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Abstract

Multi-trajectory automatic collision avoidance techniques for heavy-type aircraft are

explored to increase aviation safety procedures and decrease losses due to controlled

flight into terrain. Additionally, this research includes flight test results from the

United States Test Pilot School’s Test Management Project (TMP) titled Have Emergency

Safe Calculated Autonomous Preplanned Exit (ESCAPE). Currently, the heavy aircraft

community lacks an automatic collision avoidance system that has proven to save lives in

fighter-type aircraft. The tested algorithm includes both a 3-path and a 5-path avoidance

technique that is compared to an optimal solution which minimizes aircraft control to

avoid terrain. The research utilizes Level 1 Digital Terrain Elevation Data (DTED) to

analyze the terrain and a 3-Degrees of Freedom (DOF) Equations of Motion (EOM) model

to predict potential terrain avoidance paths for the aircraft based on current location.

The algorithm then waits until all paths collide and automatically activates the path with

the longest time until collision with an appropriate time safety margin. The research

also characterizes terrain based on changing slope and presents a new classification of

aircraft based on performance capabilities. The result was used for algorithm parameter

specification of path execution times and pre-planned maneuver creation so that the system

can be modified for a wide variety of aircraft. Finally, the algorithm was flight tested against

DTED in a simulated environment using the Calspan Learjet to determine actual 3 and 5-

path performance, parameter specification, and comparison to the optimal solution. The

important recommendations include a need for flexible entry parameters based on current

aircraft state, continued evaluation of the terrain during avoidance maneuver execution, and

more precise control of the aircraft flight path angle. Finally, due to comparison with the

optimal solution, it is concluded that an acceptable terrain avoidance algorithm is possible

using only a 3-path solution given that all three paths include a climbing maneuver.
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MULTI-TRAJECTORY AUTOMATIC GROUND COLLISION AVOIDANCE SYSTEM

WITH FLIGHT TESTS (PROJECT HAVE ESCAPE)

I. Introduction

The constant pursuit of aviation safety has been a hallmark of manned flight since the

inception of the airplane. Throughout this time, controlled flight into the ground

has been a constant threat to pilots and passengers with no true solution except increased

training. Recently, developments in computing speed, the characterization of the world’s

terrain, and more advance aircraft have opened the door for automatic tools to prevent

aircraft from impacting the ground. Unfortunately, the need for heavy aircraft automatic

terrain avoidance has been downplayed due to financial constraints, emphasis on fighter

aircraft, and mission requirements. Recent academic interest, increased aircraft expense,

the success of the fighter systems, and constantly fluctuating mission sets have opened

the door for the introduction of these systems for heavy aircraft. Ideally, optimally

derived solutions would be calculated for terrain avoidance. To date, these solutions,

though available, are too slow for real-time integration. This research aims to bridge this

technological gap and provide the safety advancements these heavy aircraft and their crew

need now by using constantly calculated pre-planned maneuver algorithms to avoid terrain.

To do this, simulator and flight test data will be required to analyze these algorithms to

determine their robustness against varying terrain features. To this end, the present Air

Force Institute of Technology (AFIT) research will be coupled with a United States Air

Force Test Pilot School (TPS) Test Management Project (TMP) to provide the necessary

flight test data to make real-world conclusions. The project is named: Have Emergency

Safe Calculated Autonomous Preplanned Exit (ESCAPE).
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1.1 Motivation

In response to the continual, unacceptable loss of aircraft and aircrew, the Secretary of

Defense issued a mandate in 2003 to reduce fatal aircraft mishaps by 50 percent across the

Department of Defense (DoD) [30]. In response, a Defense Safety Oversight Council was

established, and among other recommendations, concluded that to reduce the Controlled

Flight into Terrain (CFIT) mishap rate any further, a technical solution was required and

that we have achieved all we are going to with training alone [30]. To this end, aggressive

measures were taken to provide an Automatic Ground Collision Avoidance System (GCAS)

solution. Though these initial e↵orts were pointed squarely at fighter-type aircraft, the CFIT

accidents of record included aircraft of all types.

As of 2014, the F-16 Auto GCAS has been being operationally fielded in combat

Air Force units. Having already been credited for numerous aircraft and pilot saves

[35], the door is wide open for further work in automated algorithms for other airframes.

Unfortunately, direct application of the F-16’s system to heavy aircraft is unreasonable due

to performance disparities. Therefore, another solution is required.

Additionally, there exists a need to classify aircraft and terrain in a manner that groups

them both on performance and mission, if applicable. This grouping will allow for Auto

GCAS solutions to be flexible across aircraft type within the heavy category for a given

terrain thus reducing the need for a di↵erent algorithm for every airframe.

1.2 Problem Statement

As will be shown in Chapter 2, the current level of research, and in some cases

development, of automatic collision avoidance software for aircraft has focused on either

fighter-type airframes or air-to-air avoidance. The only legitimate optimal air-to-ground

research for heavy aircraft was developed by Suplisson at AFIT [35], but it will take

time until computing speed catches up with the real-time requirements of optimization

algorithms. For this reason, there is a major gap in heavy aircraft terrain avoidance
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research. Fortunately, the optimal code can still be used as a truth source to compare

with algorithm performance. Currently, there is no automatic separation algorithm for

manned, heavy aircraft, only manual systems that require pilot input. Such systems, though

reliable, can become obfuscated during low altitude, high workload situations warranting

a more advanced solution. Additionally, there is no specific characterization of terrain that

would facilitate a logical approach to nuisance free aircraft avoidance models. National

Aeronautics and Space Administration (NASA) relies heavily on the terrain detection

algorithm utilized by the F-16 Auto GCAS. There may be benefits to simply using raw

information instead of compression and rastorizing techniques that introduce error, and

this research will develop techniques using this raw data. The final, major hurdle, is the

lack of any flight test data aimed specifically at Auto GCAS for heavy aircraft. Without this

flight research, no development will proceed and no major gains will be made toward the

complete elimination of CFIT in US Air Force aircraft. The successful implementation and

flight test of the Have ESCAPE algorithm will provide a baseline for future Auto GCAS

research and help prevent unnecessary loss of life and assets.

To be e↵ective, this research must answer specific questions that relate directly to the

functional requirements of an Auto GCAS algorithm. Additionally, these questions must

focus on the problems presented through real-time integration with actual flight test. With

this in mind, the present research will aim to answer the following questions:

• Can raw Digital Terrain Elevation Data (DTED) be used as a collision evaluation tool

for an Auto GCAS algorithm?

• Is the bubble propagation method adequate for terrain collision prevention?

• How long should the ESCAPE paths be propagated forward, and is it a function of

the type of terrain encountered?

• How many ESCAPE paths should be propagated?
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• For heavy-type aircraft, are the ESCAPE paths performance dependent?

• Is the 3-Degrees of Freedom (DOF) Equations of Motion (EOM) model and

subsequent control adequate for this Auto GCAS algorithm?

• Can the algorithm be adequately implemented in real-time?

• Should the algorithm evaluate terrain at all times?

• Is the optimal path a ‘better’ solution than preplanned trajectories?

1.3 Research Methodology, Scope, and Contribution

Ground collision algorithms typically require flexibility in the maneuver dimension

due to the unpredictable nature of terrain and the performance capabilities of di↵erent

aircraft. The F-16 can benefit from a single maneuver due to its thrust to weight capability.

Heavy aircraft, on the other hand, must have options based on the type of terrain and their

location relative to it. For this reason, the algorithm must be robust enough to provide for

a combination of di↵erent maneuvers based on when and where a collision is predicted to

occur.

This research will be broken into two major phases. First, the theory behind heavy

aircraft terrain avoidance will be reviewed and analyzed to determine the appropriate

algorithms for an actual ground avoidance model. This will entail creating various

maneuvers to avoid the terrain while balancing path prediction accuracy with computational

e�ciency within the capabilities of current aircraft navigation systems. Sensitivity analyses

on the equations of motion defining these paths will be performed as there is no current

research adequately evaluating the accuracy of the aircraft EOM to the applied integration

method. Additionally, aircraft classifications based on performance specifications will

be built to group airframes so that adequate algorithm parameters can be designed for

a particular aircraft’s capabilities. Finally, terrain classifications will be developed to
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allow for Trajectory Prediction Algorithm (TPA) flexibility and robustness against varying

terrain, from flat to mountainous. (for the purposes of this research, TPA is synonymous

with escape path.) This analysis will provide for adaptive protection based on aircraft

location and will serve as a tool for future research.

The second facet will include the flight test of project Have ESCAPE using the Calspan

Variable Stability System (VSS) Learjet. Due to the limited nature of aircraft availability,

and to fit within TPS’s limited TMP execution window, the flight test data will focus on a

worst case (most challenging) scenario for nominal heavy aircraft capabilities. To this end,

the research will be flown against mountainous terrain using both a 3-path and 5-path TPA

solution. The specifics of this flight test will be discussed within the Methodology section

of Chapter 3.

It is expected that it will be possible to categorize both the terrain and heavy aircraft

into groupings that will allow for acceptable algorithm performance throughout all terrain

categories. Much like F-16 Auto GCAS, it is furthermore expected that the Have ESCAPE

algorithms will require iterative modifications in both path propagation and aircraft control

before operational use. This research aims to build the foundation for future heavy aircraft

Auto GCAS flight tests by providing a complete solution that can be quickly tailored to

nearly any heavy aircraft. Additionally, this research and flight test data will establish

procedures, guidelines, and recommendations for further algorithm development.

1.4 Research Organization

1.4.1 Theoretical Analysis.

As previously explained in Section 1.3, this research will be broken into two major

phases: theoretical analysis and flight test. The theoretical analysis must be completed

before actual aircraft integration or flight tests and includes:

• Derivation of a 3-DOF model with aircraft control
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• Construction of the Have ESCAPE TPAs

• DTED analysis

• Aircraft performance categorization

• Terrain characterization model

• TPA propagation times

• Integration method sensitivity analysis

Once the theoretical work is complete, the research will enter the flight test phase and

will be conducted using the Air Force’s disciplined test management principles, safety

guidelines, and flight test techniques established at TPS. Within this construct, the flight

test will be organized to achieve an overall test objective utilizing specific objectives based

on research goals. If required, each specific test objective will be analyzed using one or

more Measure of Performance (MOP). A MOP is an organizational tool to define what

actually needs to be evaluated to meet the given specific test objective.

1.4.2 Flight Test Objectives for Have ESCAPE.

The overall test objective is to compare 3 and 5 path limited option Automatic Ground

Collision Avoidance System algorithms for climb limited aircraft against optimally derived

ground avoidance algorithms. All stated objectives will be evaluated with results presented

in Chapter 4. The MOPs for each objective is listed below. The definition of each MOP is

defined in Chapter 4.

1.4.2.1 Specific Test Objective 1: Evaluate the 3 TPA Solution.

• MOP 1: Algorithm Path Selection

• MOP 2: Aircraft Response

• MOP 3: Ground Miss Distance
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1.4.2.2 Specific Test Objective 2: Evaluate the 5 TPA Solution.

• MOP 1: Algorithm Path Selection

• MOP 2: Aircraft Response

• MOP 3: Ground Miss Distance

1.4.2.3 Specific Test Objective 3: Determine Algorithm Parameters.

• MOP 1: Bubble Size for Level 1 DTED

• MOP 2: Overall Processing Time

1.4.2.4 Specific Test Objective 4: Compare the 3 and 5 TPA solution with the

Optimal Solution.

• MOP 1: Proper Path Selection

• MOP 2: Terrain Miss Distance and Activation Time Di↵erences between the optimal

and chosen path.

In summary of the research contained herein, the Literature Review of Chapter 2 will

provide a baseline for where the current research resides with respect to Auto GCAS. The

Methodology outlined in Chapter 3, as well as the Results and Analysis in Chapter 4,

are specifically tailored to provide the data and evaluation required to adequately address

these stated objectives using the tools and algorithms designed through the theoretical

analysis outlined in Section 1.4.1. Finally, Chapter 5 summarizes the results of this

research and flight test e↵orts and o↵ers recommendations for future Have ESCAPE work

to ultimately provide a safe, reliable, accurate solution to the problem outlined in Section

1.2. The Appendices within this research include supplementary data to the methodology

and results. Appendix A contains the Test Matrix, Appendix B contains the Data Analysis

Plan (DAP), Appendix C contains the Form 5314 for post-flight comments, and Appendix

D contains all additional plots not presented in the body of the research.
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II. Literature Review

2.1 Overview

Collision avoidance systems exist for a variety of real-world applications to include

integration with aircraft and automobiles [35]. In fact, these products are becoming

more prevalent due to increased computing capacity and generalized trust in systems

engineering. Previous research from Kuchar and Yang developed a “framework to

categorize Conflict Detection and Resolution (CDR) methods and models for collision

avoidance” [21, 22]. They state that “the goal for the CDR system is to predict that

a conflict is going to occur in the future, communicate the detected conflict to a human

operator and, in some cases, assist in the resolution of the conflict situation” [22, 35]. The

following literature review will outline the previous work in automatic collision avoidance

as well as describe background information on the tools used within the presented

methodology. For this reason, it will be necessary to describe existing technologies, most

of which are informative in nature only and do not present automatic solutions to collision

events as these algorithms are still in their infancy. Additionally, the required use of DTED

and the characterization of terrain necessitates the evaluation of existing terrain morphology

research. The existing structure of aircraft classifications will also be discussed briefly

in an e↵ort to categorize tactical military aircraft based on performance parameters and

operational mission requirements. Finally, since this research has the unique opportunity

to gather real-world flight test data, existing research on the Calspan Learjet, to include

past flight tests, will be reviewed to present a baseline for the research and provide realistic

expectations for the collected data.
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2.2 Conflict Detection and Resolution Modeling Methods

Historically, aircraft collision avoidance techniques have focused mainly on air-to-

air scenarios. Though di↵erent in its intent, air-to-ground collision avoidance models

follow the same basic framework. Kuchar and Yang’s previously mentioned methodology

categorized the CDR techniques into five distinct sections 1) state propagation, 2) state

dimensions, 3) conflict detection threshold, 4) conflict resolution method, 5) maneuvering

dimensions, and 6) management of multiple aircraft conflicts [22, 35]. Only the first five

sections are relevant to this discussion, so the sixth will be ignored. This information was

developed through the study of 68 di↵erent algorithms [22], and it forms a solid framework

summarizing the current application of the solution method for terrain avoidance models.

2.2.1 State Propagation.

Kuchar and Yang speak to three basic methods of state propagation, again under the

context of air-to-air conflict resolution as discussed below [22]. The first, and most basic,

is the nominal method. In this context, “the current states are projected into the future

along a single trajectory, without direct consideration of uncertainties” [22]. Essentially,

the nominal method uses aircraft state information to predict only where the aircraft is

going. This method is straightforward to apply, but could lack robustness in highly dynamic

scenarios or, from a ground collision perspective, in mountainous terrain.

The next propagation technique discussed is the probabilistic method. A typical

probabilistic approach will “develop a complete set of possible future trajectories, each

weighted by a probability of occurring.” This model is more robust than the nominal

method, but it presents some di�culty in application. Both the modeling of the trajectories

and the computational expense of these models may make this method too slow for

immediate application.

The final method is the worst-case projection. “Here it is assumed that an aircraft will

perform any of a range of maneuvers. If any one of these maneuvers could cause a conflict,
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then a conflict is predicted” [22]. This method allows for worst-case scenario look-ahead

trajectories to be calculated so that avoidance algorithms can be applied. This approach

can help to determine if a conflict is possible. As applied to air-to-ground avoidance, the

method poses a potential solution to state propagation. As used in the research herein,

the worst-case methodology can be interpreted as maximum aircraft performance. In this

way, multiple aircraft paths can be propagated and analyzed, and since these paths are

predetermined, their calculations and control history can be quickly applied. This then

allows for the determination of a collision with terrain and an executable maneuver to

avoid it.

2.2.2 State Dimensions.

State dimensions represent “whether the state information used in the model involves

the horizontal plane, vertical plane, or both” [22]. In general, the majority of air-to-air

models cover the horizontal plane or both the horizontal and vertical plane. The necessary

planes are merely a function of the avoidance algorithm required to predict and avoid

collisions. For air-to-air scenarios, models including only the horizontal plane can be

realistically accurate for avoidance techniques. The ubiquitous Tra�c Collision Avoidance

System (TCAS) is an example of a horizontal plane system whereas the Ground Proximity

Warning System (GPWS) uses vertical only [22, 35]. Due to the rugged nature of some

terrain, neither the horizontal plane nor vertical plane alone could adequately model the

likelihood of an aircraft impacting terrain. For example, a canyon scenario has both

horizontally and vertically located features that could cause a collision. For this reason,

a 3-dimensional model should be used for automatic terrain collision avoidance systems as

will be applied in the research herein [35].

2.2.3 Conflict Detection Threshold.

Conflict detection thresholds are metrics created from the aircraft state information

that are necessary to make decisions [21]. “Some examples of conflict detection thresholds
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are current range to the point of closest approach (to terrain or to other aircraft) as well as

time to point of closest approach, miss distance if no escape trajectory is implemented,

maneuvering cost, or probability of conflict” [21, 35]. The key to CDR methods is

that they be useful, accurate, and timely. For automatic terrain avoidance systems, the

conflict (terrain) threshold needs to relate to some terrain database or real-time measuring

equipment. Current candidates include, but are not limited to, Shuttle Radar Topography

Mission (SRTM) DTED, terrain following radar, and radar altimeters. Importantly, the

terrain information used must be immediately available for not only the current aircraft

location, but for all future positions as well. For these reasons, a Digital Elevation Model

(DEM) is the most readily available and realistically applicable terrain model for automatic

ground collision avoidance algorithms.

2.2.4 Conflict Resolution Method.

The ultimate goal of any conflict resolution algorithm is to avoid a collision, whether

that be an air-to-air or air-to-ground collision. The five methods prescribed by Kuchar

and Yang are prescribed, optimized, force field, manual, and no method [22]. Only

the optimized and prescribed solutions will be described in this research. For more

information on the other methods, reference Kuchar and Yang’s “A Review of Conflict

Detection and Resolution Modeling Methods” [22] or Suplisson’s work titled ”Optimal

Escape Trajectories for Automatic Ground Collision Avoidance Systems” [35].

The optimal control maneuver minimizes a predetermined cost functional to optimize

some aspect of the aircraft’s performance [35]. Typical methods include maximizing

miss distance or generating minimum control inputs to avoid a collision. Admittedly,

optimal control is the future of aircraft collision avoidance algorithms from both an air-

to-air and air-to-ground perspective. One example is work by Smith on developing a basic

framework and working algorithm for specific optimal air-to-air avoidance situations [31].

Unfortunately, these algorithms, though powerful, require extensive computing time and
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thus have limited applicability to current aircraft integration for dynamic real-time use. The

benefits in the optimal control research stem from their current ability to provide ‘truth’

data to other algorithms that bridge the technological gap until optimal solutions can be

employed in real-time.

Excluding optimal control, another method of conflict resolution is the formulation of

pre-planned maneuvers to avoid terrain. “Prescribed resolution maneuvers are fixed during

system design based on a set of predefined procedures” [22]. As discussed in Chapter 1, an

example of this is the Air Force’s F-16 Auto GCAS. It is considered a prescribed solution

because it has one predetermined maneuver that it uses for every avoidance situation and

it automatically activates taking control from the pilot [1]. With automatic activation, the

prescribed maneuvers benefit from the simplicity of design and ease of execution of a

preplanned maneuver. Unfortunately, these maneuvers can be less e↵ective because they

are not altered based on the dynamic situation [22]. Another method is manual activation.

With manual activation, “prescribed maneuvers may have the benefit that operators can be

trained to perform them reflexively” [22]. They are performed open-loop, and thus, may

require extensive activation bu↵ers to protect against extreme terrain. The major benefit is

that they can be integrated quickly and with little computational expense. As introduced

in Chapter 1, the proposed research will use a group of predetermined maneuvers to both

propagate against the terrain and automatically avoid it if necessary.

2.2.5 Maneuver Dimensions.

The final category of the CDR framework that will be discussed is the manner in which

the maneuver is executed. Much like the state dimensions in Section 2.2.2, each maneuver

can include lateral components, vertical components, speed changes, or a combination

of each to avoid a collision [22]. The nature of air-to-air collision avoidance allows for

di↵erent control applications to e↵ectively avoid a collision. For example, GPWS uses a
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vertical only maneuver dimension [22], while the F-16 Auto GCAS uses both a roll and

climb maneuver [1].

The CDR framework developed by Kuchar and Yang was described in some detail

because it outlines the basic structure of any aircraft collision avoidance system. As

has been explained, there exists a gap in the current literature for the application of this

framework for heavy aircraft automatic ground collision avoidance. The current literature

provides little insight into the nature of ground collision avoidance, focusing more on air-to-

air scenarios. The use of DEMs and aircraft performance capabilities will require additional

conflict detection and resolution methods not currently addressed by Kuchar and Yang’s

framework.

2.3 Terrain Databases

Before a thorough examination of current aircraft ground collision avoidance systems

can be described, it is paramount to understand the underlying tools used to model and

predict terrain. This research will focus on tools that use terrain databases as opposed to

real-time terrain following systems such as radar altimeters or look-ahead terrain following

radars. These systems have practical applications, but they are limited in their ability to

anticipate terrain at a significant distance ahead of the aircraft and are very limited in their

ability to assess terrain laterally. For these reasons, preexisting databases provide the most

practical method when comparing to aircraft path propagation. There are three main DEMs

that are currently used for terrain analysis [35]. A DEM is “any digital representation of

the continuous variation of relief over space” [4]. The main DEM used for the purposes

of this research will be the SRTM DTED. The other two DEMs are legacy DTED and the

National Elevation Database (NED) [35]. It is important to note that SRTM DTED and

legacy DTED are often both simply called DTED although there are inherent di↵erences.

For the purposes of this research, the term DTED alone will always refer to SRTM DTED.
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2.3.1 SRTM DTED.

Since SRTM DTED is the terrain database used in this research, it will be discussed

in detail first. The SRTM DTED was obtained by the shuttle Endeavour on a mission

launched from Kennedy Space Center on February 11, 2000 [16]. The shuttle orbited the

earth 159 times over 10 days using a special synthetic aperture radar developed specifically

for terrain data gathering called the Shuttle Imaging Radar-C (SIR-C) which evolved into

the tools used for the mission named C-RADAR and X-RADAR [16]. The data itself was

validated against a Global Positioning System (GPS) truth source. The result was 9 m

vertical accuracy with the greatest error occurring over steep terrain [16]. One of the major

drawbacks of SRTM DTED is that it represents radar returns from whatever object first

reflected the energy. As would be expected, areas of dense vegetation or urban centers

would return data that is not the bare terrain below [16]. In general, this may result in

inaccuracies over these regions, but they are inaccuracies that would cause acceptable,

conservative errors. For example, if an aircraft were flying over densely forested terrain,

the SRTM DTED would likely have reported the top of the trees as the terrain floor. The

provided algorithm would then maintain the aircraft a safe distance from the most relevant

threat [35]. In general, it is not recommended to expect this in every situation, but SRTM

DTED is, in this way, conservative in nature and thus a good candidate for automatic ground

collision avoidance software. Most recently, SRTM-2 data has been released for public use

[16]. This DTED has the most detailed resolution obtained by the SRTM and represents a

solid foundation for terrain analyses. The data itself is represented as latitude and longitude

with a relevant height. For this research, a DTED return will be referred to as a ‘post’ that

is infinitely thin and spaced at a predetermined distance. Table 2.1 shows the post spacing

for the di↵erent levels of legacy DTED and SRTM DTED. The data was processed by the

NASA Jet Propulsion Laboratory in connection with the National Geospatial-Intelligence

Agency (NGA) before public release [25].
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2.3.2 Legacy DTED.

In short, legacy DTED is a mosaic of di↵erent data sources taken over decades

with each source having varying degrees of accuracy [35]. Due to the di↵erent sources

of data, there exists sometimes extreme discontinuities in the information with most of

the inaccuracy being in altitude. Unfortunately, incorrect altitude data can cause serious

problems for a ground collision avoidance algorithm making the use of legacy DTED

unwise. NASA evaluated the use of legacy DTED for its small Unmanned Aerial Vehicle

(UAV) Auto GCAS report and found that “although legacy DTED was a useful source in

its time it has many issues with discontinuities across latitude-longitude boundaries and

localized artifacts that can result in vertical errors of hundreds of feet (in some cases over

a thousand feet of vertical error)” [34]. For this very important reason, legacy DTED will

not be used for this research since more accurate, practical data is available. Again, Table

2.1 displays the specifications of legacy DTED and SRTM DTED.

Table 2.1: Digital Terrain Elevation Data Types [25, 35]

DTED Level Post Spacing Post Spacing Cells/Degree

(arc-seconds) (Ground Distance)

DTED-0 30 arc-sec 900 m 120

DTED-1/SRTM-1 3 arc-sec 90 m 1,200

DTED-2/SRTM-2 1 arc-sec 30 m 3,600

DTED-3 1
3 arc-sec 10 m 10,800

2.3.3 National Elevation Dataset.

The final DEM that will be discussed is the NED. The NED is only available for

the United States, but it is released to the public and has a higher resolution than SRTM

2 [35, 38]. From a practical standpoint, it is a useful alternative to DTED. Militarily,
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it is not consistent with the expeditionary mindset of the United States Air Force. For

all practical purposes, Air Force aircraft must be capable of operating all over the globe,

and their systems must be usable in all those same locations. For this reason, despite

its outstanding accuracy and availability, the NED is not a realistic option for military

use. Interestingly, the NASA DROID Small UAV program uses a combination of NED

and DTED based on where the UAV is flying [34]. This is a potential solution to the

geographically limited NED, but since the current SRTM DTED provides enough detail for

the proposed application, it is unnecessary to include the NED in the proposed algorithm

herein.

2.4 Existing Ground Avoidance Systems

2.4.1 Fighter Type Aircraft.

A detailed discussion on automatic ground collision avoidance systems can be found

in Suplisson [35]. The following fighter review will focus on the systems that are applicable

in nature to the presented research with the understanding that other fighter systems, both

automatic and manual, exist but they are not specifically relevant to this research.

2.4.1.1 F-16 Auto GCAS.

Any automatic ground collision avoidance discussion typically begins with aircraft

that have high historic loss rates as a result of CFIT. Due to mission requirements, pilot

task saturation, and aircraft flight profiles, it is fighter aircraft that stand to gain the most

from automatic algorithms. For this reason, most literature and technical development

about the subject has been related to fighters. Within the United States Air Force, the F-16

Auto GCAS algorithm is fully developed and fielded on Block 40 and 50 F-16s. There was

a need for the development of the system as CFIT had become the #1 cause of fatality for

fighter aircraft and the Secretary of Defense mandated to reduce mishaps by 50% [35]. The

actual algorithm itself di↵ers due to the dynamic capabilities of fighter aircraft. The F-16’s

Auto GCAS is unique because it “does not assume the pilot is in the loop nor that the pilot
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can respond” [35]. The system takes advantage of the fighter’s performance and therefore

executes one escape maneuver which is a roll to wings level and a 5-g pull to safety [36].

The F-16 Auto GCAS, as of 2014, is being operationally fielded in combat Air Force units.

Having already been credited for aircraft and pilot saves [35], there is a need for further

work in automated algorithms for other airframes, though direct application of the F-16’s

system to heavy aircraft is unreasonable due to performance disparities.

2.4.1.2 Navy Terrain Awareness Warning System.

The only other fighter system applicable to the research is the US Navy Terrain

Awareness Warning System (TAWS). The TAWS system is interesting because it

propagates two predicted trajectories, the Vertical Recovery Trajectory (VRT) and the

Oblique Recovery Trajectory (ORT) [26]. The propagation and detection method used

in TAWS is similar to the proposed algorithm so it will be discussed in detail with an

emphasis on escape path techniques, collision detection, and system-aircraft-pilot interface.

In general, the benefit of TAWS over previous Navy systems such as GPWS is that it

provides a look-ahead capability [26, 35]. “TAWS uses SRTM Level 1 DTED for the high-

speed fighter and attack aircraft to provide the forward-looking capability not possible with

radar altimeter alone” [35]. The VRT path propagated by the TAWS system provides a

wings-level roll and 5-g pull, similar to the F-16 Auto GCAS [35]. The ORT is still a 5-g

pull but it maintains the current level of bank [3]. The actual propagation of the ORT path

is interesting because the number of iterations is a function of the aggressiveness of the

maneuver. For example, at higher bank angles and roll rates the ORT is shorter and, thus,

less propagated iterations are required [35]. This is an important consideration because

it prevents overlapping iterations from occurring and it helps to minimize computational

requirements. Computational speed is a major factor in the present research and the TAWS

path length adaptation helps minimize these propagation times. “TAWS also provides the

pilot directive visual cues for how to perform a manual recovery to avoid the terrain”
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[35]. This added benefit will not be included as part of this research, but the infrastructure

provided by this research will make such a tool possible in the future.

The F-16 Auto GCAS and Navy TAWS have been successful programs, and both have

been credited with aircraft saves [35], but they still lack the robustness required to protect

heavy type aircraft. Both systems take advantage of their respective airframe’s enhanced

performance capabilities. Due to these abilities, no additional functionality based on type

of terrain is included or necessary. Terrain type, as discussed in Section 3.8.3, is another

issue that will need to be addressed for heavy aircraft. In addition, extra considerations

for avoidance maneuvers will be necessary to successfully detect and deconflict terrain for

larger, less maneuverable aircraft.

2.4.2 Heavy Type Aircraft.

As previously stated, there are many preexisting systems in the aircraft that alert the

pilot to the location of the terrain. The following section will focus on the systems dedicated

to avoidance alone and/or that have forward looking capabilities for heavy aircraft.

2.4.2.1 Air Force Terrain Awareness and Warning System.

Similar in name to the Navy’s system, the Air Force uses TAWS in some of its

heavy aircraft such as the C-17 [7]. The C-17 version of the system is used in multiple

capacities, from normal high-altitude flight, to low-level missions, to approach and landing

[7]. The system needs some crew interaction based on di↵erent modes of operation to

include Normal Mode, Tactical Mode, and Runway Mode [7]. TAWS will work in default

upon power-on, but its more robust tactical and runway modes need to be hand selected.

