOOW atli 'H JO anIVA UA2 e JOq

ZT cISI ¶HLL 2roi SUOFLLJI SDNIddYPV OIHIVHDOdOLL 'g inurmj

CHAPTER 5. TOPOGRAPHIC MAPPINGS METHODS FOR THE TSP. 133

underlying statistical mechanics foundation, and that the difference between them

arises because of the more direct way that the EN imposes constraints. [Yuille

19901 has also derived both algorithms from a statistical mechanics framework.

In sharp contrast to Hopfield and Tank's method, the EN method can always

produce valid tours. Further, the tour lengths obtained are very close to those

obtained by Simulated Annealing and the best of repeated trials of 3-opt. Being

derived from the Tea Trade model for the formation of mappings in the brain, the

EN method has the same advantages (ie. continuous variables, parallelism and

simplicity) as neural network methods. However, the requirement that the cities

be embedded in a geometric space is a strong one, since a slight change to any of

the straight-line inter-city distances destroys this metric, making the EN method

inapplicable. The removal of this restriction was the major motivation for the

approach to be described in the next section.

5.3 The TSP and layered neural networks

An alternative approach is to separate the loop from the cities by representing

them as separate sets of units in a neural network, and then attempt to form a

neighbourhood-preserving mapping between them through modifiable weights'.

Besides the advantages of neural network methods in general, this approach has

a number of desirable properties:

• There is no external "coordinate system" required, so the mappings need

not be between Euclidean vector spaces.

• By varying the number of weights in the network, the total number of degrees

of freedom present can be easily manipulated.

1 1 am grateful to David Wilishaw for suggesting this approach.

CHAPTER 5. TOPOGRAPHIC MAPPINGS METHODS FOR THE TSP. 134

. There are algorithms for developing the mapping in a biologically realistic

way (for instance the Neural Activity model, discussed in section 5.5).

The proposal is therefore to consider the TSP in terms of developing a topographic

mapping between one layer of units which represent the tour positions, and an-

other layer which represent the cities. This architecture and its interpretation as

a solution of the TSP are now introduced.

5.3.1 The network architecture.

The algorithms to be described are methods for altering the weights in the ar-

chitecture shown in figure 5.1. There are M units in one layer, arranged in a

loop. The N units in the other layer represent the cities. The two layers are fully

connected, with the initial weights chosen at random from a narrow gaussian dis-

tribution centered on 11M, with no negative weights. All loop units are indexed

modulo M and in lower case, with cities in upper case. For instance, the weight

between loop unit i and city A is written WA,1. It will often be useful to refer to

the selectivity of a city unit, which is at a maximum when the unit in question

is connected only to units in the other layer which themselves have no non-zero

weights to other cities, and minimum when its connections are evenly distributed.

5.3.2 Displaying the current state and defining a tour.

A tour is clearly defined when each city has non-zero weights to one group of

adjacent loop units only, but the ordering is not so obvious when loop points have

weights to more than one city. To define a tour, a representation of the weights

matrix is used in which the ordering of cities is apparent. This is shown in figure

5.2, in which A,B,C,D represent cities and i represents one of the loop units. For

CHAPTER 5. TOPOGRAPHIC MAPPINGS METHODS FOR THE TSP. 135

M loop units

Wd

A N city units

Figure 5.1: Architecture for TSP as a topographic mapping problem between two

layers of units. The algorithms work by altering the variable weights shown. The

possible fixed feedback connections between cities are not shown.

Figure 5.2: Display.

CHAPTER 5. TOPOGRAPHIC MAPPINGS METHODS FOR THE TSP. 136

any given city, the strength of the weight to any loop unit is represented by a vector

from the center of the circle pointing towards the loop point and of magnitude

proportional to the weight. The position of the city is then given by the sum

of these vectors taken over all loop points. The scale is such that the radius of

the displayed loop corresponds to the maximum possible weight. The distance

of A from the center is then a measure of its selectivity for one region of the

loop, while its angular coordinate "points to" its position in the tour. Initially

all cities appear in the centre. As they become selective they move outwards,

eventually touching the loop at maximum selectivity. Although information about

the distances between cities is not indicated explicitly, this representation has the

appeal that the ordering is purely dependent on the angular coordinate while

selectivity appears as the radial coordinate. Hence a tour is definable at any stage

but its significance is clear from the radial coordinates of the cities.

Where the distance matrix corresponds to cities lying in a plane their actual

positions can be shown, along with a projection of the loop onto the plane formed

similarly as a summation of 2D vectors. That is, if city A is at position iA in the

plane, the j" loop point is shown positioned at

> WA, XA

E WB
B

This can be deceptive, since for instance a city unit with equal weights to only

two cities will be displayed half way between them, and may therefore appear very

close to a third city even though its weight to this city is negligible. However at

maximum selectivity the loop so displayed follows the tour as defined above, and

well before this stage the broad form of the tour is clear. This makes it useful as

a development tool.

This representation of the weights is now used in conjunction with two algorithms

which develop the mapping appropriate to the TSP.

CHAPTER 5. TOPOGRAPHIC MAPPINGS METHODS FOR THE TSP. 137

5.4 A Layered Elastic Net method

The EN method is a successful approach to solving the TSP in the plane which

is based on the idea of forming a topographic mapping. The following is an

attempt to apply a similar method to learn the weights in a layered neural network

architecture as described above. First, quantities are defined which are analogous

to the distances between loop points and cities, and the distances between adjacent

loop points of the EN. These are used to motivate a learning rule for forming a

neighbourhood-preserving mapping between the layers. Some approximations are

necessarily made to keep the method simple, but it is found that the EN approach

can be applied to a layer of weights with success.

5.4.1 Pseudo-distance measures

In the elastic net, loop points are influenced by two types of attractive force, the

first between loop and cities, the second between adjacent loop points. To apply

the EN idea to a layer of weights we require measures which I call pseudo-distances

between

• loop point j and city X, called Sx 3

• j and j + 1, called

for all X, j in terms of

• weights W

• city-to-city distances D

CHAPTER 5. TOPOGRAPHIC MAPPINGS METHODS FOR THE TSP. 138

Suppose we take the weight W, to represent the proximity of j to X. An essential

property is that it should be impossible for j to be in two places at once, or more

generally, moving j towards X must have direct consequences on j's proximity to

other cities. This will be enforced by the constraint

>2Wyj z1
Y

for all loop points j. A weight of Wx, = 1 may then be interpreted as meaning

point j is exactly at city X. The normalisation means that j must always move

away from some cities in order to get closer to others. Now consider

sxj = 2 Wy,Dxy 	 (5.6)
Y

as the pseudo-distance between j and X. The final state of the network should

be one in which each loop point is either at a city or directly between two cities.

If j is at X, its pseudo-distance to other cities should be just the actual inter-city

distance. This is true of S as defined above, ie.

5Aj - DXA as WXj - 1

Alternatively if j has weights to only two cities A and B then

SA2 + SBJ = DAB(WA3 + WBJ)
= DAB

so j is indeed directly between the two cities. Notice that increasing a single

weight, say Wc 3 , means we think of j as moving closer to C, but does not on its

own alter Sc3. Normalisation then is crucial. It is effectively competition between

the S's as to which ones can decrease. Consider three cities A, B and C. In the

non-Euclidean case there is no direct sense in which moving from B towards C

necessarily implies moving towards or away from A, for instance. Recall that in

the EN method this problem doesn't arise, since a loop point's movement in the

plane implicitly changes all its distances to cities (that is, positions are fundamen-

tal, while the distances are inferred). Instead, here there are no positions; the

competition replaces the distance changes implicit in the Euclidean problem.

CHAPTER 5. TOPOGRAPHIC MAPPINGS METHODS FOR THE TSP. 139

Using S as defined above, a "force" on loop units can be defined in analogy with

that of the EN. The component of this force on loop unit j, pulling it towards

city X is then
F 3 = Wx 3 Sx

.

