30 research outputs found

    Massive MIMO is a Reality -- What is Next? Five Promising Research Directions for Antenna Arrays

    Full text link
    Massive MIMO (multiple-input multiple-output) is no longer a "wild" or "promising" concept for future cellular networks - in 2018 it became a reality. Base stations (BSs) with 64 fully digital transceiver chains were commercially deployed in several countries, the key ingredients of Massive MIMO have made it into the 5G standard, the signal processing methods required to achieve unprecedented spectral efficiency have been developed, and the limitation due to pilot contamination has been resolved. Even the development of fully digital Massive MIMO arrays for mmWave frequencies - once viewed prohibitively complicated and costly - is well underway. In a few years, Massive MIMO with fully digital transceivers will be a mainstream feature at both sub-6 GHz and mmWave frequencies. In this paper, we explain how the first chapter of the Massive MIMO research saga has come to an end, while the story has just begun. The coming wide-scale deployment of BSs with massive antenna arrays opens the door to a brand new world where spatial processing capabilities are omnipresent. In addition to mobile broadband services, the antennas can be used for other communication applications, such as low-power machine-type or ultra-reliable communications, as well as non-communication applications such as radar, sensing and positioning. We outline five new Massive MIMO related research directions: Extremely large aperture arrays, Holographic Massive MIMO, Six-dimensional positioning, Large-scale MIMO radar, and Intelligent Massive MIMO.Comment: 20 pages, 9 figures, submitted to Digital Signal Processin

    A Generalized Framework on Beamformer Design and CSI Acquisition for Single-Carrier Massive MIMO Systems in Millimeter Wave Channels

    Get PDF
    In this paper, we establish a general framework on the reduced dimensional channel state information (CSI) estimation and pre-beamformer design for frequency-selective massive multiple-input multiple-output MIMO systems employing single-carrier (SC) modulation in time division duplex (TDD) mode by exploiting the joint angle-delay domain channel sparsity in millimeter (mm) wave frequencies. First, based on a generic subspace projection taking the joint angle-delay power profile and user-grouping into account, the reduced rank minimum mean square error (RR-MMSE) instantaneous CSI estimator is derived for spatially correlated wideband MIMO channels. Second, the statistical pre-beamformer design is considered for frequency-selective SC massive MIMO channels. We examine the dimension reduction problem and subspace (beamspace) construction on which the RR-MMSE estimation can be realized as accurately as possible. Finally, a spatio-temporal domain correlator type reduced rank channel estimator, as an approximation of the RR-MMSE estimate, is obtained by carrying out least square (LS) estimation in a proper reduced dimensional beamspace. It is observed that the proposed techniques show remarkable robustness to the pilot interference (or contamination) with a significant reduction in pilot overhead

    Mobile node-aided localization and tracking in terrestrial and underwater networks