Additionally, TAWS can provide adjustable altitude settings for operation in the low-level

environment [7]. The system itself is advisory in nature only and has no automatic control

authority, though it does present its results on a color Multi-Functional Display (MFD).

Figure 2.1 shows the MFD output.
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Figure 2.1: C-17 TAWS MFD Color Output [7]

The color display shows the location of the most prevalent threats and color codes them

based on the height of the object and the altitude of the aircraft. The system also includes

an aural warning of “TERRAIN, TERRAIN” “when the clearance over the terrain/obstacle

is predicted to be less than a minimum clearance height. The prediction is based on a

straight ahead climb calculated from aircraft capabilities, configuration, and standard crew

reaction times” [7]. Since this is a manual only system, the single propagated path is

su�cient because the system assumes an aware pilot and functions only in an advisory

role. TAWS is the most robust of the heavy aircraft terrain avoidance systems, yet it will

not prevent controlled flight into terrain and it does not anticipate aircraft maneuvers outside

of a straight ahead climb. Interestingly, in an e↵ort to avoid nuisance warnings, the system

can be manually set to 0 ft, which would prevent any indications to be sent to the pilot at all

[7]. The biggest functional benefit is the pilot’s display which can give advance notice for

impending terrain. In general, this system is excellent for advising the pilot of terrain, but
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its lack of automatic control and its inability to provide warnings for lateral objects limits

its functionality in preventing CFIT.

2.4.2.2 C-17 Ground Proximity Warning System.

The GPWS system for heavy aircraft is addressed next since it does provide input on

terrain avoidance, but the system has no forward look-ahead, and thus is not extremely

relevant to the discussion outside of its mere existence. The system is designed by

Honeywell and can be found on all US jet transport aircraft [35]. “The GPWS inputs

include the aircraft configuration (flap and gear positions), radar altimeter, barometric

altitude, vertical velocity, glide slope deviation, and pilot inputs” [7]. As with TAWS,

the crew has input into the level and amount of reporting from GPWS, though warnings in

the flight publications mandate that the system remain active [7]. Additionally, GPWS has

six alerting modes based on di↵erent flight profiles and terrain collision scenarios [7, 35].

Functionally, the system only looks straight down from the aircraft’s current location and

makes a calculation based on distance and closure to present an indication to the pilot [7].

One of the major uses of GPWS is to advise the crew of aircraft configuration issues based

on the current flight profile (i.e. landing gear extension due to a flight path matching a

landing approach). The algorithm is not predictive in nature, nor does it use any specific

DEM to determine the location of the terrain below. In general, GPWS is a good tool to

make the pilot aware of current, potentially dangerous flight situations, but it is not meant

as a tool to evaluate terrain or propagate information forward, and it does not make any

automatic corrections. As a note, “US Federal Aviation Administration (FAA) Circular

AC23-18 [published] in 1974...mandated that all large turbine and turbojet commercial

aircraft install GPWS” [14, 35].

The presented tools for heavy aircraft, TAWS/GPWS, are valuable aids for increasing

pilot situational awareness. Each tool is adequately integrated into the avionics of the

aircraft and they both benefit from weight and configuration information [7]. Unfortunately,
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the tools will not prevent CFIT if the pilot does not take action to manually recover the

aircraft. The major takeaways from both systems is that sound integration with the existing

avionics can allow for added flexibility in the programming of the software. Without it,

conservative estimates on aircraft performance must be made to cover all flight envelopes.

In general, this could degrade flight performance, increase computational expense, and

cause unnecessary nuisance warnings. For these reasons, a long term goal should be to

integrate proposed automatic collision avoidance systems into each aircraft’s specific flight

computer to take advantage of the real-time configuration information.

2.4.3 Remotely Piloted Vehicles.

The last system discussed and the most relevant Auto GCAS algorithm was recently

tested by NASA on a small remotely piloted vehicle, a.k.a. UAV, and it is the conceptual

starting point for this research. The paper titled, “Small UAV Automatic Ground

Collision Avoidance System Design Considerations and Flight Test Results,” outlines the

methodology and flight tests of their algorithm [34]. The system will be discussed in detail

in the next three sections as many of the findings and recommendations are germane to

this research. The program based much of its initial design requirements on the F-16 Auto

GCAS so there are considerable similarities between the two, yet NASA’s team modified

the algorithm to take into consideration the performance di↵erences of the small UAV. The

following discussion focuses on the terrain model, conflict detection, and conflict resolution

algorithm.

2.4.3.1 Terrain Model.

Interestingly, NASA’s system uses an Android phone embedded with the required

DEM information and the Auto GCAS algorithm coded in Java [34]. The point of using

this device was to prove that the data and logic can be encased in a small lightweight

system with limited storage capacity, a major concern for relatively small and under-

powered UAVs. “It was determined that the best widely accessible DEM source for Auto
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GCAS applications was the National Elevation Database produced by the United States

Geological Survey (USGS)” [34]. Since this database contains only data for the continental

US, SRTM DTED was used for areas not inherently covered by the NED. In an e↵ort to

make DEM information more accessible and applicable to di↵ering mission sets, NASA

developed numerical techniques to generate Compressed Digital Terrain Maps (CDTMs)

that compressed the world’s data from 400 G Bytes to 170 M Bytes with minimal loss in

accuracy [34]. The two numerical methods were named “Tip-Tilt” and “semi-regular tree

networks” [34]. The Tip-Tilt method was a means of making the model of the terrain more

accurate to the actual slope of the terrain without using as many data points. Figure 2.2

displays an example output of the terrain algorithm.

Figure 2.2: Tip-Tilt Algorithm Output [34]

The Tip-Tilt method “used linear regression to fit the sloped tile to the terrain data

underneath it” [34]. This method admittedly reduces accuracy, but the tiles were built

to minimize a targeted error tolerance, so that the data would be su�cient for Auto GCAS

while modeling the terrain more closely with less data [34]. The semi-regular tree networks

created in CDTM are simply a way to model large areas of similar terrain with far fewer
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data points [34]. For example, in the Great Plains, one large “tile” could accurately cover

a large portion of ground without requiring the numerous underlying data points. The

combination of these terrain modeling techniques are part of a tool called the Global

Elevation Data Adaptive Compression System (GEDACS) [34]. The combined e↵ects can

be seen in Figure 2.3. These techniques formed the terrain model used in NASA’s small

UAV program.

Figure 2.3: Global Elevation Data Adaptive Compression System Example [34]

2.4.3.2 Small UAV Conflict Detection.

As previously mentioned, performance limitations in heavy aircraft and UAV

platforms necessitates the need for conflict detection methods that di↵er significantly from

fighter platforms. NASA’s small UAV employs a terrain detection process that utilizes

the three avoidance paths, plus uncertainty, that the aircraft would potentially use to avoid

terrain [34]. The detection method analyzes the terrain below each of the three paths using

the GEDACS model discussed in Section 2.4.3.1. Much like the F-16 Auto GCAS, NASA’s
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algorithm takes into account an allowance for track and navigation uncertainty [34]. Figure

2.4 shows the terrain ‘scan’ method using NASA’s algorithm.

Figure 2.4: NASA Small UAV Turning Terrain Scan Pattern with Uncertainty [34]

As can be seen, the detection path (the total scanned terrain for a given maneuver), outlined

in magenta, grows as position uncertainty increases for the model. It is important to note

that for a small UAV, much of the track inaccuracy will be a function of wind, which has

a large e↵ect on small, light, slow aircraft [34]. NASA recommends that wind should be

included in the path prediction model if the wind magnitude will be greater than 15%-30%

of the aircraft speed [34]. The specific detection path algorithm used by NASA evaluates

each DTED bin that the aircraft path uncertainty space overlays. For example, the gridded

squares in Figure 2.4 each represent a rasterized bin space around each DTED (or NED)

post which would be found at the center of each rectangle. If the path touches one of those

rectangles, then the system evaluates its corresponding bin elevation. The final product

will, as a result, e↵ectively scan more data points than if the inclusion of the post alone
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was used. The model then predicts if a collision is to occur based on bin height and aircraft

altitude bu↵ers [34].

2.4.3.3 Small UAV Conflict Resolution.

The three paths used in NASA’s algorithm are built on performance assumptions for

a typical UAV type platform and include a forward path, a left path, and a right path. The

conflict resolution is based on a “last man standing” approach. The system evaluates each

propagated path and determines if a collision with terrain is anticipated for each of the

three as described in the previous section. If all intersect terrain, than the last one to predict

a collision is implemented [34]. The forward path is propagated as a wings level climb,

capturing 1000 Feet Per Minute (fpm) climb and 60 Knots Indicated Airspeed (KIAS),

[34]. The turning paths were planned to be symmetric with 40� of bank capturing 800 fpm

climb and 60 KIAS [34]. The actual paths intersecting with terrain can be seen in Figure

2.5.

Figure 2.5: NASA Small UAV Avoidance Maneuvers and Conflict Resolution [34]

The resolution approach used by NASA assumes that the pilot is purposely flying near

terrain to accomplish a mission objective, therefore, the last man standing approach allows
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the mission objective to be accomplished until an aggressive maneuver is necessary to avoid

terrain. This method is also useful in avoiding nuisance activations. NASA also states that

“a full six degree of freedom simulation is not required to model the trajectory predictions”

[34]. Since the specific path of the UAV is modeled with an uncertainty bu↵er, the path

includes all the terrain than can actually be covered so exact precision in the propagation

equations is unnecessary. This subsequently helps improve computational speed which is a

driving factor for system performance. Additionally, it is recommended that the avoidance

paths use a large portion of the available maneuvering capabilities of the aircraft [34].

This helps prevent nuisance activation because the aircraft is only analyzing terrain at the

limits of its capabilities which is typically far greater than what would occur during normal

operations.

The information obtained from NASA’s small UAV program is a great knowledge base

for a transition of Auto GCAS to heavy-type aircraft. NASA’s analysis lays the framework

for path propagation and detection for aircraft that do not have fighter performance

capabilities. Additionally, it addresses multiple recommendations for future work that will

be utilized by the research herein.

2.5 Equations of Motion

As stated in Section 2.4.3.3, 6-DOF is unnecessary for the actual calculation of the

EOM governing the propagation of the aircraft’s paths. The work by Raghunathan et

al. titled, “Dynamic Optimization Strategies for Three-Dimensional Conflict Resolution

of Multiple Aircraft,” outlines a 3-DOF model that can accurately represent aircraft

motion over a shortened interval [28]. The research was specifically designed for

air-to-air deconfliction using optimal conflict resolution algorithms [28], but it has

been proven to have applications beyond air-to-air. In fact, Suplisson’s research uses

Raghunathan’s methodology in her optimal Auto GCAS algorithm [35]. “The key concept

in [Raghunathan’s] paper is a mathematical programming-based dynamic optimization
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framework for the accommodation of detailed dynamic aircraft models for the purposes

of construction of optimal conflict-free trajectories for a given aircraft set” [28]. The

model itself, also referenced in Section 3.2 with subsequent simplification, is formulated

as follows:

ẋ = V cos � cos � + vWx (2.1)

ẏ = V cos � sin � + vWy (2.2)

ż = �V sin � + vWz (2.3)

V̇ =
T cos↵ � D � MG sin �

M
(2.4)

�̇ =
(T sin↵ + L) cos � � Mg cos �

MV
(2.5)

�̇ =
(T sin↵ + L) sin �

MV cos �
(2.6)

where the states, ẋ, ẏ, and ż are velocity in the flight path direction, lateral direction, and

vertical direction respectively. Additionally, V is ground speed, � is flight-path angle, �

is heading angle [31] and g is gravity. The model assumes a point mass and is a practical

representation of aircraft dynamics [28]. The proposed equations assumes a constant air

density, though this could be altered in real-time with look-up tables. Additionally, the

model takes into account winds, vW , though as addressed in Section 2.4.3.2, this can be

neglected for larger, faster aircraft. The simplified derivation of this 3-DOF model has

been used accurately in past simulations for both air-to-air and air-ground applications

[31]. Longer propagation timelines will obviously cause increased inaccuracies that can

make the states of the aircraft unusable for collision detection purposes. For this reason,

care must be taken in determining propagation lengths, or higher fidelity equations must be

employed. This important point will be addressed in detail within this research. In general

though, these equations and subsequent research have proved viable for aircraft collision

avoidance applications.
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2.6 Terrain Morphology

As part of the research, a proposed mapping of terrain will be performed to establish

requirements on how long to propagate the EOM. Some background information on these

topics is provided next. An area of concern often overlooked with respect to Auto GCAS

algorithms is a characterization of the terrain below the aircraft in an e↵ort to group terrain

in larger classification structures to determine path propagation lengths. The information

for the terrain classification already exists within the inherent DEM data the systems use

to evaluate conflicts, but it is not currently characterized e�ciently. This section will

address relevant research concerning terrain morphology, classification, and existing Air

Force terrain regulations.

2.6.1 Terrain Characterization and Modeling.

Typical methods to classify terrain have been through field survey, or aerial

photographs [10]. In general, these methods are time-consuming, labor intensive, and

somewhat inaccurate when compared to the existing level of refined data. Fortunately,

“integrating satellite, aircraft and terrestrial RS systems to achieve a scale-dependent set

of observations can be achieved through operational systems and current technologies”

[10]. Typically, terrain analyses have been a direct function of the desired end-state

application. This has caused numerous classification schemes that are di�cult to interpret

outside of their intended use. More robust methods using topographic derivatives such

as slope, aspect, profile curvature, topoclimatic index and slope length can now be easily

obtained making classification schemes more adaptive and useful. Using this information,

a need has arisen to identify a classification of landforms that cover vast swaths of land

yet still be applicable to other data sets [10]. The method proposed by Dragut et al. will

“delineate areas of relative homogeneity within the spatial layers of topographic variables

such as slope and curvature.” This methodology uses profile curvature, plan curvature,

slope gradient, and altitude to characterize and group terrain. It looks at the whole picture
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over a large area of terrain and defines the landforms based on dominate features and slope.

The benefit to this is that it applies a generalized view of the terrain instead of just focusing

on one feature. This prevents one steep hill in the Great Plains from skewing the larger

classification structure. Dragut’s research classifies landforms in three hierarchical levels

[10]. The levels consist of Upland, Midland, and Lowland with varying sub-levels. These

levels were established based on a relative elevation criterion. “Relative altitudes were

used...to develop a classification system applicable to di↵erent datasets” making it easily

transferable [10]. The major takeaway from this research is that it is possible to categorize

terrain into only three categories based on generalized landforms and slope information.

The actual use of the classification will still be somewhat application specific, but the

inherent framework has been established.

2.6.2 Additional Digital Elevation Model.

Section 2.3 contained the discussion on the most relevant terrain databases. Another

digital elevation model titled the 3D Elevation Program, is currently being designed by the

United States Geological Survey (USGS) and it has the potential to be a useful tool for

terrain elevation information within the United States. In fact, one of its stated applications

is “improved elevation data for cockpit navigation and flight simulators” that should “save

lives each year by reducing accidents resulting from the inability to safely fly over obstacles

in airspace” [32]. The end state goal for the model is to replace the NED. The 3D Elevation

Program will “systematically collect enhanced elevation data in the form of high-quality

light detection and ranging data” [32] over the US. This product will eventually be a

useful upgrade to the NED and it will provide an additional option for aircraft integration.

Unfortunately, the information will only be available for use over the conterminous United

States [32] and, thus, has limited military application.
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2.6.3 Air Force Terrain Classification.

For flying purposes, the Air Force classifies terrain in only two categories,

mountainous or non-mountainous. Air Force Instruction (AFI) 11-202 Volume 3 outlines

this delineation. “In the absence of other Major Command (MAJCOM) guidance, USAF

aircrews shall consider as mountainous: those areas defined in 14 Code of Federal

Regulations (CFR) §95.11 for the continental US, Alaska, Hawaii and Puerto Rico. For all

other areas of operation, use a 500 ft surface elevation change over a 1
2 Nautical Mile (nm)

distance to define the location of mountainous terrain” [18]. This classification is legacy

in nature and was designed for the overarching use of the military fleet. It is not aircraft

specific nor is it designed for specific mission use. Its general use is to define a minimum

altitude for flight over certain areas, typically much higher than low-level altitudes. The

usefulness of this application is that it defines specific mountainous areas over the US,

while still allowing some flexibility for those areas that are not defined. It also gives insight

into the Air Force’s categorization of mountainous terrain.

2.7 Aircraft Performance Classification

This section will cover the Air Force’s current classification scheme with respect

to aircraft. An understanding of the existing classifications is important because, as

noted previously, aircraft performance capabilities can dramatically a↵ect flight dynamics

and anti-collision maneuvers. Classifying aircraft allows for generalized Auto GCAS

algorithms to be built that should seamlessly integrate into a variety of aircraft, thus

decreasing production costs.

Currently, the Air Force categorizes their aircraft based on mission/type or via

performance classes. The classification based on mission is usually denoted by the letter

prefixing the formal aircraft designation. For example, the ‘F’ in F-16 stands for fighter,

whereas the ‘C’ in C-17 stands for cargo. There are numerous other classifications, but in

general, all the designations are generic in nature and can cover a wide swath of aircraft
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performance capabilities. For example, there is a large di↵erence between the propeller

driven C-130 and the heavy jet transport, the C-5. For this reason, a more detailed

delineation is required.

The military also classifies aircraft for the purposes of military acquisition standard-

ization [8]. The MIL-STD-1797 outlines this classification in detail and Table 2.2 outlines

the basic descriptions of each. In general, this classification is more fitting for automatic

Table 2.2: MIL-STD-1797 Aircraft Classification [8]

Class I Class II Class III Class IV

Small Light Med Weight/Agility Heavy Weight/Low Agility High Agility

ground collision avoidance software since it addresses the maneuverability potential. Un-

fortunately, there can still be large discrepancies within the same class. For example, a B-1

Lancer bomber aircraft and a C-17 Globemaster would both fall under Class III. They both

are categorized as heavy aircraft with low-to-medium agility, but they both operate at very

di↵erent speeds [8]. Large variations in speed, upwards of 150 kts, drastically changes

look-ahead propagation times and aircraft maneuverability. For this reason, the classifica-

tion standard may not be suitable for ground collision avoidance software. There exists a

need to classify aircraft in a manner that groups them both on performance and mission if

applicable. Section 3.8.2 will address this issue.

2.8 Calspan Learjet Flight Test Background

One of the major objectives of this research is to conduct flight tests to evaluate the

performance of the Auto GCAS algorithm in a real-world scenario. The testbed for this

will be the Calspan Learjet flown from Edwards AFB. “Calspan Corporation has been the

primary innovator, developer, and operator of in-flight simulators in the United States as
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well as the rest of the world” [40]. The presented research will take advantage of the

Calspan Learjet’s VSS to safely operate the algorithm without the opportunity for critical

flight safety errors occurring. The Learjet was chosen by Calspan because it met the

requirements to host a VSS, and it had wings capable of high roll rates that would allow it

to closely model fighter type aircraft [40]. Figure 2.6 shows the actual aircraft that will be

used in flight test for this research.

Figure 2.6: Calspan Learjet Photo [40]

The VSS is a 4-DOF system with upgrades that allow pre-programmed gains to be

quickly changed in flight [40]. This modification is unique and beneficial for Auto GCAS

research as di↵erent aircraft gains can be quickly chosen to test a program against di↵erent

airframes. “The VSS is designed to take commands from either a pilot onboard the aircraft,

a sensor operator in the main cabin, a UAV operator on the ground, or an autonomous

control algorithm. The system architecture is set up such that extensive validation and

verification testing is not required before flight” [6]. Currently, the Calspan Learjet has been

involved in 21 di↵erent flight test programs three of which include automatic activation

in some capacity. Additionally, software within the Learjet is specifically designed for

integration with MATLAB, the underlying source code for this project’s algorithm. For
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these reasons, the Calspan Learjet is the best available TPS flight platform to conduct Auto

GCAS testing.

2.9 Summary

This Chapter reviewed the relevant literature pertaining to aircraft avoidance models,

DEMs, terrain characterization, aircraft classification, aircraft EOM, and germane flight

test assets. The presented review displays that some required information remains to be

analyzed and a multi-path algorithm for manned heavy aircraft has yet to be realized. The

way forward requires an evaluation of di↵erent military aircraft as well as a classification

for terrain so that the proposed algorithm can have applicability across airframes with

di↵erent capabilities operating in all corners of the world.
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III. Methodology

3.1 Introduction

The following chapter will outline the methodology leading to the flight test of project

Have ESCAPE. This will entail a derivation of the 3-DOF EOMs that will propagate

aircraft paths forward in time. This will include transitioning between reference frames

and altitude realizations required for actual aircraft integration. Additionally, terrain

classifications and aircraft performance characterizations will be introduced and defined

to specify essential algorithm parameters such as path propagation length and protective

sphere size. Also, a sensitivity analysis on the integration methods will be presented to

maximize computational e�ciency. Finally, the flight test methodology will be presented

in detail to include test resources, the test matrix, the data analysis plan, and flight conduct

requirements. In the end, this chapter will outline the tools required to gather the data to

meet the stated research objectives that are analyzed in Chapter 4.

3.2 Equations of Motion

The equations of motion used to propagate the potential escape trajectories forward

for the proposed algorithm must strike a balance between physical accuracy, computational

e�ciency, and required flight dynamics. As described in Chapter 2, a 3-DOF non-linear

point mass model, built based on simplifying assumptions of the standard 6-DOF model,

can be used to accurately depict the performance of the escape paths over their propagated

timeline. The primary objective of this model is to accurately predict the aircraft state

for a maximum of 45 seconds. In general, for low maneuvering aircraft where response

times are not on the order of fractions of seconds and for scenarios that are not increasingly

dynamic nor requiring extremely high fidelity state information, this model will provide the

appropriate amount of accuracy and speed [31]. From a controls standpoint the subsequent
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3-DOF model will, when necessary, command the autopilot or VSS of the aircraft using

only, bank angle (�) for lateral control and load factor (Nz) for z-axis control [31].

3.2.1 Derivation of the 3-DOF Model.

As described in Chapter 2, the 3-DOF Model used by Raghunathan et al. [28] appears

in Equations (2.1-2.6) [31]. The calculation of the state laws in the following formulation

of the aircraft equations of motion follow directly from Newton’s Second Law, a = F
M

with specific derivations as referenced from Raghunathan et al. [28] and the following

discussion. Figure 3.1 displays the basic aerodynamic forces acting on a generalized

aircraft and is the origination for any flight dynamics mathematical development. Eq. (3.1)

Figure 3.1: Basic Aerodynamic Forces [33]

and Eq. (3.2) are a result of the summation of the forces in the longitudinal and vertical axes.

mNz = L + T sin↵ (3.1)

T cos↵ � D = mg sin � (3.2)

Within these equations, M is mass, L is lift, T is thrust, and D is drag. The angle ↵ is the

angle between the aircraft chord line and the resulting free stream if the aircraft had a non-

zero angle of attack. More specifically, Eq. (3.2) shows that the force components along
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the longitudinal (x-axis) would sum to zero meaning that the aircraft is not accelerating

and thus the velocity is constant. This is another simplification of the point mass model,

though over short intervals it does not significantly alter a solution and, in this analysis, it

is assumed that the aircraft is operating at its tactical low-level airspeed. It is understood

that an application of the autopilot will require a change in thrust to maintain a constant

airspeed throughout the maneuver. Some aircraft, such as the C-17, have this capability

inherently. For other platforms, pilot action or aircraft upgrades may be necessary and

are beyond the scope of this research. An additional assumption is that the sideslip angle

(�) is zero and the side force is negligible [31] which is reasonable with modern flight

control systems that automatically remove sideslip and “are standard aircraft assumptions

for this type of application” [31]. A more in-depth review of the EOM can be found in

Raghunathan and Bicchi [2, 28]. A further simplification will be made for the purpose of

this analysis by setting wind, vWx, vWy, and vWz to zero in Eq. (2.1) through Eq. (2.3). The

terms can be easily added for future use if required. It is understood that winds will change

the dynamics depending on their direction and magnitude, but for a generalized solution,

the zero wind approximation will su�ce, and a constantly updated aircraft position and

fast computational speed will help mitigate these e↵ects. As previously stated, research

from NASA has concluded that winds can be considered negligible unless they are more

than 15%-30% of aircraft speed [34]. Additionally, typical aerodynamic terms such as

thrust, drag, mass, angle of attack, and coe�cient of drag are simplified using 3-DOF

approximations and the relationships in Eq. (3.1) and Eq. (3.2).

These equations allow for the aforementioned aerodynamic forces to be solved for in

terms of Nz and �. To do this, Eqns. (3.1 & 3.2) are substituted into Eqns (2.4-2.6) resulting

in the five state equations, Eq.(3.3-3.7) [31]:

ẋ = V cos � cos � (3.3)

ẏ = V cos � sin � (3.4)
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ż = V sin � (3.5)

�̇ =
Nz cos � � g cos �

V
(3.6)

�̇ =
Nz sin �
V cos �

(3.7)

Equations (3.3-3.7) form the developed 3-DOF model used in this research and they

represent the equations of motion that will propagate the aircraft escape paths forward

using the controls Nz and �. It is important to note that the flight path angle and heading

angle are not fixed for the purpose of this analysis and will change based on the initial

aircraft state and control trajectories. Limits will need to established for each of these

parameters for safety of flight concerns. In general, the state of the aircraft will be such

that it ultimately recovers to a position that avoids obstacles and is within a flyable envelope

for transfer of control back to the pilot. Future research could use optimization techniques

within the flight dynamics to fly this maneuver minimizing a predetermined cost functional

and ultimately facilitating command back to the pilot after the maneuver is complete.

3.2.2 EOM Scope.

As discussed in Section 3.2, it is necessary in all cases to constrain vertical

acceleration, bank angle, and flight path angle so that the aircraft maintains a safe operating

regime throughout the automated maneuver. The flight dynamics in the EOMs are

independent of aircraft type and do not explicitly contain protections against unsafe flight

parameters. For example, there is no predetermined limit on the flight path angle which

could theoretically allow the aircraft to climb to angles that would cause an unrecoverable

stall. To prevent this situation, specific limits have been set. For heavy aircraft, it was

decided that 15� is a practical limit that balances the need to avoid terrain vertically

without presenting a dangerous situation. It is understood that some aircraft will be able

to outperform this climb angle while others may require a lower value. The same situation

would be necessary for bank angle, but this control is set specifically for each escape path

and paired with an appropriate Nz to prevent excessive bank angles. For example, the
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lateral paths are set at 60� of bank and 2 g’s. This will result in a level turn and never put

the aircraft at risk. Admittedly, there exists aircraft that may require more or less stringent

controls which would require specific alterations to the EOM, but in general, the presented

equations and limits are conservative for most tactical aircraft. The limits are currently set

at �60�  �  60� and 0g  Nz  2g.

3.2.3 Aircraft Control.

One of the main research objectives for this study is to control the Calspan Learjet

through its VSS with preplanned escape maneuvers. For this to occur, a control history

for each maneuver must be established so that bank angle (�) and vertical acceleration,

(Nz), can be sent to the aircraft and executed if a collision with terrain is imminent. With

physical accuracy and computational speed being important analysis factors, two di↵erent

control history methods were analyzed, a polynomial fit, and a time/control matrix look-up

to maneuver the aircraft. In either case, the control itself had to be calculated from desired

aircraft maneuver capabilities and flight path accuracy. This resulted in control vectors

specific to each avoidance maneuver that will be propagated forward.

First, the decision was made to avoid a polynomial fit and instead execute a matrix

look-up for the control. The choice was based on the inaccuracies of a polynomial fit

within the function propagating the EOM. Specifically, a low-order polynomial fit, though

computationally cheap, would cause physical inaccuracies due to its predictive nature of

future control. On the other hand, the evaluation of the matrix look-up can be executed

exactly at the timestep, and it can be predetermined once. This negates the need to

recalculate the control vector at every propagation step. Additionally, a predetermined

matrix look-up will allow for easy, autonomous integration with any aircraft flight control.

It should be noted that smoothing of the control vector may be required due to actual flight

dynamics.

38



The forward path control is a vector of Nz’s fit to a specified time vector. The Nz vector

was calculated based on the first time at which the propagated forward path reached both

14� and 15� flight path angles (�). These times are important because 15� is the flight path

angle limit so 14� represents the point where Nz would need to begin decreasing to a steady-

state value to maintain 15�. The vector was built assuming an initial 2-g pull, essentially 1

g more than level flight. The control remains constant until 14� is reached. At this point, a

linearly spaced decrease in Nz is applied to reach the Nz that holds 15�, approximately 0.96

g. The Nz required to maintain 15� was calculated using Eq. (3.6), solving for Nz where �̇

and � equal zero. This simplifies to Eq. (3.8).

Nz = cos � (3.8)

From here, a time step of 0.001 seconds over a 60 second window was used to build the

vector. These numbers were chosen because 0.001 is a much finer step than will be executed

in the actual integration and 60 seconds is well past the point of where a constant flight path

angle would be reached. Once calculated, the vector was analyzed against the truth code

propagated by ODE45. It was found that the presented control was within 0.3 s of the 14�

and 15� benchmarks.

The lateral path’s Nz and � were calculated di↵erently. For this reason, they can be

chosen independent of the equations of motion. The relationship in Eq. (3.9) is used to

relate bank angle and load factor.

Nz =
1

cos �
(3.9)

The bank angle was calculated based on an accepted roll rate for heavy-type aircraft. For

this analysis, a roll rate of 15� per second was chosen. This is a reproducible roll rate for low

to high speed aircraft. It must be noted that higher performance aircraft may benefit from a

faster roll rate, though, 15� per second is a reasonable estimate for all considered airframes.

This roll rate was multiplied by the same time vector previously mentioned and limited to

60� of bank. This vector now contains all the bank angles, at very small intervals to get the
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aircraft to 60� at 15� per second. The bank vector is then inserted into Eq (3.9) to create

the corresponding Nz vector. From a sensitivity standpoint, the simulated model has a max

deviation over the time interval of less than 1 meter in altitude for the level maneuver, an

easily acceptable error range. The e↵ective and simplistic nature of these control algorithms

allow for easy application to di↵erent aircraft or di↵erent missions based on roll or pitch

restrictions that may be imposed due to high gross weights. This same control algorithm is

used for each additional path or for more maneuverable aircraft with di↵erent g and flight

path angle limits.