2
where W, = -_. x .7

Xk
k

with cIX 	(Sj, K), a monotonically decreasing function of pseudo-distance

Sx,. In this case, as in the EN method, the chosen function is the gaussian:

(S, K) = exp(—S 2/2K 2)

Some measure of pseudo-distance between points on the loop is also needed. Hop-

field and Tank used the following 'tour length' term in their energy function, here

rewritten in terms of dynamical variables W:

Eour1enggh = 	E Wx(Wy, + Wy,_1)Dxy
i x,Y

= ,8 E E Wx,1Wy,1+1Dxy
i x,Y

In the desired limit situation wherein W forms a permutation matrix this term is

just /9 times the length of the tour, so it can be written as

Eiourlength = 	L•,, 1

with L,3 	= > WxWy,Dxy
x,Y

For this reason it is tempting to identify L, with the pseudo-distance between

the two points since if Wy1 , = 1 and W12 = 1 then L, = Dxy, which is sensible

given that such weights are taken to mean that i is at X and j is at Y. However

it should also be true that

= 0

which is never obeyed by the above definition of L I ,) except in the limit. If instead

we define

- Wx2)(Wy, - Wy1)Dxy 	 (5.7)

CHAPTER 5. TOPOGRAPHIC MAPPINGS METHODS FOR THE TSP. 140

then the limit distance is unchanged but L, 1 is always zero, so this is now adopted

as the pseudo-distance between i and j.

5.4.2 Derivation of a rule for changing the weights.

In the EN method there are two terms, one which enforces the constraints of the

problem and one which favours a short loop. One way to produce a weight change

rule is simply to differentiate the EN energy function using the pseudo-distances

in place of the original Euclidean distances. This yields the following rule:

AWxi=—CtE1PyiSyiDxy - Kf3[L,,,+(Sx+i - Sx,,) + 	 - SX,j)]
Y

This rule has no intuitive appeal, and also takes no account of the crucial nor-

malisation. Instead, in the following I derive a simple rule that retains the basic

character of the EN.

The constraint term.

Suppose that the unnormalised weight change caused by the "force" F, is simply

a positive change (say 6) in the weight Wx,. The normalisation reduces the

weights between j and all other cities Y 54 X:

new _ 	Y J

1+6

- —owYj
or 	W 3

- 	1-i-S

The resulting change to pseudo-distance 5X3 is

L\Sxj
Y
—6

=

In the EN method, the loop point j moves under the force Fx3 such that, were

there no other forces present, the distance between j and X decreases in proportion

CHAPTER 5. TOPOGRAPHIC MAPPINGS METHODS FOR THE TSP. 141

to the magnitude of the force. Therefore a desirable property of the weight change

is that it causes S to change by

SXj = —aFx,

Equating the two expressions for AS xj readily gives the appropriate weight change

M.

1wxi == 1 1
&4, xi

Since both o and 'I' are much less than 1 this may be approximated by

LaWj = aWx,

Does this number Txj bear any relationship to the usual quantities calculated by

neural networks? Suppose that all of the cities interact via feedback connections,

with the connection between cities X and Y having an associated weight wxy,
of magnitude equal to their separation Dxy. In that case, if the jt 1' loop unit is

activated at a given time (and then turned off), then Sxj is the sum of the input

to city X (ie. its potential) one time step later. 4bxi is a monotonically decreasing

function of this potential (in this case it is a gaussian). Wx, is simply the ratio

of this to the sum of 4Xj over all inputs, i, or equivalently it is 'I' 3 relative to

(M times) the mean of Wx over all inputs. Hence the weight change AWx j is a

simple function of the input to X due to j.

The tour length term.

Unlike the method of Hopfield and Tank, the EN energy contains a sum of squared

inter-loop distances, ie:

Etourlength =

Each term is the energy of a spring of extension L,+1 and spring constant

hence the associated force is a tension. The tension force means that (in the

absence of any other forces), the distance L,,+1 should decrease in proportion to

itself, or

cx —L,11

CHAPTER 5. TOPOGRAPHIC MAPPINGS METHODS FOR THE TSP. 142

Suppose the two weights vectors Wj and I+ are simply moved towards one

another by an amount proportional to their difference, ic.

Awxj = (Wx ,3+ -Wx)

and EWx,, +i = 	- Wx,,+1)

for all X. The resulting change in L,,, +1 is found to be

= —f3'L,,, 1

So this simple way of altering weights does result in a tension-like effect on

Since loop unit j is pulled towards both j —1 and j +1, the net change is actually

	

Wxj = 	+ Wxj+i - 2Wx,,)

5.4.3 The LEN algorithm.

The layered elastic net (LEN) develops a mapping which is a solution to the TSP

by changing its weights in the following way.

For each iteration,

The weights are altered for every city X and loop point j by

LtWxj = cl(K) + 	 + Wx,i +i - 2Wx,,) 	(5.8)

The sum of all j's weights is restored to unity by rescaling:

scaled =

	

where 	 1 =
	 (5.9)

The parameter K is gradually reduced to zero over many iterations, as in EN.

CHAPTER 5. TOPOGRAPHIC MAPPINGS METHODS FOR THE TSP. 143

5.4.4 An example.

The example shown here is one of the 50 city problems tested by [Durbin &

Willshaw 1987] (their city set 'b'). There are 125 units in the loop layer. The

parameters used were a = 0.15 and 8 = 2.0. K starts at 0.2, remaining at this

value for 1000 iterations. K is then reduced linearly to 0.002 over a further 1000

iterations. Figure 5.3 shows the projection onto the loop of this mapping after

500 1 1000, 1500 and 2000 iterations. The solid line indicates the ordering of the

cities given by best of 100 trials of 3-opt. Hence large differences between 3-opt

and the tour derived from the mapping after 2000 iterations would appear as lines

cutting across the circle. In this case a tour is found which is only 1 % longer than

the best 3-opt tour, and the two tours are very similar in form. This is confirmed

by projecting the loop points back onto the plane in which the cities lie, as shown

in figure 5.4.

5.5 An adaptation of the Neural Activity model

to the TSP.

5.5.1 Background: the modelling of biological mappings.

Topographic mappings between groups of nerve cells occur frequently in the ner-

vous systems of both invertebrates and vertebrates; indeed they may be the most

striking accessible evidence of order in the structure of these systems. The con-

nections from cochlear membrane to auditory cortex in mammals form a one di-

mensional mapping, but most models have concentrated on the two dimensional

mapping from retina to optic tectum in vertebrates such as Xenopus (Gaze 1970),

or the connections from the retina to the lateral geniculate nucleus and thence to

CHAPTER 5. TOPOGRAPHIC MAPPINGS METHODS FOR THE TSP. 144

LEN: Projection onto the loop

1000

Figure 5.3: Example of LEN on a 50 city Euclidean problem, shown after 500,

1000 7 1500 and 2000 iterations. The small circles dispersed inside each picture

are the cities projected as described earlier. Their movement outwards indicates

that each is increasing its selectivity for a particular portion of the loop, and their

angular coordinate determines their ordering in the tour. For the purposes of

comparison, the straight lines joining them denote the ordering of cities in the

best tour obtained by 3-opt. The degree of folding in this line indicates how

different the two tours are.

CHAPTER 5. TOPOGRAPHIC MAPPINGS METHODS FOR THE TSP. 145

LEN: euclidean problem projected onto the plane
o 0

500 0

b0
1000 	0

0 o 0
0

0 	
0 0

01 %
0 0

00
0 0

00 	0- 	0 00 	\ 	0'Q 	 Q 	0
0

00
0

0
0 	 0 	0

0 	 0

0 	4P
0

0 0
0

0

0
01

0
0

0
0

0

0

0

1500 /1\Q O 2000

00

0
0

0

00

O
0

:vz
C

0

Figure 5.4: Example of LEN on a Euclidean problem. The loop is shown projected

into the plane in which the cities lie. For comparison, the best 3-opt tour obtained

is also shown. It is interesting to note the similarity between the shape of the final

tour and the projection onto the loop after 1000 iterations in the previous figure.

CHAPTER 5. TOPOGRAPHIC MAPPINGS METHODS FOR THE TSP. 146

striate cortex in higher animals, although these are not so accessible to experiment

and are more complex. These are shown schematically in figure 5.5. The map-

pings are demonstrable by naturally or artificially exciting a small region of the

retina, and then measuring the pattern of neural activity in the tectum. There is

a wealth of literature on the nature of these connections, their formation in devel-

oping animals under various regimes, and their reorganisation following surgical

interference. The basic experimental finding is that the retinotectal connections

form a topographic mapping; any pattern presented to the retina essentially reap-

pears as a pattern of activation across the tectum. The two regions are well

separated from one another, and the fibres connecting them are not necessarily

topographically ordered en route. In fact the fibres seem to re-organise themselves

into their correct positions where they arrive at the tectum. Substantial research

effort is expended on discovering the rules they use to do this during development.

5.5.2 The Neural Activity model.

[Willshaw & von der Malsburg 1975] propose a model to account for the formation

of such topographic mappings. Each axon of a pre-synaptic cell conducts a search

in the post-synaptic region for the cells which its neighbours project to, and so

the appropriate mapping develops. In the Neural Activity (NA) model this search

is conducted purely on the basis of correlated neural activity.

