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Abstract 

 Increasingly stringent maritime regulations and high fuel prices are placing 

more pressure on shipping companies to find ways to improve their ships’ fuel 

efficiency in order to reduce costs and comply with the new rules. As fuel counts for 

the largest portion of the voyage cost, small fuel savings could achieve significant 

voyage cost savings. Moreover, fuel consumption reduction contributes considerably 

to the greenhouse gas emissions reduction, which became a global concern. 

Traditionally, optimizing ship speed is known to be effective in minimizing fuel 

consumption, and numerous ship operational optimizations focused on this method. 

Even though it is an effective method, it is often difficult to implement as ships have 

their schedules to respect in addition to the ports’ logistical constraints, which limit 

the speed optimization scope. 

Other ship controllable variables, such as the trim i.e. the difference between the aft 

draft and the foreword draft, and the ship course are worthy of attention when seeking 

to minimize fuel consumption while the vessel is cruising. The trim can be controlled 

by simple ballast arrangement, which may also be cost-free in case of a gravity assisted 

ballast water system. Often, the vessel is badly trimmed such that it generates 

additional fuel usage that can be saved by an optimal trim configuration. On the other 

hand, optimizing the ship’s route by changing the ship’s course, with the aim of 

avoiding harsh weather or benefiting from the wind and current directions, to decrease 

the ship’s resistance, can significantly reduce the voyage fuel consumption. This 

method can be implemented while respecting the ship schedule by assessing the 

different options available and deciding accordingly. 

In this thesis, different black box models are compared to predict ship fuel 

consumption, which depends on the ship specific and the navigational input 

parameters. The objective is to find the best predictive model to use in a decision 

support system (DSS) for energy efficient ship operation. The best prediction 

methodology is identified based on the comparative analysis, which yields to 

employing Artificial Neural Network (ANN). In the DSS, the Genetic Algorithm, an 

evolutionary optimization algorithm, is employed with the help of ANN in order to 

find the optimal set of input parameters that give the least fuel consumption. 

The investigation is based on numerical data of a VLCC case ship under normal 

operation. It is common that this type of operational data cannot include all the input 

variable values ranges and in some cases the range can be quite narrow, which limits 

the accuracy of ship operational performance prediction models. Special attention 

must also be assigned to the pre-processing of this type of data. It is demonstrated how 

to address this aspect and build models with high predictive accuracy that, when 

employed with the GA for trim and route optimization, result in potential fuel savings. 

Based on the successful results of VLCC, it can be confidently concluded that the 

developed methodology is a promising direction, which has been tried for the first time 

in the academic literature on ship performance modelling and its optimization. The 
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developed method can be adapted and applied to other merchant ship types to become 

part of a comprehensive on-board energy management system as long as proper 

tailoring is performed. 

Keywords: Machine Learning, Black Box Models, K-Nearest Neighbours, AdaBoost 

Decision Tree, Artificial Neural Network, Genetic Algorithm, Energy Efficiency, Ship 

Operational Performance Modelling, Performance Optimization, Fuel Savings. 
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1. Chapter I: Introduction 

 

1.1. Background 

 Maritime transport, a vector of globalisation, today represents a competitive 

mode of transportation at a lower cost compared to other types of transportation. 

Allowing for economies of scale and low cost of transportation, maritime transport has 

become the flagship mode given the large capacity it can transport over long distances 

with an 80% share of world commercial transit (UNCTAD, 2017). In addition, the 

modernisation of logistics through containerization and advanced technology allowing 

direct monitoring, as well as easy routing, have contributed to the fast growth of 

maritime transport. Thus, the number of tonnes transported by sea increased by more 

than 200% between 1970 and 2000 and increased by 60% between 2000 and 2013 

(Vigarié, 2016). Furthermore, Vessels have evolved and developed to fit profitability 

and competitiveness needs, which has resulted in building of ships with larger sizes 

and higher speeds. However, place of shipping in sustainable development and the 

possible alternatives to allow the evolution of the sector in respect of the environment 

still have to be shaped (IMO, 2014). Maritime transport development is happening in 

parallel with the increase of its CO2 emission, which represents a negative externality 

that affects the entire environment. Figure1-1 shows that the emission rate of CO2 is 

increasing and the estimates established by the International Maritime Organization 

(IMO) are close to reality (green columns in the figure), (IMO, 2009). The figure 

indicates that the current IMO studies and expected risks should be highly considered.  
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Figure 1-1 Evolution of CO2 emissions and estimations of IMO (IMO, 2009) 

 The increasing GHG concentration in the atmosphere and the associated 

warming effects are considered as a major cause of climate change (WMO, 2013). For 

international maritime transport, according to the third IMO GHG study as illustrated 

in Figure 1-2, in the absence of corrective measures, it is estimated that the rate of CO2 

emissions of the sector will increase between 150% and 250% by 2050 (IMO, 2014). 

 

Figure 1-2 Business as usual projection of CO2 emissions from international shipping 2012-2050, (IMO, 2014) 

As a result, GHG emissions from international shipping are receiving increasing 

attention, and possible mitigation measures are being considered, both at the regulatory 

and sectoral levels. 