3.3 TPA Description

Now that the path control has been established, it is necessary to outline how the

control will be used to design the avoidance paths. Two di↵erent algorithms will be

researched. The first is a three-path avoidance algorithm while the second is a five-path

avoidance algorithm. The three-path solution takes advantage of the maximum maneuver

capabilities in both the vertical and lateral directions. In the vertical direction, it is

comprised of a forward path that is a direct 2-g pull up to a 15� flight path limit (or as

required by aircraft performance parameters). The lateral right and left paths are designed

with a 2-g 60� level banked turn. These three path maneuvers are designed to protect

against obstacles that can be out-climbed as well as obstacles that must be avoided with a

turn. Figure 3.2 shows the maneuvers graphically with the associated numbering scheme.

The five-path avoidance algorithm uses the three maneuvers already described as well

as two lateral-up maneuvers. These two additional paths are, again, mirror images of

one another in the right and left directions. They are executed with a 15� roll in one

second followed by a 2-g pull with a 15� flight path angle limit (or as required by aircraft

performance parameters). The maneuver is meant to limit asymmetric g by accomplishing

the roll then the pull. Figure 3.3 shows the maneuvers graphically with the associated

numbering scheme. Ultimately, these two di↵erent algorithms will be researched to
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determine which provides the most e↵ective protection against collisions with terrain and

whether more or less paths are necessary for adequate ground collision avoidance.

Figure 3.2: Have ESCAPE 3-TPA Path Graphic

Figure 3.3: Have ESCAPE 5-TPA Path Graphic
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3.4 Reference Frames

For conflict detection it is necessary to determine the relative aircraft position to the

relevant DTED posts, and thus it is necessary to translate reference frames. The aircraft’s

native geodetic frame must be converted to a local Cartesian based East-North-Up (ENU)

reference frame suitable for the EOM used to propagate the aircraft’s state forward. For

navigation purposes, “east, north, up coordinates are essential in determining the line of

sight for terrain data given as latitude, longitude and height, such as DTED” [11].

To begin, a thorough explanation of both reference frames is required. The geodetic

reference frame used by the aircraft is specifically defined by the Conventional Terrestrial

Reference Frame (CTRF) system utilizing a terrestrial pole, center of mass of the Earth,

and a reference meridian. The current realization of this reference frame is the World

Geodetic System 1984 (WGS-84) utilizing the Greenwich Meridian. This system is used

as the predominant navigation tool by the DoD and for aircraft Inertial Navigation System

(INS)/GPS data. To define a location using the described geodetic reference frame, it is

necessary to specify three parameters: [Latitude, Longitude, Height]. Conventionally for

aircraft use, latitude and longitude are in units of degrees-decimal-degrees and height is

in units of feet. Unfortunately, typical aircraft equations of motion are designed around a

local origin and propagate along a Cartesian reference frame. For this, the ENU frame is

appropriate.

The ENU reference frame is a local-level frame that is defined at any arbitrary point

along the Earth’s surface. The frame itself is tangent to the Earth at the frame’s user-defined

origin and can be thought of as a flat surface with positive directions defined as East and

North with the Up vector defined positive pointed away from the Earth’s center in the form

[East, North, Up].
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Figure 3.4: East-North-Up Reference Frame overlay [29]

Figure 3.4 displays a representation of the frame as it would be viewed on an overlay of

Earth. The benefits of this frame include the ease of path propagation from a specified point

in a manner that is intuitive and computationally inexpensive. Additionally, the units can

be arbitrarily set within the constraints of the EOM.

To implement the rotation, it is required to obtain the current aircraft position passed

from the Learjet’s combined INS/GPS data. Once obtained, the current position is defined

as the initial position for propagation purposes, but it still must be rotated into the ENU

frame. The inherent MATLAB command, ‘geoedetic2enu’, accomplishes this rotation

within the WGS-84 system. To do this, the function requires the initial aircraft position

over the terrain, the current aircraft position and altitude, as well as an ellipsoidal reference.

Obviously, for this analysis, the Earth was used as the function reference within WGS-84.

This initial aircraft position now serves as the ENU local-level frame origin and all path

propagation will occur based on this specified point. The di↵erential equations governing

the aircraft’s motion will provide an ENU vector with distances away from this point for

the required time interval. Each specific escape path for a given origin will be evaluated for

a collision with terrain and, if no impact is expected, the new (updated from the INS/GPS)

aircraft position will act as the new origin and the process will repeat. Essentially, the
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algorithm will calculate new origins and escape paths for each aircraft position reported or

within the constraints of computational speed.

3.5 Height and Altitude Realizations

Up to this point, height and altitude (elevation) have been used nearly interchangeably.

Unfortunately, there are multiple di↵erent realizations of height and altitude that must

be addressed for the e↵ective use of the presented algorithm. The three main heights

that will be discussed are Mean Sea Level (MSL), Height Above Ellipsoid (HAE), and

Geoid Height. An accurate representation of height is imperative for proper rotations

between reference frames, exact analysis of impending collision with terrain, and precise

interactions with the aircraft’s VSS. Figure 3.5 shows the relationship between the three

di↵erent altitude representations discussed.

“WGS-84 provides an ellipsoidal model of the Earth’s shape. In this model, cross-

sections of the Earth parallel to the equatorial plane are circular. The equatorial cross-

section of the Earth has radius 6,378.137 km, which is the mean equatorial radius of the

Earth. In the WGS-84 Earth model, cross-sections of the Earth normal to the equatorial

plane are ellipsoidal” [19]. Within this model, the major axis is the same as the mean

equatorial radius, the semi-minor axis is 6,356.752 km, with an eccentricity, e2, of

0.0066944. This ellipsoidal model is useful as it allows for a mathematically specific

surface from which accurate calculations can be made. From this definition, HAE is defined

as the altitude above (positive) or below (negative) the WGS-84 reference ellipsoid. In

reality, the Earth is not a perfect ellipsoid and WGS-84 does not accurately reflect the

height above the ground all over the Earth, nor does it form a practical platform for aircraft

navigation.
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Figure 3.5: Graphical Representation of Di↵erent Altitude Realizations [12]

Nearly all aircraft navigation, both civilian and military, use MSL altitudes as the primary

source of information for both altitude reporting purposes and operational application.

Heights above MSL are referenced from Earth’s geoid, or surface of constant gravitational

potential. There are an infinite number of geoids, but the most commonly used one aligns

with global mean sea level when viewed from a least squares sense [19]. This geoid is

often referred to as the 1996 Earth Geopotential Model (EGM-96) and is the standard for

reference with WGS-84 [12]. The geoid itself is not constant across the earth and varies

with the earth’s density and geographic topography at a specific location.
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Figure 3.6: Map of Earth’s Geoid Separation [29]

Figure 3.6 displays the geoid undulation across the entire Earth. As can be seen, the

separation between the geoid and Earth’s ellipsoidal model can vary drastically and must

be applied appropriately for accurate altitude modeling. Eq. 3.10, referring back to Figure

3.5, displays the relationship between MSL altitude, HAE, and the Geoid where M is MSL

altitude, H is HAE, G is geoid height [12].

M = H �G (3.10)

For analysis purposes, all altitudes were converted to HAE allowing for consistency with

numerous MATLAB functions used to rotate reference frames and propagate the aircraft’s

position forward in time. Specifically, the functions ‘geodetic2enu’ and ‘enu2geodetic’

require the use of HAE as they perform rotations to and from the ENU reference frame.

Additionally, all altitudes are maintained in HAE as the aircraft paths are propagated using

‘ODE45’.

Current DTED data provides elevation in the vertical datum using MSL [9] and,

as stated previously, aircraft elevation is reported in MSL. For this reason, prior to
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propagation, Eq. (3.10) is used to transform all altitudes to HAE. As can be seen from

Figure 3.6, this transformation varies based on the specific location on the globe. This

analysis interrogated 58,000 geoid heights in the area of interest between N 35.1o to N

35.3o and W -117.3o to W -117.5o and found that the average geoid height to be -31.783 m

with a standard deviation of 0.113 m and a maximum error of less than 0.3048 m. This set

value was then added to every MSL value for both the DTED and reported aircraft altitude

to provide all elevations in HAE. Prior to passing this information back to the aircraft,

the local geoid undulation is subtracted from the HAE elevations to again provide MSL

altitude. In this way, aircraft position and altitude is accurately compared against DTED

data to provide precise information on potential terrain collisions.

3.6 Aircraft Terrain Protection

3.6.1 Protective Sphere.

As discussed previously, there have been multiple methods developed to prevent

aircraft collisions with the ground, most of which require a specific setting chosen by the

pilot to provide some form of audible or visual warning to initiate a manual recovery. The

presented algorithm is similar in that it allows for a manual (if desired) setting for a terrain

bu↵er, but it propagates that bu↵er forward in predetermined paths to anticipate impending

collisions. To do this, an algorithm utilizing a sphere around the aircraft was employed

with the basic equation: x2 + y2 + z2 = r2. This sphere assumes the aircraft is at its center

and is propagated forward through multiple predetermined escape paths simulating, at each

time step, where in space that aircraft would be positioned. In essence, the sphere acts as

a safety bu↵er from terrain and can be adjusted within the algorithm based on tactical or

strategic needs. The sphere itself is important because its basic dimension, the radius, will

be used to evaluate whether a collision occurs with the terrain. This sphere can now be

checked for ‘contact’ with the terrain. This requires models of the ground below using
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DTED and an ability to quickly search and analyze it for each propagated path. This will

be addressed in the next two sections.

3.6.2 DTED Analysis.

DTED is a result of a combined e↵ort between NASA and the NGA. The “targeted

landmass consisted of all land between 56 degrees south and 60 degrees north latitude,

which comprises almost exactly 80% of Earth’s total landmass” [39]. The NGA provided

three products with the collected data named DTED0, DTED1, and DTED2 [39]. Typically,

the level of data is referred to by the numerical su�x i.e. level 0, level 1, or level 2. For

the purposes of this analysis, level 1 and level 2 will be used. It is important to note though

that each lower level is simply a ‘thinned’ version of the one before it with level 2 being

the most dense. Specifically, level 2 utilizes a post spacing of 1 arc-second which equates

to 30 m spacing at the equator while the DTED post spacing for level 1 is thinned to 90 m

spacing [39]. This length will decrease as distance increases North or South of the equator.

From an operational perspective, there is a benefit to utilizing level 1 over level 2. With

less inherent data, level 1 allows for integration into platforms that are memory limited.

Additionally, it provides for faster computations since less DTED posts will be analyzed

for a given sphere radius. For these reasons, level 1 will be the default DTED data utilized.

There are situations, though, that require the use of level 2 data. For example, imagine

a scenario where a protective sphere with radius 145 ft is desired for a flight at or near

the equator utilizing level 1 DTED. A 145 ft radius creates a sphere with a diameter of

290 ft or approximately 88.4 m. This sphere could predictably travel across the map in-

between posts, thus not reporting any potential collisions with terrain that may be occurring.

Additionally, it is physically impossible for more than two DTED posts to be captured

and analyzed for any given iteration. For this reason, a determination must be made to

mandate a minimum sphere size, or logic must be created to implement level 2 data below

a specified sphere radius. This decision has both tactical and computational implications.
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The current algorithm allows for future decisions on the process, by including logic to

switch to level 2 DTED when a radius below 300 ft is chosen. A 300 ft radius is a strong

balance between operational necessity and computational speed. First, it is uncommon for

heavy or fighter type aircraft to fly below 500 ft though, in some situations, clearances to

300 ft are allowed. Additionally, a radius of 300 ft will ensure a minimum of four DTED

posts are geometrically captured on each iteration as can be seen in Figure 3.7. A maximum

of six posts is possible .

Figure 3.7: Sample Level 1 DTED Spacing with Minimum Four Captured Posts

A minimum of four captured posts is ideal because they will essentially cover a

quadrant of terrain below the aircraft and will minimize missing large deviations in

the height of terrain. In this way, DTED level 1 can be used in a large majority of

anticipated situations, but level 2 should be available for contingency purposes. In fact,
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it is recommended that DTED level 2 only be loaded on memory-limited aircraft if flight

below 300 ft is anticipated or desired.

3.6.3 DTED Post Capture.

Prior to the evaluation of a potential collision with terrain, it is necessary to capture

the DTED posts that are shadowed by the sphere above. To do this, an e↵ective and

computationally e�cient representation of the 2-D sphere shadow on the ground had to be

determined. Fortunately, degrees of latitude are consistent everywhere and can be directly

correlated with the radius of the selected sphere. Unfortunately, the issue is complicated

by the fact that degrees of longitude decrease in size as one travels North or South of the

equator. Due to the non-uniform ellipsoidal shape of Earth, it was necessary to create a

polynomial fit (5th order was used for this research) to the change in distance between

degrees in longitude based on a specified degree of latitude.

Table 3.1: Degree of Longitude Distance based on Latitude Position [20]

Deg Latitude Distance (km)

0 111.32

10 109.64

20 104.65

30 96.49

40 85.39

50 71.70

60 55.80

70 38.19

80 19.39

90 0
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Table 3.1 displays the data used to create the polynomial fit. This data, given at

every 10� of latitude, provides a shell to formulate accurate and computationally e�cient

approximations of the distance between a degree of longitude at any latitude. The 5th order

polynomial is shown in Eq. (3.11)

y = �7.82⇥10�10x5+4.86⇥10�7x4�3.69⇥10�6x3�0.0168x2�2.16⇥10�4x+111.32. (3.11)

In this equation, x is the deg of latitude in question which will result in y, the distance

between a deg of longitude in kilometers, at that latitude.

The following process is the method used to search and collect the necessary DTED.

The actual algorithm to determine a potential collision is addressed in Section 3.6.4.

Actually identifying the DTED posts presented a trade-o↵ between geometric accuracy

with respect to the 2-D sphere shadow and computational speed. The specific tool used to

acquire the DTED posts was a rectangle (or square at the equator) and not the expected

circle. The rationale for this decision stemmed from the logic required to add or remove

DTED posts shadowed by the sphere. It was determined that, since DTED is already

e↵ectively gridded, it would be easier and faster to identify the posts in a quadrilateral

than a circle. Additionally, the algorithm required to determine if a collision has occurred

can more e�ciently exclude the DTED posts than the MATLAB calculations necessary to

remove posts inside the rectangle but outside the circle prior to the threshold calculation.
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Figure 3.8: DTED Capture Logic based on Sphere Radius

Figure 3.8 graphically displays how extra DTED posts will be identified using the radius

of the sphere to create a rectangle (or square at the equator) to shadow the DTED.

The DTED posts were physically identified by simply converting the radius of the

sphere into degrees based on the position of each particular sphere over the terrain. For

degrees latitude, the formulation was direct since there is little variation. The circumference

of the Earth from pole-pole is approximately 40,007 km, therefore, each degree is 111.13

km apart as shown in Eq. (3.12).

40, 007 km
360o = 111.13

km
deg

(3.12)

Longitude is slightly more di�cult, because as addressed previously, the shape of the

earth causes a non-uniform distribution of distances between degrees. For this reason, the

polynomial fit given in Eq. (3.11) is used, and it is found to be accurate within a hundredth

of a kilometer. With this information, all of the DTED posts within a sphere’s radius

(converted to degrees based on position) of the current calculated position are gathered

if they fall between the north-south distance in latitude and the east-west distance in

longitude. This forms the rectangle in Figure 3.8.
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3.6.4 Terrain Collision Detection Algorithm.

The next step in determining whether a collision can occur is to evaluate the identified

DTED posts against the location and altitude of the sphere. To do this, an algorithm was

developed (aptly named an ‘inside-outside’ function) that relates the position of the sphere

to the DTED posts. Eq. (3.13) is the basic equation of a sphere with radius ‘r’ and the

logical starting point for the algorithm.

(x � a)2 + (y � b)2 + (z � c)2 = r2 with center [a, b, c] (3.13)

From here, the equation is normalized by dividing by r2 and subtracting the position of the

propagated aircraft from the position of the DTED. Eq. (3.14) shows this formulation.

(xDT ED � xA/C)2

r2 +
(yDT ED � yA/C)2

r2 +
(zDT ED � zA/C)2

r2 = 1 (3.14)

Before this calculation can be performed, it is necessary to once again rotate reference

frames. Currently, the DTED is gathered in degrees in the geodetic reference frame whereas

the aircraft’s propagated position is in meters in the ENU reference frame. For this reason,

each DTED post is rotated into the ENU frame before this calculation is executed.

To make this computationally e�cient, a matrix formulation was developed to quickly

generate a solution using MATLAB.

Let:

Q = [(xDT ED � xA/C), (yDT ED � yA/C), (zDT ED � zA/C)] (3.15)

N =

2
6666666666666666664

1
r2 0 0

0 1
r2 0

0 0 1
r2

3
7777777777777777775

(3.16)

Then a collision occurs IF and only IF:

QNQT  1 (3.17)

If Eq. (3.17) is less than or equal to 1 for any point in the escape trajectory then a DTED

post has intersected with the protective sphere. This calculation is performed for each
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identified DTED post at each iteration for all specified escape paths. Once all DTED posts

have been evaluated, the results of whether or not a collision occurred are determined at

each iteration.

3.7 Collision Logic

3.7.1 Algorithm Priorities.

Ultimately, auto GCAS is a tool to provide backup to the pilot in times of

disorientation or task saturation. To this end, the program itself must be robust, yet it cannot

interfere with normal operations or put the aircraft in harm’s way. Air Force Research

Laboratory (AFRL) has developed three priorities that extend to the application of this

algorithm. The first priority is that the auto GCAS must ‘do no harm’. This means that

when initiated the program does not harm the aircraft or pilot, nor does it put the aircraft in

an unsafe position [36, 37].

The second priority is that auto GCAS must not impede mission operations [36, 37].

Typically, this priority addresses nuisance warnings or unnecessary activation of the system

during normal operations. There are two main issues presented by this priority. First, the

system assumes that the pilot is not aware, and that Auto GCAS is a last-second life-saving

system [35]. This directly results in the second issue that auto GCAS will not activate until

all calculated escape paths have collided with terrain. Conservatively, the program could be

programmed to activate as soon as one escape path collides with the terrain. This, though,

would cause numerous activations when the pilot potentially has ample room to maneuver

and would definitely impede tactical operations. For this reason, the ‘when’ of execution

leans toward a last-chance mentality much like the current F-16 auto GCAS where these

priorities initially originated.

The last priority is that the program must prevent ground collisions [36, 37]. This is

the ‘it must work’ priority and it is the focus of this research. Interestingly, this is the last

priority. Placing it third means that situations could reasonably occur where collisions
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with terrain happen without the activation of auto GCAS if either of the previous two

priorities are not met. Ultimately though, these priorities allow for seamless integration

into tactical operations without extensive retraining or integration instructions since the

software should work without much, if any, pilot interaction and no workload increases.

In general, “there are two potentially competing objectives when it comes to auto GCAS

performance; preventing ground collisions while not impeding normal operations (nuisance

potential)” [35]. Table 3.2 below displays the three priorities as outlined by AFRL.

Table 3.2: Auto GCAS Priorities

Priority Objective

Priority 1 Do No Harm

Priority 2 Do Not Impede Ops

Priority 3 Avoid Ground Collisions

3.7.2 Algorithm Logic.

To adhere to the three stated priorities in Table 3.2, it is necessary to provide logic

that analyzes each path and determines if a collision occurs. As emphasized in Priority

2, the algorithm revolves around a ‘last man standing’ logic tree. The main takeaway is

that each path must collide with terrain before an auto GCAS activation will occur. If any

path has not collided, the system will remain in standby. The algorithm looks at each path

independently, as it is calculated, and determines if any DTED post penetrates a propagated

sphere (satisfies Eq. (3.17)). If that occurs, the code flags the specific path and relates it to

the propagation time. The time itself is specified as the time it would take the aircraft to

reach that point on that specific escape path at the current and preplanned parameters. It is

55



important to note that the time is not the time until auto GCAS execution, but simply the

time until the collision occurs. The logic is built such that only the first collision on each

path is tracked. It is reasonable for a scenario to exist where the same path collides with

terrain multiple times, especially if the path continues through a large land mass such as a

mountain.

Once the auto GCAS system evaluates each path, it looks at the entire scenario and

determines if paths have collided. A typical program run would determine if a collision

occurred by evaluating each path asking the same question, “does a collision occur?” If the

answer is ‘yes’ for each path, then the system executes. The program does this by assigning

either a collision time or a value of ‘-1’ to a path. A ‘-1’ is a numerical placeholder to denote

that no collision has occurred. If all the paths are greater than or equal to zero, then all paths

have collided (they all have a collision time). In this instance, the algorithm chooses the

path that collides last (at the latest time) as the executable maneuver. This is done for two

specific reasons. First, choosing the path that collides last falls directly in line with the

‘last man standing’ logic used to determine if the algorithm should execute. Essentially, it

means that this was the pilot’s last avenue of escape before automatic control was initiated.

Secondly, and most obviously, this path happens furthest in the future and, thus, provides

for the most maneuver time for the aircraft. There is a 0.5 s time safety margin built into the

algorithm so that the aircraft will actually miss the terrain once all three paths collide. This

look-ahead feature helps minimize nuisance activations, allow for available reaction time

(addressed in subsequent sections), and is a function of aircraft speed. For this research,

0.5 s should be acceptable for all situations. Figures 3.9 and 3.10 graphically display the

projection of the TPAs and the avoidance logic.
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Figure 3.9: Projection of Terrain Avoidance Maneuvers

Figure 3.10: Time Safety Margin

Finally, if at any point along the decision process the system evaluates that no collision has

occurred (i.e. a ‘-1’ fills any spot in the collision matrix) then it remains in standby and
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continues to run in the background with no notifications to the pilot and without control

initiated on the aircraft.

3.7.3 Simulation Products.

At each reported aircraft position, the algorithm produces two products that allow for

simulations and research on di↵erent terrain obstacles. These products will not be included

in actual, real-time aircraft test flights, but only as a tool to evaluate the performance of

the program pre/post flight or for research purposes. The first product is a collision report

and the second is a graphical collision summary. The products essentially display the same

information, one is textual whereas the other is graphical. Figure 3.11 shows a collision

report for the first four iterations of a simulated flight.
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Figure 3.11: Collision Report

As can be seen, the information reported includes whether an activation occurred and

which path, if any, was executed, which paths collided with terrain and when that collision

occurred, and the total elapsed time for the calculation of the algorithm. The elapsed time

only includes the time necessary to determine if a collision happened. It does not include

calculations that would be completed prior to the flight or plotting for simulation purposes.

Therefore, it is a fairly accurate representation of the real-world processing time albeit in

MATLAB. The requirement is to process at or faster than the aircraft’s INS update rate. Of

note, the first iteration is longer (0.561781 s) simply due to the initial MATLAB processes
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when the simulation first begins. This would not be an issue during actual flight since the

algorithm would already be activated.

The example in Figure 3.11 displays a few situations that are worth comment. The

iteration number is equal to the number of position and state updates sent from the aircraft

to the program. For example, iteration 1 is the first time the program received an update,

iteration 2 is the second and so on. Each iteration includes a full run of the program,

calculating each path and determining whether a collision occurs. The next line of the

report states if an automatic activation was required and, if so, which path was chosen.

This entails the logic used in Section 3.7.2. The next three to four lines breakdown which

specific paths collide and when those collisions occur. This allows for a sanity check that

the correct path was chosen or that an activation should have occurred. Iterations 4 and 5

in Figure 3.11 show the situation where two paths collide in iteration 4 and the program

continues to iteration 5 where the all three paths collide and the program evaluates an

impending collision.

The second product is a graphical representation of the path collision based on each

iteration. This view is helpful to quickly determine which path collided with terrain. Figure

3.12 shows an example chart for the same data in Figure 3.11.
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Figure 3.12: Graphical Collision Report

As can be seen from this example, there were no collisions until the 4th iteration when the

right and forward paths collided with terrain. This agrees with the report shown previously

and the system would intervene and make the appropriate maneuver to prevent a collision at

iteration 5 by choosing the left level path. This would be path 2 from Figure 3.2. Iterations

will continue for each position and state update from the flight computer for the entire flight

or until activation occurs. Again, the aforementioned products are designed specifically for

research or simulation purposes and will not be displayed or used in real-world flight tests.

3.8 Determination of Escape Path Time

3.8.1 Background.

With respect to aviation, there remains a gap for the characterization of terrain beyond

the specifications of mountainous and non-mountainous described in Chapter 2 [15, 18].
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This binary classification works well for aircraft operating in the high altitude environment

above 10,000 ft. Unfortunately at lower levels, it is insu�cient insofar as tactical low-level

operations are concerned and especially when dealing with computer generated algorithms

utilizing the terrain. The two opposing factors here are safety and computational speed.

The further forward in time the program evaluates terrain the more time it takes to compute

which, in turn, limits the algorithm’s ability to execute in a timely manner. For these

reasons, it is necessary to classify both the terrain and aircraft type di↵erently than in the

current literature and then use this classification to make calculated decisions on how far

forward in time and space to propagate each escape path. These classification requirements

are necessary so that aircraft and terrain can be logically grouped. Once grouped, it is

possible to assign escape path times. As stated, the required methodology must focus

on aircraft performance data as compared to terrain features to take advantage of climb

or turn performance depending on the terrain features presented. The following section

will address all of these issues as well as develop the methodology for determining an

appropriate escape path propagation time based on these criteria. Finally, the system should

be simple enough that pilots (or mission planners) will actually use it. The point of this

research is to provide a nearly seamless integration into the cockpit with very little pilot

input, not to make aviators pour over maps before each mission for a system that should

work inherently. The presented classification systems and subsequent results are a step in

that direction.

3.8.2 Aircraft Performance.

Chapter 2 explains the current structuring of aircraft classifications. Again, this

method does not take into account the significant operational di↵erences between the

multiple heavy aircraft that operate at low altitude. To begin the classification process,

it is necessary to obtain the performance characteristics of these aircraft. Specifically, low-

level ground speeds are necessary so that rate and radius information can be calculated
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for general performance classifications. Personal correspondence with the 418th Flight

Test Squadron (FLTS) and 419th FLTS at Edwards AFB provided the information about

the capabilities of each aircraft of interest [24]. These squadrons have specific low-level

missions and are the primary flight test units for both bomber and cargo aircraft for the

United States Air Force. Table 3.3 outlines mission and performance parameters for these

aircraft [5, 24]. Airframes such as the B-2 Spirit and the C-5 Galaxy are purposefully

absent from the table since they do not currently have a low-level mission.

Table 3.3: Military Aircraft Low-Level Flight Parameters [5, 24]

Aircraft Airspeed (kts GS) Altitude (ft) Radius (ft) Rate deg
sec

C-130 210 300-500 2,254 9.01

C-17 310 300-500 4,912 6.10

B-52 310 500 4,912 6.10

B-1 540 500 14,906 3.50

The radius and rate information presented in Table 3.3 are extrapolated from the given

airspeed and the 2 g load factor requirement for the most aggressive escape path maneuver

at 60� of bank. It is important to note that 2 g’s was used for each aircraft as this is the g

required for a level 60� turn and within the performance specifications of each aircraft in

Table 3.3. The rate and radius were calculated using Eq. (3.18) and Eq. (3.19) [23] where

g is gravity, n is load factor, and V is velocity from Table 3.3:

Radius =
V2

g
p

n2 � 1
(3.18)

Rate =
g
p

n2 � 1
V

(3.19)
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With this information, certain conclusions can be drawn. First, there are easily separable

speed classifications: low, medium, and high, relating to the C-130, C-17/B-52, and the

B-1 respectively. Speed is used as an identifier because it has significant impact on the rate

and radius of a maneuver and how much ground is covered over a specific time interval.

For these reasons, the aircraft will be collected into these three categories and classified

as such for the purposes of this analysis. Table 3.3 will be used in two ways. First, the

low-level speed will be used within the presented algorithm to determine how far over the

ground the forward escape path will propagate for a given altitude climbed. Second, the

radius information, a direct result of rate, will be used to ensure that a minimum 90� of turn

are achieved in the lateral direction for a given escape path propagation. Since there is such

a large disparity between the radii of the low, medium, and high speed aircraft, it is prudent

to categorize them separately.

3.8.3 Terrain Classification.

As previously mentioned, it is necessary to provide a new terrain classification that

will be both logical and easily applied in an operational setting using existing tools. In

an e↵ort to maintain some relation to the current classification structure, the gauge for

mountainous terrain, � 500 ft change in altitude in 1
2 nm, will not change as defined in AFI

11-202 Vol 3 [18] though the title Upland will now be assigned to it. Table 3.4 outlines the

three characterizations.

Table 3.4: Proposed Terrain Classification based on Terrain Height Delta

Terrain Class Definitions

Upland � 500 ft per 1
2 nm

250 ft per 1
2 nm Midland < 500 ft per 1

2 nm

Lowland < 250 ft per 1
2 nm
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The simplicity of the classifications is purposeful for three reasons. First, the

distinction between mountainous and non-mountainous has essentially remained the same.

For all Upland classifications, the same data found in 14 CFR §95.11 [15] can be used,

thus still meeting the intent of military and civilian regulations. Second, the data required

to determine the terrain classification is standard in most, if not all, military mission

planning rooms. This data is located on FalconView programs or easily inferred from

actual contour maps that are available for nearly every location on Earth. The information

in Table 3.4 along with Table 3.3 provide the required information to make escape path

length determinations for each class aircraft for a given terrain type.

3.8.4 Escape Path Propagation Times.

The information in Sections 3.8.2 and 3.8.3 together form a matrix of terrain and

aircraft classifications that can be used to categorize appropriate escape path propagation

times. Essentially, each aircraft speed classification from Section 3.8.2 will be assigned an

escape path time for each terrain class from Table 3.4, thus providing adequate protection

without excessive computations. Table 3.5 shows the appropriate times. These times

Table 3.5: Proposed Avoidance Path Propagation Times

Aircraft Class Lowland Midland Upland

Low Speed 17.25 s 29.19 s 44.54 s

Medium Speed 17.20 s 21.14 s 30.72 s

High Speed 28.25 s 28.25 s 28.25 s

are based on surveyed data of the height of terrain above mean sea level for most of the

United States as well as on aircraft performance parameters. The information assumes that

either the forward path or the ability to turn 90� is the deciding factor in the actual time

for propagation. This is because the lateral paths need only to propagate to 90� to avoid an
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obstacle forward of the aircraft’s 3-9 line and are otherwise insensitive to the slope of the

terrain. With this in mind, the aircraft path propagation times were assigned based on the

forward path’s ability to out-climb a specific terrain obstacle. Rate and radius are important

though, because they provide the information on how fast an aircraft can turn 90� and how

far forward it will travel in that time. (All other flight dynamics will be modeled inherently

via the equations of motion.) For example, a B-1 has a turn radius of 14,906 ft. For this

high speed aircraft, a forward escape path time over the ground must not be less than the

time required to make that turn. If it were, the aircraft would not have the opportunity to

turn 90� to avoid an obstacle if it could not out-climb it. Equation (3.20) displays the logic

for the selection of an escape path propagation time.