It is obvious that the notion of a neighbourhood is logically dependent on there

being some metric present in the layer in which it resides. In the model this is

provided by "on-centre-off-surround" lateral feedback. Feedback of this type is

common in many regions of the brain, including the retina. Suppose that the

two layers are fully connected to one another by synapses with initially random

but positive synaptic efficacy (ie. weight). A tectal cell's potential (or membrane

depolarisation) is taken to be the sum of all its inputs (including those from

RETINI

ECTUIV

CHAPTER 5. TOPOGRAPHIC MAPPINGS METHODS FOR THE TSP. 147

Random mapping 	 Topographic mapping

Figure 5.5: Retino-tectal projection.

other tectal cells), each weighted by its synaptic efficacy. Wilishaw and von der

Malsburg assumed that the cell's actual activity increased linearly along with its

potential, provided this was above some threshold. Below the threshold there

would be no activity.

Suppose some random activity arises in the retina. The effect of the feedback

in the retina itself is to accentuate simultaneous activity in nearby cells. There-

fore neighbouring cells will tend to have correlated activity, cells at intermediate

distances will tend to have anticorrelated activities, and distant cells will remain

uncorrelated. The overall effect is that retinal activity tends to become concen-

trated in patches. Given initially random connections, in the absence of feedback

within the tectum the resultant activity amongst tectal cells would be expected

to be randomly distributed. However the effect of feedback in the tectum this

time is to accentuate activity only when the active cells are neighbours, so tectal

CHAPTER 5. TOPOGRAPHIC MAPPINGS METHODS FOR THE TSP. 148

activity also tends to become concentrated in patches.

Altogether then, there is a tendency for activity to occur in small patches of both

the retina and tectum, and this is precisely the pattern of connection which needs

to be enhanced in order to produce a topographic mapping. The obvious way

to increase this link is the simple Hebbian rule derived from the postulate (Hebb

1949) that simultaneous activation in both the pre-synaptic and post-synaptic

cells should lead to an increase in synaptic efficacy.

Clearly in this case the weights will always increase. To keep the weights from

increasing without bound while avoiding simply setting a ceiling level to which

all weights will saturate, there must be some means of reducing weights as well.

This introduces the requirement for some kind of competition among weights, de-

termining which of them might increase, if we are to retain the Hebbian principle.

Willshaw and von der Malsburg achieved this by postulating that each tectal cell

attempts to keep the total of its incoming weights at a constant value; in that case

a Hebbian increase to the weight from an active retinal cell implies a decrease of

the weights from inactive cells.

5.5.3 Orientation and part-maps

There are two problems with the proposal as it stands

Firstly, there is nothing so fax to give the mapping its overall orientation. Since

NA was put forward as the possible principle by which actual mappings arose, and

those mappings do have a definite orientation, it was important that this come

out of the model in a plausible way. Secondly, there is the problem that several

clumps of activity in the tectum may well occur at one time, even if there were

only a single retinal region active. This would give rise to several regions in the

CHAPTER 5. TOPOGRAPHIC MAPPINGS METHODS FOR THE TSP. 149

mapping which are correctly ordered in themselves, but which don't fit together

properly. Willshaw and von der Malsburg overcame these by

• postulating a small number of 'marker cells' in either layer whose position

was genetically predetermined. Each retinal marker cell had a specific tectal

counterpart with some means of recognition (for example a chemical affinity)

such that they could form a strong synaptic connection prior to development

of the full mapping.

• introducing a threshold into the weight change, similar to that applied to

potentials. Below this threshold which there is no Hebbian weight change.

The markers give the mapping its orientation, and the threshold is set so that

isolated activity elsewhere is unlikely to alter the weights. In combination, these

produce a region of nucleation around the markers since initially the activity is

not high enough to cause change elsewhere. Development then expands over the

entire surface as one consistent map.

This model produces topographically correct maps. However on its own it does not

account for all the experimental findings concerning retinotectal mappings. This

led Wilishaw and von der Malsburg to propose a different method which they

called the Tea Trade Model (von der Malsburg & Willshaw 1977; Willshaw & von

der Malsburg 1979) which accorded better with the experimental data. In this

proposal, a small number of molecule types diffuse throughout each layer. These

in effect can act as coordinates: a cell 'knows where it is' by the concentrations

of these molecules in its vicinity. The Tea Trade Model later formed the basis of

the Elastic Net method for the TSP.

CHAPTER 5. TOPOGRAPHIC MAPPINGS METHODS FOR THE TSP. 150

5.5.4 Details of the original implementation.

In the NA model the variable weights (W) from retina to tectum are initially ran-

dom, apart from a small number of large weights serving as markers. The fixed

weights (w) between tectal cells are positive between cells which are immediate

neighbours, negative between cells in the medium range, and zero between distant

cells. An input (ie. retinal) pattern (consisting of a pair of adjacent units is ap-

plied, and each output (ie. tectal) unit's activation 4 is evaluated by numerically

solving N coupled equations (one for each tectal cell A):

Tt OA(t) = WA + wq(t) -

(5.10)
I 4-9 if>O

where 	
0 	otherwise

These equations are iterated until some criterion of stability is met. The first term

is the direct effect of the input activation and the second is the effect of feedback

from other output units.

The Hebbian weight change to be made is

AWAi = 71qi

which is itself thresholded so that only the largest changes take effect:

AWA'i
	

ifWA1>

- 0 	otherwise

Finally the condition

• >WAI=S

for each output unit A is restored by rescaling all its weights by the appropriate

amount. These steps are followed for many presentations of many input patterns,

and a topographic mapping gradually forms.

CHAPTER 5. TOPOGRAPHIC MAPPINGS METHODS FOR THE TSP. 151

5.5.5 Relationship to competitive learning.

The Neural Activity model is a direct descendant of the self-organising model due

to [von der Malsburg 1973], and was itself a precursor of a currently popular unsu-

pervised learning paradigm known as competitive learning used in many models of

self-organising systems (see for example [Rumeihart & Zipser 1986] and [Kohonen

1982]). Suppose that the weight changes for a particular output unit are LW1 for

all inputs j prior to normalising. All the weights are then multiplied by a single

factor to keep their sum constant, giving

w '

3 	1+EkLW,.

Provided the changes are small at each step (77 << 01

W(w+w)(1_Wk)

and keeping linear terms in LW, the overall change denoted by ,&W is

Awi = 	 — Wk
k

This obeys the sum rule exactly. If the normalisation occurs after each input

	

pattern as in the original NA model, then LW1 is just 	so the net change is

AW =

This specifies a movement towards the input pattern by an amount proportional

to the unit's activation q'i. There are two senses in which this is "competitive"

learning. The first is that the weights compete with one another to increase,

because the normalisation drives weights from inactive inputs down. The second

is the competition between output cells themselves. Often in these models this

competition takes the form of resetting some fixed number of the largest potentials

to 1 and all others to zero (referred to as "k-winners take all" networks), without

any topological information (as for example in [Rumelhart & Zipser 1986]). This

is akin to having inhibitory feedback connections of uniform strength between

CHAPTER 5. TOPOGRAPHIC MAPPINGS METHODS FOR THE TSP. 152

all units in the output layer. In other models, the largest potential is reset to 1

together with some of its neighbours in the output layer, and all others are set

to 0 (Kohonen 1982). This is an idealisation of the effect of short-range lateral

feedback in the NA model.

5.5.6 Adaptation to the TSP.

There are two ways to implement the Neural Activity model as a TSP network:

the loop can be treated as either the input (retinal) or the output (tectal) layer.

Firstly, all the cities should be able to influence one another to a degree dependent

on their distance, whereas the loop cells need only interact with those adjacent

to them. Secondly in the EN method it was seen that a normalisation giving

each city equal "influence" is important. In the NA model the local feedback

between retinal cells was not modelled explicitly, but instead each pattern of

activity consisted simply of two adjacent retinal cells having activity 1 and all

others activity 0. Also each tectal cell has weights which are normalised to the

same amount, making all of them equally "strong". Together these make the

presynaptic layer the most natural choice for the loop. Thus the loop topology

enters via presentation of input patterns consisting of contiguous sections of the

loop, and inter-city distances are encoded as feedback between the city units in

the output layer.

Tours have also been obtained by the other option, in which the cities act as

input. This is done by normalising the weights from each city unit and varying

the magnitude of the input activation of two cities as a function of their separation.

The tours are unimpressive and the method shows no particular advantages, and

so will not be considered further.

CHAPTER 5. TOPOGRAPHIC MAPPINGS METHODS FOR THE TSP. 153

5.5.7 Simplifying the model.

This model can be considerably simplified for the purposes of the TSP.