 During the United Nations Framework Convention on Climate Change 

(UNFCCC) in 1992, the GHG emissions from all sectors were discussed and the 

engagement of States to reduce it was highlighted. International shipping was assigned 

to the IMO as a specialized United Nations (UN) body to regulate the GHG emissions 

from ships. Consequently, the IMO marked the entry into force of Chapter IV of 
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MARPOL Annex VI on 1 January 2013. This Annex represents a real turning point in 

the maritime sector as it represents the first mandatory global regime for control of 

GHG emission from the maritime sector. It introduced the Energy Efficiency Design 

Index (EEDI) as an energy efficiency benchmark to be respected by new ships, and 

the Ship Energy Efficiency Management Plan (SEEMP) to improve the operational 

energy efficiency of existing ships. Later in 2015, the Paris agreement came to specify 

a clear and precise target to limit Climate Change effects by keeping global warming 

well below 2° compared to 2008 levels, which put more pressure on the IMO to reduce 

GHG emissions from ships. The Data Collection System (DCS) was then adopted to 

enter into force in January 2019 as a system for recording and collecting data on the 

fuel consumption of ships engaged in international voyages, which is proportional to 

their GHG emissions. The data collected will provide a solid basis to decide on 

additional regulations that will complement or amend the regulations already adopted 

by IMO on its way toward environmentally sound maritime transport (IMO, 2016). In 

addition, the IMO recently adopted a new strategy specifying its commitment to 

reducing GHG emissions from international shipping by at least 50% by 2050 

compared to 2008, which is the first quantified target fixed by IMO (IMO, 2018).  

 To sum up, in view of environmental degradation, maritime regulation is 

moving toward the development of strict measures to improve the ships’ energy 

efficiency. The higher authorities in the maritime community and the leaders in the 

shipping industry are now focusing on the development of measures favourable to 

both, the economies and the environment. Therefore, shipping companies are under 

increasing regulatory pressure, requiring them to adopt appropriate solutions that 

achieve an economic objective in response to the rising cost of fuel and especially to 

the international regulations. 

1.2. Problem statement 

 The EEDI regulation has set different time phases to achieve energy efficiency 

targets while building more and more energy efficient ships. The targets are 

increasingly strict allowing for innovation in ship design to find solutions for 
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compliance with the more stringent rules. On the other hand, the SEEMP has been 

introduced to operate the ship in an energy efficient way by applying energy efficiency 

operational measures and monitoring the effect of any changes in ship operation. 

While the energy efficiency at design stage improves in parallel with technological 

innovations, the operational energy efficiency improvement depends on the ship 

operators’ motivation to apply the operational measures in addition to the complexity 

of applying these measures. Technological innovation in ship design has been highly 

reliant on Artificial Intelligence (AI) for a long time to improve the hull forms and 

structural arrangements (Amarel & Steinberg, 1990). The development of AI has been 

a key factor in the development of not only ship design but also many other sectors 

including, medicine, biology and different engineering fields. Recently, the shipping 

industry at the operational level also started to benefit from this fast development of 

AI tools as many studies conducted by IMO working groups have proven that CO2 

emissions could significantly decrease through appropriate implementation of 

operational measures (IMO, 2014). Traditionally these measures were implemented 

solely through speed optimization as it is an easy way to reduce ship fuel consumption 

and does not require deep knowledge of the ship operation. However, in order to 

implement other energy efficiency operational measures, such as trim or route 

optimization, ship operational performance changes in different voyage conditions 

should be deeply examined and monitored. It is for this purpose that the AI tools have 

been employed since the classical tools, using the physical relations developed at the 

ship design stage, are not able to precisely describe all the operational conditions, as 

they are often different from the limited shipyard test conditions. Many studies are 

currently seeking to employ AI tools to further improve ship operational energy 

efficiency, which still has great potential to decrease the CO2 emissions from 

international shipping (IMO, 2014). This could be achieved by using AI to facilitate 

the implementation of the operational energy efficiency measures through on-board 

instruments equipped with advanced and effective Decision Support Systems (DSS). 

Such research and developments will need to analyse the ship performance from 

historical operational data and examine the available AI tools in order to predict the 
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ship performance in various conditions with the minimum possible error. Such an 

approach will provide the optimal decisions to take in order to improve ship 

performance with a minimum risk of error. 

1.3. Aim and Objectives 

 The aim of this dissertation is to employ the most suitable AI tools to optimize 

ship operational performance and effectively contribute to the global efforts towards 

energy efficient maritime transport. This will be possible by achieving the following 

objectives: 

 Explain the crucial steps of ship performance modelling as a data science 

process 

 Conduct an appropriate ship operational data mining in order to avoid over 

fitness and high prediction errors 

 Examine the applicability of a set of popular currently available machine 

learning algorithms to the ship performance modelling problem  

 Use the most appropriate ship fuel consumption prediction model to make 

future predictions of ship performance 

 Combine the prediction model with a successful evolutionary algorithm to 

solve the ship fuel consumption minimization problem 

 Change the optimization constraints to conduct different ship voyage 

optimization scenarios and validate the models effectiveness to improve the 

ship’s energy efficiency 

 Explain the applicability of the built prediction and optimization models as a 

DSS for ship energy efficient operation 

1.4. Dissertation outline 

 Chapter 2 describes the operational energy efficiency measures and gives an 

idea about their potential in saving fuel usage and GHG emission reduction. This 

chapter introduces the machine learning tools and the black box models with their 

application to build the ship operational performance prediction models in addition to 
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the optimization for energy efficient ship operation. Chapter 3 explains the developed 

methodology of preparing the dataset, building a fuel consumption prediction model 

and using the GA as the optimization model. Chapter 4 merges the steps previously 

explained with an application of all models to the operational historical data of a case 

study ship (VLCC). In this chapter, different optimization scenarios are tested to 

validate the developed methodology. The results are presented in Chapter 5 with 

interpretation and assessment of the developed method through the level of success in 

meeting the objective of the optimization scenarios. The chapter concludes with 

remarks on the applicability of this DSS on-board ships. Finally, conclusions and 

further research are presented in Chapter 6. 
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2. Chapter II: Ship performance modelling and 

optimization 

 