Escape Path Time = max[t90� , tfwd path] (3.20)

Using data gathered from “The Average Elevation of the United States” by Henry

Gannett, it was determined that only approximately 22% of the total surveyed terrain lies

above 4,000-5,000 ft MSL [17]. Of this terrain, much of it can be considered heavily

mountainous and most of it lies in or near the Rocky Mountains [17]. It must be mentioned

that of this terrain, not all of it is necessarily mountain peaks, it includes level topography

that just happens to be at high mean sea level altitudes. For example, some of the plains

of Colorado lie above 4,000 ft MSL, but they would fall under the Lowland classification

outlined in Table 3.4 based on their relative slope. 5,000 ft was chosen because statistically

little level terrain exists at this altitude, and it typically quickly becomes more rugged above

this height [17]. From here, very little terrain (19,260 sq miles) is much more than 9,000-

10,000 ft in altitude [17] so, in general, an aircraft would typically not need to out-climb

an obstacle that is more than 4,000 ft above the more level terrain surrounding it. In the

few situations where this may be necessary, the aircraft is likely operating in an extremely

mountainous area, and thus taking advantage of tactical terrain masking without being at

minimum low-level altitudes. In general, so little terrain is above 10,000 ft that there is
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no real need to defend against it. For this reason, within the Upland terrain category, the

aircraft need only to be able to out-climb a 4,000 ft obstacle to prevent a collision.

With the 4,000 ft height established, a specific distance along the ground must be

determined to define the look-ahead protection provided. To do this, the medium airspeed

aircraft was selected with the understanding that the slower and faster airframes will not

deviate far from this distance. Using the provided algorithm, with a 15� flight path angle

limit, a 4,000 ft climb will occur within a ground distance of 2.56 nm. (It is necessary

to note that very fast aircraft like the B-1 will require a specific analysis based on their

increased agility, speed, and specific flight path limits.) For slow and medium speed

aircraft, worst-case Midland terrain will rise at just less than 500 ft per 1
2 nm. Over 2.56

nm, this is approximately 2,600 ft minimum terrain ascent. Therefore, propagated altitude

for this avoidance path must reach 2,600 ft in 2.56 nm ground distance. In a similar manner

for the Lowland terrain, the propagated altitude must reach 1,300 ft. In all cases though,

the logic in Eq. (3.20) must be met since the aircraft must be able to turn 90� minimum.

For this research, it is important to analyze exact propagation lengths because every extra

second of computation slows down the algorithm, which in turn can degrade protection. By

determining precise times, it is possible to create a more e�cient and e↵ective program.

3.8.4.1 Propagation Time Methodology Example.

The following example uses the above information to explain how the propagation

times were chosen. The scenario will evaluate the medium speed aircraft against each

of the three terrain classifications. As previously mentioned, the driving factor for this

analysis is height climbed as related to horizontal distance traveled, as long as 90� of turn

has been accomplished. The distance is measured as ground distance against the propagated

forward path of the aircraft and the altitude is the total altitude climbed by the path during

the specified time. Figure 3.13 displays the nomenclature graphically.
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Figure 3.13: Escape Path Nomenclature

The horizontal distances and altitudes were calculated using the state equations within

the presented algorithm. This ensures that the actual distances in latitude and longitude

could be analyzed to determine that the appropriate ground distance was being accurately

assessed. As mentioned previously, based on the information in Section 3.8.4, the

propagation ground distance was based on the forward path’s ability to climb 4,000 ft for

Upland terrain.

It was calculated and found that 30.72 seconds should be used for the Upland scenario

which correlates to 2.56 nm look-ahead and 4,001 ft altitude climbed for aircraft at medium

speed. In this way, the Upland scenario shows that an aircraft traveling at 310 kts ground

speed can out-climb an obstacle approximately 4,000 ft above its current altitude that is

2.56 nm away and, in the process, turn 170� for the lateral paths. Since the maximum time

(Eq. (3.20)) is the time required to climb the 4,000 ft, that time is selected as the avoidance

path length.

For the Midland scenario at medium speed, it was assessed that 21.14 seconds would

be an appropriate look-ahead propagation time since it will out-climb an obstacle at 2,600
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ft in 1.77 nm, much less than the 2.6 nm requirement. This is acceptable based on the

definition of Midland found in Table 3.4 which, worst case, changes slope at just less than

500 ft per 1
2 nm. At this slope, the terrain would change a maximum of 2,600 ft in 2.56 nm,

which now would be avoidable with the recommended propagation timeline. Additionally

for this timeframe, the aircraft turns 114� so it again meets the requirement of Eq. (3.20).

For this reason, 21.14 seconds is an operationally acceptable look-ahead distance for a

medium-speed aircraft operating over Midland terrain.

Finally, the Lowland scenario uses 17.20 seconds propagation time. For this case,

though, the issue was not the ability to out-climb an obstacle, but to be able to out-turn

an obstacle. As previously stated, the algorithm is built such that propagation paths either

reach a certain altitude for protection or the lateral paths reach a minimum of 90� turn.

From Table 3.4, the Lowland definition will cause a rise in terrain of just less than 250 ft

per 1
2 nm worst case. In this manner, an obstacle at 1,300 ft must be out-climbed in 2.56

nm which, for gradually increasing terrain, is su�cient for safe operation. This altitude can

be climbed with a propagation time of approximately 11.5 seconds. Unfortunately, it will

only turn 52� and not the required 90�. So in this case, the limiting factor is degrees of turn,

and 17.20 seconds will be necessary for a medium speed aircraft. In general for Lowland

flying, the ability to out-climb an obstacle is not a concern, but if it is, this timeline should

a↵ord the appropriate protection.

The same general logic is used for the low and high-speed aircraft as referenced in

Table 3.5. The propagation length methodology is as follows: Step 1 is to determine the

aircraft classification. This will typically be done once per airframe based on low-level

tactical speed and turn performance much like Table 3.3. Step 2 is to determine the terrain

classification explained in Section 3.8.3 and categorized in Table 3.4. Step 3 is to determine

the aircraft’s ability to out-climb 4,000 ft for an Upland scenario. The distance along the

ground should be noted for the Upland case and applied to the Midland and Lowland worst-

69



case terrain rise. This will provide for minimum Midland and Lowland altitude values.

They will typically be approximately 2,500 ft for a Midland scenario, or 1,250 ft for a

Lowland scenario given that 90� has been accomplished. In all cases, Eq. (3.20) must

be satisfied to ensure the appropriate lateral escape path turn has been propagated. It is

important to note that for very fast aircraft such as the B-1, every propagation time may

need to be evaluated at 90� of turn due to the very large turn radius. An example of this

can be referenced in Table 3.5 for high-speed aircraft. For example, the Upland scenario

for a fast aircraft like the B-1 will show that a 4,000 ft obstacle can be out-climbed in 16.75

seconds, but the aircraft will turn only 50�. An additional 11.5 seconds is required for the

aircraft to reach 90�, thus 28.25 seconds is the propagation time. It is also important to note

that the B-1’s performance parameters were changed to a maximum of 2.4 g’s and 20� of

flight path angle to more accurately assess its capabilities [27].

Ultimately, the purpose of the above methodology is to provide logical protection

for any aircraft operating at low-level altitudes based on their tactical airspeed and the

morphology of the terrain below. This formulaic approach allows for immediate application

to aircraft beyond the scope of this study (i.e. civilian airplanes) or military aircraft that

are currently being designed (i.e. KC-46). As a reference, Table 3.6 shows the propagation

parameters for each aircraft and all terrain types based on the times in Table 3.5.
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Table 3.6: Heavy Avoidance Path Propagation Parameters [35]

Low Speed Heavy (velocity = 210 KIAS)

Lowland Midland Upland

Path Time (sec) 15.37 29.19 44.54

Altitude Climbed (ft) 1,301 2,600 4,000

Distance Covered (nm) 0.87 1.65 2.51

Deg Turned (deg) 166.0 238.1 377.0

Medium Speed Heavy (velocity = 310 KIAS)

Lowland Midland Upland

Path Time (sec) 17.20* 21.14 30.72

Altitude Climbed (ft) 2,115 2,602 4,001

Distance Covered (nm) 1.44 1.77 2.56

Deg Turned (deg) 90.2 114.3 170.2

High Speed Heavy (velocity = 540 KIAS)

Lowland Midland Upland

Path Time (sec) 28.25* 28.25* 28.25*

Altitude Climbed (ft) 7,399 7,399 7,399

Distance Covered (nm) 4.05 4.05 4.05

Deg Turned (deg) 90.3 90.3 90.3

*90� of turn was the driving factor

3.9 Sensitivity Analyses

3.9.1 Integration Methods and Limits.

The various integration methods used within this research include MATLAB’s

adaptive ODE45 and four fixed-step Ordinary Di↵erential Equation (ODE) solvers using
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increasing order Runge-Kutta methods. The goal for this analysis was to strike a balance

between physical accuracy and computational speed. The adaptive nature of ODE45,

though robust, cause additional computations that slow the algorithm. In an e↵ort to

increase speed without forfeiting accuracy, a sensitivity analysis on both integration method

and integration limits was conducted. The study itself used ODE45 as the truth source

forcing specific reporting points for the EOM at equally spaced time intervals. It is

important to note that ODE45 will report at any time step specified by the user, but adaptive

time steps are still occurring within its algorithm. With the time step specified, four

di↵erent fixed step solvers were studied. They will be named ODE1, ODE2, ODE3, and

ODE4 with the numeric indicating the order of the Runge-Kutta solver. These solvers are

non-adaptive in nature which will allow for faster processing, though this will come at the

cost of accuracy over time. For each time step, the Root Mean Square Error (RMSE) was

reported over a 30 second total time interval and the solutions were plotted for comparison.

Time steps of 0.1 seconds and 0.5 seconds are reported in Figures 3.14-3.17. Time steps

of 0.2-0.4 seconds are included in Appendix D. In all cases, the aircraft initial condition

was 3,500 ft and 350 kts starting from the same location and heading. Equations (3.3-3.7)

were used to propagate the aircraft position forward in time and space using the exact same

controls (forward path and level turn path) for consistency.
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Figure 3.14: Forward Path RMSE with 0.1 s Time Step

Figure 3.15: Lateral Path RMSE with 0.1 s Time Step

The analysis shows some interesting, though expected results. First, ODE1 diverges

very quickly in every case for both the forward and lateral paths. For this reason, it can

be excluded as an option due to its poor accuracy. ODE2 has significantly better accuracy

than ODE1 and is a reasonable alternative for both paths, though it tends to diverge more

quickly laterally. With a time step of 0.5 seconds for a 30 second interval, ODE2 has a

total RMSE of 10.80 ft. Again, based on expected bubble sizes of 300 ft radii or larger

and anticipated escape path lengths, this is an acceptable error. As can be seen in Figures

3.14-3.17 though, ODE3 and ODE4 have considerably better accuracy than ODE2 with
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Figure 3.16: Forward Path RMSE with 0.5 s Time Step

Figure 3.17: Lateral Path RMSE with 0.5 s Time Step

comparably little loss in computational speed. In all cases, ODE3 and ODE4 present less

than 1 ft of error from the adaptive solution and they confer a viable alternative to the slower

ODE45. Table 3.7 displays the computational speed in seconds related to each analyzed

solver for a given time step. All of the ODE solvers in Table 3.7 are fixed step except for

MATLAB’s adaptive ODE45 which was used as a truth source baseline. Additionally, the

run times are the combined time to propagate both lateral and forward paths.
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Table 3.7: Computational Speeds of Fixed Step Solvers for Di↵erent Time Steps

Step/Solver ODE45 (truth) ODE4 ODE3 ODE2 ODE1

0.1 s 0.39 s 0.21 s 0.15 s 0.11 s 0.05 s

0.2 s 0.39 s 0.11 s 0.08 s 0.06 s 0.03 s

0.3 s 0.39 s 0.09 s 0.07 s 0.05 s 0.02 s

0.4 s 0.38 s 0.07 s 0.05 s 0.03 s 0.02 s

0.5 s 0.39 s 0.05 s 0.04 s 0.03 s 0.02 s

It is concluded then that ODE3, a strong balance between speed and accuracy, be used

as the primary solver for this research.

3.9.2 Initial Conditions.

The initial state conditions sent to the algorithm from the aircraft can have a dramatic

e↵ect on the accuracy of the propagated solution. As a research objective, it was desired

to show that the escape paths could be propagated once and then appended to the aircraft

position at any point in time. The major benefit would be the savings in computational

speed since the EOM would only need to be integrated once. These vectors would then be

saved and rotated as required at each time step to determine whether a terrain collision had

occurred. The sensitivity analysis focused on initial condition changes in flight path angle

and bank. It was found that both of these parameters had a nearly immediate e↵ect on the

accuracy of the solution. The analysis made the following assumptions. First, a 300 ft

bubble was assumed. Second, a medium speed aircraft was chosen with the understanding

that low and high speed aircraft would bracket the results. Finally, the analysis would be

concluded when the di↵erence in altitude for the lateral path, or RMSE for the forward

path, was greater than or equal to the radius of the selected bubble, 300 ft. RMSE was used

for the forward path since there would not be a direct change in altitude based on a change
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in either flight path angle or bank. In all cases, the truth source was an integrated solution

using all the same parameters and time steps, but with 0� flight path angle and 0� bank.

For the flight path angle (�), it was found that the lateral solution was more sensitive

to changes, while the RMSE values of the forward solution were slightly less sensitive.

In both cases, though, small changes in flight parameters quickly reach the threshold of

usability. Table 3.8 shows the sensitivity analysis.

Table 3.8: Propagated Path Sensitivity to Initial Condition Flight Path Angle

� (deg) Forward RMSE (ft) Lateral Alt Error (ft)

0.0 0.0 0.0

0.2 70.56 61.93

0.4 147.86 124.04

0.6 130.63 186.34

0.8 206.81 248.82

1.0 283.27 311.47

As can be seen, at 1.0� of flight path angle change there is a lateral altitude error of

311.47 ft. This would be outside the bubble radius indicating a significant source of error.

In general, 1.0� of flight path angle would be nearly unnoticeable to the pilot and could

vary quickly due to turbulence or other external forces. For these reasons, any significant

climb or descents would easily negate the usability of appended escape maneuvers.

The same analysis was conducted for a change in the initial condition for bank angle

(�). As would be expected, this caused significant error in the lateral escape paths to occur

quickly at very low angles. Table 3.9 displays the sensitivity analysis.
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Table 3.9: Propagated Path Sensitivity to Initial Condition Bank Angle

� (deg) Forward RMSE (ft) Lateral Alt Error (ft)

0.0 0.0 0.0

0.1 31.75 93.95

0.2 63.51 316.89

It is evident that at very small, unnoticeable, bank angles the lateral solution quickly

diverges. For example, at 0.2� of bank, the lateral solution deviates by 316.89 ft. This

further supports the claim that appended escape paths are not accurate enough for real-

world use. It is thus concluded that the EOM must be propagated at each time step to

report a viable solution.

3.10 Flight Test Methodology

The following sections will outline the specifics of the flight test methodology for the

Have ESCAPE TMP as conducted at TPS.

3.10.1 Test Item Descriptions and Resources.

3.10.1.1 Calspan Learjet.

The Calspan VSS-equipped Learjet LJ-25D, displayed in Figure 2.6, will be employed

as a platform to test the 3 and 5 TPA ESCAPE algorithms. As mentioned in Section

2.8, the VSS allows for inflight simulation of di↵erent aircraft control laws and aircraft

responses in four degrees of freedom using control surface and feel actuators. The cockpit

accommodates a pilot and copilot crew. There is seating in the cabin for a Test Conductor

and up to two more occupants to include technical representatives or safety observers.

Minimum aircrew will include the two pilots and a test conductor. A TPS student evaluation

pilot will fly from the right seat where the yoke is replaced by a center stick with variable

feel system components. A Calspan instructor pilot will serve as the pilot-in-command
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as well as the safety pilot from the left seat. The left seat pilot controls are mechanically

linked to the flight control surfaces, and provide un-augmented flight control when the VSS

is disengaged. In the VSS mode, engagement and safety trip logic exists which detects

failure states including aircraft states and loads, feel system, control surface parameters,

and hydraulic fluid level. If a failure state or safety trip logic is satisfied, as shown in Table

3.10, hydraulic pressure is removed from the control surface and feel actuators, failures are

annunciated in the cockpit, and the VSS is disengaged [13]. The VSS can also be manually

disengaged by either crew member. Any VSS disengagement will always automatically

return aircraft control to the safety pilot. Calspan’s LJ-25D is instrumented to collect

aircraft performance and state data.

Table 3.10: LJ-25D VSS Safety Trip Logic

Parameter VSS Trip Logic

Airspeed (Above 14K ft) 325 kts & 0.79 M

Load Factor +0.25 to 2.8

Angle of Attack 12�

Angle of Sideslip 10�

The algorithms will interface with the VSS which will directly implement the escape

maneuvers. During Have ESCAPE flight test, the VSS will operate with a load-factor

command and bank angle command flight control system logic. The LJ-25D does not

incorporate any TAWS, GPWS, radar altimeter or any other altitude dependent systems

which may interfere with the ESCAPE algorithms. When the algorithms command

a maneuver to the aircraft, they send sequential, predetermined bank angle and load
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factor commands to the flight control computer at 20 Hz (or any rate required by the

aircraft’s flight control computer) to progressively maneuver the aircraft in the intended

direction. These maneuvers are commanded for up to 31 seconds, at which time the VSS

is automatically disconnected and control of the aircraft is returned to the safety pilot. The

pilot also has the option to manually terminate the automatic maneuver by disconnecting

the Learjet’s VSS. The test conductor will have the ability to monitor the activation and

termination of the ESCAPE maneuvers, but the cockpit displays do not give any advance

warning for these events. The pilots will be advised of any VSS disengagement through

visual and audible warnings. Finally, the aircraft is equipped with an advanced Data

Acquisition System (DAS) which allows for real-time collection of aircraft parameters for

post-flight analysis. Table 3.11 displays the required parameters for this analysis (not all

inclusive of DAS capabilities).

Table 3.11: Recorded DAS Parameters for Have ESCAPE

Name VSS Variable Name Units

Latitude sensors.lat decimal degrees

Longitude sensors.long decimal degrees

Altitude sensors.h.cf feet MSL

Heading sensors.psi degrees

Bank Angle sensors.phi degrees

Flight Path Angle sensors.gamma degrees

Pitch Angle sensors.theta degrees

Time of Decision sensors.vss.time seconds
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3.10.1.2 Research Laptop Computer.

The ESCAPE algorithms will be run via MATLAB on a research laptop computer,

which interfaces with the VSS on the Learjet. It is the physical hardware which both

receives the aircraft state information as input to the running algorithm and communicates

the running algorithm’s commands to maneuver the aircraft. The research laptop computer

is equipped with a solid state hard drive to minimize the probability of malfunctions caused

by aircraft motion. The computer specifications include 64-bit Windows 8.1 Pro, 32 GB

of random access memory, and an Intel Core I7-4860HQ CPU. During flight, the research

laptop will be securely fastened to the test conductor’s work station in the aircraft cabin.

All data will be saved locally to the aircraft’s hard drive for post flight analysis.

3.10.2 Test Matrix and Flight Test Predictions.

3.10.2.1 Test Matrix.

For flight test operations, it was necessary to create a test matrix that outlined the exact

test points to be flown to meet the research objectives. Each point on the test matrix was

specifically designed to trigger an unambiguous result or desired ESCAPE path. These

terrain features were initially chosen by qualitative assessment of their shape, size, and

slope based on contour lines observed on aeronautical charts. It was necessary to determine

an initial point, ground track, and altitude to fly towards the terrain with consistent and

repeatable geometry. Each test point was evaluated in the TPS flight sciences simulator

to obtain a higher fidelity prediction of which path would be chosen during flight test.

Once su�cient test points to trigger each maneuver for both 3-path and 5-path ESCAPE

algorithms were found, the test points were compiled into the test point matrix found in

Appendix A. Reference Section 3.3 for a full description of the ESCAPE paths. The test

point matrix was then programmed into the research laptop computer in the form of a drop

down menu. When a test point was selected and executed on the computer, the position and

course slewing tool automatically adjusted the ESCAPE algorithm’s navigation solution to
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match the desired test point location and geometry. The slewing tool will be discussed in

Section 3.10.2.2. A trigger time was also recorded for each test point. the trigger time was

defined as the time from test point initiation to path execution, and it was used as an inflight

tool to anticipate aircraft control activation. In all cases, the ESCAPE algorithms analyzed

the terrain using Level 1 DTED.

3.10.2.2 Modeling and Simulation.

Prior to implementation, the ESCAPE algorithms were formatted to interface with the

Calspan Learjet VSS and the Flight Sciences Simulator at TPS so that functional checks

and pre-flight predictions could be accomplished. The ESCAPE algorithms then interfaced

directly with the Flight Sciences Simulator (simulating the Calspan Learjet interface) so

that the planned test points could be flown to predict the flight test outcome. In this way,

every actual test point was evaluated prior to actual flight to document expected outcome

and predicted aircraft performance. The data was then collected for comparison to actual

flight data. This singular capability increased test e�ciency and provided valuable data

on the comparison of expected algorithm performance against actual flight test results.

Additionally, this allowed the test team to visually review the test points for legitimacy

before allocating expensive flight resources to them.

During flight test, low-level flight towards terrain obstacles was simulated while flying

above 5,000 ft Above Ground Level (AGL) within the confines of the R-2508 complex. The

low altitude flight and terrain obstacles were simulated by using a position and heading

slewing tool. This tool takes the current aircraft latitude, longitude, and heading as inputs,

and calculates a geographic o↵set and rotation to place the aircraft at a simulated latitude,

longitude, and heading for a desired virtual test location. Specifically, the slewing algorithm

transforms latitude, longitude, and altitude into an X, Y, Z position and translates this

location to the desired X, Y, Z location wherein a transformation back to latitude and

longitude is accomplished. Separately, the algorithm rotates the heading from the current
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aircraft heading to the desired heading. The MATLAB SIMULINK block diagram that

performs these functions is shown in Figure 3.18.

Figure 3.18: Have ESCAPE Aircraft Position Slewing Tool

Ultimately, this enabled the VSS to test the ESCAPE algorithm using terrain from any

location without having to physically relocate the aircraft as long as DTED was available

for that location. The slewing tool did not alter the aircraft’s navigation solution, it only

input the new aircraft location solution into the ESCAPE algorithm running on the research

laptop which allowed the flight crew the ability to navigate accurately throughout the

airspace. The tool mitigated airspace conflicts, expedited test point execution, and allowed
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for safe mission operation since low-level flight was neither required nor approved by the

safety board.

3.10.3 Flight Test Execution.

3.10.3.1 Aircraft Ground Checkout.

The Learjet was equipped with a ground simulation mode that was used to verify

that the ESCAPE algorithms were sending the proper command vectors to the VSS. This

simulation was used as a functionality check only, but it allowed a real-time determination

that the algorithm, VSS, and flight controls were communicating and operating correctly

prior to flight. The goals of ground checkout were as follows:

• Verify integration of the ESCAPE algorithm by ensuring information exchange

between the algorithm and the VSS computer.

• With the VSS in Simulator Mode, trigger every terrain avoidance maneuver, and

verify proper control surface deflection.

• Verify the operation of the DTED coordinate and elevation slewing function.

• Verify that the VSS disconnects after escape path maneuver is complete.

The ground checkout found no discrepancies, though the simulation model did not

take into account aerodynamic e↵ects or gross weight implications.

3.10.3.2 Flight Test Briefing.

A flight test briefing was to be conducted prior to each test sortie in accordance with

local procedures. All crew members participating in the test mission attended the flight test

briefing. The minimum crew consisted of an evaluation pilot, a Calspan safety pilot, and a

test conductor. The crewmember annotated in parentheses was the individual responsible

for briefing the areas below.

• Aircrew (Evaluation Pilot)

83



– Weather and NOTAMs

– Crew duties, responsibilities and Crew Resource Management (CRM)

– Exchange of aircraft control and engaging VSS

– Joker and bingo fuel

– Emergency procedures

• Departure and Recovery (Evaluation Pilot)

– Radio Frequencies

– Airspace Management

– Departure and recovery routing

• Specific Mission Brief (Test Conductor)

– Test Objectives

– Software version

– Test hazards and general minimizing procedures

– Go/No-Go Criteria

– Communication plan, to include test point initiation and termination

– Test card review

3.10.3.3 Test Execution.

During flight test, the aircraft was flown in the R-2515 airspace, at 15,000 feet pressure

altitude and 310 knots groundspeed. All test points were initiated from wings level,

constant altitude, unaccelerated flight. To minimize the e↵ect of wind drift, test points

were initiated with a head or tailwind to the maximum extent possible while maintaining

310 knots ground speed prior to path initiation. Once the aircraft was on conditions, the
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test point was initiated and the evaluation pilot maintained a steady course, altitude, and

airspeed until the ESCAPE algorithms commanded a maneuver. Since auto-throttles were

not used, the evaluation pilot attempted to maintain a constant indicated airspeed with the

throttles throughout the maneuver. During the level turns, the airspeed could be kept within

tolerance by modulating the thrust, though airspeed was lost during all climbing maneuvers

due to performance limitations of the aircraft. Flight parameters were monitored during the

automatic maneuver execution to ensure that the aircraft did not enter a dangerous flight

condition and to ensure the algorithms were performing as expected.

The ESCAPE algorithms analyzed the terrain by using a Level 1 DTED database

created by the National Geospatial-Intelligence Agency. This database consisted of a

matrix which specified terrain elevation values at regular latitude and longitude intervals.

All ESCAPE paths were programmed to be executed for 31 seconds, after which the Learjet

VSS automatically disengaged, causing an audible warning in the cockpit and flashing

indicator lights. This indicated termination of the test run and automatically transferred

control back to the safety pilot. Following each test point, handheld data were recorded to

document which path was chosen, what bank angle and flight path angle were achieved,

how much the speed and altitude deviated from the initial parameters, and wind data.

Additionally, flight data were recorded by the research laptop and the VSS per Table 3.11.

3.10.3.4 Overall Test Conditions.

All test points were flown during day visual meteorological conditions at 15,000 feet

pressure altitude and 310 knots groundspeed. The surface conditions at Edwards AFB

included temperatures from 20� to 35� Celsius with light winds. The wind speed at the test

point altitude varied from 0 to 22 knots.

The LJ-25D was configured with a full fuel load of 5,600 lb and test points were

carried out with a fuel load varying from 4,500 lb to 1,500 lb. Three or four persons were

on board the LJ-25D, two pilots, a TC, and an observer if required.
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3.10.3.5 Post Flight Briefing.

Following each flight test, a post-test briefing will be carried out with all crew

members to discuss the following:

• Abnormal events or emergencies

• Mission planning and products

• Test results, including data quality

• Recommendations and objectives for the next mission

3.10.4 Data Sources.

For comparison purposes, the flight test data was compared against both simulation

results from the TPS Flight Sciences Simulator as well as an optimum path solution. The

simulator data was obtained using the same laptop, MATLAB code, and test matrix used in

flight. The data is valuable, because it controls for pilot error, aircraft aerodynamic e↵ects,

and winds which impacted actual flight data.

The optimal code, written by Suplisson as part of her PhD Dissertation [35], derives

an Auto GCAS solution using a minimum control cost function and an infinite number

of escape path options within the aircraft performance capabilities. For the purpose of

comparison with the ESCAPE algorithms, the optimal solution was constrained to similar

aircraft performance limits of 60� bank angle, 30� per second roll-rate, 2g load factor,

and 15� flight path angle. To simulate the g-onset rate of the LJ-25D in its flight test

configuration, the longitudinal short period natural frequency and damping ratio were

adjusted in the optimal code to match the values found during flight test. The natural

frequency was 1.6 rad/sec and the damping ratio was 0.4. This code implemented a

constantly computed solution to minimize control inputs as an aircraft flew from one point

to another. The optimal solution accounted not only for the nearest obstacle, but for all

terrain within 2 nm ahead of the aircraft. The optimal solution maneuvers could apply
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either the load factor or the bank angle first as required, and the amount of heading change

could be of any amount. When an obstacle was encountered, it calculated an optimized

solution to minimize bank and load factor inputs to avoid the terrain. In this way, the

optimal solution around a terrain object is the flight path that minimizes bank and load

factor commands while still avoiding the terrain by a predetermined distance. This di↵ers

from the ESCAPE solution because the optimal algorithm chooses from an infinite set of

possible paths, thereby evaluating far more terrain than the ESCAPE algorithm, which

only evaluates terrain beneath the 3 or 5 avoidance paths. The trade-o↵ in the amount of

examined terrain is necessary for real-time integration and allows the ESCAPE algorithm

to process faster than the optimum algorithm.

Unlike the ESCAPE algorithms, the optimal solution did not use a safety bubble

around the aircraft to maintain safe separation from the terrain. Instead, the aircraft was

considered to be a point mass, and the optimal solution added a vertical bias to the DTED

data. The collision potential was calculated based on this increased terrain elevation to

ensure safe separation from the actual terrain. To guarantee that the aircraft did not

fly too close to an obstacle laterally, the distance to the DTED was calculated from the

aircraft position, and also from two points which were laterally o↵set from the aircraft by a

specified distance, with one point on each side. The optimal solution attempted to keep the

aircraft and the two o↵set points clear of the biased DTED elevation to prevent collisions.

