2,410 research outputs found

    Extraction of the Major Features of Brain Signals using Intelligent Networks

    Get PDF
    The brain-computer interface is considered one of the main tools for implementing and designing smart medical software. The analysis of brain signal data, called EEG, is one of the main tasks of smart medical diagnostic systems. While EEG signals have many components, one of the most important brain activities pursued is the P300 component. Detection of this component can help detect abnormalities and visualize the movement of organs of the body. In this research, a new method for processing EEG signals is proposed with the aim of detecting the P300 component. Major features were extracted from the BCI Competition IV EEG data set in a number of steps, i.e. normalization with the purpose of noise reduction using a median filter, feature extraction using a recurrent neural network, and classification using Twin Support Vector Machine. Then, a series of evaluation criteria were used to validate the proposed approach and compare it with similar methods. The results showed that the proposed approach has high accuracy

    Ship operational performance modelling for voyage optimization through fuel consumption minimization

    Get PDF

    Human Metaphase Chromosome Analysis using Image Processing

    Get PDF
    Development of an effective human metaphase chromosome analysis algorithm can optimize expert time usage by increasing the efficiency of many clinical diagnosis processes. Although many methods exist in the literature, they are only applicable for limited morphological variations and are specific to the staining method used during cell preparation. They are also highly influenced by irregular chromosome boundaries as well as the presence of artifacts such as premature sister chromatid separation. Therefore an algorithm is proposed in this research which can operate with any morphological variation of the chromosome across images from multiple staining methods. The proposed algorithm is capable of calculating the segmentation outline, the centerline (which gives the chromosome length), partitioning of the telomere regions and the centromere location of a given chromosome. The algorithm also detects and corrects for the sister chromatid separation artifact in metaphase cell images. A metric termed the Candidate Based Centromere Confidence (CBCC) is proposed to accompany each centromere detection result of the proposed method, giving an indication of the confidence the algorithm has on a given localization. The proposed method was first tested for the ability of calculating an accurate width profile against a centerline based method [1] using 226 chromosomes. A statistical analysis of the centromere detection error values proved that the proposed method can accurately locate centromere locations with statistical significance. Furthermore, the proposed method performed more consistently across different staining methods in comparison to the centerline based approach. When tested with a larger data set of 1400 chromosomes collected from a set of DAPI (4\u27,6-diamidino-2-phenylindole) and Giemsa stained cell images, the proposed candidate based centromere detection algorithm was able to accurately localize 1220 centromere locations yielding a detection accuracy of 87%

    Machine Learning assisted Digital Twin for event identification in electrical power system