    Get PDF
    In large-scale wireless sensor networks (WSNs), the position information of individual sensors is very important for many applications. Generally, there are a small number of position-aware nodes, referred to as the anchors. Every other node can estimate its distances to the surrounding anchors, and then employ trilateration or triangulation for self-localization. Such a system is easy to implement, and thus popular for both terrestrial and underwater applications, but it suffers from some major drawbacks. First, the density of the anchors is generally very low due to economical considerations, leading to poor localization accuracy. Secondly, the energy and bandwidth consumptions of such systems are quite significant. Last but not the least, the scalability of a network based on fixed anchors is not good. Therefore, whenever the network expands, more anchors should be deployed to guarantee the required performance. Apart from these general challenges, both terrestrial and underwater networks have their own specific ones. For example, realtime channel parameters are generally required for localization in terrestrial WSNs. For underwater networks, the clock skew between the target sensor and the anchors must be considered. That is to say, time synchronization should be performed together with localization, which makes the problem complicated. An alternative approach is to employ mobile anchors to replace the fixed ones. For terrestrial networks, commercial drones and unmanned aerial vehicles (UAVs) are very good choices, while autonomous underwater vehicles (AUVs) can be used for underwater applications. Mobile anchors can move along a predefined trajectory and broadcast beacon signals. By listening to the messages, the other nodes in the network can localize themselves passively. This architecture has three major advantages: first, energy and bandwidth consumptions can be significantly reduced; secondly, the localization accuracy can be much improved with the increased number of virtual anchors, which can be boosted at negligible cost; thirdly, the coverage can be easily extended, which makes the solution and the network highly scalable. Motivated by this idea, this thesis investigates the mobile node-aided localization and tracking in large-scale WSNs. For both terrestrial and underwater WSNs, the system design, modeling, and performance analyses will be presented for various applications, including: (1) the drone-assisted localization in terrestrial networks; (2) the ToA-based underwater localization and time synchronization; (3) the Doppler-based underwater localization; (4) the underwater target detection and tracking based on the convolutional neural network and the fractional Fourier transform. In these applications, different challenges will present, and we will see how these challenges can be addressed by replacing the fixed anchors with mobile ones. Detailed mathematical models will be presented, and extensive simulation and experimental results will be provided to verify the theoretical results. Also, we will investigate the channel estimation for the fifth generation (5G) wireless communications. A pilot decontamination method will be presented for the massive multiple-input-multiple-output communications, and the data-aided channel tracking will be discussed for millimeter wave communications. We will see that the localization problem is highly coupled with the channel estimation in wireless communications

    Massive MIMO systems for 5G: a systematic mapping study on antenna design challenges and channel estimation open issues

    Get PDF
    The next generation of mobile networks (5G) is expected to achieve high data rates, reduce latency, as well as improve the spectral and energy efficiency of wireless communication systems. Several technologies are being explored to be used in 5G systems. One of the main promising technologies that is seen to be the enabler of 5G is massive multiple-input multiple-output (mMIMO) systems. Numerous studies have indicated the utility of mMIMO in upcoming wireless networks. However, there are several challenges that needs to be unravelled. In this paper, the latest progress of research on challenges in mMIMO systems is tracked, in the context of mutual coupling, antenna selection, pilot contamination and feedback overhead. The results of a systematic mapping study performed on 63 selected primary studies, published between the year 2017 till the second quarter of 2020, are presented. The main objective of this secondary study is to identify the challenges regarding antenna design and channel estimation, give an overview on the state-of-the-art solutions proposed in the literature, and finally, discuss emerging open research issues that need to be considered before the implementation of mMIMO systems in 5G networks

    Massive MIMO is a reality - What is next? Five promising research directions for antenna arrays

    Get PDF
    Massive MIMO (multiple-input multiple-output) is no longer a “wild” or “promising” concept for future cellular networks—in 2018 it became a reality. Base stations (BSs) with 64 fully digital transceiver chains were commercially deployed in several countries, the key ingredients of Massive MIMO have made it into the 5G standard, the signal processing methods required to achieve unprecedented spectral efficiency have been developed, and the limitation due to pilot contamination has been resolved. Even the development of fully digital Massive MIMO arrays for mmWave frequencies—once viewed prohibitively complicated and costly—is well underway. In a few years, Massive MIMO with fully digital transceivers will be a mainstream feature at both sub-6 GHz and mmWave frequencies. In this paper, we explain how the first chapter of the Massive MIMO research saga has come to an end, while the story has just begun. The coming wide-scale deployment of BSs with massive antenna arrays opens the door to a brand new world where spatial processing capabilities are omnipresent. In addition to mobile broadband services, the antennas can be used for other communication applications, such as low-power machine-type or ultra-reliable communications, as well as non-communication applications such as radar, sensing and positioning. We outline five new Massive MIMO related research directions: Extremely large aperture arrays, Holographic Massive MIMO, Six-dimensional positioning, Large-scale MIMO radar, and Intelligent Massive MIMO

    Bilinear Gaussian Belief Propagation for Massive MIMO Detection with Non-Orthogonal Pilots