 In this dissertation, the focus is the relationship between ship fuel consumption 

and the different influential variables that describe the ship’s condition and the external 

conditions. The aim is to use this relationship to optimize the ship voyage by 

minimizing fuel consumption. This chapter will briefly introduce the operational 

energy efficiency measures and their potential to reduce ship fuel consumption, which 

have been a strong motivation to use modern tools for ship performance modelling and 

optimization. The chapter will then describe the usage of AI tools for ship performance 

modelling and optimization. It will conclude with a comprehensive literature review 

to present different studies that aimed to model, and optimize ship operational 

performance and the current gap in this research field.  

2.1. Ship operational energy efficiency measures   

 Operational energy efficiency measures can have a significant effect on 

reducing the GHG emission from ships as they aim to reduce the consumed energy 

and, thus, the consumed fuel. In the years following the oil crises, shipping companies 

have put in place measures to reduce their fuel consumption, as fuel cost is a major 

part of the ship voyage cost. These traditional measures such as slow streaming i.e. 

reducing the voyage speed significantly compared to the design speed, have proven 

their effectiveness and are now back on the agenda. Thus, according to the IMO, 

operational energy efficiency optimization is the main vehicle for reducing emissions 
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from a ship (IMO, 2014). Figure 2-1 illustrates the different scenarios and 

demonstrates that operational measures can mitigate the growth of CO2 emissions. 

Bold lines in the figure are Business As Usual (BAU) scenarios and thin lines represent 

either greater efficiency improvement than BAU or additional emission controls or 

both. The best scenario shows that it is even possible to reduce the emission rate and 

bring it down below the rate achieved in 2012 (IMO, 2014). 

 

Figure 2-1 Projection of CO2 emissions from international maritime transport with different energy efficiency 

scenarios (IMO,2014) 

2.1.1. Speed optimization 

 One of the most applied and oldest measures was to reduce the ship speed; this 

parameter has the greatest effect on ship fuel consumption, which is a cubic function 

of ship speed (Lindstada & Eskeland, 2015). Therefore, reducing ship speed is an 

effective way to reduce fuel consumption (Wartsila, 2009). As shown in Table 2-1, 

speed reduction can result in energy savings of up to 23% and decreasing the ship’s 

speed by only 1kn could save more than 5% of the energy consumption. 

Speed reduction Saving energy consumption 

-0.5 kn -7% 

-1 kn -11% 

-2 kn -17% 

-3 kn -23% 

Table 2-1 Reduction of consumption according to the decrease in speed (Wartsila, 2009). 

As a result, sailing at the optimal speed for each ship condition is an extremely 

effective energy efficiency operational measure. 
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2.1.2. Trim optimization 

 Shipyards aim to build ships and propulsion systems with the highest possible 

efficiency. However, once commercialized, these systems usually do not operate as 

efficiently as planned. The trim is one of the parameters that is often badly configured 

while the vessel is cruising because the trim is set during harbour time, which is 

different from cruising conditions considering the squat effect (Rocchi, 1994). The 

latter is the phenomenon of increased immersion and trim of the ship when it is cruising 

compared to calm water (Varyani, 2005). It has been proven that the ship consumed 

energy profile can vary significantly when changing the trim configurations (Journé, 

Rijke, & Verleg, 1987; Journée, 2003). Optimizing the ship’s trim is one of the easiest 

and least expensive energy efficiency measures that requires simple ballast distribution 

modification. It has been shown that a well trimmed vessel can make important energy 

savings (Ziylan & Nas, 2016). 

2.1.3.  Weather routing  

 Meteorological routing represents the determination of the optimum ship route 

with regard to weather conditions in order to promote energy savings (Padhy, Sen, & 

Bhaskaran, 2007). The objective of weather routing is to offer a route with the 

minimum fuel consumption, while considering the safety of the ship and remaining 

competitive with the earliest arrival time (Lin, Fang & Yeung, 2013). It is then a matter 

of taking advantage of weather conditions to facilitate the route by decreasing the total 

ship resistance, for example, by footing downwind lanes in order to take advantage of 

their speed and reduce fuel consumption. Weather-based route planning allows up to 

3% fuel savings (Armstrong, 2013). 

2.1.4.  Autopilot adjustment  

 The autopilot is an auxiliary deck equipment that replaces the helmsman in the 

bridge and insures that the ship is following the planned route while sailing in open 

sea or out of the high traffic areas. However, in case of poor directional stability, the 

frequent or large course alterations of the autopilot can increase ship fuel consumption 

(Amerongen, Duetz, & Okawa, 2017). Therefore, a well-adjusted autopilot has a great 
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influence on the ability to stay on the course, reduce the use of the rudder optimize the 

angles and, therefore, generate significant fuel economies. It is sufficient then to find 

the appropriate and precise parameters of the autopilot according to the route and 

different criteria to allow a considerable reduction in the use of the rudder and, thus, 

reduce the drag and the fuel consumption. It is estimated that high accuracy Autopilot 

operation would reduce fuel consumption by 0.5 to 3% (IMO, 2009). 

