97 research outputs found

    Multi-Trajectory Automatic Ground Collision Avoidance System with Flight Tests (Project Have ESCAPE)

    Get PDF
    Multi-trajectory automatic collision avoidance techniques for heavy-type aircraft are explored to increase aviation safety procedures and decrease losses due to controlled flight into terrain. Additionally, this research includes flight test results from the United States Test Pilot School’s Test Management Project (TMP) titled Have Emergency Safe Calculated Autonomous Preplanned Exit (ESCAPE). Currently, the heavy aircraft community lacks an automatic collision avoidance system that has proven to save lives in fighter-type aircraft. The tested algorithm includes both a 3-path and a 5-path avoidance technique that is compared to an optimal solution which minimizes aircraft control to avoid terrain. The research utilizes Level 1 Digital Terrain Elevation Data (DTED) to analyze the terrain and a 3-Degrees of Freedom (DOF) Equations of Motion (EOM) model to predict potential terrain avoidance paths for the aircraft based on current location. The algorithm then waits until all paths collide and automatically activates the path with the longest time until collision with an appropriate time safety margin. The research also characterizes terrain based on changing slope and presents a new classification of aircraft based on performance capabilities. The result was used for algorithm parameter specification of path execution times and pre-planned maneuver creation so that the system can be modified for a wide variety of aircraft. Finally, the algorithm was flight tested against DTED in a simulated environment using the Calspan Learjet to determine actual 3 and 5- path performance, parameter specification, and comparison to the optimal solution. The important recommendations include a need for flexible entry parameters based on current aircraft state, continued evaluation of the terrain during avoidance maneuver execution, and more precise control of the aircraft flight path angle. Finally, due to comparison with the optimal solution, it is concluded that an acceptable terrain avoidance algorithm is possible using only a 3-path solution given that all three paths include a climbing maneuver

    Overlay networks monitoring

    Get PDF
    The phenomenal growth of the Internet and its entry into many aspects of daily life has led to a great dependency on its services. Multimedia and content distribution applications (e.g., video streaming, online gaming, VoIP) require Quality of Service (QoS) guarantees in terms of bandwidth, delay, loss, and jitter to maintain a certain level of performance. Moreover, E-commerce applications and retail websites are faced with increasing demand for better throughput and response time performance. The most practical way to realize such applications is through the use of overlay networks, which are logical networks that implement service and resource management functionalities at the application layer. Overlays offer better deployability, scalability, security, and resiliency properties than network layer based implementation of services. Network monitoring and routing are among the most important issues in the design and operation of overlay networks. Accurate monitoring of QoS parameters is a challenging problem due to: (i) unbounded link stress in the underlying IP network, and (ii) the conflict in measurements caused by spatial and temporal overlap among measurement tasks. In this context, the focus of this dissertation is on the design and evaluation of efficient QoS monitoring and fault location algorithms using overlay networks. First, the issue of monitoring accuracy provided by multiple concurrent active measurements is studied on a large-scale overlay test-bed (PlanetLab), the factors affecting the accuracy are identified, and the measurement conflict problem is introduced. Then, the problem of conducting conflict-free measurements is formulated as a scheduling problem of real-time tasks, its complexity is proven to be NP-hard, and efficient heuristic algorithms for the problem are proposed. Second, an algorithm for minimizing monitoring overhead while controlling the IP link stress is proposed. Finally, the use of overlay monitoring to locate IP links\u27 faults is investigated. Specifically, the problem of designing an overlay network for verifying the location of IP links\u27 faults, under cost and link stress constraints, is formulated as an integer generalized flow problem, and its complexity is proven to be NP-hard. An optimal polynomial time algorithm for the relaxed problem (relaxed link stress constraints) is proposed. A combination of simulation and experimental studies using real-life measurement tools and Internet topologies of major ISP networks is conducted to evaluate the proposed algorithms. The studies show that the proposed algorithms significantly improve the accuracy and link stress of overlay monitoring, while incurring low overheads. The evaluation of fault location algorithms show that fast and highly accurate verification of faults can be achieved using overlay monitoring. In conclusion, the holistic view taken and the solutions developed for network monitoring provide a comprehensive framework for the design, operation, and evolution of overlay networks

    Design, Integration, and Evaluation of IoT-Based Electrochromic Building Envelopes for Visual Comfort and Energy Efficiency