Firstly, it is not essential to solve equation 5.10 iteratively to stability. Instead,

a single iteration of feedback amongst the cities suffices. This does not adversely

affect the tour lengths produced, and is both faster to implement and easier to

analyse.

Secondly the threshold 0 ensures that the activation of cities, and hence the Heb-

bian weight change before normalisation, is never negative. This can be set to its

minimum possible value of zero. Likewise, for now we assume that c can also be

set to zero, in which case it is made redundant by 0.

Thirdly the particular form of the feedback chosen in the original model was

influenced by the known biological fact of short-range excitation and medium-

range inhibition. This is not appropriate for the TSP, since it is likely to be

important for cities at large separations to influence one another directly. Instead,

in lieu of a better motivation, the simplest function relating influence to distance

is just linear inhibition:

WAB = - ADAB

where DAB is the known distance between cities A and B.

Finally the input patterns need not consist of activity in only two adjacent units,

and it is not necessary that the presentation of patterns be in a random sequence

with normalisation of the weights after every pattern. Instead all the patterns

containing some number (say in) of adjacent units can be presented and the

weight changes accumulated. These changes can then be made and the weights

renormalised once all the M such patterns have been presented. Moreover this

increases the potential parallelism of the method.

CHAPTER 5. TOPOGRAPHIC MAPPINGS METHODS FOR THE TSP. 154

The above points lead to a simplified algorithm. Assume the loop cells are labelled

in a cyclic fashion (0 to M - 1) so that k maps to k modulo M (if k > M). The

rn cells that are 'on' (starting at cell i) have activity = 1 and all others are 'off'

= 0). The algorithm for using the NA model to solve the TSP is as follows:

For each iteration:

Start with all weight changes iW at zero.

Complete the following steps for each of the M input patterns of width in:

Step (a): Calculate the sum of the weighted inputs into every city X

0 aw
XI, = Wxjj

3

Step (b): Find the potential of every city X by including feedback from

the other cities

I tOW ox = /jraW + >Wxyp y
Y

Step (c): Eliminate negative potentials to give the "activity" of each city

x
(*_fcbx ifqx>0

X
- 0 otherwise

Step (d): Accumulate the weight change for each X,j

AWxj = t&wxj + j70* ~j

Add the change LWx 3 into each weight Wx,

Rescale the weights into each city X by the amount

1

to restore the condition >j Wy, = 1.

CHAPTER 5. TOPOGRAPHIC MAPPINGS METHODS FOR THE TSP. 155

Together, these steps constitute one iteration.

.X, the constant of proportionality of the the linear inhibition, is set such that the

lowest potential that could be generated by uniform weights is small but positive.

In that case, çt'' = , so Ox = (1 + Ey wxy) for each city X. Therefore for

positive potentials,

—1<>wxy <O
Y

Thus we require 0 < ,\ >Jy Dxy :!~, 1, so .A is set slightly less than the maximum

over all of 1 />yDxy

5.5.8 Two problems.

Simulations using the algorithm were carried out using M = N and m = 2, as

in the original model. Two problems become apparent, which are essentially the

appearance of part-maps and the 'fuzziness' in the mappings.

The problem of part-maps.

In the NA model the first few units to develop selectivity determine the broad form

of the mapping, because increased selectivity itself encourages self-organisation

around these units. However this means that several small but locally ordered

regions of the mapping form and are stable, even though they don't fit together

with other such regions. Because the initial conditions are random, this leads to

major errors at this early stage which cannot be corrected later. In the application

to retinotectal mappings, these result in misaligned part-maps. In the TSP, part-

maps are manifested as segments of tours which are short in their own right but

which cannot be connected together to form a tour without using long paths. In

the case of cities in the plane, a crossed tour is a good example of a part-map: it

is known that a tour which crosses itself can always be shortened by uncrossing

the offending links, and this operation amounts to merely reversing the order of

CHAPTER 5. TOPOGRAPHIC MAPPINGS METHODS FOR THE TSP. 156

a large segment of the tour.

The use of a 'marker' (ie. a bias strongly associating one loop point with a

particular city), as in the original Neural Activity model, might seem a good idea

since it removes the 2N-fold degeneracy of possible tours (N start points and

2 directions). This degeneracy was noted by [Wilson & Pawley 1988] as being

problematic for algorithms of this type. However in this case it is inappropriate

because it gives a certain (presumably arbitrary) city a special status; development

of the mapping would spread from the 'marked' city, making the method akin to

the nearest-neighbour algorithm, which is known to be very ineffective (see Lawler

et al. 1985).

Problem of defining the final tour.

After weight changes have stabilised, even if the broad form of the tour is good,

it remains unfinished on small scales. Consider the situation shown in figure 5.6

for a Euclidean TSP. In this case cities B, C and D have become more selective

than E and F, as is shown by their positions close to the loop in the display. E

and F are in more central positions because their weights are distributed over a

wider range of loop units. This creates a problem because if the tour is evaluated

at this stage it alternates between the two groups as shown in the figure, and this

is clearly not the optimal ordering.

Both these problems can be seen as being related to the degree of selectivity at-

tained by cities. The first problem arises essentially because some cities become

selective too quickly. The second problem arises because cities don't become se-

lective enough to guarantee a sensible tour. Hence one approach to both problems

is to attempt to control the selectivity directly, through the learning rule. Two

CHAPTER 5. TOPOGRAPHIC MAPPINGS METHODS FOR THE TSP. 157

Cities projected onto a circle

GO

Cities in the plane

optimum path
	

path derived from display

Figure 5.6: Part of a bad tour for a Euclidean problem. The upper picture shows

the cities as they appear in the display from which the tour ordering is taken. The

lower pictures show the actual positions of the cities in the plane.

CHAPTER 5. TOPOGRAPHIC MAPPINGS METHODS FOR THE TSP. 158

possibilities for this are:

• Define a modification threshold fe as was done in the original model, so the

Hebbian rule becomes

LWAJ f'iq 	if> =
0 	otherwise

Recall that at present c = 0 to prevent negative weights occurring. As

is raised the number of patterns able to cause (positive) weight changes

decreases.

• Use a non-linear Hebb rule, for example

AWAj = (*)P
.

At present p = 1. As p is raised, the weight changes for patterns causing

large potentials become much larger.

In both these rules, as the relevant parameter is raised, higher potentials become

progressively more accentuated compared with lower ones. These methods do

improve the tours, mainly by alleviating the second problem. They also raise

a new difficulty however. Single loop units tend to become mapped to several

cities which themselves have negligible weights from other loop units; that is, all

the cities become connected to only a few of the loop units. When this happens

there is nothing to tell these cities their overall orientation in the tour as a whole.

Hence crucial contacts relating groups of cities together can be lost. For example

with the cities shown in figure 5.6, if A has no connections to loop units that are

common to groups (B,C,D) or (E,F), it no longer influences their orientation,

which could lead to the ordering A,D,C,B,F,E,G. Broadly speaking the tour

information becomes encoded onto too few loop points, and the multiple cities

connected to a single loop point may lose their overall ordering with respect to

the rest of the cities, leading to poor as well as poorly defined tours.

CHAPTER 5. TOPOGRAPHIC MAPPINGS METHODS FOR THE TSP. 159

One way to prevent this occurring is to ensure an even distribution of weights by

including a normalisation of the weights originating from each loop unit. However,

this is not compatible with the existing normalisation of weights into each city. As

might be expected, this second normalisation seems to interfere too strongly with

the first, resulting in poor tours. Another method is to vary the 'competitiveness'

of loop units, thereby ensuring that each unit gains its share of the weights to

cities. This can be done by making the activity , a decreasing function of either

the mean weight associated with j, or the mean potential in the output layer

when j is active, making 'greedy' cells less competitive. These methods are only

partially successful, and in many cases the original problems remain.

Another approach is to regard both the problems as being caused by interactions

between units occurring at inappropriate ranges. Thus part-maps arise because

units interact on too local a scale and hence are not bound to adopt a global

ordering. Likewise the difficulty in defining a tour at the end is caused by the

city units not competing vigorously enough for the available loop units, which

is a result of the range of interaction between units in one or both layers being

too broad. In this view, the solution is to vary the range of interaction in one

or both layers, beginning with long range interactions which establish the broad

form of the mapping, and proceeding to short range where each city has a strong

association with one part of the loop, but the regions of association still overlap.

Furthermore, this is akin to what happens with the EN method: as the annealed

parameter K is reduced, tension forces (ie. the degree of interaction between

loop units) decrease, while at the same time the range of the city forces becomes

progressively shorter.