2.1.5. Propeller and hull maintenance monitoring 

 This measure consists of improved hull and propeller condition management 

in order to maintain smooth submerged surfaces. It allows appropriate polishing 

intervals and the choice of adequate antifouling treatment in order to decrease the hull 

water resistance (Demirel, Turan, & Incecik, 2016). This preventive measure can 

provide up to 10% improvement in hull performance compared to a fouled hull (ABS, 

2015). 

 Operational energy efficiency has the potential to reduce CO2 emissions from 

ships considerably and the operational energy efficiency measures are not limited to 

the list above. 

2.2. Operational Ship performance modelling 

2.2.1. White, Grey and Black Box modelling 

 The concept of ship performance has different interpretations, but in the 

scientific papers and discussions, it means the relationship between ship speed and the 

corresponding energy or fuel consumption (Haranen, Salo, Pakkanen, & Kariranta, 

2016). Modelling this performance consists of building a model that describes this 

relationship based on mathematical formulas, on statistics or on both at same time. 

These three approaches are known as White, Black and Grey-Box modelling, 

respectively. All of these approaches take into consideration the possible factors (Red 

in the Figure 2-2) that affect the ship’s technical performance and employ them in the 

model.  
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Figure 2-2 Variables affecting the ship performance (Pedersen & Larsen, 2009) 

 Ship performance modelling usually starts with the design process, where the 

interaction between the different ship systems and their interaction with the external 

environment are investigated and described in one model. However, at design stage 

the data collection tools, such as sensors, are limited and operational external 

conditions are not all available for testing (Logan, 2011). Therefore, the white box 

approach, which is based on physical laws, such as the ship’s power as a function of 

its total resistance and its speed, is usually the only way for technical performance 

modelling at design stage. 

 Conversely, during the operation of the ship, more and more sophisticated data 

collection and storage systems based on thousands of sensors are available. This has 

allowed access to large datasets from ships, which require control with modern 

computing tools and AI techniques to predict the ship’s future performance from its 

past (Solonen, 2018). Therefore, black box models such as Artificial Neural Networks 

based on statistical data are currently the only approach to deal with ship operational 

performance modelling.  

 Accordingly, grey box modelling, as its name signifies, is something between 

both preceding approaches. This means that the physical laws are employed in the 

model and corrected by statistical data in order to decrease the error margin and give 

better prediction accuracy (Haranen, Salo, Pakkanen, & Kariranta, 2016). In practice, 

when the grey model relies more on the physical laws than the volume of the historical 

data, it requires deep initial information about the ship’s physical characteristics to 

obtain good results. On the other hand, when the model employs less physical 

assumptions, and relies more on historical data, it requires a broader set of data 
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describing as many as possible of the operational conditions. This approach is still 

under research and development and needs the ship design information (Haranen, Salo, 

Pakkanen, & Kariranta, 2016). 

2.2.2. Black Box for ship operational performance model 

 As previously mentioned, ship operational performance can be modelled based 

on statistical data. The historical data of the ship’s voyages with different loading and 

weather conditions is first collected, then, using the powerful current machine learning 

tools, many steps are conducted to finally build a prediction model. Depending on the 

available data, the model will have input and output variables selected from the dataset. 

Generally, the consumed energy or fuel is the output variable to predict as a function 

of the speed, the other ship related input variables (trim, displacement, hull 

condition…), along with environment related (wind, current, wave…) input variables 

(Perera & Mo, 2016).  

2.2.2.1. Machine learning tools 

 Nowadays, highly developed soft computing techniques, combined with 

machine learning, open-up the possibility to build more and more accurate ship 

performance prediction models from the data collected through ship sensors and 

weather forecast companies. In this big data era, the abundance of data from ships has 

made ship operational energy efficiency research a data-oriented one.  

 Machine learning is the scientific field that studies how a machine learns from 

its experience with the objective to build computer systems that are able to adapt and 

learn from their experience (Wilson & Keil, 1999). Therefore, a machine-learning tool 

is a computer program whose performance for a certain task improves with its 

experience on that same task (Mitchell, 1997). Machine learning has three main tasks: 

2.2.2.1.1. Supervised learning  

 Supervised learning is the task where the machine learns a target function 

‘Output = f (Inputs)’, which is represented by a model based on these variable values 

in the dataset called training data. The function is then used to predict the new output 
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variable value from the new input variables value (Knight & Michelle, 2018). In 

supervised learning, there are two categories of model based on their tasks: Regression 

or Classification. The regression models predict a numerical output value, while the 

classification models predict the output class, such as a vessel type or a plant family.  

2.2.2.1.2. Unsupervised learning 

 For unsupervised learning systems, the task is first to find the hidden 

relationship between the variables inside the dataset, which is known as ‘association 

rule mining’, and, second, to be able to assign a good structure to the main dataset 

through dividing it into different groups or clusters. For these systems, the training 

dataset is a number of instances of unlabelled variables, which will need to be divided 

and assigned to the created labelled groups. 

2.2.2.1.3. Reinforcement Learning 

 In reinforcement learning, the system is directly interacting with the 

environment without previous knowledge about it and trying to learn through trial and 

error until becoming able to make sequential decisions (Knight & Michelle, 2018). It 

is applied in self-driving cars, dialog systems, adaptive medical treatments and others. 

 In the case of ship operational performance modelling, the model should 

represent a function that describes the relationship of the fuel consumption or the shaft 

power, as the dependent variable to predict, with the independent input variables. Both 

the target and input variables have numerical and not categorical values. Therefore, 

for this field of modelling, we apply a supervised learning, regression model. 