    Get PDF
    Electrochromic glazing has been identified as the next-generation high-performance glazing material for building envelopes due to its dynamic properties, which allow the buildings to respond to various climate conditions. IoT technologies have improved the sensing, communication, and interactions of building environmental data. Few studies have been done to synthesize the advancements in EC materials and building IoT technologies for better building performance. The challenge remains in the lack of compatible design and simulation tools, limited understanding of integration, and a paucity of evaluation measures to support the convergence between the EC building envelopes and IoT technologies. This research first explores the existing challenges of using EC building envelopes using secondary data analysis and case studies. An IoT-based EC prototype system is developed to demonstrate the feasibility of IoT and EC integration. Functionalities, reliability, interoperability, and scalability are assessed with comparisons of four alternative building envelope systems. Nation-wide evaluations of EC building performance are conducted to show regional differences and trade-offs of visual comfort and energy efficiency. A machine learning approach is proposed to solve the predictive EC control problem under random weather conditions. The best prediction models achieve 91.08% mean accuracy with the 16-climate-zone data set. The importance of predictive variables is also measured in each climate zone to develop a better understanding of the effectiveness of climatic sensors. Additionally, a simulation study is conducted to investigate the relationships between design factors and EC building performance. An instantaneous daylight measure is developed to support active daylight control with IoT-based EC building envelopes

    Proceedings of the Workshop on Identification and Control of Flexible Space Structures, Volume 2

    Get PDF
    The results of a workshop on identification and control of flexible space structures held in San Diego, CA, July 4 to 6, 1984 are discussed. The main objectives of the workshop were to provide a forum to exchange ideas in exploring the most advanced modeling, estimation, identification and control methodologies to flexible space structures. The workshop responded to the rapidly growing interest within NASA in large space systems (space station, platforms, antennas, flight experiments) currently under design. Dynamic structural analysis, control theory, structural vibration and stability, and distributed parameter systems are discussed

    Space station systems: A bibliography with indexes (supplement 6)

    Get PDF
    This bibliography lists 1,133 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1987 and December 31, 1987. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems. The coverage includes documents that define major systems and subsystems, servicing and support requirements, procedures and operations, and missions for the current and future Space Station

    A cumulative index to the 1973 issues of Aeronautical engineering: A special bibliography

    Get PDF
    This publication is a cumulative index to the abstracts contained in NASA SP-7037 (28) through NASA SP-7037 (39) of Aeronautical Engineering: A Special Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, contract, and report number indexes

    2004 program of study : tides

    Get PDF
    The summer of 2004 saw the GFD program tackle “Tides”. Myrl Hendershott (Scripps Institution of Oceanography) gave a fabulous introduction to the subject in the first week of the course, laying the foundations from astronomy and classical geophysical fluid dynamics. In the second week, Chris Garrett (University of Victoria) admirably followed up with recent developments on the subject, including the recent observations from satellite altimetry, their implications to mixing and circulation, and even a memorable lecture on the noble theme of how we might solve the world's energy crisis. The principal lectures proved unusually popular this summer, and the seminar room at Walsh often overflowed in the first two weeks. Following on from the lectures, the seminar schedule of the summer covered in greater detail the oceanographic issues with which researchers are actively grappling. We also heard about related problems regarding atmospheric, planetary and stellar tides, together with the usual mix of topics on GFD in general. The summer once again featured a lecture for the general public in the Woods Hole area. Carl Wunsch delivered a very well received lecture entitled “Climate Change Stories”, in which he gave an impression of how scientists generally believe our climate is currently changing, whilst simultaneously urging caution against some of the more outrageous and exaggerated claims. The lecture was held at Lilly Auditorium, thanks to the hospitality of the Marine Biology Laboratory. The reception following the lecture was enjoyed by all. Neil Balmforth and Stefan Llewellyn Smith acted as Co-Directors for the summer. Janet Fields, Jeanne Fleming and Penny Foster provided the administrative backbone to the Program, both during the summer and throughout the year beforehand. As always, we were grateful to the Woods Hole Oceanographic Institution for the use of Walsh Cottage, and Keith Bradley's solid service could not be overlooked. Shilpa Ghadge and Shreyas Mandre are to be thanked for their part in comforting the fellows, developing the summer's proceedings volume (available on the GFD web site) and for running the computer network.Funding was provided by the Office of Naval Research under Contract No. N00014-04-1-0157 and the National Science Foundation under Grant No. OCE-0325296

    Bibliography of Lewis Research Center technical publications announced in 1989

    Get PDF
    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1989. All the publications were announced in the 1989 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses
    corecore