775 research outputs found

    A curvature-adapted anisotropic surface remeshing method

    Get PDF
    We present a new method for remeshing surfaces that respect the intrinsic anisotropy of the surfaces. In particular, we use the normal informations of the surfaces, and embed the surfaces into a higher dimensional space (here we use 6d). This allow us to form an isotropic mesh optimization problem in this embedded space. Starting from an initial mesh of a surface, we optimize the mesh by improving the mesh quality measured in the embedded space. The mesh is optimized by combining common local modifications operations, i.e., edge flip, edge contraction, vertex smoothing, and vertex insertion. All operations are applied directly on the 3d surface mesh. This method results a curvature-adapted mesh of the surface. This method can be easily adapted to mesh multi-patches surfaces, i.e., containing corner singularities and sharp features. We present examples of remeshed surfaces from implicit functions and CAD models

    Interactive Geometry Remeshing

    Get PDF
    We present a novel technique, both flexible and efficient, for interactive remeshing of irregular geometry. First, the original (arbitrary genus) mesh is substituted by a series of 2D maps in parameter space. Using these maps, our algorithm is then able to take advantage of established signal processing and halftoning tools that offer real-time interaction and intricate control. The user can easily combine these maps to create a control map – a map which controls the sampling density over the surface patch. This map is then sampled at interactive rates allowing the user to easily design a tailored resampling. Once this sampling is complete, a Delaunay triangulation and fast optimization are performed to perfect the final mesh. As a result, our remeshing technique is extremely versatile and general, being able to produce arbitrarily complex meshes with a variety of properties including: uniformity, regularity, semiregularity, curvature sensitive resampling, and feature preservation. We provide a high level of control over the sampling distribution allowing the user to interactively custom design the mesh based on their requirements thereby increasing their productivity in creating a wide variety of meshes

    Error-Bounded and Feature Preserving Surface Remeshing with Minimal Angle Improvement

    Get PDF
    The typical goal of surface remeshing consists in finding a mesh that is (1) geometrically faithful to the original geometry, (2) as coarse as possible to obtain a low-complexity representation and (3) free of bad elements that would hamper the desired application. In this paper, we design an algorithm to address all three optimization goals simultaneously. The user specifies desired bounds on approximation error {\delta}, minimal interior angle {\theta} and maximum mesh complexity N (number of vertices). Since such a desired mesh might not even exist, our optimization framework treats only the approximation error bound {\delta} as a hard constraint and the other two criteria as optimization goals. More specifically, we iteratively perform carefully prioritized local operators, whenever they do not violate the approximation error bound and improve the mesh otherwise. In this way our optimization framework greedily searches for the coarsest mesh with minimal interior angle above {\theta} and approximation error bounded by {\delta}. Fast runtime is enabled by a local approximation error estimation, while implicit feature preservation is obtained by specifically designed vertex relocation operators. Experiments show that our approach delivers high-quality meshes with implicitly preserved features and better balances between geometric fidelity, mesh complexity and element quality than the state-of-the-art.Comment: 14 pages, 20 figures. Submitted to IEEE Transactions on Visualization and Computer Graphic

    Curvature-based remeshing methodology oriented to human face 3D models

    Get PDF
    Remeshing techniques seek to modify a mesh in order to adapt it to an specific application. This work proposes a remeshing methodology specialized in the human face, whose purpose is to reduce the number of faces and vertices that requires the mesh, keeping the characteristics of the human anatomy. Curvature information that highlights the intrinsic anisotropy of natural geometry or geometry of human origin is used to accomplish this. Results were polygonal anisotropic meshes, composed mainly of quadrilaterals, with less than 50% of the points and faces of the initial mesh, that maintain the anatomical features for models of the face in a neutral expression, or expressions of happiness, disgust, fear, angry, surprise, and sadness. The methodology was validated with models from the BU-3DFE database, and the quality of the obtained results were evaluated against the remeshing achieved when a technique of simplification based on quadric error metrics is used.Las técnicas de remallado buscan modificar la malla de entrada para adaptarla a la aplicación específica. En este trabajo se propone una metodología de remallado especializada en el rostro humano, cuyo propósito es reducir el número de caras y vértices que requiere la malla, manteniendo las características propias de la anatomía humana. Para lograr esto se utiliza la información de curvatura, la cual destaca la anisotropía intrínseca en la geometría natural o en la geometría de origen humano. Como resultado se obtuvieron mallas anisotrópicas poligonales, compuestas principalmente por cuadriláteros, con menos del 50% de los puntos y caras de la malla inicial, que mantienen las características anatómicas para modelos del rostro en expresión neutra, o con expresiones de alegría, enojo, repugnancia, miedo, sorpresa y tristeza. La metodología se validó con los modelos presentes en la base de datos BU-3DFE, y se comparó la calidad de los resultados obtenidos contra el remallado que se logra con la técnica de simplificación basada en quadric error metrics

    Dev2PQ: Planar Quadrilateral Strip Remeshing of Developable Surfaces

    Get PDF
    We introduce an algorithm to remesh triangle meshes representing developable surfaces to planar quad dominant meshes. The output of our algorithm consists of planar quadrilateral (PQ) strips that are aligned to principal curvature directions and closely approximate the curved parts of the input developable, and planar polygons representing the flat parts of the input. Developable PQ-strip meshes are useful in many areas of shape modeling, thanks to the simplicity of fabrication from flat sheet material. Unfortunately, they are difficult to model due to their restrictive combinatorics and locking issues. Other representations of developable surfaces, such as arbitrary triangle or quad meshes, are more suitable for interactive freeform modeling, but generally have non-planar faces or are not aligned to principal curvatures. Our method leverages the modeling flexibility of non-ruling based representations of developable surfaces, while still obtaining developable, curvature aligned PQ-strip meshes. Our algorithm optimizes for a scalar function on the input mesh, such that its level sets are extrinsically straight and align well to the locally estimated ruling directions. The condition that guarantees straight level sets is nonlinear of high order and numerically difficult to enforce in a straightforward manner. We devise an alternating optimization method that makes our problem tractable and practical to compute. Our method works automatically on any developable input, including multiple patches and curved folds, without explicit domain decomposition. We demonstrate the effectiveness of our approach on a variety of developable surfaces and show how our remeshing can be used alongside handle based interactive freeform modeling of developable shapes
    • …
    corecore