2.2.2.2. Datasets and data pre-processing 

 In order to build a statistical regression model, it is necessary to collect a 

number of instances of historical data of the ship performance. This is called a dataset. 

Generally, the raw dataset is a two dimensional matrix, a CSV or an excel sheet where 

each column is a feature or variable and each row is an instance or one reading, and 

vice versa. The larger the dataset is, the better the work that can be done is. However, 

the real world ship data and navigational data are often incomplete, inconsistent and 
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noisy because of some errors in the data collection tools (Markov, n,d). The sensors 

on-board ships may encounter functioning problems and crewmembers can make 

many errors when collecting the information, which results in incoherent data samples. 

Data pre-processing is a crucial process that consists of data cleaning, integration, 

transformation and reduction (Chouvarda et al., 2017). All these steps have the same 

objective of preparing the data in a consistent, clean and structured form to build a 

performant model, while reducing the computational time. However, this should not 

affect the integrity of the original data (Chouvarda et al., 2017).  

2.2.2.3. Algorithm selection 

 As already explained in the machine learning tasks, based on the dataset and 

the objective of modelling, the model type is selected, which is supervised learning 

regression for the previously defined operational ship performance modelling. In the 

regression models, many algorithms can be applied to the same dataset to accomplish 

the same objective. However, the best algorithm should be selected based on the model 

performance in predicting future outputs. The model’s evaluation is usually measured 

by calculating the errors in prediction of unseen data in order to make sure that the 

model will be accurate once deployed (Raschka, 2016). The main challenge when 

applying different algorithms to the dataset or searching for novel algorithms is making 

accurate predictions with future data. The algorithm should learn the target function 

that relates the output variable to the input variables. However, no single standard 

algorithm can apply to all datasets and give the same performance even for the same 

task and objective, such as regression. Therefore, algorithm selection is very important 

to the data analyst in order to come up with best prediction results.  

2.3. Operational ship performance optimization 

2.3.1. Definition 

 In general, optimization is simply about obtaining an optimum value of a 

function (minimum or maximum) by selecting its variables values from a defined set 

(Thomas & Mahapatrab, 2016). Optimizing the operational ship performance deals 

with the minimization of the operational cost of the voyage, which is mainly the fuel 
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cost. Once the best algorithm is chosen and trained, as explained previously, it is used 

with new data for making predictions of ship fuel oil consumption or other 

proportional outputs such as the propulsion power. Minimizing the fuel consumption 

is called the objective of the optimization. Applying the prediction model to the new 

data variables will give the usual ship fuel consumption. However, using machine 

learning for modelling the ship’s performance should not stop at the predictive 

modelling step (Hamm, n d). It always has the utmost objective of optimization 

because these complex nonlinear functions with multiple variables cannot be 

optimized by the traditional analytical methods (Ghanshyam, Mirjalili, Patel & 

J.Savsani, 2018). In order to meet the optimization objective, which is minimizing the 

model function, the optimal input variable values should be found (Ghanshyam, 

Mirjalili, Patel & J.Savsani, 2018). The dataset for operational ship performance 

modelling usually contains ship data and navigational data. The input variables from 

navigational data are external to the ship; they rather describe what happens around 

the ship during its voyage, such as the weather forecast. Therefore, these variables’ 

values cannot be controlled for the optimization. In contrast, the ship specific input 

variables, such as speed or course are manageable and the ship operators can decide to 

change them, depending on their schedules and targets. These variables are called 

Decision Variables (Bal Besikci, Arslan, Turan, &Olcer, 2016). Thus, optimization 

deals specifically with finding the ship decision variables’ values to minimize the fuel 

consumption function of the set of variables. In many applications, these optimization 

results have been employed in Decision Support Systems (Petersen & Winther, 2011). 

There are two main categories in optimization: 

2.3.2. Unconstrained optimization 

 The unconstrained optimization, as its name indicates, is finding the best 

variables to minimize or maximize a function without any constraint on the variables 

values.  
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2.3.3. Constrained optimization 

 Ship operators make decisions to reduce fuel consumption by reducing the 

speed with the specified constraint to arrive on time, in order to avoid extra fuel usage 

if the ship stays at the waiting area. This is a minimization problem subject to a 

constraint. The decision variables are not chosen among an infinite number of values. 

They are rather limited by one or more constraints.  The system will then choose the 

values that meet the defined objective while respecting the specified constraints. 

2.4. Literature review 

 Considerable research has been conducted trying to accurately model 

operational ship performance. Some of them pursued ship performance optimization, 

while some others had the objective of building a good predictive model and validating 

its accuracy. Petursson (2009), Petersen & Winther (2011) and Soner, Akyuz & Celik 

(2018) are the only studies found that employed non-parametric algorithms to predict 

ship operational performance. Non-parametric algorithms are simple and effective 

machine learning prediction algorithms, where the prediction function parameters are 

unspecified. They rather rely on the similarity between the training data and the data 

for prediction, where the similarity is simply assumed to be equivalent to the distance 

between the training data and prediction data (ISS-AS, 2005). Petursson (2009) used 

data from noon reports and highlighted the importance of the data pre-processing and 

its effect on the model’s accuracy. The algorithms used to predict the shaft power of a 

car-ferry case ship were K-Nearest Neighbours (KNN) and Support Vector Regression 