Since the optimal solution considered the aircraft a point mass, it required a

mechanism to prevent the aircraft from flying between DTED posts. This was done using

the ‘griddedinterpolant’ function in MATLAB to create a continuous surface approximation

of the discrete DTED data posts. For comparison purposes, data collected from the optimal

code was obtained by inputting the same test matrix points used in actual flight. Thus, all

the ‘optimal’ results were created after the flight tests were conducted.
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Finally, it was necessary to determine a measure of nuisance since the aircraft will be

physically flown at altitude away from terrain, and it will not be possible for the pilot to

assess if the algorithm implements too early. For this reason, a metric named ‘Available

Reaction Time’ was developed. The available reaction time is the amount of time that the

maneuver could have been delayed while flying straight and level beyond the maneuver

activation point, and still avoid a collision by an infinitely small margin. If the terrain

penetrates the safety bubble, the available reaction time is based on the aircraft colliding

with the terrain. If the terrain does not penetrate the safety bubble, the available reaction

time is based on the bubble touching the terrain. A very large time would indicate a possible

nuisance activation. The delineation between an excessively large available reaction time

was not drawn since actual flight tests in the low-level environment would be required, but

qualitative assessments can be made using the metric.

3.11 Data Analysis Plan

Appendix B describes the data analysis procedures for the Have ESCAPE test plan

in order to analyze the data and produce the required products for analysis based on

the objectives outline in Section 1.4.2. The DAP specifically details the required data

parameters from the source of interest, any qualitative data required, if any, the analysis

procedures, and the desired final data products. The primary data source was the Learjet

VSS DAS. This system samples parameters at 200 Hz, and saves these parameters to a

Microsoft Excel compatible file, which can also be imported into MATLAB. Simulator data

was also gathered to predict the behavior of the ESCAPE algorithms and was processed

in the same manner as the flight test data when required. The optimal solution used for

comparison was derived from the optimal code designed by Suplisson’s research [35]. The

optimal data will be compared with the ESCAPE algorithms as described for Objective 4.

The tables and graphs depicted in the DAP were used as a guide during data collection and

reduction to ensure the appropriate information was being collected for the desired analysis.
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Furthermore, it was used as a post-flight tool to quickly determine algorithm performance

so adjustments could be made prior to the next flight test. The desired data products were

used only as templates for the collected data and, in many cases, the test team expanded

the products to include charts, graphs, and videos to help explain the results in more detail.

The DAP, in its entirety sorted by objective and MOP, can be found in Appendix B. A

thorough review of the DAP is required to understand the results presented in Chapter 4.

3.12 Summary

This chapter outlined the methodology and analytical procedures preceding the actual

flight test. Within the scope of flight test, it is prudent to execute a Predict-Test-Validate

type plan so that expectations can be set and outcomes assumed before expensive and/or

dangerous flights are attempted. To this end, it was necessary for the test team to evaluate

each test point with the test matrix and then prepare cautiously for the first flight using

the tools and theory developed in this chapter. The next chapter presents the results, with

analysis, of the Have ESCAPE algorithm.
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IV. Results and Analysis

4.1 Overview

This chapter outlines the data, results, and analysis of the six test flights for the

Have ESCAPE TMP. The flights were conducted from 31 August 2015 to 10

September 2015. The Daily Flight Test Reports for each flight can be found in Appendix

C which outlines the crew, conditions of the flight, the test points flown, and any additional

information pertinent to the collection of the data or the performance of the algorithm. As

mentioned in Section 1.3, the flight tests focused on a worst-case scenario. The terrain used

to test the ESCAPE algorithms was mountainous in nature, including vertical gradients

steeper than 3,000 feet per nautical mile, and a combination of wide mountain faces and

narrow valleys. Some of the mountains used as terrain obstacles had a vertical rise of 9,000

ft and a summit elevation above 13,500 ft MSL. The two main areas used for testing were

the Sierra Nevada mountain range (approximately 100 nm north of Edwards AFB) and

the Canadian Rockies (approximately 180 nm West of CYEG (Edmonton) airport). The

specific test point locations are detailed in the test point matrix, Appendix A.

4.1.1 Chapter Outline.

This chapter will be outlined in a manner consistent with Section 1.4.2. The results

and analysis for each objective and associated MOPs will be independently analyzed to

determine appropriate algorithm adequacy, performance, and comparison with the optimal

solution.

As a reminder, the overall test objective was to compare three and five path limited

option Automatic Ground Collision Avoidance System solutions for heavy-type aircraft

against optimally derived ground avoidance solutions.

The specific test objectives were to:

1. Evaluate the 3 TPA Solution
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2. Evaluate the 5 TPA Solution

3. Determine Acceptable Algorithm Parameters

4. Compare 3 and 5 TPA Solutions with the Optimal Solutions

The DAP located in Appendix B, organized by objective, contains the procedures and

processes used to analyze the data for the results presented herein.

4.2 Specific Test Objective 1: Evaluate the 3-TPA Solution.

4.2.1 MOP 1: Algorithm Path Selection.

The 3-TPA path selection data were analyzed by observing the aircraft response during

simulation and comparing it to the aircraft response during flight test. The evaluation

criteria were satisfied if the chosen escape path matched the simulation results. During

flight test, the algorithm’s decision logic was also monitored from the research laptop, to

confirm that the algorithm was commanding the correct path.

The 3-TPA path selection results are presented in Table 4.1. The data showed that

the 3-TPA ESCAPE algorithm chose the expected path 19 times out of 21 test runs. This

shows that the algorithm results were repeatable and predictable. This predictability and

repeatability of the flight test results demonstrate the algorithm’s e↵ectiveness, in that it

was able to perform consistently from one flight to another.

Table 4.1: 3-TPA Path Selection

Algorithm: 3-TPA Test Dates: 31 Aug-10 Sep 15
Pressure Altitude: 15,000 ft Airspeed: 310 kts Groundspeed

Test Point Result Number of Test Runs Forward Path Left Path Right Path
6 Forward Path 7 5 2
6 Left Path 7 7
8 Right Path 7 7
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The cases where the algorithm chose an unpredicted path were caused by small

variations in the test point setup parameters, from the execution of the position slewing

tool, to the execution of the escape maneuver. Since the algorithm logic was based on the

safety bubble contacting any single DTED post, a very small change in lateral or vertical

position could have made the di↵erence between hitting a DTED post much earlier in the

projected trajectory; or missing the DTED post which was hit during simulation. Sources

of error which may have led to a di↵erent path being selected include pilot technique to

maintain a constant heading and altitude and variable winds which may have caused the

aircraft to drift away from the desired flight path. Analysis of the aircraft ground track

during the test point setup revealed that all cases where the ground track was more than

0.5� from the planned course led to a di↵erent path being selected. Although this track

error was within the tolerance specified in the test point matrix, it proved to be enough

to consistently trigger a di↵erent escape path. The other flight parameters specified in the

test point matrix were maintained within tolerance, and no other correlation was noticed

between test point flight parameters and path selection.

4.2.2 MOP 2: 3-TPA Aircraft Response.

The 3-TPA aircraft response data were analyzed by plotting the time history of the

load factor (Nz) and bank angle (�) for the commanded values and the achieved values.

The time history of the altitude and the flight path angle were also plotted to compare with

the expected values. From the time history plots, the maximum parameter deviation was

noted for the transitory period and for the steady-state period. The transitory period was

defined as the time during which the bank angle or load factor was commanded to change

with time. The steady-state period was defined as the period of time during which the bank

angle and load factor were commanded to remain steady with time. The evaluation criteria

were satisfied if the aircraft flew within 0.1 g of the commanded load factor, within 5� of

the commanded bank angle, maintained altitude within 100 feet during level maneuvers,
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and maintained the flight path angle of 15� within 3� of the predicted value during climbing

maneuvers.

The 3-TPA aircraft response results are summarized in Table 4.2, which represents the

largest deviation from the desired value of the aircraft state, as observed over the course

of four separate flights, for both the transitory period and the steady-state period. Negative

values indicate that the aircraft state was less than desired, while positive values indicate

that the aircraft state was greater than desired. To compare data between flights and to

observe trends, sample time history plots are presented in Figures 4.1 to 4.3, which show

data for test point 6. Additional time history plots are presented in Appendix D for test

points 7 and 8.

Table 4.2: Maximum Deviation from Desired Aircraft States for 3-TPA

Algorithm: 3-TPA Test Dates: 31 Aug-10 Sep 15
Pressure Altitude: 15,000 ft Airspeed: 310 kts Groundspeed

Transitory Period Steady-State Period

Test
Point

Bank
Angle*

Load
Factor Altitude

Flight
Path

Angle

Bank
Angle*

Load
Factor Altitude

Flight
Path

Angle

6 (FWD) N/A -0.30 g N/A N/A +1.3� -0.09 g N/A -4.3�

7 (Left) -21.3� -0.29 g -23 ft +0.2� +0.8� -0.05 g +710 ft -5.9�

8 (Right) -22.6� -0.42 g +12 ft +0.3� +1.5� -0.05 g +973 ft -7.3�

(red indicates values outside expected performance)
*Bank Angles represent magnitude, negative values mean less bank than commanded.

Figure 4.1 shows that the bank angle was maintained within tolerance during the

execution of the forward path maneuver (test point 6). Figure 4.2 shows that the load

factor was found to lag the commanded value during transitory periods and to overshoot

the desired value, but it subsequently stabilized within evaluation criteria during the steady-

state periods. The amount of lag in the load factor was a function of aircraft fuel load
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ESCAPE Test Point: 6 (FWD Path) Average OAT: -8�C
Test/Virtual Altitude: 15,000/11,500 ft Test Dates: 31 Aug-10 Sep 15
Center of Gravity: 12.5 - 23.8% Test Day Data

Figure 4.1: Bank Angle vs Time for Test Point 6, Forward Path

and center of gravity, where greater fuel weight and forward center of gravity resulted

in increased lag. The algorithm did not directly command the flight path angle, but it

established the climb angle by commanding a pre-calculated load factor applied over a

period of time.

Figure 4.3 shows that although the initial flight path angle was within evaluation

criteria, there was variance of approximately 3� between test runs, caused by di↵erences in

aircraft weight and center of gravity location. In all cases, the flight path angle decreased

throughout the maneuver, and in one out of four test runs, the final flight path angle was

less than 12�. Maximum continuous power was applied during the climb, but the aircraft

was thrust limited and could not maintain its airspeed. As the airspeed decreased, the

VSS attempted to maintain the commanded load factor by increasing the angle of attack.

The angle of attack remained below 12� in all cases and did not cause any VSS safety

trips. This indicated that the climb angle was not impeded by the loss of airspeed or by
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ESCAPE Test Point: 6 (FWD Path) Average OAT: -8�C
Test/Virtual Altitude: 15,000/11,500 ft Test Dates: 31 Aug-10 Sep 15
Center of Gravity: 12.5 - 23.8% Test Day Data

Figure 4.2: Load Factor (Nz) vs Time for Test Point 6, Forward Path

the lift limit, but rather by an inadequate commanded load factor. In fact, the flight path

angle was maintained at 15� during the climbing turn maneuvers which will be discussed

in Objective 2, because more load factor was being commanded, even though the airspeed

was decreasing throughout the maneuver. The inability to maintain a steady climbing flight

path angle without artificial limiters in place was a continuing issue. It was a direct result

of the open loop nature of the flight path angle control being subjugated to an Nz that was

theoretically designed for a single flight condition. It did not adapt for changes in aircraft

parameters such as gross weight and center of gravity.

In the case of test point 6, two of the test runs impacted the simulated terrain as will

be discussed in the next section. This indicates that an inability to precisely hold a flight

path angle was detrimental to the algorithm’s performance.

The time history plots for test points 7 and 8 (left and right level paths respectively) are

presented in Appendix D Figures D.7 through D.12. During execution of the left and right
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ESCAPE Test Point: 6 (FWD Path) Average OAT: -8�C
Test/Virtual Altitude: 15,000/11,500 ft Test Dates: 31 Aug-10 Sep 15
Center of Gravity: 12.5 - 23.8% Test Day Data

Figure 4.3: Flight Path Angle (�) vs Time for Test Point 6, Forward Path

level turn maneuvers, the steady-state bank angle and load factor were maintained within

tolerance of the commanded values. During the transitory period, both the load factor and

the bank angle lagged the commanded value by an average of 0.25 seconds. This lag, along

with small variations in bank angle and load factor, a↵ected the aircraft’s ability to maintain

a constant altitude during the turn. The algorithm attempted to maintain a constant altitude

by adjusting the commanded load factor based on the bank angle as per:

Nz =
1

cos µ
(4.1)

However, the lag caused by aircraft dynamics caused errors in the expected Nz to � relation,

and this prevented the aircraft from maintaining level flight. During and shortly after the

roll-in, the aircraft descended as much as 80 ft due to insu�cient commanded load factor

during the transitory period. Once the load factor reached its steady-state value, the aircraft

began to climb and the final altitude varied from 100 ft to 973 ft above the starting altitude

dependent upon gross weight and center of gravity parameters.
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The aircraft’s inability to maintain the desired flight path angle, and the lag between

the commanded parameters and the actual parameters prevented the aircraft from flying

the maneuvers as planned. Since the algorithm’s collision predictions assumed that the

aircraft would fly the maneuvers as planned, the inability to maintain the desired flight

parameters could a↵ect the ESCAPE algorithm’s e↵ectiveness against the terrain which

will be discussed thoroughly in the next section.

4.2.3 MOP 3: 3-TPA Ground Miss Distance.

The 3-TPA ground miss distance was calculated using a MATLAB script which

accepted the aircraft virtual navigation solution (downstream of the position and course

slewing tool) as an input, and returned the terrain miss distance as an output. The script

determined the minimum miss distance by using the Root Mean Square (RMS) error

equation to calculate the distance between the aircraft and the DTED posts at every iteration

point of the navigation solution for the duration of the escape maneuver. Eq. (4.2) shows

the calculation.

RMS error =
p

(XDT ED � XAC)2 + (YDT ED � YAC)2 + (ZDT ED � ZAC)2 (4.2)

The minimum miss distance was the least of these values. This script was validated by

taking sample data to plot the aircraft trajectory over a DTED map, and confirming that the

miss distance was correct. The evaluation criterion was satisfied if the distance between

the navigation solution and the DTED was more than the specified safety bubble radius

at all points of the escape flight path. Though a distance found to be inside the bubble

radius would not necessary indicate an impact with terrain, the fact that the aircraft model

assumes a point mass makes further interpretation of the distance irrelevant. The specifics

of the analysis can be further referenced in Appendix B.

The 3-TPA ground miss distance results are presented in Table 4.3, tabulated with one

test run per container. The flight test results are also presented graphically in 3-dimensional

plots presented in Appendix D Figures D.13 and D.14, which show where the turning paths
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intersected the terrain. The data show that in all cases but one, the aircraft impacted the

simulated terrain. The two primary causes for the ground impacts are the achieved flight

path angle, and the open-loop path selection logic. Of note, the available reaction time

is not included in Table 4.3 because the values are all essentially zero since no time was

practically available before impact (even in the case with a 39 ft miss distance).

Table 4.3: 3-TPA Ground Miss Distance

Algorithm: 3-TPA Test Dates: 31 Aug-10 Sep 15
Pressure Altitude: 15,000 ft Airspeed: 310 kts Groundspeed

Ground Miss Distance (ft)
Test
Point

Flight
1

Flight
2

Flight
3

Flight
4

6
(FWD) 0 39 0 0

7
(Left) 0 0 0 0

8
(Right) 0 0 0 0

The algorithm assumed that the aircraft would be able to climb at a constant flight

path of 15�, and the maneuver initiation point is based on this assumption. As discussed

in the previous section, the aircraft was not able to maintain 15� of flight path angle for

the duration of the maneuver, which resulted in less altitude gained than predicted, and

the aircraft could not out-climb the terrain obstacle. This caused the aircraft to impact the

terrain in three out of four test runs, as illustrated in Figure 4.4. The only case where test

point 6 did not impact the ground is the second test run, which produced the highest flight

path angle, due to the aircraft weight and center of gravity location. Even in this case,

the average flight path angle was lower than planned, and the aircraft missed the ground

by only 39 feet. The important point though, is that the aircraft must meet or exceed the

algorithm’s expected performance or terrain clearance cannot be guaranteed.
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ESCAPE Test Point: 6 (FWD Path) Average OAT: -8�C
Test/Virtual Altitude: 15,000/11,500 ft Test Dates: 31 Aug-10 Sep 15

Figure 4.4: Planned vs Achieved Flight Path Angle for Test Point 6, Forward Path

Another cause for ground impact during test points 7 and 8 was the fact that the

algorithm stops scanning terrain once it implements a maneuver. In order to avoid nuisance

activations, the algorithm did not command any maneuvers until it predicted that all

projected escape paths would impact the terrain. Once every projected path impacted the

terrain, the algorithm determined which path o↵ered the longest time of flight prior to

impact, and commanded the aircraft to fly that maneuver with a time delay safety margin to

avoid actual impact. The algorithm assumed that the escape path which o↵ered the longest

time of flight prior to impact would o↵er the best chances to avoid the terrain by taking

advantage of the time delay safety margin and the bubble safety margin. However, in some

cases, such as the one depicted in Figure 4.5, the safety margins would have to increase to

impractical values in order to protect the aircraft using this logic, since the left level turn
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would have resulted in a collision even if it had been initiated 50 iterations earlier than

the actual initiation point. (To be clear, this issue is somewhat artificial in nature since the

aircraft was slewed to a location deep in the mountains, where realistically, it may not have

been practical (or possible) to physically fly the aircraft without causing an activation that

would have cleared the terrain. In any case, the presented problem shows a limitation in the

algorithm’s performance that can be directly addressed.) The algorithm logic is illustrated

in Figure 4.5, using data from test point 7.

ESCAPE Test Point: 7 (Left Level Turn) Average OAT: -8�C
Virtual Altitude: 12,000 ft Test Dates: 31 Aug-10 Sep 15

Figure 4.5: Ground Impact Predictions for Test Point 7

Figure 4.5 shows that as of the first iteration, the left level turn was predicted to

intercept the terrain after 23 seconds time of flight, a byproduct of the slewed position.

After 26 iterations, the right level turn was predicted to intercept the terrain after 12

seconds, and the left level turn was still predicted to intercept the terrain after 20 seconds.

After 50 iterations, the forward climb was predicted to intercept the terrain after 17 seconds,
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the right level turn was predicted to intercept the terrain after 10 seconds, and the left level

turn was predicted to intercept the terrain after 22 seconds. At this point, the algorithm

commanded the left level turn because it o↵ered the longest time of flight prior to impact.

However, the left level turn was predicted to impact the terrain for more than the last 50

iterations, corresponding to more than 1.5 seconds. This caused the aircraft to choose an

escape path which predicted that a collision would occur even if the maneuver had been

initiated well prior to the expiration of the time delay safety margin.

With this flight test result, additional simulator test points were flown to evaluate

the possibility of allowing the algorithm to continue to evaluate the terrain during the

actual execution of one of the TPAs. This was done by simply restarting the algorithm

immediately upon TPA execution. Through this limited analysis, it was found that the

algorithm would alter its flight path and TPA choice during execution and avoid the terrain.

Through this rudimentary experimentation, the algorithm proved to be even more robust.

Unfortunately, it was not possible to test these points in flight due to flight safety restrictions

for software changes to the ESCAPE paths. This does, however, show promise for future

research and testing.

Although the e↵ects of wind on the flight test data were not specifically analyzed,

a logical assumption would be that it also had an e↵ect on the ground miss distance.

Theoretically, a no wind assumption would reduce the accuracy of the predicted turn radius.

This would cause the downrange travel to be smaller than predicted with headwind, and

longer than predicted with tailwind. Additionally, the turn radius would vary throughout

the turn, depending on whether the aircraft was flying into or away from the wind.

Another factor which a↵ected the ground miss distance was the lag between the

command vector and the aircraft response. The load factor and bank angle time history

plots showed that on average, the aircraft’s load factor and bank angle started to increase

approximately 0.25 seconds after the command vector was initiated, which is equivalent to
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half of the time delay safety margin, or 130 ft of downrange travel at a groundspeed of 310

kts. For this reason, aircraft performance, inertia, and center of gravity have a direct a↵ect

on the algorithm’s performance and must be accounted for within the time delay safety

margin. Since this lag is typically very small, on the order of a tenth of a second, it need

be only evaluated at a worst-case condition and applied throughout the individual aircraft’s

flight envelope.

4.2.4 Specific Test Objective 1 Conclusion.

The 3-TPA path selection was found to be dependable throughout flight test. The

predictability and robustness of the three path ESCAPE algorithm was demonstrated in

flight test through the consistency with which it chose the escape paths for a given situation

based on expected simulation results.

The 3-TPA aircraft response did not consistently hold specified parameters due to the

lag in the load-factor onset, and due to the inability to maintain the desired flight path

angle. The ability to control the aircraft using pre-determined load factor and bank angle

commands was demonstrated in flight test, but should be improved to be able to consistently

achieve the desired aircraft response.

Finally, the algorithm processing needs to be updated to allow for a closed-loop

anlaysis of the terrain during maneuver execution. The current algorithm stops evaluating

terrain once a TPA has been chosen. It is recommended that it continue to evaluate the

terrain which would require aircraft initial state information to be constantly fed into the

path control logic. With these additions, the ESCAPE algorithm e↵ectiveness should

provide increased protection in even the most challenging terrain.

4.3 Specific Test Objective 2: Evaluate the 5-TPA Solution.

4.3.1 MOP 1: Algorithm Path Selection.

The 5-TPA path selection data were analyzed by observing the aircraft response

during simulator sessions and comparing it to the aircraft response during flight test. The
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evaluation criteria were satisfied if the chosen escape path matched the simulation results.

During flight test, the algorithm’s decision logic was also monitored from the research

laptop, to confirm that the algorithm was commanding the correct path.

The 5-TPA path selection results are presented in Tables 4.4. The data showed that for

all 43 test points, the five path algorithm chose the predicted escape path. This shows that

the algorithm results were repeatable and predictable. This predictability and repeatability

of the flight test results demonstrate the algorithm’s e↵ectiveness, in that it was able to

perform consistently from one flight to another.

Table 4.4: 5-TPA Path Selection

Algorithm: 5-TPA Test Dates: 31 Aug-10 Sep 15
Pressure Altitude: 15,000 ft Airspeed: 310 kts Groundspeed

Test
Point

Result Number of
Test Runs

Forward
Path

Left
Path

Right
Path

Left-Up
Path

Right-Up
Path

9 Left-Up Path 6 6
10 Forward Path 6 6
11 Forward path 7 7 6
12 Forward Path 6 6
13 Right-Up Path 6 6
38 Left-Up Path 4 4
39 Left-Up Path 4 4
40 Right-Up Path 4 4

Prior to flight test, the test team attempted to find test points which would trigger each

of the five di↵erent escape paths. When the test team simulated test points 10 and 11 on

their personal computers, the left and right paths were triggered, respectively. However,

when these test points were simulated in the TPS flight sciences simulator using the

research laptop, both of these test points triggered the forward path. The di↵erent outcome

is explained by the di↵erence in processing power. The personal laptops could not run

the algorithm as rapidly; which provided less overlap in the safety bubbles, and a greater

distance traveled between iterations of the algorithm’s predictions. The test team attempted
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to find new test point parameters which would force the 5-TPA solution to choose the left

and right level turn maneuvers by performing simulation against cli↵ faces, valleys, and

box canyons and approached these terrain features at various angles and altitudes. In fact,

the test team created a MATLAB script that ran thousands of iterations over hundreds of

hours on personal (slower processor) computers. After extensive analysis and simulation,

no such test point was found that triggered a level turn in the flight science simulator. The

fact that the test team could not find any scenario to trigger the level turn paths with the

5-TPA solution indicated that whenever 15� climbing maneuvers, straight ahead or turning

were available, there were few situations where a level turn was advantageous.

Since the algorithm appeared to favor the climbing maneuvers over the level turn

maneuvers, the 3-TPA test points were repeated while using the 5-TPA solution to

determine if the algorithm would still choose the same paths when given additional options.

The results of this experiment are shown in test points 38 to 40 which mirror test points 6 to

8, but with the 5-TPA algorithm as seen in the test matrix in Appendix A. This experiment

showed that in all three cases, the 5-path algorithm chose climbing turn maneuvers, which

were not previously available. In the case of test points 39 and 40 (level turns in the 3-TPA

algorithm), the 5-TPA solution chose a maneuver which was in the same direction as the

3-TPA solution, but it assessed that the climbing turn was a better option than the level

turn. With respect to terrain avoidance alone, these preliminary results seem to suggest that

climbing maneuvers are distinctly favored over level maneuvers. Of note, this does not take

into account mission related scenarios that would benefit from level maneuvers.

4.3.2 MOP 2: 5-TPA Aircraft Response.

The 5-TPA aircraft response data were analyzed by plotting the time history of the

load factor (Nz) and bank angle (�) for both the commanded values and the actual achieved

values. The time history of the altitude and the flight path angle were also plotted to

compare with the expected values. From the time history plots, the maximum parameter
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deviation was found for the transitory period and for the steady-state period, precisely as

outlined in Section 4.2.2 with the same evaluation criterion.

The 5-TPA aircraft response results are summarized in Table 4.5, which represents the

largest deviation from the desired value of the aircraft state, as observed over the course

of four separate flights for both the transitory period and the steady-state period. Negative

values indicate that the aircraft state was less than desired, while positive values indicate

that the aircraft state was greater than desired. To compare data between flights and to

observe trends, sample time history plots for test point 9 are presented in Figures 4.6

through 4.8. Additional time history plots for test point 13 are presented in Appendix

D Figures D.15 through D.17. This section will discuss the results of test points 9 and

13, which represent the left-up and right-up maneuvers respectively. The other test points

resulted in the forward path, which yielded similar results to test point 6, discussed within

Objective 1.

Table 4.5: Maximum Deviation from Desired Aircraft States for 5-TPA

Algorithm: 5-TPA Test Dates: 31 Aug-10 Sep 15
Pressure Altitude: 15,000 ft Airspeed: 310 kts Groundspeed

Transitory Period Steady-State Period

Test
Point

Bank
Angle*

Load
Factor Altitude

Flight
Path

Angle

Bank
Angle*

Load
Factor Altitude

Flight
Path

Angle

9 (Left-
Up) -26� -0.21 g N/A N/A -1.5� -0.09 g N/A +1.5�

13
(Right-

Up)
-24� -0.22 g N/A N/A +2.5� -0.09 g N/A +4.1�

(red indicates values outside expected performance)
*Bank Angles represent magnitude, negative values mean less bank than commanded.
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ESCAPE Test Point: 9 (Left-Up) Average OAT: -8�C
Test/Virtual Altitude: 15,000/6,800 ft Test Dates: 31 Aug-10 Sep 15
Center of Gravity: 12.5 - 23.8% Test Day Data

Figure 4.6: Bank Angle vs Time for Test Point 9, Left-Up Path

ESCAPE Test Point: 9 (Left-Up) Average OAT: -8�C
Test/Virtual Altitude: 15,000/6,800 ft Test Dates: 31 Aug-10 Sep 15
Center of Gravity: 12.5 - 23.8% Test Day Data

Figure 4.7: Load Factor vs Time for Test Point 9, Left-Up Path
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ESCAPE Test Point: 9 (Left-Up) Average OAT: -8�C
Test/Virtual Altitude: 15,000/6,800 ft Test Dates: 31 Aug-10 Sep 15
Center of Gravity: 12.5 - 23.8% Test Day Data

Figure 4.8: Flight Path Angle vs Time for Test Point 9, Left-Up Path

Figures 4.6 and 4.7 show that the bank angle and the load factor both lagged the

commanded value during the transitory period. Similar to the straight ahead pull-up and

the level turns discussed within Objective 1, the flight path angle was set and maintained by

modulating the load-factor over a period of time. In all cases, the climbing turns achieved

an initial flight path angle which was within tolerance, varying between 13.5� and 16.1� as

shown in Figure 4.8. This indicates that the duration of the 2-g command was adequate

for the tolerances of this test. During the steady-state period, the bank angle and load

factor were held within tolerance, with only fluctuations within the bounds specified in

Table 4.5. Unlike the straight ahead climb, the flight path angle remained above 15� during

the climbing turns because the commanded load factor was slightly more than required to

maintain the desired climb angle, but the VSS limited the flight path angle to 15�. This

was a byproduct of a VSS limiter that was put in place for the climbing turn maneuvers to

prevent a VSS safety trip which was unnecessary for the straight ahead climbs. The result

of this limiter showed the necessity for precise flight path angle control.
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4.3.3 MOP 3: 5-TPA Ground Miss Distance.

The 5-TPA ground miss distance data were analyzed using a MATLAB script which

accepted the aircraft virtual navigation solution (downstream of the position and course

slewing tool) as an input, and returned the terrain miss distance and available reaction time

as outputs. All algorithm processing is exactly the same as the three path algorithm.

The 5-TPA ground miss distance results are presented in Table 4.6, tabulated with one

test run per container. The flight test results are also presented graphically in 3-dimensional

plots shown in Figure 4.9 and Appendix D Figure D.18. In both cases, they show that

ESCAPE Test Point: 9 (Left-Up) Average OAT: -8�C
Test/Virtual Altitude: 15,000/6,800 ft Test Dates: 31 Aug-10 Sep 15
Center of Gravity: 12.5 - 23.8% Test Day Data

Figure 4.9: 3D Presentation of Flight Test Data, Test Point 9, Left-Up Path

the climbing turn paths do not intersect the terrain. The Ground Miss Distance was the

distance between the aircraft and the terrain at the closest point of approach. As previously

mentioned, the available reaction time, a measure of nuisance, was the amount of time that
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the maneuver could have been delayed while flying straight and level beyond the maneuver

activation point, and still avoid a collision by an infinitely small margin. For all cases, a

300 ft bubble was used, so any miss distance less than 300 ft represents a terrain clearance

inside the bubble. The data showed that all test runs for test points 9 and 13 (left up and

right up paths) did not impact the simulated terrain, while all test runs except one for test

points 10 (desired left, actual forward), 11 (desired right, actual forward), and 12 (forward)

did impact the simulated terrain with the same analysis as Objective 1 since flight path

angle was not adequately maintained. This reduced climb performance caused the aircraft

to impact the terrain in all but one test run. As previously discussed, points 10 and 11

were attempted level paths with the 5-path algorithm, but with actual processing speeds,

the algorithm always chose to climb.