The range of feedback between cities.

In the non-Euclidean case the "range" of the city forces cannot be given explicitly

due to the absence of a metric, but instead is encoded in the form of interactions

between units representing cities. This in turn is controlled by the magnitude

CHAPTER 5. TOPOGRAPHIC MAPPINGS METHODS FOR THE TSP. 160

I II
feedback weight

- distance

Figure 5.7: Varying the shape of the feedback function.

and form of the curve relating feedback between two cities to the given distance

between them. The shape of the curve determines at which range the inter-

city distances are most influential. For example in figure 5.7, feedback curve (I)

accentuates competition between distant cities whereas in (II) it is nearby cities

that are in competition the most. The tours may be improved in some cases

by beginning with feedback of the form of (I) and gradually altering it to (II).

However which feedback function is optimal appears to be rather dependent on

the particular TSP instance, and in many cases no improvement is seen.

Controlling the range of interaction in the loop.

The relevant quantity determining the range of interaction in the loop is m/M.

To avoid part-maps it is best to begin with m/M = 1/3, intuitively because four

objects can be wrongly ordered but three cannot. To ensure each city gains a valid

place on the tour, m/M is reduced. However there is no point in decreasing m

below 2 (since at m = 1 there are no longer any interactions to give the units the

topology of a loop) and with M = N the second problem remains. Therefore M

needs to be greater than the number of cities to allow the ratio m/M to decrease

further.

This method of controlling development (by varying m) was adopted in preference

to those discussed earlier. It is simple and reliable, and deals successfully with

both of the problems. In practice if M = 2.5N, then by reducing m linearly

CHAPTER 5. TOPOGRAPHIC MAPPINGS METHODS FOR THE TSP. 161

M13 to 2 over 1000 iterations and then continuing with rn = 2 for a further 1000

iterations, part maps (at least for Euclidean problems) are almost eliminated, and

all cities gain an unambiguous position in the tour.

5.5.9 An example.

The cities used here are the same as those in the example of the LEN method.

The input width, rn, was varied as described above. The rate of change, 77, is

set at 1/rn, which counters the decrease in accumulated Hebbian changes as m

is reduced. Figure 5.8 shows the projection of the cities onto the loop after 500,

1000 and 2000 iterations. By this stage the tour defined by the mapping is 8 %

longer than the best tour obtained by 3-opt. As in the LEN example, the solid

lines shown the ordering of cities in the 3-opt tour, and the small number of lines

crossing the large circle indicates that most of the tour defined by the mapping

agrees with that of 3-opt.

Figure 5.9 shows the development of the same mapping, projected back into the

plane of the cities. Note that the mapping after 2000 iterations appears unfin-

ished since it does not conform exactly to the city positions. However, the loop

representation of the same weights matrix (Figure 5.8) shows that interpretation

of the tour is clear, since all the cities are positioned unambiguously on the outer

circle.

5.5.10 Analysis of the linear case.

A problem with any analysis of the algorithm's behaviour is the difficulty of dealing

with the threshold, which is applied to the potentials. In looking at the condition

under which the weights will increase, the analysis is therefore restricted to the

5C"

CHAPTER 5. TOPOGRAPHIC MAPPINGS METHODS FOR THE TSP. 162

NA: Projection onto the loop

Figure 5.8: Example of NA on a 50 city Euclidean problem, shown after 500,

1000 and 2000 iterations. The dispersed circles in the three pictures denote the

cities, which are projected onto a circle representing the loop. For comparison, the

straight lines connecting cities indicate their ordering in the best tour obtained by

3-opt. A, B and C are the main points at which the tour defined by the mapping

(which is given by ordering the cities according to their angular coordinate) differs

from the 3-opt tour.

CHAPTER 5. TOPOGRAPHIC MAPPINGS METHODS FOR THE TSP. 163

NA: Euclidean problem projected onto the plane

0 	 0

	

500 0 	 1000 •
0

0

0 	 0

0• 	 0

	

ft 	 0

	

jo 	o 	0 	 • 	• 	 0

0 	 00

00 	 00 	 • 	 0 	0

0
0

0. 0 ,1
0

0

S
0

	

0 	
0$ 	 0

00
0 	 0

4b 	 4b

0

	

2000 0 	 Tour defined after

: 	

2000 iterations

0 <6t1 	
(

Figure 5.9: Example of NA on a Euclidean problem. The loop is shown projected

into the plane in which the cities lie. The lower right picture shows the tour

defined by the mapping after 2000 iterations. This may be compared with the

3-opt tour shown in the LEN figure earlier. Cities A, B and C, mentioned in the

previous figure are also indicated.

CHAPTER 5. TOPOGRAPHIC MAPPINGS METHODS FOR THE TSP. 164

-w
i i+1 	 i+m-1

m active units 	
30 1

Figure 5.10: The input pattern labelled by (i).

case in which all the potentials are positive. Although this is only true at the early

stages in the development of the mapping, it should point to qualitative features

of the algorithm's behaviour in general.

An input pattern always consists of m adjacent cells in the loop, as indicated in

figure 5.10. The pattern starting at the i' input as shown is to be denoted by a

superscripted i on the relevant variable.

The change to the weight from loop unit j to city A after each pattern has been

presented once but prior to normalising is

M-1
k 	(k) (k) WA = 	 with 	() =

k=O

='i
kj-m+1

where 0 can be used instead of 4' since all potentials are assumed positive. From

steps 1 and 2 of the simplified algorithm,

k-fm-i 	 k-fm-i
= 	WA: + > "-'AB

11=k
WBII

k-fm-I
(k) 	-' * 	v-.' ,, or A 	LS WAB

B 	l=k

CHAPTER 5. TOPOGRAPHIC MAPPINGS METHODS FOR THE TSP. 165

where WAB = WAB + (S(A=B). This gives the weight change before normalisation as

j 	kfrn—i

EWAJ = v 	 WBI
B 	k=j—m4-i l=k

which is the same as

(rn—i)

AWAj = >WAB 	(m - II) WBj+q 	 (5.12)
B 	q—(rn—i)

Now suppose that all the cities apart from A have uniform weights W = 11M,

and that the i' weight to A is slightly different from the others, that is:

WAI =;1j+y

1 	7 with WA.)O1 = -
M - 1

to keep the sum of weights equal to one. It is interesting to consider whether

this fluctuation will be increased after one iteration, or whether it will fade back

towards uniformity.

For city A, after making the Hebbian weight changes, normalisation rescales all

its weights:

S

- WAI + IIWA1

$ 	 1+>WA,

The overall weight change is therefore

L izinew 	ill
Ai 	VVAi - YVAi

- LWA - WAi Ek LWAk 	
(5.13)

- 	l+E,EWA,

The denominator is positive. The sign of the numerator indicates what happens

to the perturbed weight.

Noting that
(rn—i)

(m-q)=m2

CHAPTER 5. TOPOGRAPHIC MAPPINGS METHODS FOR THE TSP. 166

the following are easily obtained from equation 5.12:

WAI 	= !(1 + 	+ 7m70 - M-1)
B

>2LWAj =, 1jm2 (1 + >:WAB)
I 	 B

By substituting these values into equation 5.13, the numerator is found to be

numerator = m{Mm2 - mfA}

where 	fZA 	= 1 + >.::WAB

	 (5.14)

B

Notice that -y is just a multiplicative factor. From equation 5.11, 11A lies between

zero and one. If A is an isolated city, 11A 0 and the bracketed term in equation

5.14 is positive. In that case any initial perturbation will be accentuated and A's

selectivity increased: if y is positive the city becomes more selective for loop unit

i, and if 'y is negative the normalisation ensures that it selects for the rest of the

loop instead. Conversely if A is part of a close grouping of cities, 11A - 1 so the

bracketed term is negative. Hence the .weight change for -y > 0 is negative, and that

for y <0 is positive: the perturbation is damped out. The increase in selectivity

of a given cell therefore depends on its activity in a somewhat counterintuitive

way, in that the post-synaptic cells which are least active are most selective.

Given an initial random distribution of weights, the isolated cities are the first to

select a place on the tour. As the weights to an isolated city change, the response

of the city to inputs at that part of the loop grows, eventually inhibiting other

cities from selecting that region, causing grouped cities to select other parts of

the loop en masse. These cities in turn become able to selectively inhibit one

another, breaking the group up further. Broadly speaking the algorithm can be

said to organise the distant cities first followed by successively smaller groupings

of cities. That is, the development of the mapping proceeds from large scale to

small scale.