(SVR). The different models’ accuracies were ranked and the KNN had the best 

prediction performance. The model was then used to detect the bad trim by comparing 

the shaft power profile as a function of the pitch at the optimal conditions. Petersen & 

Winther (2011) used high quality ship historical data and conducted a complete 

modelling process with focus on the importance of understanding the variables’ effects 

on ship performance and the data mining on the model’s performance. It compared 

Gaussian Process (GP) to ANN algorithms in fuel consumption prediction modelling 

and has found that GP has high accuracy that was very satisfying and, in some cases, 
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better compared to ANN, which had the best accuracy in general. Soner, Akyuz & 

Celik (2018) also conducted a coherent modelling process and showed the importance 

of selecting the best set of input variables to end up with a good model prediction 

performance. Soner, Akyuz & Celik (2018) has employed a non-parametric popular 

algorithm, the Decision Trees, and compared its performance to the Artificial Neural 

Networks (ANN), which was previously applied by Pedersen and Larsen (2009) to the 

same ship case, using the same publicly available dataset. Decision Tree provided 

satisfying predictive performance compared to ANN. All of this researches has 

significantly contributed to clarifying the role of data mining in the modelling process 

and effectiveness of many machine-learning algorithms to predict ship performance in 

different conditions. However, they are very few and far from being sufficient to 

validate and generalize their conclusions for the different ship types and operational 

conditions (Aldous, 2016; Petersen and Winther, 2011). There is still a huge gap in 

ship operational performance modelling and statistical models with high prediction 

accuracy are still needed (Aldous, 2016; Petersen and Winther, 2011). In addition, this 

research has only validated the models’ accuracy without exploring their potential to 

be employed to solve a ship performance optimization problem and serve as DSS. 

 Few studies have employed the ANN as one of today’s most performant 

machine-learning algorithms for non-linear regression problems. (Pedersen and 

Larsen, 2009; Leifsson, Sævarsdóttir, Sigurðsson, & Vésteinsson, 2008) have built 

ship fuel prediction models based on the ANN algorithm, which demonstrated a good 

predictive accuracy. Bal Besikci, Arslan, Turan, & Olcer (2016) also employed ANN 

to predict ship fuel consumption and highlighted its high predictive performance. In 

this paper, the model was further used in a DSS to minimize ship fuel consumption. 

However, both studies cited above were based on noon report data, which is not as 

reliable as the high quality data obtained from acquisition system and sensor 

technologies. Petersen and Winther (2011) used high quality data and demonstrated 

again the success of ANN as a non-linear regression algorithm to predict ship fuel 

consumption. However, in this research, the weather input variables were not 

considered and the ship performance optimization problem was not solved. 
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 Examining the literature to find research areas to explore, Genetic Algorithm 

(GA) was not employed in any research to optimize general ship operational 

performance. It was employed in many studies for ship route planning by (Hinnenthal, 

2008; Marie and Courtielle, 2009; Wang, Li, Li, Veremey, & Sotnikova, 2018; Al-

Hamad, Al-Ibrahim, & Al-Enezy, 2012). In addition, it has been found that GAs are 

broadly used to solve optimization problems at early stage ship design, when the ship 

hull form has to be optimized to reduce the resistance and find the optimal propulsion 

power (Olcer, 2007; Bagheri & Ghassem, 2014; Hirayama & Ando, 2007; Guha & 

Falzaranoa, 2015). 

 In order to remedy the mentioned gaps, this research will apply a set of 

available machine learning algorithms to a high quality ship historical dataset to build 

a good ship operational performance model and combine it with the GA for optimal 

energy efficient ship operation. 

2.5. Summary 

 This chapter gives an idea about the importance of operational energy 

efficiency measures to reduce ship fuel consumption and, by extension, GHG 

emissions from ships. Since the classical programming techniques cannot identify the 

complex non-linear relationship between fuel consumption and all other variables, the 

black box models are introduced to solve this problem, considering their ability to 

learn from historical ship data. The ship data nature justifies the need to prepare it to 

be used in black box models. Today’s non-classical methods and mainly evolutionary 

algorithms have been the main solution to ship operational performance optimization 

problems. In this chapter, the literature review showed a strong need for further 

research on the applicability of the available non-classical tools from AI for energy 

efficient ship operation. 
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3. Chapter III: The development of a ship 

performance modelling and optimization 

methodology 

 Generally, ship performance is a measure of the propulsion power or the fuel 

consumption at a certain state described by the loading condition, the ship speed and 

external conditions. As each problem has more than one prediction model with the 

existent machine learning algorithms, this chapter will describe the black box models 

used in this study to estimate ship fuel consumption. The ship statistical data pre-

processing methods used to prepare the data will first be described. A general 

description of Decision Tree and Adaptive Boosting (AdaBoost) will be presented, 

followed by a description of the KNN and ANN models. The chapter concludes by 

presenting the GA as the optimization model used in this study. Finally, the steps of 

the developed methodology will be presented. 

3.1. Dataset pre-processing  

 The ship dataset available to conduct this research was first examined to find 

the input and output variables to consider for the attainment of the research objectives. 

Fuel consumption was selected as the only output variable to predict with the model 

because it is the main indicator of ship energy efficiency and GHG emission volume. 

Even though it was a time-consuming process, data pre-processing was well-studied 

because later on, the programming step with the clean data did not need the same time 

as data mining. Then the raw data was globally checked in order to detect general 

observations such as missing and inconsistent values and to clean it. Variables with a 

large number of missing values were excluded and the data samples with outliers were 
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deleted, which were defined depending on the domain knowledge and the information 

delivered as below; 

*For all variables, the values out of the ordinary known ranges were excluded, such as 

angles out of 0-359,9°. 