As previously discussed, the climbing turn maneuvers successfully maintained 15� of

flight path angle throughout the maneuver. This allowed the aircraft to maintain a su�cient

climb gradient to avoid the obstacles.

The variance in the ground miss distance data and the available reaction time

computation was a result of the same factors as discussed for Objective 1, namely variations

in wind and the lag between the command vectors and the aircraft response. Again, all

of the issues presented in Objective 1 were also evident in Objective 2, except that the

algorithm had success in all cases when the flight path angle was maintained during the

maneuver which is evident in Table 4.6 for the climbing turn ESCAPE paths.

4.3.4 Specific Test Objective 2 Conclusion.

Similar to Objective 1, the path selection logic was found to be robust for the 5-TPA

algorithm. The predictability and robustness of the 5-TPA solution were similar to those

of the 3-TPA solution. Di�culty in finding terrain to trigger the level paths indicated that

climbing paths may be more desirable than level paths. Such terrain may exist, but it has

proven itself to be di�cult to find.
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Table 4.6: 5-TPA Miss Distance and Available Reaction Time

Algorithm: 5-TPA Test Dates: 31 Aug-10 Sep 15
Pressure Altitude: 15,000 ft Airspeed: 310 kts Groundspeed

Ground Miss Distance Available Reaction Time
Test
Point

Flight
1

Flight
2

Flight
3

Flight
4

Flight
1

Flight
2

Flight
3

Flight
4

9 (Left-
Up) 197 304 240 133 0.18 0.02 0.11 0.30

10
(Fwd) 0 0 0 0 0 0 0 0

11
(Fwd) 0 251 0 0 0 0.03 0 0

12
(Fwd) 0 0 0 0 0 0 0 0

13
(Right-

Up)
189 185 258 47 0.14 0.14 0.12 0.10

38
(Left-
Up)

264 254 No
Data 178 0.18 0.17 No

Data 0.12

39
(Left-
Up)

239 No
Data

No
Data 235 0.01 No

Data
No

Data 0.01

40
(Right-

Up)
373 249 356 329 0.14 0.12 0.11 0.05

Once again, similar to the 3-TPA algorithm, the 5-TPA solution created an aircraft

response that did not meet expectations for the forward path due to the lag in the load

factor and bank angle caused by center of gravity and weight changes in the aircraft. The

climbing turn maneuvers, however, showed that direct control of the flight path angle (�)

would result in improved performance and terrain protection.

This added protection for the climbing turn maneuvers resulted in 100% saves from

the terrain for the test points that resulted in those maneuvers. For that reason, it

is recommended that further research focus on methods to more precisely control the
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flight path angle since load factor control alone is unpredictable with changing aircraft

parameters.

The specific recommendations for Objectives 1 and 2, which are very similar, will be

presented in Chapter 5.

4.4 Specific Test Objective 3: Determine Algorithm Parameters.

The third specific test objective was to determine acceptable algorithm parameters by

analyzing the algorithm’s performance with various safety bubble sizes against Level 1

DTED and determining the overall processing time required to run the algorithms.

4.4.1 MOP 1: Bubble Size for Level 1 DTED.

The test points for this MOP were similar to those used for specific objectives 1 and

2, with the only di↵erence being the variation in bubble radius of 100 ft, 200 ft, and 300

ft as seen in Appendix A for test points 14-37. Three di↵erent bubble sizes were analyzed

to determine the level of protection provided against Level 1 DTED. The path selection

was then annotated to determine the e↵ect of the changing bubble size. The relationship

between bubble size and miss distance was not evaluated during this analysis because

the results of Objectives 1 and 2 revealed that too many other factors a↵ected the miss

distance to be able to draw useful conclusions about this relationship. It is safe to assume

though, that a reduction in bubble size will result in less terrain miss distance and less

available reaction time which will ultimately reduce algorithm e↵ectiveness. Once the

recommendations outlined in Chapter 5 are addressed, it would be prudent to reevaluate

miss distances with varying bubble size.

The three and five path selection results are presented in Tables 4.7 and 4.8

respectively. The data show that there was more variability in path selection as bubble

size decreased. Though some of this could be attributed to minor deviations in heading

or wind, there were situations where a 100 ft bubble flew between DTED posts without

triggering an ESCAPE maneuver. The tabulated results in the “No Path” column denote
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scenarios where a collision was either completely undetected or was detected after having

flown through a terrain feature. Additionally, smaller bubble sizes allowed for fewer DTED

posts to be analyzed during an iteration, which could have a↵ected path selection for a given

terrain feature because a di↵erent DTED post could have tripped the algorithm logic. For

example, Test Point 17 displays a situation where the left path was expected, but in one-

third of the cases, the algorithm chose a dissimilar path. In this scenario, a di↵erent path

was chosen simply by reducing the bubble size to 100 ft. In this way, the chosen bubble

size is directly related to algorithm performance based on the desired level of DTED. Of

note, most military platforms currently only have the capability to carry Level 1 DTED.

Table 4.7: 3-TPA Bubble Size E↵ects

Algorithm: 3-TPA Test Dates: 31 Aug-10 Sep 15
Pressure Altitude: 15,000 ft Airspeed: 310 kts Groundspeed

Number of Chosen Paths for Bubble Size

Test
Point

Bubble
Size
(ft)

Expected
Path Left Fwd Right No

Path

14 100 No Path 2 0 0 3
15 200 Left Path 4 1 0 0
16 300 Fwd Path 2 5 0 0
17 100 Left Path 4 1 1 0
18 200 Left Path 5 0 0 0
19 300 Left Path 7 0 0 0
20 100 Right Path 0 0 6 0
21 200 Right Path 0 0 5 0
20 300 Right Path 0 0 7 0

(red indicates di↵erent path chosen than expected.)

It is much easier to understand this concept graphically. As depicted in Figures 3.7 and

4.10, the minimum number of DTED posts that can be collected by a 300 ft, 200 ft and 100

ft bubble size were 4, 1, and 0 respectively. This was determined for Level 1 DTED with

a post spacing of approximately 295 ft. Although it was not used for this project, Level
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Table 4.8: 5-TPA Bubble Size E↵ects

Algorithm: 5-TPA Test Dates: 31 Aug-10 Sep 15
Pressure Altitude: 15,000 ft Airspeed: 310 kts Groundspeed

Number of Chosen Paths for Bubble Size

Test
Point

Bubble
Size
(ft)

Expected
Path Left Left-

Up Fwd Right-
Up Right No

Path

23 100 Right Path 0 0 0 0 3 2
24 200 Left-Up 0 4 0 0 0 0
25 300 Left-Up 0 4 0 0 0 0
26 100 No Path 0 0 1 0 0 3
27 200 Fwd Path 0 0 4 0 0 0
28 300 Fwd Path 0 0 6 0 0 0
29 100 Right Path 0 0 2 0 1 1
30 200 Fwd Path 0 0 3 0 0 0
31 300 Fwd Path 0 0 7 0 0 0
32 100 Left-Up 0 1 2 0 0 0
33 200 Fwd Path 0 0 4 0 0 0
34 300 Fwd Path 0 0 6 0 0 0
35 100 Right-Up 0 0 0 0 4 0
36 200 Right-Up 0 0 0 0 4 0
37 300 Right-Up 0 0 0 0 5 0

(red indicates di↵erent path chosen than expected.)

2 DTED also exists, and provides a post spacing of approximately 98 feet. Based on this

analysis, Level 1 DTED is su�cient for a 300 ft radius, Level 2 DTED is recommended for

a 200 ft radius, and Level 2 DTED is required for a 100 ft radius. This would allow at least

1 DTED post to be identified providing for some terrain analysis at each bubble iteration.

In general, the amount of DTED analyzed for both the three and five path algorithms

was increased by increasing bubble size. This was evident in Tables 4.7 and 4.8 as the

predictability of the 300 ft and 200 ft bubble sizes was generally more consistent than

the 100 ft size for both algorithms. In all cases, higher fidelity DTED would allow more

posts to be identified per iteration for a given bubble size which will increase the level of

protection provided by the algorithm.
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(a) 200 ft Radius Bubble (b) 100 ft Radius Bubble

Figure 4.10: Minimum Post Identification for Level 1 DTED

4.4.2 MOP 2: Algorithm Processing Time.

For every test point flown, the MATLAB Tic-Toc functions were used to measure and

record the time required to process each iteration of the ESCAPE algorithms to include

solving the equations of motion for each projected flight path and conducting the collision

prediction. All test points were flown a minimum of four times and data were recorded each

time to increase statistical significance. The same research laptop and software were used,

and nonessential user background processes were eliminated when possible to decrease

variability. The computer was a commercial o↵ the shelf laptop with a standard Windows

8.1 Pro operating system. Operating system software was not modified or trimmed down

to meet the specific purposes of the test program.

A total of 14,695 data points were collected during flight test. Since the algorithms

were being processed at 12.5 Hz, the data were analyzed for serial correlation, and the data

within each test point were found to be correlated. To obtain independent data points, the
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data were decimated by a factor of 30 prior to statistical analysis. Box plots were generated

using MATLAB to show the distribution of the data. The evaluation criteria were satisfied

if the algorithm processing time was su�ciently quick to provide an overlap in the safety

bubbles from one iteration to the next and if the processing time was always less than the

algorithm’s time safety margin of 0.5 seconds.

Figures 4.11 and 4.12 show the results of the statistical analysis of the overall

processing time for all flights. The results from this analysis are representative of the

full capabilities of the algorithm and the research laptop. These results are summarized in

Table 4.9 for the 3 and 5 path algorithms’ average and maximum processing time.

3-TPA Data Basis: Flight Test
Simulink 8.5 Altitude: 14,500-18,500
MATLAB 8.5.0.197613 (R2015a) Dates: 31 Aug - 10 Sep 2015
Windows 8.1 Pro Test Day Data

Figure 4.11: Overall Processing Time for the 3-TPA Algorithm
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5-TPA Data Basis: Flight Test
Simulink 8.5 Altitude: 14,500-19,100
MATLAB 8.5.0.197613 (R2015a) Dates: 31 Aug - 10 Sep 2015
Windows 8.1 Pro Test Day Data

Figure 4.12: Overall Processing Time for the 5-TPA Algorithm

The data show that the longest observed processing time for one iteration was 0.1494

seconds. At 310 knots ground speed, the aircraft traveled at 523.22 ft/s which corresponds

to 78 feet in 0.1494 seconds. Therefore, the maximum algorithm processing time was

su�ciently fast to provide an overlap between the safety bubble from one iteration to the

next. Both algorithms’ maximum processing times were well below the time safety margin

of 0.5 seconds. Of note, the maximum processing times are outliers. Specifically, they are

13.13 and 17.46 standard deviations from the mean, for the 3-TPA and 5-TPA solutions

respectively. Of the 3,570 data points for the 3-TPA solution, only 262 points fell above

the 95-percentile, 0.0512 seconds, in the fourth quartile. Of the 7,107 data points for the

5-TPA solution, only 512 points fell above the 95-percentile, 0.0637 seconds, in the fourth

quartile.
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The three path algorithm was on average 34% faster than the five path algorithm. In

general, it was possible to run at more than five iterations per second. In fact, all test points

were flown at 12.5 Hz and could theoretically have been run at 28.25 Hz (3-TPA) and

18.55Hz (5-TPA), but were limited by VSS capabilities.

Table 4.9: Overall Processing Time for both Algorithms

Description Time (sec)

Average Processing Time per Iteration
(3-TPA Algorithm) 0.0354

Average Processing Time per Iteration
(5-TPA Algorithm) 0.0539

Maximum Processing Time per Iteration
(3-TPA Algorithm) 0.1217

Maximum Processing Time per Iteration
(5-TPA Algorithm) 0.1494

4.4.3 Specific Test Objective 3 Conclusion.

With respect to varying bubble size, additional research will be required to determine

the minimum radius for a given aircraft and mission. This will be a function of the aircraft’s

expected altitude, computing memory available to store the DTED, and processing power.

With these parameters determined, an appropriate bubble size could be selected. In this

way, the analysis supports that varying bubble sizes is practical and possible for military

utility but should be flexible for di↵erent aircraft and mission sets. Additionally, the correct

level of DTED must be used for proper terrain protection based on the chosen size.

The overall algorithm processing time was satisfactory for both the 3-path and 5-

path algorithms. The algorithm processing time was always su�ciently quick to provide

an overlap in the safety bubbles and was never more than the time delay of 0.5 seconds.

This suggests that the computing power is readily available to e↵ectively run the ESCAPE

algorithms in real time to provide terrain clearance at expected operating speeds.
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4.5 Specific Test Objective 4: Compare the 3 and 5-TPA solution with the Optimal

Solution

The fourth specific test objective was to compare the 3-TPA and 5-TPA solutions with

the optimally derived solution by comparing the algorithm’s path selection, ground miss

distance, and available reaction time of each solution.

4.5.1 MOP 1: Proper Path Selection.

The flight test data collected for this MOP were compared with the optimal code

explained in Section 3.10.4 and focused on test points 6-13 from the Test Matrix in

Appendix A. The test points that produced this data were then simulated with Suplisson’s

optimal code to determine the optimum solution response. The resulting direction of turn,

flight path angle, bank angle, and Nz, were recorded. The ESCAPE algorithm solutions

were compared to the optimal solutions at the ESCAPE algorithm’s activation point.

The aircraft response obtained in flight test was compared to the optimum escape

solution to qualitatively evaluate if the ESCAPE algorithms chose the similar path. Since

the optimum code could choose from an infinite number of escape paths bounded by 60�

angle of bank and a 2-g load factor, qualitative comparison regions were used to find a

similar ESCAPE algorithm (non-optimal) path. These regions were numbered in the same

manner as the Have ESCAPE paths and remained consistent for both the three and five path

ESCAPE algorithms, which helped determine the usefulness of the 5-path algorithm.

• Region 1 was described by a flight path ranging from a straight ahead climb, to a 45�

oblique 2-g climbing turn to a maximum of 15� flight path angle.

• Regions 2 and 3 were described by a flight path ranging from a level 2-g turn to a 5�

oblique climbing turn.

• Regions 4 and 5 were described by a flight path ranging from a 5� climbing turn, to

a 45� climbing turn, to a maximum of 15� flight path angle.
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Figure 4.13: Qualitative Comparison Regions

These comparison regions are summarized in Figure 4.13, as seen from the tail of the

aircraft and looking forward. The ESCAPE algorithm’s solutions and optimal solutions

were deemed similar if the flight test result and the optimum solution both fell within the

same comparison region.

The qualitative comparisons between the 3-TPA or 5-TPA algorithms and the optimum

algorithm are detailed in Tables 4.10 and 4.11 and Figures 4.14 to 4.25. The data showed

the optimal solution always fell within region 1, which matched the flight test results of test

points 6, 10, 11, and 12, but did not match the results of test points 7, 8, 9, and 13.

Figure 4.14 shows that the bank angle response obtained in flight test (test point 6,

3-TPA) was centered around a 0� bank condition (straight ahead climb) while the optimum

solution commanded approximately 9� of right bank within approximately 2.5 seconds of

initiation, then returned to a wings level attitude over the next 25 seconds.

Figure 4.15 shows that the Nz response obtained in flight test (test point 6, 3-TPA)

achieved the commanded load factor of 2-g while executing the straight ahead climb and
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Table 4.10: 3-TPA Optimal Path Selection Comparison Table

Test Point
3-TPA Chosen

Path

Optimally

Chosen Region
Result

6 1 1 Similar

7 2 1 Di↵erent

8 3 1 Di↵erent

Table 4.11: 5-TPA Optimal Path Selection Comparison Table

Test Point
5-TPA Chosen

Path

Optimally

Chosen Region
Result

9 4 1 Di↵erent

10 1 1 Similar

11 1 1 Similar

12 1 1 Similar

13 5 1 Di↵erent

then unloaded to a load factor of 1-g within approximately 5 seconds of activation. The

optimum solution commanded an approximate load factor of 1.4-g in approximately 1.2

seconds, followed by a return to 1-g over the next 15 seconds.

Figure 4.16 shows that the flight path angle response obtained in flight test (test point

6, 3-TPA) achieved the desired 15� in approximately 7 seconds but failed to maintain that

flight path angle over the length of the maneuver. The optimum solution commanded a 15�
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ESCAPE Test Point 6 (Forward) Flight Test Data Flight: 2

Figure 4.14: Flight Test Angle of Bank vs Optimal Angle of Bank

ESCAPE Test Point 6 (Forward) Flight Test Data Flight: 2

Figure 4.15: Flight Test Nz vs Optimal Nz
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flight path angle in approximately 15 seconds and maintained the flight path angle until

maneuver termination.

ESCAPE Test Point 6 (Forward) Flight Test Data Flight: 2

Figure 4.16: Flight Test Flight Path Angle vs Optimal Flight Path Angle

Figure 4.17 shows the flight test response and the optimal solution for test point 6

(3-TPA) in a 3D depiction. Although test point 6 resulted in similar results when using the

qualitative comparison regions, when angle of bank, Nz, and flight path angle responses are

coupled for the optimum solution, its motion can be described as a climbing right jink (a

climb combined with slight change in direction of flight). Similar results were obtained in

test points 10, 11, and 12 (5-TPA).

Figure 4.18 shows that the bank angle response obtained in flight test (test point 7,

3-TPA) achieved the commanded 60� of left bank within 6.5 seconds of initiation and

maintained that commanded bank until maneuver termination. The optimum solution

commanded 9� of right bank within 2.5 seconds, and then returned to a wings level attitude

over the next 23 seconds.
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ESCAPE Test Point 6 (Forward) Flight Test Data Flight: 2

Figure 4.17: Test Point 6 3-TPA and Optimal Flight Path

Figure 4.19 shows that the Nz response obtained in flight test (test point 7, 3-TPA)

achieved the commanded load factor of 2-g within 5 seconds of initiation while executing

a commanded level turn and maintained a load factor of 2-g until maneuver termination.

The optimum solution commanded an approximate load factor of 1.3-g within 1.2 seconds,

and then returned to a load factor of 1-g over the next 15 seconds.

Figure 4.20 shows that the flight path angle response obtained in flight test (test point

7, 3-TPA) drifted from 0� over time, although a level turn was intended. The optimum

solution commanded a 15� flight path angle in approximately 18 seconds and maintained

this flight path until maneuver termination.

Figure 4.21 shows the flight test path and the optimal solution path for test point 7 (left

level, 3-TPA) in a 3D depiction. Test points 7 and 8 (right level, 3-TPA) resulted in di↵erent
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ESCAPE Test Point 7 (Left Level) Flight Test Data Flight: 2

Figure 4.18: Flight Test Angle of Bank vs Optimal Angle of Bank

ESCAPE Test Point 7 (Left Level) Flight Test Data Flight: 2

Figure 4.19: Flight Test Nz vs Optimal Nz
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ESCAPE Test Point 7 (Left Level) Flight Test Data Flight: 2

Figure 4.20: Flight Test Flight Path Angle vs Optimal Flight Path Angle

terrain avoidance maneuvers when using the qualitative comparison regions. In test point

7, the 3-TPA solution chose a level left turn to miss the terrain while the optimum solution

chose a climbing right jink. Test point 8 (Appendix D, Figures D.19 through D.22) showed

similar results to test point 7, with one exception. In test point 8, the 3-TPA algorithm

chose a right level turn, and the optimum solution again chose a climbing right jink. The

di↵erence in direction of turn between the 3-TPA and optimal solutions could be attributed

to the di↵erences in terrain analysis. Since the 3-TPA algorithm was only analyzing the

terrain along the pre-planned maneuver paths, it did not see maneuvers that the optimal

solution had available. In both cases where the 3-TPA algorithm chose a level turn, the

optimum solution chose a climbing jink (a climb combined with slight change in direction

of flight).

Figure 4.22 shows that the bank angle response obtained in flight test (test point 13, 5-

TPA) achieved the commanded 30� of right bank within 4 seconds of initiation and was
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ESCAPE Test Point 7 (Left Level) Flight Test Data Flight: 2

Figure 4.21: Test Point 7 3-TPA and Optimal Flight Path

centered on 30� until maneuver termination. The optimum solution commanded 3� of

left bank within 2.5 seconds, and then returned to a wings level attitude over the next

19 seconds.

Figure 4.23 shows that the Nz response obtained in flight test (test point 13, 5-TPA)

achieved the commanded load factor of 2-g while executing the climbing right turn and

then unloaded to a load factor of 1-g within approximately 8 seconds of activation. The

optimum solution commanded an approximate load factor of 1.5-g within 1.2 seconds, and

then returned to a load factor of 1-g over the next 10 seconds.

Figure 4.24 shows that the flight path angle response obtained in flight test (test

point 13, 5-TPA) achieved the desired 15� in approximately 10 seconds but overshot

and maintained approximately 16� until maneuver termination. The optimum solution

commanded a 15� flight path angle in approximately 10.5 seconds and maintained the flight

path angle until maneuver termination.
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ESCAPE Test Point 13 (Right-Up) Flight Test Data Flight: 2

Figure 4.22: Flight Test Angle of Bank vs Optimal Angle of Bank

ESCAPE Test Point 13 (Right-Up) Flight Test Data Flight: 2

Figure 4.23: Flight Test Nz vs Optimal Nz
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ESCAPE Test Point 13 (Right-Up) Flight Test Data Flight: 2

Figure 4.24: Flight Test Flight Path Angle vs Optimal Flight Path Angle

Figure 4.25 shows the flight test path and the optimal solution path for test point 13 in

a 3D depiction. (Of note, for this test point the test day winds were later included in the

optimal solution and resulted in the optimal path leaning 3� to the right, much closer to the

flight test result. Though this is not graphically depicted, it suggests that wind e↵ects could

cause even better agreement between the two paths.) Test point 9 also resulted in di↵erent

terrain avoidance maneuvers when using the qualitative comparison regions. In test point 9

(Appendix D, Figures D.23 through D.26), the 5-TPA solution chose a climbing right turn

to miss the terrain, while the optimal solution chose a climbing right jink with up to 18�

angle of bank. Again, the di↵erence in direction of turn between the 5-TPA and optimal

solutions could be attributed to the di↵erences in terrain analysis. Additionally, the optimal

solution penalized aircraft control, so the solution would tend to minimize bank and load

factor inputs to minimize the penalty. For this reason, the ESCAPE algorithms tended to

execute larger control movements than the optimal solution. (Note: The optimal solution

was a minimum control maneuver.)
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ESCAPE Test Point 13 (Right Up) Flight Test Data Flight: 2

Figure 4.25: Test Point 13 5-TPA and Optimal Flight Path

In all cases the optimum solution chose a terrain avoidance maneuver within region 1.

While evaluating the 5-TPA solutions, terrain features forcing a level turn were not found,

as discussed in Objective 2. The tendency for both the ESCAPE algorithm’s solution as

well as the optimal solution to climb when given an option to make a level turn suggests

that if a terrain avoidance maneuver has the ability to climb, it should execute a climbing

maneuver. Further, the tendency of the optimal solution to remain within region 1 for all

evaluated terrain features x of the chosen flight path angle of 15�. This flight path angle is

aggressive for large, climb limited aircraft and may have impacted the results of the optimal

solution to remain within region 1 by allowing the ability to out-climb terrain. A reduction

in flight path angle to lower values may force the optimal solution closer to regions 2 and

3. These decreased flight path angles may be required for heavier gross weights or lower

performing aircraft. Additionally, the 5-TPA solution may choose more climbing turns and
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less straight ahead climbs, and the 3-TPA solution may choose more level turns under the

same logic.

4.5.2 MOP 2: Terrain Miss Distance and Activation Time Di↵erences between the

Optimal and Chosen Path.

The same optimal data used to determine the similar path selection was used to

determine and compare the terrain miss distance and available reaction time. The optimal

solution data provided to the test team described the minimum control maneuver required

to miss the terrain from the same point of activation as the ESCAPE algorithms. The

data provided from the optimal solution was input into the same miss distance processing

techniques used to calculate the distances for the actual flight test data as explained in

Appendix B. To draw conclusions from the data provided, the optimal algorithm’s available

reaction time was qualitatively assessed by comparing the optimal solution’s response to

the 3 and 5-TPA response. If the optimal solution response was less aggressive in load

factor, bank angle, and flight path angle, then the optimal solution could have continued

to fly towards terrain until the maximum allowable bank and load factor was required.

This meant the available reaction time for the optimal solution was greater than the 3 or

5-TPA solution. The di↵erences between the flight test data and the optimal solution data

provided a measure of how closely the ESCAPE algorithms matched the optimal code.

Large di↵erences in the data could indicate a potential for nuisance activations or the need

for additional escape path options.

The terrain miss distance and available reaction time of the 3 and 5-TPA ESCAPE

algorithms and optimal algorithm are detailed in Tables 4.12 and 4.13. Table 4.12 shows

that the 3-TPA solution had zero miss distance. These results are specifically discussed in

Section 4.2.3. The optimum solution’s ground miss distance was 300 feet for all runs. At

the common activation point, the optimum solution commanded a maneuver that required

less load factor and less bank angle than the ESCAPE maneuvers. The reduced load factor

130



and angle of bank indicate that the optimum solution could have continued further along the

initial flight path before requiring a terrain avoidance maneuver at the maximum allowable

load factor. For example, in any given scenario, a last possible avoidance maneuver would

be triggered by the max allowable load factor and maximum allowable bank. Since the

optimal solution penalizes such large control motions, it tended to initiate a maneuver

sooner, reducing control movements. Therefore, the optimum solution’s available reaction

time was greater than the 3-TPA solution’s available reaction time in all cases. Table 4.13

shows that the 5-TPA solution had available reaction times ranging from 0 seconds to 0.59

seconds and miss distances ranging from 0 feet to 304 feet. These results are specifically

discussed in Section 4.3.3. The optimum solution’s ground miss distance was 300 feet

for all runs. At the common activation point, the optimum solution again commanded a

maneuver that required less load factor and less bank angle than the ESCAPE maneuvers.

Therefore, the optimum solution’s available reaction time was greater than the 5-TPA

solution’s available reaction time in all cases as anticipated.

Table 4.12: 3-TPA Miss Distance vs Optimal Solution

Optimal Solution 3-TPA Solution

Test
Point

Miss
Distance

(ft)

Available
Reaction(< or >

3-TPA) (sec)

Miss Distance
(ft)

6 300 > 0
7 300 > 0
8 300 > 0

The possibility of increased nuisance activations from the 3 and 5-TPA solutions is

indicated by the optimal solution’s available reaction time being greater than the ESCAPE

algorithms’ available reaction time. Additionally, the optimal solution chose a less

aggressive maneuver commanded over a longer period of time to miss the terrain when
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Table 4.13: 5-TPA Miss Distance vs Optimal Solution with Available Reaction Time

Optimal Solution 3-TPA Solution

Test
Point

Miss
Distance

(ft)

Available
Reaction(< or >

3-TPA) (sec)

Miss Distance
(ft)

Available
Reaction Time

(sec)

9 300 > 304 0.30
10 300 > 0 0
11 300 > 251 0.03
12 300 > 0 0
13 300 > 185 0.14

compared to the 3 and 5-TPA ESCAPE algorithm which chose a more aggressive maneuver

over a shorter period time (a direct by-product of preplanned maximum performance

avoidance maneuvers). This was expected as the 3-TPA and 5-TPA solutions have limited

number of terrain avoidance maneuvers, and they are not evaluating as much terrain as

the optimum solution. Overall, it was expected that the optimal code would include a

longer available reaction time based on it implementing at the same point as the ESCAPE

algorithms. As previously stated, the optimal solution was locating the optimum path with

minimum control to avoid the terrain, thus it had more available options than the ESCAPE

algorithms. The identical activation point was necessary, though, so that the optimal code

comparison would be relevant with respect to initiation point. The results in Table 4.13

show that the current available reaction time for the ESCAPE algorithms is either 0 or close

to it indicating that nuisance activations would be unlikely. The main issue is creating a

non-zero available reaction time which would be possible by implementing the ESCAPE

algorithms during maneuver execution as explained in Sections 4.2.3 and 4.3.3.

4.5.3 Specific Test Objective 4 Conclusion.

In conclusion, the comparison of path selection between the ESCAPE algorithm’s

solutions and the optimal solution showed di↵erent results when using the qualitative

comparison regions. The optimal solution climbed within region 1 (Figure 4.13) for all
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test points, while the ESCAPE algorithm’s solutions maneuvered within other regions.

This, along with the inability to force a level turn with the 5-TPA solution, suggests

that climbing turns are more useful when executing terrain avoidance maneuvers and

additionally questions the usefulness of level turns.

For that reason, if a 3 path algorithm is chosen, it is recommended that it use climbing

turns and a straight ahead climb. There are situations, though, where level turns may

be tactically relevant for survival from non-terrain threats and, thus, they should not be

systematically ruled out for military use. Additionally, as outlined in Section 4.2.3, the

aggressive 15� climb angle may not be possible for heavier, thrust limited aircraft and may

drive di↵erent performance outcomes for TPA selection.

4.6 Conclusion

This chapter outlined the results of the Have ESCAPE flight tests through an analysis

of both flight and simulation data. The complete list of recommendations will be outlined

in Chapter 5 based on the information provided herein. The intent of the analysis was

two fold. First, it was necessary to determine the e↵ectiveness of the algorithm and

determine any weaknesses in its execution. As with all flight test, the overarching goal

is to find a way to “break” any system intended to autonomously operate the aircraft.

More specifically, it is necessary to stress the system within its specified operating range.

The unique capabilities of the VSS enabled Learjet allowed for worst-case analysis of the

algorithm within a relatively safe environment. Secondly, these results allowed the ability

to present very specific updates to the algorithm that will make it more robust in challenging

environments while presenting future research goals. The following chapter will outline

those recommendations and present a path forward for Have ESCAPE 2.
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V. Conclusions and Recommendations

5.1 Overview

As outlined in Chapter 1, the goal of this research was to determine, design, test, and

analyze an algorithm to provide automatic terrain avoidance protection for heavy

type aircraft. The impetus for this research stemmed from an Air Force mandate to reduce

the number of controlled flight into terrain accidents that have remained a statistically

significant contributor to aviation loss of life and assets. This research leveraged, as a

truth source, the creation of optimal ground collision avoidance processes that had been

developed by Suplisson at AFIT. To this end, an algorithm was developed through the

creation of preplanned avoidance maneuvers using 3-DOF EOM. This algorithm quickly

propagated the aircraft’s position forward in time so that the terrain ahead could be

evaluated using DTED to determine whether a collision was imminent and take control

of the aircraft if necessary. Once developed, this research was flight tested as a TMP under

the project name Have ESCAPE at the United States Air Force Test Pilot School using the

Calspan VSS Learjet. The following paragraphs summarize the research and emphasize

the conclusions and recommendations developed in Chapter 4. Additionally, the author

will present his advice for direction on future research to continually develop the software

in an e�cient and productive manner.