Of course this only applies where all the potentials are positive, which is only true

CHAPTER 5. TOPOGRAPHIC MAPPINGS METHODS FOR THE TSP. 167

in the initial stages. What then is the effect of resetting negative potentials to

zero? As a given city becomes more selective, its potential for rejected parts of

the loop becomes negative. This makes the purely Hebbian change zero, so in

effect the unit begins to ignore this part of the loop. This makes sense: we do not

want effects at distant parts of the tour to continue to interfere with development

elsewhere once the broad form of the mapping has been established.

5.6 Results.

Both algorithms were tested on a number of Euclidean and non-Euclidean prob-

lems.

The figures quoted are the percentage increase of the tour length L over the

presumed optimal tour length L* :

_
100 x L* L

L* is the length of the shortest tour found in 100 independent runs of 3-opt,

starting from random tour configurations.

In both methods the inter-city distances are first rescaled to make the maximum

distance unity, and the number of loop cells M = 2.5N. In simulations of the LEN

method, a = 0.15, 3 = 2.0. The annealed parameter K begins at 0.15 for the 30

city problem and 0.2 for the 50 city problems, unless noted otherwise. K is held

constant at this value for the first 1000 iterations and is then reduced linearly to

0.002 over a further 1000 iterations, at which time the tour is evaluated. For the

NA algorithm, the number of inputs active at any one time (m) begins at M13

and decreases linearly over 1000 iterations to 2 1 remaining at 2 for a further 1000

iterations, after which the tour is evaluated. Both algorithms were run five times

on each problem.

CHAPTER 5. TOPOGRAPHIC MAPPINGS METHODS FOR THE TSP. 168

5.6.1 Euclidean problems.

Hopfield and Tank quote a best tour for a set of 30 cities of 19% longer than

optimum. Using the same cities, both NA and LEN produce tours only 2-5%

longer than optimum (taken from 10 runs of each algorithm).

The algorithms were tested on the set of five 50-city problems used by [Durbin &

Wilishaw 19871 to evaluate the EN. Each of these consists of cities distributed at

random in the unit square. The table below shows L for these problems, with the

EN results (means over 5 trials, from [Durbin & Willshaw 1987]) for comparison.

Cities in the plane

Cities Elastic Net LEN NA
min max min I max

a 2.3 4.2 10.1 3.3 4.7
b 0.7 0.7 0.7 7.8 7.8
c 3.1 3.9 3.9 5.2 1 11.7 1

8.2
d 3.5 7.1 8.8 4.9. 6.3
e 5.2 3.4 7.3 15.1

5.6.2 Non-Euclidean problems.

In order to evaluate the methods on non-Euclidean problems, Euclidean city sets

were first generated by placing cities at random positions in the unit square and

forming the matrix of inter-city distances. Each of these distances was then in-

creased by a random number within some percentage of the original distance. The

reverse distance was altered by the same amount to keep the matrix symmetric.

This is the same as taking a map consisting of roads that are straight lines be-

tween cities and putting bends in some of the roads. Hence these problems could

be described as "approximately Euclidean". The results for perturbations of up

to 1%, 10%, 100% and 1000% are shown below:

CHAPTER 5. TOPOGRAPHIC MAPPINGS METHODS FOR THE TSP. 169

Perturbed Euclidean matrices. 	j
Perturbation Cities LEN NA

min max min I max
1 % a 4.2 7.1 5.8 6.4

b 8.1 8.1 15.2 21.9
C 7.4 7.4 5.3 7.4
d 3.2 3.9 3.2 3.2
e 2.3 16.0 14.1 14.3

10% a 10.9 20.1 6.0 6.4
b 4.4 5.3 8.9 8.9
c 2.4 13.7 8.6 8.7
d 6.6 18.1 13.2 13.2
e 4.1 4.4 3.2

1 	
3.5

100 % a 4.4 5.9 11.2 13.8
b 6.6 7.1 13.0 13.5
c 3.6 9.4 7.1 11.7
d 34.0 59.1 27.8 27.8
e 6.1 38.9 12.5 15.0

1000 % a 83.3 119.4 57.2 57.2
b 56.9 73.4 88.5 97.7
c 27.6 28.9 74.1 74.2
d 56.7 149.2 33.3 34.9
e 	1 31.1 92.1 	1 62.5 66.2

Another method of generating a non-Euclidean symmetric problem is simply to

choose the inter-city distances at random (uniformly) within some range while

keeping the matrix symmetric. The algorithms were tested on five problems gen-

erated in this way, with the following results:

Random symmetric distance matrices.]

Cities LEN NA
min max mm max

a 126.9 147.8 137.7 251.1
b 145.2 174.3 173.1 194.7
c 164.5 185.1 187.4 194.4
d 197.1 224.0 186.4 234.1
e 189.1 233.8 259.0 283.2

CHAPTER 5. TOPOGRAPHIC MAPPINGS METHODS FOR THE TSP. 170

The average percentage increases, taken over 5 runs on each of the five city sets

are:

Average performance over all runs. 7:71
Cities LEN NA

Euclidean 7.1 ± 6.6 .7.4 ± 3.3
Perturbed by 1 % 6.3 ± 3.9 8.3 ± 5.6

10 % 10.4 ± 9.2 7.8 ± 3.6
100% 15.6 ± 12.8 14.8 ± 6.3

1000 % 70.3 ± 36.7 57.2 ± 19.8
Non-Euclidean 166.7 ± 31.7 209.6 ± 39.9

5.7 Conclusions

For Euclidean problems both LEN and NA find tours with lengths which are

reasonably close to those of the EN method. This is very encouraging, as neither

method is able to exploit the Euclidean nature of the problem in the way that EN

does.

The performance of both algorithms degrades considerably for large distortions of

the inter-city distances, which suggests that the general approach is inappropriate

for dealing with highly non-Euclidean instances of the TSP. In such problems the

Triangle Inequality is frequently broken. This rule is a bound on what might

be called "common sense" spatial relationships; it is broken if the shortest path

between A and B is not the direct one, but rather through (say) C. Since the

topographic mapping approach is intrinsically spatial, it is not entirely surprising

that it should break down in these cases.

However there is a middle ground, where the distance matrix is "nearly Eu-

clidean". Even for small perturbations of this type the EN method can no longer

be used, but LEN and NA still find short tours in these cases. This would appear

CHAPTER 5. TOPOGRAPHIC MAPPINGS METHODS FOR THE TSP. 171

to be the domain in which algorithms based on the formation of a topographic

mapping can be used for non-Euclidean problems.

Epilogue

This thesis is about learning algorithms which attempt to maximise performance

on pattern classification and combinatorial optimisation tasks. These are distinct

problems and the neural network methods employed to solve them are very dif-

ferent. However, they derive their power from the same source - radically local

computation. Indeed, it is the essential idea of neural networks, borrowed from

real nervous systems, that complex calculations might be performed more effi-

ciently by large numbers of simple processors acting in parallel and interacting

locally, rather than a single processor performing extended serial calculations.

Understanding this requires understanding the multiple levels of computational

analysis. The same computation can be implemented by different algorithms, each

of which in turn might be implemented either serially or in parallel. The field of

neural networks is not merely about parallel mechanisms for the lowest level, it is

rather the search for wholly different classes of algorithm.

Associated with these multiple levels of computation are multiple levels of locality.

Some purely low-level local mechanisms (eg tension in a rubber band) implement

higher-level global goals (eg minisiming its length). The methods in this thesis

are local. Even the global measure to be optimised only figures implicitly, never

explicitly, in the operation of the algorithm.

172

EPILOGUE 	 173

Consider the networks in Part I. Generic backpropagation solves the problem

of minimising performance error subject to a particular architecture, and using

a non-local error measure during learning. This is not necessarily the task of

interest, given that units and connections are taken to be "cheap"; more often it

is poor network performance that is costly. The networks in Part I solve the dual

of this; they minimise the size of the network subject to a particular criterion of

error, and use only local measures. Optimisation of the whole network follows

directly from the local optimisation carried out by each unit. Not only is the

added locality advantageous in itself for implementation, but also the problem

being solved is more relevant.

Locality is equally significant for the networks in Part II. Conventional methods

for the TSP involve non-local computation, because entire tours are rejected or

entire sections are rearranged at every step. Here, though, minimisation of the

tour length is achieved by the formation of a topographic mapping, which itself is

the result of purely local and thus highly parallelisable computations. The global

constraint that the tour be valid is merely implicit in the running of the networks.

The algorithms and results presented here show how radically local computa-

tion can be applied succesfully to difficult problems. Impressive global solutions

emerge.