*Variables with values out of the given ranges from the dataset’ owner were excluded, 

such as cargo mass greater than ship displacement. 

*Negative values for all variables that should only be positive were also considered as 

outliers, such as negative flow rate or negative mass.  

These outlier’ considerations were translated into conditions to be treated 

automatically in excel, and other missing or inconsistent data samples were detected 

through data visualization (histograms and plots). 

For data integration, only one company delivered the ship specific data and the weather 

hind cast dataset together, so there was no need to collect different datasets and 

integrate them. 

In data transformation, the unit scales were standardized as illustrated in Table 3-1 

Distances Meter  (m) 

Time Second (s) 

Speeds Meter per second (m/s) 

Directions Degree  (deg) 

Displacement Ton 

Flow rate Kg/h 

Table 3-1 Data variables’ unit scales 

The data was also normalized with the most common method, where each column is 

scaled from its min-max range to 0-1 range i.e. each value V became V’ such as in 

equation (1). 

V’= V-min/(max-min) (1) 

Continuing the data transformation, a first feature selection based on the domain 

knowledge resulted in the elimination of variables that do not have any relation with 
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the fuel consumption or are out of the scope of the thesis. Furthermore, in the cases of 

similar variables, such as ship course and ship heading, only one was kept in order to 

avoid redundancy.  

An advanced feature selection technique was conducted based on a linear correlation 

matrix and data visualization to check the effect of input variables on the fuel 

consumption and to detect other redundancy of similar variables. The correlation 

analysis between the set of the selected variables was made with a simple code of the 

free version of the programming software Python 3.6. 

In the data transformation process, new variables were calculated from a combination 

of existent variables that did not have linear correlation with fuel consumption. The 

new variables replaced the old ones, which reduces the number of variables and 

thereby reduces the model complexity to improve its predictive performance. In this 

respect, the apparent wind angle (αAW) and Apparent wind speed (SAW) were 

combined to better show their effect on fuel consumption and were replaced by only 

one important variable: the apparent wind speed on ship direction (SAWS) calculated 

in excel with equation (2); 

SAWS = SAW ∗ 𝑐𝑜𝑠 (αAW ∗ (𝜋/180)) (m/s) (2) 

(Wright, Colling, & Park, 1999) 

 

In addition, some variables were transformed in order to show their hidden effect on 

ship fuel consumption, such as the current direction (αC), which was transformed into 

relative current direction (αRC) to the ship heading (αHeading) with the equation (3) 

where ABS stands for absolute value; 

αRC = ABS (αHeading – αC)   (3)  

 Finally, the dataset was ready to use with one of the available programming 

languages to build the expected model. 
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3.2. Modelling and programming 

 In order to build a model that describes the fuel mass flow as a function of the 

input variables, a machine learning programming language is needed to code the 

different algorithms, apply them to the dataset and then evaluate their prediction 

performance. For this thesis, Python programming language version 3.6 was used to 

do the major work. In addition, the Artificial Neural Network toolbox in MATLAB 

Software version 2015a was used to apply ANN algorithm as it is a successful and fast 

tool for modelling, which fits neural networks to solve regression problems. 

 In recent years, non-parametric techniques of machine learning have been 

increasingly used in solving regression problems. Non-parametric algorithms such as, 

K-Nearest Neighbours and Decision Trees are well-known for classification tasks as 

they take simple assumptions on the form of the learned function (output =f(inputs). 

They are performant algorithms that have proven their success as classifiers and they 

are now taking more and more interest as regression algorithms in the machine 

learning community (Soner, Akyuz & Celik, 2018). They learn the underlying function 

with the training dataset and then predict the output values of a testing dataset by 

applying the function to the new input values. 

 In this research, a selection of most common non-parametric algorithms were 

fitted to the fuel consumption prediction problem. The ship dataset was loaded to 

Python and divided into train dataset and test dataset in order to train the models and 

then predict the output of the test dataset and evaluate the model performance. The 

split of the data was made randomly with the common ratio of 70% for train and 30% 

for test. Each dataset was divided into inputs as X-train and X-test and output as Y-

train and Y-test. For training, the regressors (predictive regression models) were 

applied to the X-train and Y-train and the prediction was conducted by applying the 

trained algorithm to the X-test to find the Y-Predicted. 

 The performance of the models was quantified by the difference between the 

real output values Y-test and the predicted ones. The Mean Squared Error (MSE), 

Mean Absolute Error (MAE) and R² are statistically established metrics to represent 
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this difference (Pedregosa et al., 2011). The MSE and MAE are expressed by their 

respective equations (4) and (5), where n is the number of test data samples and et 

(Ytest - Ypredicted) is the error between real output and predicted output.  

 𝑴𝑺𝑬 =
𝟏

𝒏
∑ ℮𝐭

𝟐𝐧
𝐭=𝟏  (4) 

𝑴𝑨𝑬 =
𝟏

𝒏
∑ |℮𝒕|𝒏

𝒕=𝟏  (5) 

R² is the coefficient of determination, which describes how well the predictions fit the 

real data. It ranges from 0 to 1 with perfect fitness when R² is equal to 1 when 100% 

of the predicted outputs are equal to the real values (Pedregosa et al., 2011).  