    Get PDF
    The challenges of stable operation in the electrical power system are increasing with the infrastructure shifting of the power grid from the centralized energy supply with fossil fuels towards sustainable energy generation. The predominantly RES plants, due to the non-linear electronic switch, have brought harmonic oscillations into the power grid. These changes lead to difficulties in stable operation, reduction of outages and management of variations in electric power systems. The emergence of the Digital Twin in the power system brings the opportunity to overcome these challenges. Digital Twin is a digital information model that accurately represents the state of every asset in a physical system. It can be used not only to monitor the operation states with actionable insights of physical components to drive optimized operation but also to generate abundant data by simulation according to the guidance on design limits of physical systems. The work addresses the topic of the origin of the Digital Twin concept and how it can be utilized in the optimization of power grid operation.Die Herausforderungen für den zuverfässigen Betrieb des elektrischen Energiesystems werden mit der Umwandlung der Infrastruktur in Stromnetz von der zentralen Energieversorgung mit fossilen Brennstoffen hin zu der regenerativen Energieeinspeisung stetig zugenommen. Der Ausbau der erneuerbaren Energien im Zuge der klimapolitischen Zielsetzung zur CO²-Reduzierung und des Ausstiegs aus der Kernenergie wird in Deutschland zügig vorangetrieben. Aufgrund der nichtlinearen elektronischen Schaltanlagen werden die aus EE-Anlagen hervorgegangenen Oberschwingungen in das Stromnetz eingebracht, was nicht nur die Komplexität des Stromnetzes erhöht, sondern auch die Stabilität des Systems beeinflusst. Diese Entwicklungen erschweren den stabilen Betrieb, die Verringerung der Ausfälle und das Management der Netzschwankungen im elektrischen Energiesystem. Das Auftauchen von Digital Twin bringt die Gelegenheit zur Behebung dieser Herausforderung. Digital Twin ist ein digitales Informationsmodell, das den Zustand des physikalischen genau abbildet. Es kann nicht nur zur Überwachung der Betriebszustände mit nachvollziehbarem Einsichten über physischen Komponenten sondern auch zur Generierung der Daten durch Simulationen unter der Berücksichtigung der Auslegungsgrenze verwendet werden. Diesbezüglich widmet sich die Arbeit zunächste der Fragestellung, woher das Digital Twin Konzept stammt und wie das Digitan Twin für die Optimierung des Stromnetzes eingesetzt wird. Hierfür werden die Perspektiven über die dynamische Zustandsschätzung, die Überwachung des des Betriebszustands, die Erkennung der Anomalien usw. im Stromnetz mit Digital Twin spezifiziert. Dementsprechend wird die Umsetzung dieser Applikationen auf dem Lebenszyklus-Management basiert. Im Rahmen des Lebenszyklusschemas von Digital Twin sind drei wesentliche Verfahren von der Modellierung des Digital Twins zur deren Applizierung erforderlich: Parametrierungsprozess für die Modellierung des Digital Twins, Datengenerierung mit Digital Twin Simulation und Anwendung mit Machine Learning Algorithmus für die Erkennung der Anomalie. Die Validierung der Zuverlässigkeit der Parametrierung für Digital Twin und der Eventserkennung erfolgt mittels numerischer Fallstudien. Dazu werden die Algorithmen für Online und Offline zur Parametrierung des Digital Twins untersucht. Im Rahmen dieser Arbeit wird das auf CIGRÉ basierende Referenznetz zur Abbildung des Digital Twin hinsichtlich der Referenzmessdaten parametriert. So sind neben der Synchronmaschine und Umrichter basierende Einspeisung sowie Erreger und Turbine auch regler von Umrichter für den Parametrierungsprozess berücksichtigt. Nach der Validierung des Digital Twins werden die zahlreichen Simulationen zur Datengenerierung durchgeführt. Jedes Event wird mittels der Daten vo Digital Twin mit einem "Fingerprint" erfasst. Das Training des Machine Learning Algorithmus wird dazu mit den simulierten Daten von Digital Twin abgewickelt. Das Erkennungsergebnis wird durch die Fallstudien validiert und bewertet

    Facial expression recognition in the wild : from individual to group

    Get PDF
    The progress in computing technology has increased the demand for smart systems capable of understanding human affect and emotional manifestations. One of the crucial factors in designing systems equipped with such intelligence is to have accurate automatic Facial Expression Recognition (FER) methods. In computer vision, automatic facial expression analysis is an active field of research for over two decades now. However, there are still a lot of questions unanswered. The research presented in this thesis attempts to address some of the key issues of FER in challenging conditions mentioned as follows: 1) creating a facial expressions database representing real-world conditions; 2) devising Head Pose Normalisation (HPN) methods which are independent of facial parts location; 3) creating automatic methods for the analysis of mood of group of people. The central hypothesis of the thesis is that extracting close to real-world data from movies and performing facial expression analysis on movies is a stepping stone in the direction of moving the analysis of faces towards real-world, unconstrained condition. A temporal facial expressions database, Acted Facial Expressions in the Wild (AFEW) is proposed. The database is constructed and labelled using a semi-automatic process based on closed caption subtitle based keyword search. Currently, AFEW is the largest facial expressions database representing challenging conditions available to the research community. For providing a common platform to researchers in order to evaluate and extend their state-of-the-art FER methods, the first Emotion Recognition in the Wild (EmotiW) challenge based on AFEW is proposed. An image-only based facial expressions database Static Facial Expressions In The Wild (SFEW) extracted from AFEW is proposed. Furthermore, the thesis focuses on HPN for real-world images. Earlier methods were based on fiducial points. However, as fiducial points detection is an open problem for real-world images, HPN can be error-prone. A HPN method based on response maps generated from part-detectors is proposed. The proposed shape-constrained method does not require fiducial points and head pose information, which makes it suitable for real-world images. Data from movies and the internet, representing real-world conditions poses another major challenge of the presence of multiple subjects to the research community. This defines another focus of this thesis where a novel approach for modeling the perception of mood of a group of people in an image is presented. A new database is constructed from Flickr based on keywords related to social events. Three models are proposed: averaging based Group Expression Model (GEM), Weighted Group Expression Model (GEM_w) and Augmented Group Expression Model (GEM_LDA). GEM_w is based on social contextual attributes, which are used as weights on each person's contribution towards the overall group's mood. Further, GEM_LDA is based on topic model and feature augmentation. The proposed framework is applied to applications of group candid shot selection and event summarisation. The application of Structural SIMilarity (SSIM) index metric is explored for finding similar facial expressions. The proposed framework is applied to the problem of creating image albums based on facial expressions, finding corresponding expressions for training facial performance transfer algorithms