Bibliography

Ash,T. 1989. Dynamic node creation in backpropagation networks. ICS Report

8901, Institute for Cognitive Science, Univ. of California, San Diego.

Angéniol,B., de La Croix Vaubois,C., & Le Texier,J.-Y. 1988. Self organising

feature maps and the travelling salesman problem. Neural Networks 1:

p289-293.

AueA. 1990. A new class of algorithms for the Steiner problem. MSc. Thesis,

Department of Computer Science, University of Edinburgh.

Baum,E. & Haussler,D. 1989. What size net gives valid generalization? Neural

Computation 1: p 1 5 1 - 1 60

Binder,K. 1979. Monte Carlo Methods in Statistical Physics. Topics in Current

Physics, 7 (Berlin:Springer)

Bliss,T.V.P. & and Lomo,T. 1973. Long-lasting potentiation of synaptic trans-

mission in the dentate area of the anaesthetized rabbit following stimulation

of the perforant path. J. Physiology 232: p331 -356 .

Block,H.D. 1962. The perceptron: a model for brain functioning. Reviews of

Modern Physics, 34: 1, p123-135.

Blum,A. & Rivest,R.L. 1988 Proceedings of the First Workshop on Computational

Learning Theory (Morgan Kaufmann), 9.

174

BIBLIOGRAPHY 	 175

Brady,M., Raghavan,R. & Slawny,J. 1988. Gradient descent fails to separate.

Proc. IEEE International Conference on Neural Networks, San Diego, I:

p649-656 .

Breiman,L., Friedman,J., Olshen,R. & Stone,C.J. 1984. Classification and Re-

gression Trees. Wadsworth Belmont, California (1984).

Burr,D.J. 1988. An Improved Elastic Net Method for the Travelling Salesman

Problem. Proc. IEEE International Conf. on Neural Networks., I: p69-76.

Chauvin,Y. 1989. A Back-propagation algorithm with optimal use of hidden units.

Advances in Neural Information Processing Systems (NIPS), Touretsky,D.S.

(ed) San Mateo: Morgan Kaufmann. 1: p 519-526 .

Cover,T.M. 1965. Geometrical and statistical properties of systems of linear in-

equalities with applications in pattern recognition. IEEE Trans. Electron.

Comput. 14: p326-334 .

Cowan,J.D. & Sharp,D.H. 1987. Neural Nets. LA-UR-87-098, Los Alamos.

Denker,J., Schwartz,D., Wittner,B., Solla,S., Howard,R., Jackel,L. and Hopfield,J.

1987. Large Automatic Learning, Rule Extraction and Generalization, Com-

plex Systems I: p877-922

Duda,R.O. & Hart,P.E. 1973. Pattern Recognition and Scene Analysis, John

Wiley and Sons, New York.

Durbin,IL, Szeliski,R. & Yuille,A. 1989. An analysis of the elastic net approach

to the travelling salesman problem. Neural Computation 1: p348-358 .

Durbin,R & Willshaw,D.J. 1987. An analogue approach to the travelling salesman

problem using an elastic net method. Nature, (April 16,1987) 326: 6114,

p689-691.

BIBLIOGRAPHY 	 176

Fahlman,S. & Lebiere,C. 1990. The Cascade-Correlation Learning Architecture.

In Advances in Neural Information Processing Systems (NIPS), Touret-

sky,D.S. (ed) San Mateo: Morgan Kaufmann. 2: p 524-532 .

Fort,J.C. 1988. Solving a combinatorial problem via self-organising process: an

application of the Kohonen algorithm to the travelling salesman problem.

Biological Cybernetics. 59: p33-40 .

Frean,M.R. 1989. Internal Report. Department of Physics, University of Edin-

burgh.

Frean,M.R. 1990. The Upstart Algorithm: A Method for Constructing and Train-

ing Feedforward Neural Networks. Neural Computation 2: 2, p198-209.

Gallant,S.I. 1986a. Optimal Linear Discriminants. IEEE Proc. 8th Conf. on

Pattern Recognition, Paris.

Gallant,S.I. 1986b. Three Constructive Algorithms for Network Learning. Proc.

8th Annual Conf. of Cognitive Science Soc. p652-660.

Gallant,S.I. 1989. Perceptron- based learning algorithms. Technical Report NU-

CCS- 89-21, College of Computer Science, Northeastern University, Boston, MA.

Gaze,R.M. 1970. The formation of nerve connections. London, Academic Press.

Golea,M. & Marchand,M. 1990. A growth algorithm for neural network decision

trees. Europhysics Lett., 12: 3, p205-210 .

Coodhill,G.J. & Willshaw,D.J. 1990. Application of the elastic net algorithm to

the formation of ocular dominance stripes. Network 1: 1, p 41 -59.

Grossman,T., Meir,R. & Domany,E. 1989. Learning by choice of internal repre-

sentations. Complex Systems 2, 555.

Hanson,S.J. & Pratt,L.J. 1989. Some comparisons of constraints for minimal net-

work construction with back-propagation. Advances in Neural Information

BIBLIOGRAPHY
	

177

Processing Systems (NIPS), Touretsky, D. S. (ed) San Mateo: Morgan Kauf-

mann. 1: p177-185.

Hao,J., Shaohua,T. & Vandewalle,J. 1990. A geometric approach to the structural

synthesis of multilayer perceptron neural networks. in Proc. International

Neural Networks Conf., Paris, 1990. p881-885 .

Hebb,D.O. 1949. The Organisation of Behaviour. Wiley, New York. (1949).

Hegde,S.U., Sweet,J.L. & Levy,W.B. 1988. Determination of Parameters in a

Hopfield /Tank Computational Network. Proc. IEEE International Conf.

on Neural Networks., II: p291-298

Hinton,G.E. 1987. Connectionist learning procedures. Technical Report CMLI-

Cs- 87-115, Carnegie-Mellon University.

Holland,J. 1975. Adaptation in Natural and Artificial Systems. Ann arbor: Uni-

versity of Michigan Press.

Honavar,V. & Uhr,L. 1988. A network of neuron-like units that learns to perceive

by generation as well as reweighting of its links, in Proc. of the 1988 Con-

nectionist Models Summer School, Touretsky,D., Hinton, G. & Sejnowski, T.

(eds). Morgan Kaufmann, San Mateo. p472-484.

Hopfleld,J.J. 1982. Neural networks and physical systems with emergent collective

computational abilities. Proc. Nail. Acad. Sci. USA 79: p2554-2558

Hopfield,J.J. 1984. Neurons with graded response have collective computational

properties like those of two-state neurons. Proc. Natl. A cad. Sci. USA 81:

p3088-3092

Hopfield,J.J. & Tank,D.W. 1985. Neural computation of decisions in optimization

problems. Biol. Cyber., 52: p141- 152

Hueter,G. 1988. Solution of the Travelling Salesman Problem with an Adaptive

Ring. Proc. IEEE International Conf. on Neural Networks., I: p85-92.

BIBLIOGRAPHY
	

178

Judd,S. 1987. Learning in networks is hard. Proc. IEEE First Conference on

Neural Networks, San Diego 1987. (IEEE Cat. No. 87TH0191-7), II, p685-

Kirkpatrick,S., Gelatt,Jr.,C.D. & Vecchi,M.P. 1983. Optimization by simulated

annealing. Science 220: p671-680 .

Kirkpatrick,S. 1984. Journal of Statistical Physics, 34: p975 .

Kohonen,T. 1977. Associative memory - a system-theoretical approach. Berlin,

Heidelberg, New York: Springer.

Kohonen,T. 1982. Self-organized formation of topographically correct feature

maps. Biological Cybernetics 43: p59-69.

Krogh,A., Thorbergsson,G.I., & Hertz,J.A. 1990. Advances in Neural Informa-

tion Processing Systems (NIPS), Touretsky,D.S. (ed) San Mateo: Morgan

Kaufmann. 2.

Kruschke,J.K. 1988. Creating Local and distributed bottlenecks in hidden layers

of back-propagation networks. in Proc. of the 1988 Connectionist Models

Summer School, Touretsky,D., Hinton, G. & Sejnowski, T. (eds). Morgan

Kaufrnann, San Mateo. p120-126.

Lawler, Lenstra, Rinooy Khan & Shmoys (eds). 1985. The Travelling Salesman

Problem. Wiley, New York.

Le Cun,Y. 1985. Proc. Cognitiva 85: 593.

Le Cun,Y. 1989 Generalization and network design strategies. In Pfeifer,R.,

Schreter,Z., Fogelman,F. and Steels,L., editors, "Connectionism in Perspec-

tive", Zurich, Switzerland. Elsevier.