    Get PDF
    Ito K., Takahashi T., Ibi S., et al. Bilinear Gaussian Belief Propagation for Massive MIMO Detection with Non-Orthogonal Pilots. IEEE Transactions on Communications , (2023); https://doi.org/10.1109/TCOMM.2023.3325479.We propose a novel joint channel and data estimation (JCDE) algorithm via bilinear Gaussian belief propagation (BiGaBP) for massive multi-user MIMO (MU-MIMO) systems with non-orthogonal pilot sequences. The contribution aims to reduce significantly the communication overhead required for channel acquisition by enabling the use of short non-orthogonal pilots, while maintaining multi-user detection (MUD) capability. Bilinear generalized approximate message passing (BiGAMP), which is systematically derived by extending approximate message passing (AMP) to the bilinear inference problem (BIP), provides computationally efficient approximate implementations of large-scale JCDE via sum-product algorithm (SPA); however, as the pilot length decreases, the estimation accuracy is severely degraded. To tackle this issue, the proposed BiGaBP algorithm generalizes BiGAMP by relaxing its dependence on the large-system limit approximation and leveraging the belief propagation (BP) concept. In addition, a novel belief scaling method complying with the data detection accuracy for each iteration step is designed to avoid the divergence behavior of iterative estimation in the early iterations due to the use of non-orthogonal pilots, especially in insufficient large-system conditions. Simulation results show that the proposed method outperforms the state-of-the-art schemes and approaches the performance of idealized (genie-aided) scheme in terms of mean square error (MSE) and bit error rate (BER) performances

    An overview of transmission theory and techniques of large-scale antenna systems for 5G wireless communications

    Get PDF
    To meet the future demand for huge traffic volume of wireless data service, the research on the fifth generation (5G) mobile communication systems has been undertaken in recent years. It is expected that the spectral and energy efficiencies in 5G mobile communication systems should be ten-fold higher than the ones in the fourth generation (4G) mobile communication systems. Therefore, it is important to further exploit the potential of spatial multiplexing of multiple antennas. In the last twenty years, multiple-input multiple-output (MIMO) antenna techniques have been considered as the key techniques to increase the capacity of wireless communication systems. When a large-scale antenna array (which is also called massive MIMO) is equipped in a base-station, or a large number of distributed antennas (which is also called large-scale distributed MIMO) are deployed, the spectral and energy efficiencies can be further improved by using spatial domain multiple access. This paper provides an overview of massive MIMO and large-scale distributed MIMO systems, including spectral efficiency analysis, channel state information (CSI) acquisition, wireless transmission technology, and resource allocation

    A Comprehensive Overview on 5G-and-Beyond Networks with UAVs: From Communications to Sensing and Intelligence

    Full text link
    Due to the advancements in cellular technologies and the dense deployment of cellular infrastructure, integrating unmanned aerial vehicles (UAVs) into the fifth-generation (5G) and beyond cellular networks is a promising solution to achieve safe UAV operation as well as enabling diversified applications with mission-specific payload data delivery. In particular, 5G networks need to support three typical usage scenarios, namely, enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC), and massive machine-type communications (mMTC). On the one hand, UAVs can be leveraged as cost-effective aerial platforms to provide ground users with enhanced communication services by exploiting their high cruising altitude and controllable maneuverability in three-dimensional (3D) space. On the other hand, providing such communication services simultaneously for both UAV and ground users poses new challenges due to the need for ubiquitous 3D signal coverage as well as the strong air-ground network interference. Besides the requirement of high-performance wireless communications, the ability to support effective and efficient sensing as well as network intelligence is also essential for 5G-and-beyond 3D heterogeneous wireless networks with coexisting aerial and ground users. In this paper, we provide a comprehensive overview of the latest research efforts on integrating UAVs into cellular networks, with an emphasis on how to exploit advanced techniques (e.g., intelligent reflecting surface, short packet transmission, energy harvesting, joint communication and radar sensing, and edge intelligence) to meet the diversified service requirements of next-generation wireless systems. Moreover, we highlight important directions for further investigation in future work.Comment: Accepted by IEEE JSA
    corecore