    Comparative analysis of data-driven models for marine engines in-cylinder pressure prediction

    Get PDF
    The in-cylinder pressure is a key parameter for assessing the marine engines health, therefore its measurement or prediction is paramount for these engines diagnosis. Thermodynamic models are typically employed for predicting the in-cylinder pressure, which however face challenges pertinent to their calibration and computational time requirements. Recent advances in the field of machine learning have leveraged the development of data-driven models. This study aims at comparing two approaches for input features and six regression techniques to select the most effective combination, for developing data-driven models to predict the in-cylinder pressure of marine four-stroke engines. Two approaches with different input and output features are initially compared. The first employs regression to directly predict the in-cylinder pressure signal, whereas the second predicts the harmonics coefficients by regression and subsequently estimates the in-cylinder pressure by using a Fourier series function. Typical regression techniques, including linear, elastic, polynomial, support vector machines (SVM), decision trees (DT), and artificial neural networks (ANN), are employed to develop data-driven models based on the second approach. The required datasets for training and testing are derived by using a physical digital twin for the investigated marine engine, which is calibrated against the shop trials and acquired shipboard measurements. The data driven models accuracy are estimated based on the testing datasets considering the root mean square error. For the data driven model of the second approach and the ANN regression, a sensitivity study is carried out considering the training datasets and the harmonics number to derive recommendations for these parameters values. The results demonstrate that the second approach provides higher accuracy, whereas the ANN regression is the most effective technique for developing data-driven models to estimate the in-cylinder pressure, as the exhibited root mean square error is retained within ±0.2\pm 0.2 bar for the ANN trained with 20 samples. This study supports the development and use of data driven models for marine engines health diagnosis

    Engine Knock Margin Estimation Using In-Cylinder Pressure Measurements

    Get PDF
    open3siEngine knock is among the most relevant limiting factors in the improvement of the operation of spark-ignited engines. Due to an abnormal combustion inside the cylinder chamber, it can cause performance worsening or even serious mechanical damage. Being the result of complex local chemical phenomena, knock turns out to have a significant random behavior but the increasing availability of new on-board sensors permits a deeper understanding of its mechanism. The aim of this paper is to exploit in-cylinder pressure sensors to derive a knock estimator, based on the logistic regression technique. Thanks to the proposed approach, it is possible to explicitly deal with knock random variability and to define the so-called margin (or distance) from the knocking condition, which has been recently proven to be an effective concept for innovative knock control strategies. In a model-based estimation fashion, two modeling approaches are compared: one relies on well-known physical mechanisms while the second exploits a principal component analysis to extract relevant pressure information, thus reducing the identification effort and improving the estimation performance.Panzani, Giulio; Ostman, Fredrik; Onder, Christopher H.Panzani, Giulio; Ostman, Fredrik; Onder, Christopher H
    corecore