Le Cun,Y., Denker,J.S., Solla,S.A. 1990. Optimal Brain Damage. In Advances

in Neural Information Processing Systems (NIPS), Touretsky,D.S. (ed) San

Mateo: Morgan Kaufmann. 2.

BIBLIOGRAPHY 	 179

Lewis,P.M. & Coates,C.L. 1967. Threshold Logic. Wiley, New York.

Lin,S. 1965. Computer solutions of the travelling salesman problem. Bell Syst.

Tech. J., 44: p2245 .

Lin,S. & Kernighan,B.W. 1973. An effective heuristic algorithm for the travelling

salesman problem. Oper. Res. 21: p498-516.

Lippmann,R.P. 1987. An Introduction to Computing with Neural Nets. IEEE

ASSP Magazine, April 1987, p4-22.

Mèzard,M. and Nadal,J-P. 1989. Learning in Feedforward Layered Networks: the

Tiling Algorithm, J.Physics A, 22: 12, 02191-2203

Minsky,M. and S.Papert. 1969. Perceptrons, MIT Press.

Morgan,N. & Bourlard,H. 1990. Generalization and Parameter Estimation in

Feed-forward nets: some experiments. In Advances in Neural Information

Processing Systems (NIPS), Touretsky,D.S. (ed) San Mateo: Morgan Kauf-

mann. 2: p630- 637 .

Moser,M. & Smolensky,P. 1989. Skeletonization: A technique for trimming the

fat from a network via relevence assessment. Advances in Neural Informa-

tion Processing Systems (NIPS), Touretsky,D.S. (ed) San Mateo : Morgan

Kaufmann. 1: p107-115.

Mühlenbein,H., Georges-Schleuter,M. & Krämer,O. 1988. Evolution algorithms

in combinatorial optimization. Parallel Computing, 7: p65 .

Nabutovsky,D., Grossman,T. & Domany,E. 1990. Learning by CHIR without

storing internal representations. Submitted to Complex Systems.

Nadal,J-P. 1989. Study of a Growth Algorithm for Neural Networks International

J. of Neural Systems,1: 1, p55-59

Nilsson,N.J. 1965. Learning Machines. McGraw-Hill, New York.

BIBLIOGRAPHY
	

MIR

Pearlmutter,B.A. & Hinton,G.E. 1986. G-Maximization: an Unsupervised Learn-

ing Procedure for Discovering Regularities. In Denker,J.S., editor, Neural

Networks for Computing: American Institute of Physics Conference Pro-

ceedings. 151: p333-338 .

Personnaz, Dreyfus and Knerr. 1990. Presented at Neural Networks for Comput-

ing Conference, Snowbird.

Peterson,C. & Söderberg,B. 1989. A new method for mapping optimization prob-

lems onto neural networks. International J. of Neural Systems,1: 1, p 3-22 .

Peterson,C. 1990. Parallel Distributed Approaches to Combinatorial Optimization

- Benchmark Studies on Travelling Salesman Problem. Neural Computation.

2: 3, p261-269 .

Plaut,D.C., Nowlan,S.J. & Hinton,G.E. 1986. Technical report. CMU-CS-86-126,

Carnegie-Mellon University.

Ra.macher,U. & Wesseling,M. 1989. A geometrical approach to neural network de-

sign. Proc. of the First International Joint Conference on Neural Networks,

Washington DC. II: p147-153.

Ritter,H. & Schulten,K. 1988. Kohonen's Self-Organising Maps: Exploring their

computational capabilities. Proc. IEEE International Conf. on Neural

Networks., I: p109-116.

Rohwer,R. 1990. The "moving targets" training algorithm. Advances in Neural

Information Processing Systems (NIPS), Touretsky,D.S. (ed) San Mateo :

Morgan Kaufmann. 2: p558-565 .

Rosenblatt,F. 1962. Principles of Neurodynamics, Spartan Books, New York.

Rujan,P., & Marchand,M. 1989. A Geometric Approach to Learning in Neural

Networks. in Proc. of the Fisri International Joint Conference on Neural

Networks, Washington DC. II: p105-109.

BIBLIOGRAPHY
	

181

Rumelhart,D.E., Hinton,G.E., and Williams,R.J. 1985. Learning Internal Repre-

sentations by error propagation. ICS Report 8506, Institute for Cognitive

Science, UCSD, La Jolla, CA.

Rumelhart,D.E., McClelland,J.L., and the PDP Research Group. 1986. Paral-

lel Distributed Processing: Explorations in the Microstructure of Cognition.

Volume I Foundations, MIT Press.

Rumelhart,D.E. & Zipser,D. 1986. Feature Discovery by Competitive Learning.

Chapter 5 in (Rumeihart et al. 1986)

Saffery,J. 1990. A Neural Network Simulator for a Constructive Algorithm. MSc

thesis, Computer Science, University of Edinburgh.

Simic,P.D. 1990. Statistical mechanics as the underlying theory of "elastic" and

"neural" optimisations. Network 1: 1, p 89-103 .

Simmen,M. 1990. Parameter Sensitivity of the Elastic-Net Approach to the Trav-

elling Salesman Problem. Preprint 901495, Department of Physics, Univer-

sity of Edinburgh.

Sirat,J.A. & Nadal,J-P. 1990. Presented at Neural Networks for Computing Con-

ference, Snowbird.

Smith,G. 1990. BackPropagation with Dynamic Topology and Simple Activation

Functions. Tech Report 90-12, Computer Science, Flinders University of

South Australia.

Solla,S.A., Schwartz,D.B., Tishby,N. & Levin,E. 1990. Supervised Learning: A

theoretical framework. Advances in Neural Information Processing Systems

(NIPS), Touretsky,D.S.(ed) San Mateo : Morgan Kaufmann. 2.

SPSS-X. 1984. SPSS-X User's Guide. McGraw-Hill Book Company, New York.

Sontag,E.D. 1988. Some remarks on the Backpropagation algorithm for neural net

learning. Report S YNCON-88- 02, Rutgers Center for Systems and Control.

BIBLIOGRAPHY
	

182

Sontag,E.D. & Sussmann,H.J. 1988a. Backpropagation separates when percep-

trons do. Report SYNCON-88-12, Rutgers Center for Systems and Control.

Sontag,E.D. & Sussmann,H.J. 1988b. Backpropagation can give rise to spurious

local minima even for networks without hidden layers. Report SYNCON-

88-12, Rutgers Center for Systems and Control.

Sun,G.Z., Lee,Y.C. & Chen,H.H. 1988. A novel net that learns sequential decision

process. Neural Information Processing Systems (NIPS), Dana Z. Anderson

(ed) American Institute of Physics, New York. p760-766.

Thacker,N.A. & Mayhew,J.E.W. 1990. Designing a layered network for context

sensitive classification. Neural Networks, 3: 3, p291-300 .

von der Malsburg,C. 1973. Self-organization of orientation sensitive cells in the

striate cortex. Kybernetik 14: p85-100.

von der Malsburg,C. & Willshaw,D.J. 1977. How to label nerve cells so that they

can interconnect in an ordered fashion. Proc. Natn. Acad. Sci. U.S.A. 74:

p5176-5178.

Werbos,P. 1974. Beyond Regression: New Tools for Prediction and Analysis in

the Behavioural Sciences. PhD Thesis, Harvard University Committee on

Applied Mathematics, Cambridge, MA.

Widrow,B. & Hoff,M.E. 1960. Adaptive switching circuits. IRE WESCON Con-

vention Record, New York: IRE, p96-104.

Willshaw,D.J. & Dayan,P. 1990. Optimal Plasticity from Matrix Memories: What

Goes Up Must Come Down. Neural Computation 2: 1, p85-93.

Willshaw,D.J. & von der Malsburg,C. 1976. How patterned neural connections

can be set up by self-organisation. Proc.R.Soc.Lond.B, 194: p431-435

BIBLIOGRAPHY
	

183

Willshaw,D.J. & von der Malsburg,C. 1979. A marker induction mechanism for

the establishment of ordered neural mappings: its application to the retino-

tectal problem. Proc.R.Soc.B, 287: p203-243.

Wilson,G.V. & Pawley,G.S. 1988. On the stability of the TSP algorithm of Hop-

field and Tank. Biol.Cyber., 58: p 63-70.

Wittner,B.S. & Denker,J.S. 1988 Advances in Neural Information Processing Sys-

terns (NIPS), Dana Z. Anderson (ed), American Institute of Physics, New

York.

Yuille,A.L. 1990. Generalized Deformable Models, Statistical Physics, and Match-

ing Problems. Neural Computation 2: 1, p1-24.