5.2 Research Questions Response

In Section 1.2, numerous research questions were posed to guide the analysis while

delineating goals for flight test and requesting specific answers to heavy Auto GCAS issues.

This section will summarize the answers to those questions based on the findings of this

research.
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• Can raw DTED be used as a collision evaluation tool for an Auto GCAS

algorithm?

Yes. Raw DTED can be e↵ectively used as an evaluation tool, but it must be used

with caution. As mentioned in Section 2.3.2, DTED is spaced by a predetermined

distance based on the level of DTED chosen. As long as the bubble size is large

enough to identify DTED posts at each iteration, there will be su�cient information

to protect the aircraft from terrain. This is specifically addressed in Section 4.4.1.

• Is the bubble propagation method adequate for terrain collision prevention?

Yes. As long as the requirements of Section 4.4.1 are met, the bubble propagation

method is viable. The accuracy of this technique is directly linked to the accuracy

of the 3-DOF EOM. For the shorter propagation times used in this research (31

seconds), and for the desired aircraft dynamics, the model has shown to be e↵ective

in calculating future aircraft position.

• How long should the ESCAPE paths be propagated forward, and is it a function

of the type of terrain encountered?

Section 3.8 addresses this topic, and it was found that it is directly related to

aircraft performance and terrain. For this reason, aircraft were grouped into

three performance categories, low speed, medium speed, and high speed (Section

3.8.2). The terrain was subsequently grouped into three categories as well, lowland,

midland, and upland (Section 3.8.3). Using Equation (3.20), it was found that

the aircraft must either turn 90� or out-climb the terrain obstacle to e↵ectively

avoid a collision. For this reason, based on performance and terrain, the algorithm

propagation lengths will change to fit a specific aircraft.
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• How many ESCAPE paths should be propagated?

Based on this research, it was found that three paths should be su�cient for heavy

aircraft terrain avoidance as long as each path utilizes a climb. Section 4.5.1 explains

this finding. In short, it was determined that the optimal solution, minimizing aircraft

control, will always initiate some amount of climbing maneuver. For this reason, a

5-path algorithm utilizing level and climbing turns was determined to be excessive.

The research points to a 3-path algorithm that utilizes climbing turns vice level turn

avoidance paths.

• For heavy-type aircraft, are the ESCAPE paths performance dependent?

The ESCAPE paths are highly dependent upon aircraft performance, especially

when determining maximum flight path angle (�). As will be addressed in Section

5.3, the aircraft TPAs should be directly linked with specific aircraft performance

capabilities. Additionally, this performance may vary based on real-time weight

and center of gravity changes, therefore, acceptable performance parameters that

are achievable throughout the aircraft’s operating envelope should be chosen when

determining the ESCAPE paths.

• Is the 3-DOF EOM model and subsequent control adequate for this Auto GCAS

algorithm?

Yes. This research has found that for the speeds, propagation lengths, and desired

aircraft performance required of the algorithm, the presented 3-DOF EOM model

from Section 3.2.1 is acceptable. Quantitatively, this is shown in Sections 4.2.1 &
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4.3.1 since the predicted path selection consistently matched the path selected during

flight test. This suggests that the predicted aircraft location matched closely to the

actual aircraft location. In this way, the EOM accurately identified the future location

of the aircraft based on the specified control.

• Can the algorithm be adequately implemented in real-time?

Yes. Section 4.4.2 directly answers this question. The research shows that both

three and five path propagation times are well within limits of acceptability based

on aircraft speed and algorithm time delay. The ESCAPE algorithm was found to

run su�ciently fast to allow for bubble overlap in all cases, which means that there

would be no gaps in terrain evaluation along the aircraft’s expected trajectory.

• Should the algorithm evaluate terrain at all times?

Yes. This is addressed within recommendation 2 in Section 5.3. In short, continued

terrain analysis will prevent ground collisions in the rare cases where the algorithm

chooses a terrain path that will subsequently cause an impact. Additionally, this will

allow for increased flexibility within the algorithm without detrimental processing

costs or nuisance activations.

• Is the optimal path a ‘better’ solution than preplanned trajectories?

The answer to this question depends on the context. For real-time implementation,

the optimal algorithm is currently too slow. The path it chooses, though, is always the

best path for minimizing control while avoiding the terrain. It is apparent that once

processing speed advances to allow for optimal path integration, it will be the better
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solution for terrain avoidance. For current Auto GCAS algorithms, the preplanned

trajectories are su�cient and can consistently defeat terrain. For this reason, they are

the better option now.

5.3 Recommendations and Guidance for Future Research

All of the stated objectives of Section 1.4.2 were fulfilled through the application and

flight test of this research. The collected data led to specific recommendations to improve

the robustness of the algorithm. In general, this will be done by providing more thorough

terrain protection through the application of updated control schemes, increased algorithm

run times, and flexibility with initial aircraft states among others. The intent is to suggest

guidance for future research and flight tests so that true heavy aircraft Auto GCAS can

become a reality. (The author put these recommendations in his opinion of priority order.)

1. Update the aircraft EOM entry parameters to allow for a variable aircraft initial

state and apply this technique to the ESCAPE paths.

Guidance for Future Research:

The current algorithm structure only accepts an aircraft flying in straight and level,

unaccelerated flight. The TPAs also assumed that the aircraft was beginning the

maneuver from straight and level, unaccelerated flight. From a flight test perspective,

this allowed for a manageable test plan that could be executed within the scope of

a TMP. However, it is not practical for actual flight, and this recommendation is

a logical step forward for the algorithm. This suggestion would require sending

the current aircraft state information to the ODE solver and propagating new

ESCAPE paths at each iteration. The potential downside of this will manifest itself

in computing speed. Fortunately, Section 4.4.2 has shown that current computing

power should not be a limiting factor, though additional research on that matter will
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be required. Once integrated, this recommendation will allow the algorithm to be

flexible in a realistic flight environment.

2. Investigate the behavior and robustness of the ESCAPE paths during maneuver

execution by commanding continued terrain analysis after initial path selection.

Guidance for Future Research:

This recommendation follows directly from Sections 4.2.3 and 4.3.3 and the fact that

the ESCAPE algorithm did not prevent collisions from terrain in all instances. In

some specific cases, the algorithm will actually choose a path that may eventually

impact terrain since that path has the longest time until impact. Though the current

command logic is ideal for minimizing nuisance activations, it does present the

possibility of a collision when the algorithm stops analyzing the terrain and only

commands the maneuver. Initial testing has shown that an “eyes-open” technique is

both possible and e↵ective, though it will require recommendation 1 to be complete

for total e↵ectiveness. In this way, the algorithm will attain the capability to update

its maneuver selection during the execution of a previously chosen TPA.

3. Adjust the command strategy to consistently achieve and maintain the desired

parameters during TPA execution.

Guidance for Future Research:

This recommendation is purposefully vague since there are three probable techniques

for solving the problem. First, it may be possible to use closed-loop control on both

bank angle (�) and load factor (Nz) to maintain the required flight path. The benefit

of this technique is that it allows for the same, proven 3-DOF EOMs to be used that

are currently included in this algorithm. The potential issue with this technique is

that it becomes very di�cult to command a specific flight path angle using only bank

angle and load factor with constantly changing aircraft weight and center of gravity.
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This was proven to be an issue as detailed in Section 4.2.2. The second solution is to

command flight path angle (�) directly. This technique would be the simplest to apply,

but it may require new EOMs that allow for actual control of the flight path angle. It

is unknown whether a 3-DOF model exists that would allow for this type of control

in a computationally e�cient manner. The third solution, a possible compromise, is

to use the current EOMs while installing flight path angle limiters within the ODE

solvers so that climb angles or turns can be controlled precisely.

4. Investigate a 3-TPA solution that uses climbing turns vice level turns.

Guidance for Future Research:

For the sole purpose of avoiding terrain, the flight test data of Section 4.5 show

that, in nearly all cases, the Have ESCAPE algorithm will choose to climb for

terrain when given the option to stay level. Additionally, it was shown that the

optimal solution, when minimizing control, will typically climb to avoid terrain as

well. For this reason, it is assessed that climbing turns are more relevant to optimal

terrain avoidance. However, this does not take into account mission related priorities

that could require staying close to the terrain. Ultimately, this becomes a trade-o↵

between mission requirements and terrain avoidance which is beyond the scope of

the research. In the end, if a 3-path algorithm is desired, it is recommended that the

lateral paths climb.

5. Include wind e↵ects in the ESCAPE algorithm predictions.

Guidance for Future Research:

As stated in Section 3.2.1, the EOMs within the Have ESCAPE algorithm currently

set winds to zero. It is recommended that future research introduce real-time winds

into the existing equations. Fortunately, the Calspan Learjet VSS has the capability

of inputting this information into the algorithm. Obviously, wind can have a major
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e↵ect on aircraft direction of travel and performance so this inclusion is both prudent

and necessary for long-term success of heavy aircraft Auto GCAS.

6. Collect performance capabilities for intended aircraft and update the TPA

solutions to reflect those capabilities.

Guidance for Future Research:

Flight test found that 15� nose-high was too large of a flight path angle for the learjet

to maintain airspeed during the ESCAPE maneuver. Though some loss of airspeed

may be desired and practical, only a few heavy aircraft can even attain that flight

path. For this reason, it is recommended that a lower flight path angle, 5�-7�, be

evaluated to better represent very large, under-powered aircraft. It is predicted

that the algorithm will more often choose lateral paths when a shallower angle is

commanded.

7. Research the benefit of reducing aircraft speed during turning escape path

execution to create a smaller turn radius and increase terrain miss distance.

Guidance for Future Research:

This recommendation should allow for a smaller turn radius which will ultimately

increase distance from terrain. It is important to note that this recommendation

must be executed with caution since a reduced speed will lower the aircraft’s

stall margin and prevent pilot initiated aggressive maneuvering if required post-

activation. Ultimately, auto-throttles would be desirable to execute this speed

reduction automatically, but it should be functionally possible with a test pilot flying

predetermined speeds.

8. Recommend DTED Level 1 for 300 ft bubble radii and DTED Level 2 for 200 ft

and 100 ft bubble radii.
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Guidance for Future Research:

There is no specific guidance for future research based on this finding. It is simply a

reiteration from Section 4.4.1 since it directly a↵ects safety of flight and should not

be lost within the mass of the document.

5.4 Conclusion

Although the field of Auto GCAS is just now gaining traction in the aviation

community, the primary goal has always been to increase flight safety. With faster

processing, digital flight control systems, and high fidelity terrain characterization, there

is no need for another aircraft to fly under its own power into terrain. It is this author’s

hope that, in the near future, all aircraft are equipped with an e↵ective, automatic ground

avoidance system. The research included within this document is a small step in that

direction and hopefully, future Have ESCAPE flight tests will provide the necessary data

to make that goal a reality.
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Appendix A: Have ESCAPE Test Matrix

Figure A.1 (located after the test matrix) displays the Have ESCAPE path numbering

schematic.

Table A.1: Have ESCAPE Test Matrix

(Continued on the next page)
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Note: All test point tolerances: ±2� course, ±15 kts ground speed, ±2� flight path angle,

±3� bank angle, ±50 ft altitude

Figure A.1: Have ESCAPE Path Numbering (Section 3.3)
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Appendix B: Data Analysis Plan

The remainder of this page intentionally left blank.
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Objective  1 & 2 – Evaluate the 3-TPA and 5-TPA Solutions 

MOP 1 – Expected Path Analysis  

Required Data Parameters 

Description Name Units Source 
Time sensor.vss_time Seconds DAS and Laptop 
Latitude sensors.lat Decimal degree DAS and Laptop 
Longitude sensors.long Decimal degree DAS and Laptop 
Altitude sensors.h_sensor Feet DAS and Laptop 
Heading sensors.psi Degree DAS and Laptop 
True Airspeed, Vt sensors.v_cf_sensor Feet per second DAS 
Bank Angle, φ sensors.phi_sensor Degree DAS  
Pitch Angle, θ sensors.theta_sensor Degree DAS  
Angle of Attack, α sensors.alpha_cf_sensor Degree DAS  
Flight Path Angle, γ sensors.gamma Degree DAS  
Z-axis acceleration sensors.nz_sensor Gravity, g DAS  
Safety Bubble Radius  Feet ESCAPE Algorithm 
Chosen ESCAPE Path   ESCAPE Algorithm 
Latitude of Decision  Decimal degree ESCAPE Algorithm 
Longitude of Decision  Decimal degree ESCAPE Algorithm 
Wind Direction  Degree Research Laptop 
Wind Speed  Knots Research Laptop 
Course  Degree DAS 

Qualitative Data Required 

Description Source 
Pilot Comments Handheld Data, noted by FTE on flight cards 

Data Quality 

Maneuver Quality Determination Pilot & FTE (real time) 
FTE (post-flight) 

Data gathering effectiveness and 
procedure if data are unusable 

Determine if effective real-time. 
If unusable or unsure, repeat test point. 

Repeats None planned, but approved, fuel allowing. 

Analysis 
Procedure 

The analysis for this MOP compares the results of simulation to the results of flight 
test. 

For each test run, the ESCAPE algorithm will command one of 5 pre-determined 
maneuvers: 
Maneuver 1 – Constant altitude, 60o bank angle, left turn 
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Maneuver 2 – Wings level, 15o flight path angle, straight ahead climb 
Maneuver 3 – Constant altitude, 60o bank angle, right turn 
Maneuver 4 – 30o bank angle, 2g pull until 15o flight path angle, left turn 
Maneuver 5 – 30o bank angle, 2g pull until 15o flight path angle, right turn 
To ensure a valid comparison between the simulation and the flight test, the aircraft 
states must be compared at the start of the test run, and at the maneuver initiation 
point.  To be considered similar, the aircraft states must match within the following 
tolerances: 

 

Aircraft State Tolerances 

Latitude ± 0.00025 deg 
Longitude ± 0.00025 deg 
Altitude ± 50 ft 
Course ± 2 deg 
Ground Airspeed ± 15 kts 
Bank Angle ± 3 deg 
Flight Path Angle ± 2 deg 

The determination of which maneuver was chosen by the algorithm will be done by 
observing the aircraft response and matching it to the corresponding maneuver 
description or by observing the output data from the algorithm, which will specify 
which maneuver was commanded. 
If the maneuver commanded in flight test matches the maneuver commanded in 
simulation for a given test run, the evaluation criteria will be satisfied.  If the 
maneuvers do not match, the test run will be further analyzed to determine why the 
algorithm did not perform as expected.  The investigation should focus on factors 
such as, but not limited to, effects of wind, DTED fidelity, quality of test run (pilot 
inputs, accelerations, turbulence, etc.) and navigation solution drift. 
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Data 
Products 

A table will be generated depicting the aircraft states at the beginning of the test run 
and at the maneuver initiation point, as well as the simulation results and the flight-
test results.  An example is given below: 

 

Parameters Test Run 
1 

Test Run 
2 

Test Run 
3 

Chosen Escape Maneuver    
Simulation Result    
Flight Test Result    
Initial Point    
Latitude    
Longitude    
Altitude    
Heading    
Airspeed    
Maneuver initiation point    
Latitude    
Longitude    
Altitude    
Heading    
Airspeed    
Test Run Tolerance    

In tolerance?  Comments:    
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Objective  1 & 2 – Evaluate the 3-TPA and 5-TPA Solutions 
MOP 2 – Aircraft Response to the Control Vector  

Required Data Parameters 
Description Name Units Source 

Latitude sensors.lat Decimal degree DAS and Laptop 
Longitude sensors.long Decimal degree DAS and Laptop 
Altitude sensors.h_sensor Feet DAS and Laptop 
Heading sensors.psi Degree DAS and Laptop 
True Airspeed, Vt sensors.v_cf_sensor Feet per second DAS 
Bank Angle, φ sensors.phi_sensor Degree DAS 
Pitch Angle, θ sensors.theta_sensor Degree DAS 
Angle of Attack, α sensors.alpha_cf_sensor Degree DAS 
Flight Path Angle, γ sensors.gamma Degree DAS 
Z-axis acceleration sensors.nz_sensor Gravity, g DAS 
Safety Bubble Radius  Feet ESCAPE Algorithm 
Chosen ESCAPE Path   ESCAPE Algorithm 
Latitude of Decision  Decimal degree ESCAPE Algorithm 
Longitude of Decision  Decimal degree ESCAPE Algorithm 
Wind Direction  Degree Laptop 
Wind Speed  Knots Laptop 
Command Vector  Degree ESCAPE Algorithm 
Course  Degree DAS 

Qualitative Data Required 
Description Source 

Pilot Comments Handheld Data, noted by FTE on flight cards 

Data Quality 

Maneuver Quality 
Determination 

Pilot & FTE (real time) 
FTE (post-flight) 

Data gathering effectiveness 
and procedure if data are 

unusable 

Determine if effective real-time. 
If unusable or unsure, repeat test point. 

Repeats None planned, but approved, fuel allowing. 

Analysis 
Procedure 

The analysis for this MOP compares the maneuvers commanded by the ESCAPE 
algorithm to the VSS, with the maneuvers achieved during flight test. 

Using DAS data of Bank Angle, Pitch Angle and Z-Axis Acceleration, a time 
history plot will be created to depict the actual aircraft performance.  On the same 
plot, the time history of the commanded state values will also be depicted.  By 
comparing the time history of the actual and commanded aircraft states, the 
difference between the two will be quantified during the transitory periods, and 
during the steady state periods. 

The transitory period is defined as the period of time during which the bank angle or 
flight path angle is commanded to change with time.  The steady state period is 
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defined as the period of time during which the bank angle and flight path angle are 
commanded to be steady with time. 
Using similar methods, the altitude will be analyzed for level turns (maneuvers 1 
and 3) and the flight path angle will be analyzed for climbing maneuvers 
(maneuvers 2, 4 and 5). 

Data 
Products 

Time history plots will be created showing commanded aircraft state values, and 
achieved aircraft state values.  A table showing the difference between the 
commanded value and the achieved value for the aircraft state of interest could also 
be created.  An example is given below. 

 

Parameter Test 
Run 1 

Test 
Run 2 

Test 
Run 3 

Transitory Period    
Δ Bank Angle    
Δ Load Factor    
Δ Altitude    
Δ Flight Path Angle    
Steady State Period    
Δ Bank Angle    
Δ Load Factor    
Δ Altitude    
Δ Flight Path Angle    
Pilot Comments: 
Test Run 1: 
 
Test Run 2: 
 
Test Run 3: 
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Objective  1 & 2 – Evaluate the 3-TPA and 5-TPA Solutions 
MOP 3 – Terrain Miss Distance 

Required Data Parameters 
Description Name Units Source 

Latitude sensors.lat Decimal degree DAS and Laptop 
Longitude sensors.long Decimal degree DAS and Laptop 
Altitude sensors.h_sensor Feet DAS and Laptop 
Heading sensors.psi Degree DAS and Laptop 
True Airspeed, Vt sensors.v_cf_sensor Feet per second DAS 
Bank Angle, φ sensors.phi_sensor Degree DAS 
Pitch Angle, θ sensors.theta_sensor Degree DAS 
Angle of Attack, α sensors.alpha_cf_sensor Degree DAS 
Flight Path Angle, γ sensors.gamma Degree DAS 
Z-axis acceleration sensors.nz_sensor Gravity, g DAS 
Safety Bubble Radius  Feet ESCAPE Algorithm 
Chosen ESCAPE Path   ESCAPE Algorithm 
Latitude of Decision  Decimal degree ESCAPE Algorithm 
Longitude of Decision  Decimal degree ESCAPE Algorithm 
Wind Direction  Degree Laptop 
Wind Speed  Knots Laptop 

Qualitative Data Required 
Description Source 

Pilot Comments Handheld Data, noted by FTE on flight cards 

Data Quality 

Maneuver Quality 
Determination 

Pilot & FTE (real time) 
FTE (post-flight) 

Data gathering effectiveness 
and procedure if data are 

unusable 

Determine if effective real-time. 
If unusable or unsure, repeat test point. 

Repeats None planned, but approved, fuel allowing. 

Analysis 
Procedure 

The analysis for this MOP finds the closest distance between the aircraft and the 
terrain throughout the maneuver flown by the aircraft. 
The analysis will be carried out using a MATLAB® code which accepts the 
aircraft’s navigation solution (Latitude, Longitude, Altitude) as an input, and 
returns the terrain miss distance as an output.  The code will use the following 
logic to complete the analysis: 
The navigation solution will be overlaid onto the DTED database to confirm that 
the flight path is entirely contained within the DTED being analyzed. 
For each point in the navigation solution, the code will calculate the horizontal 
distance and vertical distance to each DTED post.  Using the Pythagorean 
theorem and as shown in Figure A1, the slant distance to each DTED post, dAn, 
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will also be calculated.  This allows the code to find dMin, the minimum distance 
from terrain for that point of the navigation solution. 

Once this calculation is complete for each point of the navigation solution, the 
overall minimum distance from terrain, DMin, can be identified. 

 
Once the terrain miss distance has been calculated, the available reaction time 
will be calculated.  The available reaction time is defined as the maximum 
amount of time that the aircraft could have flown straight and level beyond the 
maneuver activation point and still avoid a collision by an infinitely small 
distance.  The available reaction time will be determined by finding the minimum 
horizontal distance between the aircraft flight path and the closest DTED post, 
when measured in the direction of the initial flight path. 

 !"#$%#&%' !"#$%&'( !"#$ = 
!"#. ℎ!"!"#$%& !"#$%&'( !"#$ !"#! !" !"# !"#ℎ 

!"#$%& !"##$  

 

Data 
Products 

A table depicting the chosen path, miss distance and available reaction time will 
be created.  An example is shown below: 

Test 
Run 

Chosen 
Path 

Miss 
Distance (ft) 

Available 
reaction time 

(sec) 

Notes &  
Pilot Comments 

1     
2     
3     
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Objective  3 – Determine Acceptable Algorithm Parameters 
MOP 1 – Bubble Size for Level 1 DTED Resolution 

Required Data Parameters 
Description Name Units Source 

Latitude sensors.lat Decimal degree DAS and Laptop 
Longitude sensors.long Decimal degree DAS and Laptop 
Altitude sensors.h_sensor Feet DAS and Laptop 
Heading sensors.psi Degree DAS and Laptop 
True Airspeed, Vt sensors.v_cf_sensor Feet per second DAS 
Bank Angle, φ sensors.phi_sensor Degree DAS 
Pitch Angle, θ sensors.theta_sensor Degree DAS 
Angle of Attack, α sensors.alpha_cf_sensor Degree DAS 
Flight Path Angle, γ sensors.gamma Degree DAS 
Z-axis acceleration sensors.nz_sensor Gravity, g DAS 
Safety Bubble Radius  Feet ESCAPE Algorithm 
Chosen ESCAPE Path   ESCAPE Algorithm 
Latitude of Decision  Decimal degree ESCAPE Algorithm 
Longitude of Decision  Decimal degree ESCAPE Algorithm 
Wind Direction  Degree Laptop 
Wind Speed  Knots Laptop 

Qualitative Data Required 
Description Source 

Pilot Comments Handheld Data, noted by FTE on flight cards 

Data Quality 

Maneuver Quality 
Determination 

Pilot & FTE (real time) 
FTE (post-flight) 

Data gathering effectiveness 
and procedure if data are 

unusable 

Determine if effective real-time. 
If unusable or unsure, repeat test point. 

Repeats None planned, but approved, fuel allowing. 

Analysis 
Procedure 

The analysis for this MOP determines whether or not the algorithm functions 
properly for various safety bubble radii.  
This analysis will be carried out by observing the aircraft response and ESCAPE 
algorithm outputs, when a test run is repeated multiple times, while keeping all 
parameters constant except the safety bubble radius.   

If the aircraft response changes based on the safety bubble radius, the flight path 
will be analyzed to determine if the bubble has flown between DTED posts, or if 
a DTED post lies between two successive bubbles due to the lack of overlap.  
This will be done by plotting the time history of the aircraft’s navigation solution 
in MATLAB® , and overlaying the DTED Data on the same plot.  By zooming-in 
on the flight path and surrounding DTED posts, the analyst will determine if the 
navigation solution is located below the surface of the digital terrain.   
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The maneuver initiation point with the new bubble size will also be compared to 
the data from Objectives 1 and 2, to determine if the maneuver was initiated later 
than the Available Reaction Time margin.  If so, then the bubble size did not 
allow the algorithms to trigger the maneuver in time to avoid a collision.  

Data 
Products 

A table showing the results of a given test run geometry for various safety bubble 
size will be created.  An example is shown below. 

 
Algorithm:3TPA                             Test dates: 17 Sep 15 
Pressure Altitude: 15,000ft             Airspeed:200 kt 

Test point Bubble Size (ft) 
100 200 300 

1  L* L 
2  R R 
3 C C C 

*chosen path. L-left turn, R-right turn, C – climb, CL-climbing left turn, CR-
climbing right turn.  
          : No algorithm activation 
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Objective  3 – Determine Acceptable Algorithm Parameters 
MOP 2 – Processing Time 

Required Data Parameters 
Description Name Units Source 

Total time for 1 iteration 
of the ESCAPE 
Algorithm for both 3 path 
and 5 path algorithms 

ESCAPE_AlgorithmTime Seconds MATLAB   

Qualitative Data Required 
Description Source 

Pilot Comments N/A 

Data 
Quality 

Maneuver Quality Determination CSO & FTE (real time) 
CSO & FTE (post-flight) 

Data gathering effectiveness and 
procedure if data are unusable 

Determine if effective real-time. 
If unusable or unsure, repeat test point. 

Repeats Yes, for statistical significance as per 
Section 2. 

Analysis 
Procedure 

The analysis for this MOP calculates the average and maximum processing time 
of the ESCAPE algorithm for both 3-TPA and 5-TPA solutions.  
The same laptop must be used for both simulation and inflight execution; this is 
critical for accurate data.  Ensure all non-critical processes are disabled prior to 
testing the ESCAPE Algorithm executions.   

Determine the averages and maximums of the ESCAPE Algorithm’s execution 
times for both the 3-path and 5-path algorithms measured in seconds from both 
simulator and flight data.  This data will be collected automatically by a time 
counter function within the MATLAB software.   

Since the algorithms will be processed at 12.5 Hz, the test team will randomly 
pick 4 algorithm iterations to make up the data sample for analysis.  This will 
prevent using correlated data points for the statistical analysis.  The analysis will 
be performed using MATLAB to determine the maximum time and average time 
required to execute the ESCAPE algorithms.  A box-plot will also be produced to 
depict the difference in time required for each algorithm. 

Data 
Products 

A box plot and a table showing the results of the 3-path and 5-path algorithms’ 
average and maximum processing times will be created.  An example is shown 
below. 
 

156



 
 
 

Metric Value 
Average time to execute ESCAPE Algorithm 3-TPA Seconds 
Average time to execute ESCAPE Algorithm 5-TPA Seconds 
Maximum time to execute ESCAPE Algorithm 3-TPA Seconds 
Maximum time to execute ESCAPE Algorithm 5-TPA Seconds 
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Objective  4 – Compare 3-TPA & 5-TPA with Optimal Solution 
MOP 1 – Proper Path Selection 

Required Data Parameters 
Description Name Units Source 

Latitude sensors.lat Decimal degree Laptop and Optimum 
Longitude sensors.long Decimal degree Laptop and Optimum 
Altitude sensors.h_sensor Feet Laptop and Optimum 
Heading sensors.psi Degree Laptop and Optimum 
True Airspeed, Vt sensors.v_cf_sensor Feet per second DAS and Optimum 
Bank Angle, φ sensors.phi_sensor Degree DAS and Optimum 
Pitch Angle, θ sensors.theta_sensor Degree DAS and Optimum 
Angle of Attack, α sensors.alpha_cf_sensor Degree DAS and Optimum 
Flight Path Angle, γ sensors.gamma Degree DAS and Optimum 
Z-axis acceleration sensors.nz_sensor Gravity, g DAS and Optimum 
Safety Bubble Radius  Feet ESCAPE Algorithm 
Chosen ESCAPE Path   ESCAPE Algorithm 
Latitude of Decision  Decimal degree ESCAPE Algorithm 
Longitude of Decision  Decimal degree ESCAPE Algorithm 
Wind Direction  Degree Laptop 
Wind Speed  Knots Laptop 
Optimal Path Bank Angle  Degree Optimal Code 
Optimal Path Climb Angle  Degree Optimal Code 
    

Qualitative Data Required 
Description Source 

Pilot Comments Handheld Data, noted by FTE on flight cards 

Data Quality 

Maneuver Quality 
Determination 

Pilot & FTE (real time) 
FTE (post-flight) 

Data gathering effectiveness 
and procedure if data are 

unusable 

Determine if effective real-time. 
If unusable or unsure, repeat test point. 

Repeats None planned, but approved, fuel allowing. 

Analysis 
Procedure 

The analysis for this MOP compares the results of flight test with the results from 
the optimally derived solution. 
For each flight test data point, the test run parameters will be loaded into the 
optimum code to derive the equivalent optimum escape maneuver.  The optimum 
escape maneuver will be defined by its flight path angle, bank angle, and 
direction of turn. 
The aircraft response obtained in flight test will be compared to the optimum 
escape maneuver to qualitatively evaluate if the ESCAPE algorithms chose the 
proper path.  Since the optimum code can choose from an infinite number of 
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escape paths, qualitative comparison regions will be used to find an equivalent 
ESCAPE algorithm (non-optimal) path.  
For each test run, the chosen path will be compared to the optimum solution by 
comparing average bank angle, load factor, flight path angle, direction of turn, 
and comparison regions described above.  Based on this comparison, the 
ESCAPE team will decide whether or not the algorithms chose the similar path. 
 
 

Data 
Products 

Provide tabular data to summarize if the flight test results and optimal solutions 
were within the same comparative flight path region for qualitative similarity.  A 
notional example is shown below.  

 

Test point Comparative Region 
for 3-TPA Solution 

Comparative Region 
for Optimal Solution Result 

1 1 1 Similar 
2 2 3 Different 
3 3 3 Similar 
4 1 1 Similar 
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Objective  4 – Compare 3-TPA & 5-TPA with Optimal Solution 
MOP 2 – Terrain Miss Distance & Available Reaction Time vs Optimal Code 

Required Data Parameters 
Description Name Units Source 

Latitude sensors.lat Decimal degree Laptop and Optimum 
Longitude sensors.long Decimal degree Laptop and Optimum 
Altitude sensors.h_sensor Feet Laptop and Optimum 
Heading sensors.psi Degree Laptop and Optimum 
True Airspeed, Vt sensors.v_cf_sensor Feet per second DAS and Optimum 
Bank Angle, φ sensors.phi_sensor Degree DAS and Optimum 
Pitch Angle, θ sensors.theta_sensor Degree DAS and Optimum 
Angle of Attack, α sensors.alpha_cf_sensor Degree DAS and Optimum 
Flight Path Angle, γ sensors.gamma Degree DAS and Optimum 
Z-axis acceleration sensors.nz_sensor Gravity, g DAS and Optimum 
Safety Bubble Radius  Feet ESCAPE Algorithm 
Chosen ESCAPE Path   ESCAPE Algorithm 
Latitude of Decision  Decimal degree ESCAPE Algorithm 
Longitude of Decision  Decimal degree ESCAPE Algorithm 
Wind Direction  Degree Laptop 
Wind Speed  Knots Laptop 

Qualitative Data Required 
Description Source 

Pilot Comments Handheld Data, noted by FTE on flight cards 

Data Quality 

Maneuver Quality 
Determination 

Pilot & FTE (real time) 
FTE (post-flight) 

Data gathering effectiveness 
and procedure if data are 

unusable 

Determine if effective real-time. 
If unusable or unsure, repeat test point. 

Repeats None planned, but approved, fuel allowing. 

Analysis 
Procedure 

The analysis for this MOP compares the results of flight test with the results from 
the optimally derived solution. 
For each flight test data point, the test run parameters will be loaded into the 
optimum code to derive the equivalent optimum escape maneuver.  From the 
optimum escape maneuver, the test team will determine the minimum terrain miss 
distance and the available reaction time, using similar techniques as described for 
MOP 3 of Objectives 1 & 2. 

The miss distances and available reaction time from the optimal solution will be 
compared to the flight test results for 3-TPA and 5-TPA solutions. 
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Data 
Products 

Tabular data will be provided to summarize the Terrain Miss Distances and 
Available Reaction Time between the 3-TPA, 5-TPA, and optimal escape path 
solutions.  A notional example is shown below. 
 

Test points: 1-3                               Test dates: 17 Sep 15 
Pressure Altitude: 15,000ft             Airspeed: 200 kts 

Test 
Point Algorithm 

Miss 
Distance 

(ft) 

Distance 
Difference 

(ft) 

Available 
Reaction 

Time (sec) 

Reaction 
Time 

Difference 
(sec) 

1 3TPA 500 250 2.5 -1.5 
2 5TPA 200 -50 2.0 -2.0 
3 Optimal 250 - 4.0 - 

 Pilot comment: 
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Appendix C: Daily Flight Test Reports

The remainder of this page intentionally left blank.

162



DAILY/INITIAL FLIGHT TEST REPORT 1. AIRCRAFT TYPE 

LJ-25D 
2. SERIAL NUMBER 

N203VS 
3.                                                                                                               CONDITIONS RELATIVE TO TEST 

A.  PROJECT / MISSION NO B.  FLIGHT NO / DATA POINT C. DATE 

Have ESCAPE  Flight #1  31 Aug 2015 
D. FRONT COCKPIT (Left Seat) E. FUEL LOAD F. JON 

Thomas / Trombetta 5,299 998TMP00 
G. REAR COCKPIT (Right Seat and rest of crew) H. START UP GR WT / CG I. WEATHER 

Kita / Kemper 15,000 SKC / Winds 220/15 @ 15k ft / 20° C 
J. TO TIME / SORTIE TIME K. CONFIGURATION / LOADING L. SURFACE CONDITIONS 

0900L / 2.0 hrs Clean Dry 
M. CHASE ACFT / SERIAL NO N. CHASE CREW O. CHASE TO TIME / SORTIE TIME 

N/A N/A    N/A 
4. PURPOSE OF FLIGHT / TEST POINTS 

 
 
 
 

The purpose of this flight was to test the Have ESCAPE 3 and 5 path algorithms IAW the approved test plan.  
Maneuvers were flown at 15,000’ MSL and 310 kts ground speed.  Test points 0-22 were flown (reference Test Point 
Matrix)     

 
 

5. RESULTS OF TESTS (Continue on reverse if needed) 

 Conditions: The mission was flown in clear skies and no turbulence.  Winds aloft indicated 220/15 kts at 15,000 ft PA. 
 
Ground Block: The mission laptop computer had to be restarted and the IP address needed to be manually entered for 
initial VSS integration.  Once complete, the ESCAPE algorithm was interfacing correctly with the VSS. 
 
Takeoff: Uneventful. 
 
Mission Results: The first data point included an analysis of the longitudinal modes of motion (Test point 0).  To do 
this, a hand flown pitch doublet was executed and the number of overshoots and period were determined.  This 
information was necessary for correct application of the optimal solution.  Next, test points 1-22 were performed. Prior 
to execution, the pilot would fly the aircraft straight and level flight at 15,000 ft PA at 310 KGS on a heading that 
would allow for a direct headwind or tailwind.  The first 5 test points were flown to evaluate the performance of the 
aircraft during direct application of the escape maneuvers.  The forward (up) path, left-up path, and right-up path all 
performed as predicted and held the flight path within ±2°.  Of note, it was not possible to maintain 310 KGS with 
military power for the paths with an upward vector.  In these cases, the aircraft maintained the flight path angle with 
constantly decreasing airspeed.  VSS disconnection would typically occur between 140 – 160 kts after completion of 
the 30 second maneuver.  The level paths both trended towards a positive 1.5°-2.0° flight path angle resulting in a 300 
ft climb.  Though this is within tolerances for the flight path angle, it is slightly more climb than desired.  Next, test 
points 6-22 were performed.  These points evaluated the performance of the 3 and 5 path algorithm against various 
terrain types and bubble sizes.  In all but one case, the algorithm performed in accordance with predictions.  Test Point 
17 was predicted to turn left, and upon initial activation, it went up.  The test team re-ran the point and achieved the 
predicted result.  The discrepancy was attributed to poor heading control.  The major lesson learned from the first 
mission was that precise flight path control is required to achieve predicted results and for the aircraft to perform 
correctly when commanded by the escape maneuvers. 
 
Landing/Post Flight Ground Block: Uneventful 

 

6. RECOMMENDATIONS 

 R1: Debrief the test team on algorithm sensitivity to flight path prior to maneuver execution before the next sortie. 

R2: Update the level escape maneuvers to minimize the climb during path execution. 
 

  

COMPLETED BY SIGNATURE DATE 

JOHN V. TROMBETTA, Maj, USAF 
 

//signed/jvt/31August 2015// 20150831 
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DAILY/INITIAL FLIGHT TEST REPORT 1. AIRCRAFT TYPE 

LJ-25D 
2. SERIAL NUMBER 

N203VS 
3.                                                                                                               CONDITIONS RELATIVE TO TEST 

A.  PROJECT / MISSION NO B.  FLIGHT NO / DATA POINT C. DATE 

Have ESCAPE /  Flight #2  1 Sep 2015 
D. FRONT COCKPIT (Left Seat) E. FUEL LOAD F. JON 

Thomas / Allard 5,299 998TMP00 
G. REAR COCKPIT (Right Seat and rest of crew) H. START UP GR WT / CG I. WEATHER 

Wilson / Kemper 15,000 Wind 170/06, SCT 250, 20°C, 29.93”Hg 
J. TO TIME / SORTIE TIME K. CONFIGURATION / LOADING L. SURFACE CONDITIONS 

0854L / 2.0 hrs Clean Dry 
M. CHASE ACFT / SERIAL NO N. CHASE CREW O. CHASE TO TIME / SORTIE TIME 

N/A N/A    N/A 
4. PURPOSE OF FLIGHT / TEST POINTS 

 
 
 
 

The purpose of this flight was to test the Have ESCAPE 3 and 5 path algorithms IAW the approved test plan.  
Maneuvers were flown at 15,000’ MSL and 310 kts ground speed.  The command vectors had been modified since the 
previous flight, and the game plan was re-fly the entire test matrix using Version 2 of the algorithms.  Once airborne, it 
was decided to revert back to Version 1 of the algorithms and  the following test points were successfully flown: 
0 to 29, 31, 34, and 37 to 40     

 
 

5. RESULTS OF TESTS (Continue on reverse if needed) 

 Conditions: The mission was flown in clear skies and no turbulence.  Winds aloft averaged 220/12 kts at 15,000 ft PA. 
 
Ground Block: The ESCAPE algorithms interfaced correctly with the VSS and Path 4 was successfully commanded 
on the ground.  It was noticed that the VSS Data Recorder was automatically turning itself On and Off during taxi. 
 
Takeoff: Uneventful. 
 
Mission Results:  

The first event was a Pitch Doublet using Version 2 of the algorithms.  2 pitch doublets were flown and data was 
recorded with the DAS.  The next event was to carry out the manual activation of each escape maneuver.  Maneuver 1 
functioned as planned.  Maneuvers 2 and 3 caused a 200-300 ft descent followed by a 500-900 ft climb.   

The initial descent was deemed to be unacceptable, and the software version was reverted back to Version 1 of the 
algorithms.  Each maneuver was manually executed and no significant descent was noticed, although maneuvers 2 and 
3 did result in climbs of up to 800 ft.  Maneuvers 1, 4 and 5 performed within acceptable limits, although the flight path 
angle did have a tendency to increase throughout the maneuver.  Airspeed could not be maintained during climbing 
maneuvers with max continuous power, and decayed to as low as 150 kts at heavy weight, or 210 kts at light weight. 

All 300 ft bubble test points were flown, and the algorithms commanded the expected maneuver in each case.  The 
aircraft bank response was always accurate within 2 degrees, and the climbing maneuvers commanded a flight path 
angle accurate to within -2 to +5 degrees.  The level maneuvers commanded a flight path angle accurate to within 3 
degrees, which generally caused a descent of approximately 50 ft, followed by a climb of 150 to 600 ft.   

Some of the 100 ft and 200 ft bubble test points were also flown, and the flight test results matched the predictions.   
The pitch doublets were re-flown near the end of the flight with a lower fuel load to assess the mass effects on the 

short period longitudinal response. 
 
Landing/Post Flight Ground Block: Uneventful 

 

6. RECOMMENDATIONS 

 Continue testing with Version 1 of the algorithms.  
  

COMPLETED BY SIGNATURE DATE 

Sebastien Allard, Capt, RCAF 
 

//signed// 1 Sep 2015 
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DAILY/INITIAL FLIGHT TEST REPORT 1. AIRCRAFT TYPE 

LJ-25D 
2. SERIAL NUMBER 

N203VS 
3.                                                                                                               CONDITIONS RELATIVE TO TEST 

A.  PROJECT / MISSION NO B.  FLIGHT NO / DATA POINT C. DATE 

Have ESCAPE /  Flight #3  02 Sep 2015 
D. FRONT COCKPIT (Left Seat) E. FUEL LOAD F. JON 

Thomas / Neice 5,500 998TMP00 
G. REAR COCKPIT (Right Seat and rest of crew) H. START UP GR WT / CG I. WEATHER 

Kita / Kemper 15,200 SKC / Winds 230-27/10-20kts @ 15k ft / 
23° C 

J. TO TIME / SORTIE TIME K. CONFIGURATION / LOADING L. SURFACE CONDITIONS 

0900L / 1.9 hrs Clean Dry 
M. CHASE ACFT / SERIAL NO N. CHASE CREW O. CHASE TO TIME / SORTIE TIME 

N/A N/A    N/A 
4. PURPOSE OF FLIGHT / TEST POINTS 

 
 
 
 

The purpose of this flight was to test the Have ESCAPE 3 and 5 path algorithms IAW the approved test plan.  
Maneuvers were flown at 15,000’ MSL and 310 kts ground speed.  All Test points were flown (reference Test Point 
Matrix)     

 
 

5. RESULTS OF TESTS (Continue on reverse if needed) 

 Conditions: The mission was flown in clear skies and no turbulence.  Winds aloft indicated anywhere between 230 
and 270/10 to 20 kts at 15,000 ft PA. 
 
Ground Block: NSTR 
 
Takeoff: Uneventful. 
 
Mission Results: The first three maneuvers were manual activation of one of each maneuver type to familiarize the EP 
with the aircraft response and power addition techniques.  Each test point was set up with the aircraft straight and level 
flight, nominally at 15,000 ft PA at 310 KGS on a heading that would allow for a direct headwind or tailwind.  The test 
team began collecting data with test points 29 through 36.  Then the test point matrix was completed, starting at the 
bottom and working our way towards the top.  The aircraft lacked sufficient thrust to maintain airspeed while in any 
climbing maneuver, and on some “level turns” as the flight path angle was inadequately controlled by the Nz and bank 
command system (flight path angle went as high as 5° during some level turns).  The climb angle did not always 
capture 15 degrees and did not maintain 15 degrees throughout the maneuver (during climbing maneuvers, the flight 
path angle varied from 12° to 20°).  All maneuver executions were abrupt, but not objectionable.  VSS disconnection 
would typically occur between 140 – 160 kts after completion of the 30 second maneuver.  A few test points resulted in 
an unanticipated ESCAPE maneuver.  Those points were subsequently re-flown and produced predicted results. 
 
Landing/Post Flight Ground Block: Uneventful 

 

6. RECOMMENDATIONS 

 R1: Complete test points 29 – 36, then the rest of the test point matrix.  
  

COMPLETED BY SIGNATURE DATE 

RUSSELL G. NEICE, Capt, USAF 
 

//signed/rgn/02 September 2015// 20150902 

 TPS Form 5314 NOV 86   
 



DAILY/INITIAL FLIGHT TEST REPORT 1. AIRCRAFT TYPE 

LJ-25D 
2. SERIAL NUMBER 

N203VS 
3.                                                                                                               CONDITIONS RELATIVE TO TEST 

A.  PROJECT / MISSION NO B.  FLIGHT NO / DATA POINT C. DATE 

Have ESCAPE   Flight #4 9 Sep 2015 
D. FRONT COCKPIT (Left Seat) E. FUEL LOAD F. JON 

McCarley / Trombetta 5,299 998TMP00 
G. REAR COCKPIT (Right Seat and rest of crew) H. START UP GR WT / CG I. WEATHER 

 Wilson / Cobb 15,000 SCT-BKN 15k ft / Winds 220/06 27° C 
J. TO TIME / SORTIE TIME K. CONFIGURATION / LOADING L. SURFACE CONDITIONS 

0920L / 1.4 hrs Clean Dry 
M. CHASE ACFT / SERIAL NO N. CHASE CREW O. CHASE TO TIME / SORTIE TIME 

N/A N/A    N/A 
4. PURPOSE OF FLIGHT / TEST POINTS 

 
 
 
 

The purpose of this flight was to test the Have ESCAPE 3 and 5 path algorithms IAW the approved test plan.  
Maneuvers were flown at 15,000’ MSL and 310 kts ground speed.  Test points 6-36 were flown (reference Test Point 
Matrix)     

 
 

5. RESULTS OF TESTS (Continue on reverse if needed) 

 Conditions: The mission was flown in with light winds and scattered to broken clouds at 15,000 ft PA.  Winds aloft 
were light with no turbulence. 
 
Ground Block: The mission laptop interfaced accurately with the computer. 
 
Takeoff: Uneventful. 
 
Mission Results: The first data point included an analysis of the lateral-directional modes of motion.  To do this, a 
hand flown aileron doublet was executed and the number of overshoots and period were determined.  Using this 
method, zero overshoots were noted.  Next, rudder doublets were performed to excite the Dutch Roll mode.  The pilot 
commented that the mode was highly damped, but review of the DAS data showed three overshoots and a damping 
ratio of 0.71.   Next, terrain test points 6-13 were flown.  Prior to execution of the maneuver, the pilot would fly the 
aircraft in straight and level flight at 15,000 ft PA at 310 KGS on a heading that would allow for a direct headwind or 
tailwind if airspace and weather allowed.  After test point 10, the TC realized that the algorithm AOA correction was 
turned off, rendering the first five test points invalid.  The switch was then placed in the ‘ON’ position for the 
remainder of the flight, though the points were not re-flown since they were not the priority.  Next, the bubble size 
comparison points in the test matrix were flown.  For test efficiency, the VSS would be manually disconnected once 
the maneuver was executed since the only data required was the path that was chosen and not how the path was 
actually flown.  This benefitted test execution due to the broken cloud deck above the aircraft’s flight path limiting 
climb capability.  In all cases, the test points were flown within tolerances and valid data were collected.  Ultimately, 
these points evaluated the performance of the 3 and 5 path algorithm against various terrain types and bubble sizes.  In 
all but one case, the algorithm performed in accordance with predictions.  The test team re-ran the point and achieved 
the predicted result.  Additionally, the pilot commented that maneuver execution was abrupt but satisfactory. 
 
Landing/Post Flight Ground Block: Uneventful 

 

6. RECOMMENDATIONS 

 R1: Add a line in the procedures for test card 3 to turn the AOA correction ‘ON’ prior to execution.  
  

COMPLETED BY SIGNATURE DATE 

JOHN V. TROMBETTA, Maj, USAF 
 

//signed/jvt/9 September 2015// 20150909 
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DAILY/INITIAL FLIGHT TEST REPORT 1. AIRCRAFT TYPE 

LJ-25D 
2. SERIAL NUMBER 

N203VS 
3.                                                                                                               CONDITIONS RELATIVE TO TEST 

A.  PROJECT / MISSION NO B.  FLIGHT NO / DATA POINT C. DATE 

Have ESCAPE  Flight #5  9 Sep 2015 
D. FRONT COCKPIT (Left Seat) E. FUEL LOAD F. JON 

McCarley / Allard 5,600 998TMP00 
G. REAR COCKPIT (Right Seat and rest of crew) H. START UP GR WT / CG I. WEATHER 

Kita / Suplisson 15,000 Wind 360/04, SCT 150, 35°C, 29.92”Hg 
J. TO TIME / SORTIE TIME K. CONFIGURATION / LOADING L. SURFACE CONDITIONS 

1339L / 2.0 hrs Clean Dry 
M. CHASE ACFT / SERIAL NO N. CHASE CREW O. CHASE TO TIME / SORTIE TIME 

N/A N/A    N/A 
4. PURPOSE OF FLIGHT / TEST POINTS 

 
 
 
 

The purpose of this flight was to test the Have ESCAPE 3 and 5 path algorithms IAW the approved test plan.  
Maneuvers were flown at 15,000’ MSL and 310 kts ground speed.  The lateral-directional modes of motion from the 
augmented Learjet equipped with the Have ESCAPE FCS system were characterized by conducting aileron doublets 
and aileron step inputs to find the frequency and damping in roll.  The following test points were successfully flown: 
6 to 15, 17, 18, 20, 21, 23, 24, 26, 27, 29, 30, 32, 33, 35, 36, 38 to 41 

 
 

5. RESULTS OF TESTS (Continue on reverse if needed) 

 Conditions: The mission was flown with broken clouds at 15’000 ft.  The test points were successfully flown at 
15’000 ft between clouds.  The winds aloft shifted rapidly from 020oM to 155oM and from 3 kts to 15 kts. 
 
Ground Block: The ESCAPE algorithms interfaced correctly with the VSS and Path 4 was successfully commanded 
on the ground.   
 
Takeoff: Uneventful. 
 
Mission Results:  

The first event was an Aileron Doublet flown as a square input and then as a sinusoidal input.  No oscillations were 
observed in roll or yaw, and the roll rate gradually decreased without any reversals.  Two full deflection aileron steps 
were flown from 30-to-30 degrees angle of bank.  No notable observations were made, but DAS data was collected for 
analysis.   

The remainder of the flight was spent flying test points to evaluate both the 3-path and 5-path algorithms with 
various bubble sizes.  Of note: 

1. One maneuver was manually terminated due to airspeed being lower than the safety pilot’s comfort level.   
2. One maneuver was terminated due to weather and traffic.   
3. During the first few test points, the flight path angle continued to increase past 15 degrees.  One maneuver was 

terminated because the flight path angle exceeded 25 degrees, as per the safety plan. Following this event, fuel 
was pumped forward to move the center of gravity forward, which seemed to help in controlling the flight 
path angle. 

4. Some of the level turn maneuvers caused the VSS to trip off due to a “Software Safety Trip”, the cause of 
which is unknown. 

   
Otherwise, test points were carried out successfully and DAS data was collected as per the test plan for further 

analysis. 
 
Landing/Post Flight Ground Block: Uneventful 

 

6. RECOMMENDATIONS 

 Continue with Flight 6 to collect remaining required data.  
  

COMPLETED BY SIGNATURE DATE 

Sebastien Allard, Capt, RCAF 
 

//signed// 9 Sep 2015 
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DAILY/INITIAL FLIGHT TEST REPORT 1. AIRCRAFT TYPE 

LJ-25D 
2. SERIAL NUMBER 

N203VS 
3.                                                                                                               CONDITIONS RELATIVE TO TEST 

A.  PROJECT / MISSION NO B.  FLIGHT NO / DATA POINT C. DATE 

Have ESCAPE   Flight #6 10 Sep 2015 
D. FRONT COCKPIT (Left Seat) E. FUEL LOAD F. JON 

McCarley / Neice 5,700 998TMP00 
G. REAR COCKPIT (Right Seat and rest of crew) H. START UP GR WT / CG I. WEATHER 

 Wilson / Reeder 15,400 SCT 15k / SFC Winds 010/03 21° C   
15k Winds 340-300/020 

J. TO TIME / SORTIE TIME K. CONFIGURATION / LOADING L. SURFACE CONDITIONS 

0900L / 1.6 hrs Clean Dry 
M. CHASE ACFT / SERIAL NO N. CHASE CREW O. CHASE TO TIME / SORTIE TIME 

N/A N/A    N/A 
4. PURPOSE OF FLIGHT / TEST POINTS 

 
 
 
 

The purpose of this flight was to test the Have ESCAPE 3 and 5 path algorithms IAW the approved test plan.  
Maneuvers were flown at 15,000’ MSL and 310 kts ground speed.  Test points 6-13, 39-41 were flown (reference Test 
Point Matrix)     

 
 

5. RESULTS OF TESTS (Continue on reverse if needed) 

 Conditions: The mission was flown in with light winds and scattered clouds at 15,000 ft PA.  Winds aloft were 
variable between 340 – 300 at 20 knots 
 
Ground Block: The mission laptop interfaced accurately with the computer. 
 
Takeoff: Uneventful. 
 
Mission Results: Each test point was set up with the aircraft straight and level flight, nominally at 15,000 ft PA at 310 
KGS on a heading that would allow for a direct headwind or tailwind.  The test team began collecting data with test 
points 39 through 41.  The first few data points were conducted with a crosswind due to airspace, but were later 
repeated as airspace and weather allowed.  Additionally, the laptop computer processing speed was limited because it 
was running in power save mode.  The FTE fixed the problem and the test points were re-run. Then test points 6-13 
were completed multiple times each.  The aircraft lacked sufficient thrust to maintain airspeed while in any climbing 
maneuver, and on some “level turns” as the flight path angle was inadequately controlled by the Nz and bank command 
system (flight path angle went as high as 5° during some level turns).  The climb angle did not always capture 15 
degrees and did not maintain 15 degrees throughout the maneuver (during climbing maneuvers, the flight path angle 
varied from 12° to 20°).  Of note, when the CG was forward (due to fuel transfer), the flight path seemed to be closer to 
predicted results.  All maneuver executions were abrupt, but not objectionable.  VSS disconnection would typically 
occur between 140 – 160 kts after completion of the 30 second maneuver.  A few test points resulted in an 
unanticipated ESCAPE maneuver.  Those points were subsequently re-flown and produced predicted results.   
 
Landing/Post Flight Ground Block: Uneventful 

 

6. RECOMMENDATIONS 

 None  
  

COMPLETED BY SIGNATURE DATE 

RUSSELL G. NEICE, Capt, USAF 
 

//signed/rgn/10 September 2015// 20150910 
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Appendix D: Supplementary Plots

Figure D.1: Forward Path RMSE with 0.2 s Time Step

Figure D.2: Lateral Path RMSE with 0.2 s Time Step

169



Figure D.3: Forward Path RMSE with 0.3 s Time Step

Figure D.4: Lateral Path RMSE with 0.3 s Time Step
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Figure D.5: Forward Path RMSE with 0.4 s Time Step

Figure D.6: Lateral Path RMSE with 0.4 s Time Step

The following time history plots illustrate the aircraft response to the control vector. This

data supports the discussions and conclusions related to Chapters 4 and 5.
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ESCAPE Test Point: 7 (Left Path) Average OAT: -8�C
Test/Virtual Altitude: 15,000/12,000 ft Test Dates: 31 Aug-10 Sep 15
Center of Gravity: 12.5 - 23.8% Test Day Data

Figure D.7: Bank Angle vs Time for Test Point 7, Left Path

ESCAPE Test Point: 7 (Left Path) Average OAT: -8�C
Test/Virtual Altitude: 15,000/12,000 ft Test Dates: 31 Aug-10 Sep 15
Center of Gravity: 12.5 - 23.8% Test Day Data

Figure D.8: Load Factor vs Time for Test Point 7, Left Path
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ESCAPE Test Point: 7 (Left Path) Average OAT: -8�C
Test/Virtual Altitude: 15,000/12,000 ft Test Dates: 31 Aug-10 Sep 15
Center of Gravity: 12.5 - 23.8% Test Day Data

Figure D.9: Flight Path Angle vs Time for Test Point 7, Left Path

ESCAPE Test Point: 8 (Right Path) Average OAT: -8�C
Test/Virtual Altitude: 15,000/12,500 ft Test Dates: 31 Aug-10 Sep 15
Center of Gravity: 12.5 - 23.8% Test Day Data

Figure D.10: Bank Angle vs Time for Test Point 8, Right Path
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ESCAPE Test Point: 8 (Right Path) Average OAT: -8�C
Test/Virtual Altitude: 15,000/12,500 ft Test Dates: 31 Aug-10 Sep 15
Center of Gravity: 12.5 - 23.8% Test Day Data

Figure D.11: Load Factor vs Time for Test Point 8, Right Path

ESCAPE Test Point: 8 (Right Path) Average OAT: -8�C
Test/Virtual Altitude: 15,000/12,500 ft Test Dates: 31 Aug-10 Sep 15
Center of Gravity: 12.5 - 23.8% Test Day Data

Figure D.12: Flight Path Angle vs Time for Test Point 8, Right Path

174



ESCAPE Test Point: 7 (Left Path) Average OAT: -8�C
Test/Virtual Altitude: 15,000/12,000 ft Test Dates: 31 Aug-10 Sep 15
Center of Gravity: 12.5 - 23.8% Test Day Data

Figure D.13: 3D Presentation of Flight Test Data, Test Point 7, Left Level Path
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ESCAPE Test Point: 8 (Right Path) Average OAT: -8�C
Test/Virtual Altitude: 15,0ft Test Dates: 31 Aug-10 Sep 15
Center of Gravity: 12.5 - 23.8% Test Day Data

Figure D.14: 3D Presentation of Flight Test Data, Test Point 8, Right Level Path

ESCAPE Test Point: 13 (Right-Up) Average OAT: -8�C
Test/Virtual Altitude: 15,000/12,500 ft Test Dates: 31 Aug-10 Sep 15
Center of Gravity: 12.5 - 23.8% Test Day Data

Figure D.15: Bank Angle vs Time for Test Point 13, Right-Up Path

176



ESCAPE Test Point: 13 (Right-Up) Average OAT: -8�C
Test/Virtual Altitude: 15,000/12,500 ft Test Dates: 31 Aug-10 Sep 15
Center of Gravity: 12.5 - 23.8% Test Day Data

Figure D.16: Load Factor vs Time for Test Point 13, Right-Up Path

ESCAPE Test Point: 13 (Right-Up) Average OAT: -8�C
Test/Virtual Altitude: 15,000/12,500 ft Test Dates: 31 Aug-10 Sep 15
Center of Gravity: 12.5 - 23.8% Test Day Data

Figure D.17: Flight Path Angle vs Time for Test Point 13, Right-Up Path
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ESCAPE Test Point: 13 (Right-Up) Average OAT: -8�C
Test/Virtual Altitude: 15,000/12,500 ft Test Dates: 31 Aug-10 Sep 15
Center of Gravity: 12.5 - 23.8% Test Day Data

Figure D.18: 3D Presentation of Flight Test Data, Test Point 13, Right-Up Path

ESCAPE Test Point 8 (Left Level) Flight Test Data Flight: 2

Figure D.19: Flight Test Angle of Bank vs Optimal Angle of Bank
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ESCAPE Test Point 8 (Left Level) Flight Test Data Flight: 2

Figure D.20: Flight Test Nz vs Optimal Nz

ESCAPE Test Point 8 (Left Level) Flight Test Data Flight: 2

Figure D.21: Flight Test Flight Path Angle vs Optimal Flight Path Angle
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ESCAPE Test Point 8 (Left Level) Flight Test Data Flight: 2

Figure D.22: Test Point 8 3-TPA and Optimal Flight Path

ESCAPE Test Point 9 (Left Up) Flight Test Data Flight: 2

Figure D.23: Flight Test Angle of Bank vs Optimal Angle of Bank

180



ESCAPE Test Point 9 (Left Up) Flight Test Data Flight: 2

Figure D.24: Flight Test Nz vs Optimal Nz

ESCAPE Test Point 9 (Left Up) Flight Test Data Flight: 2

Figure D.25: Flight Test Flight Path Angle vs Optimal Flight Path Angle
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ESCAPE Test Point 9 (Left Up) Flight Test Data Flight: 2

Figure D.26: Test Point 9 5-TPA and Optimal Flight Path
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