3.2.1. K-Nearest Neighbours (KNN) 

 KNN is a lazy non-parametric algorithm that when trained with data instances 

does not take any assumptions on the distribution of the data to find the input-output 

relation. It is able to quickly learn complex underlying functions while saving all the 

information in the data (Yu et al., 2016). In order to predict the output Y for a given 

input X, it finds the K instances in the training set with Xi in the proximity of X as 

shown in Figure 3-1, and then computes Y with one of two methods. The first method 

is to consider Yi of the closest point Xi to X. The second calculates the average of Yi 

responses of the K nearest neighbours to X, (referring to equation (6)), where, Nk(x) 

is the ensemble of the K nearest points to X in the training dataset. 

�̂�(𝒙) =
𝟏

𝒌
 ∑ 𝒀𝒊𝒙𝒊€𝑵𝒌(𝒙)  (6) 
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Figure 3-1 Demonstration of the K-nearest neighbours (KNN) method, (Wang et al, 2017) 

The second method is more accurate as it takes many neighbours to the point, which 

confirms the similarity between them rather than associating the similarity to only the 

closest point that may result in high errors. With this method, computing the response 

Y can be also weighted, which means that the contribution of each neighbour is 

weighted by its distance from the target input X; it is called Distance Weighted KNN 

(Shahin, Jaksa & Maier, 2008). This method is more effective as it selects the K 

neighbours that are closer to the point to predict, which makes the output estimation 

more accurate. The distance is transformed into weight by one of the Kernel equations 

(Gauss, Cosine…) (Shahin, Jaksa & Maier, 2008).  In order to measure the proximity 

to X, many formulas are used but the most common one is the Euclidean Distance, 

which is expressed by the formula (7) (Yu et al., 2016), where p is the number of 

variables in the input vector X. 

𝒅(𝑿𝒊 − 𝑿) = √(∑ (𝑿𝒊𝒔 − 𝑿𝒔)²)
𝒑
𝒔=𝟏  (7)     

In the case of this thesis, the model is a distance-weighted KNN and the weight is 

represented by the simple Kernel inversion (8) (Shahin, Jaksa, & Maier, 2008), 

calculated from distance (d) between X and the neighbour Xi. It means that the closer 

Xi to X is, the higher the weight is or the greater influence the neighbour Xi has on the 

calculation of the response (Y). 

Wi = 1/d (8)     
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This choice has been based on the success of this algorithm in many classification 

problems and in some regression applications such as in Petursson (2009). Due to time 

constraint, deeper research on the model parameters with more complex methods were 

not tested. 

 The selection of the number of neighbours K is generally based on experiments 

and the first K number to start testing does not follow a fixed norm. Depending on the 

computation method of the response, K could start by a big or a small number. If the 

response is simply the closest neighbour, K could be the small one; generally, five 

neighbours are sufficient. In the case of the average computation, a large number of 

neighbours is preferred to increase precision. Then, to choose K empirically, training 

starts with a small K, computing the accuracy, and increasing K by three for example. 

If good accuracy is recorded, a test with larger K is conducted and accuracy is 

calculated again. Otherwise K is decreased by one until best accuracy is reached. The 

model with best accuracy (with optimum K) is selected. 

3.2.2. Decision tree and AdaBoost 

3.2.2.1. Decision tree 

 A decision tree is a non-parametric algorithm used in building prediction 

models that can handle both categorical and numerical data. The model defines a 

prediction rule that applies a hierarchical binary partition of the data into a number of 

subsets, which together form a tree. The average of the outcome of the elements in 

each subset represents the predicted outcome of the subset (Venkatasubramaniam et 

al., 2017). The objective is to set a prediction rule with a minimum error between the 

predicted value and the target value. The tree is composed of a number of nodes, which 

contains the subsets of the data observations (Breiman Friedman, Olshen & Stone, 

1984). The topmost node in the tree, which is the best predictor from the input 

variables, is called “root node” and contains all the data observations. The most 

important step in building decision trees is the splitting step, which defines where and 

how to split the subsets below the root node (Venkatasubramaniam et al., 2017). The 

binary split of each node are the branches of the tree. Each node is split into two other 
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nodes until the stopping rule is satisfied. The stopping node is called a terminal node 

or a leaf. All the leaves together represent a sample from the original dataset where 

each leaf is an observation. In order to predict a new output, the leaves into which 

belong the new input observations are determined and the existing outcomes of the 

corresponding leaves are combined to predict the new output. Decision tree has long 

been a good and simple classifier, but recently it has been employed for regression 

problem. The most common algorithm to build regression trees is CART 

(Classification And Regression Trees) (Breiman Friedman, Olshen & Stone, 1984), 

which was employed in this research. The covariate to split and the split point are the 

two dimensions in splitting a node. Therefore, CART search for best splits dimensions, 

with the objective of minimizing the relative sum of squared errors (Breiman 

Friedman, Olshen & Stone, 1984). The best split is sought across all possible splits.  

3.2.2.2. Adaptive Boosting (AdaBoost) 

 Decision tree is considered as a simple and weak prediction algorithm that can 

be improved by an ensemble technique, which is a combination of more than one weak 

learner (machine-learning prediction algorithm). AdaBoost is an ensemble technique 

known to be the best classifier when boosting decision tree algorithms ((Breiman 

Friedman, Olshen & Stone, 1984). It is a technique that combines subsequent weak 

learners to get the optimum prediction model. This means that the same prediction 

algorithm learns from its previous mistakes in prediction and improves itself. The 

output of the boosted algorithm is a weighted combination of the outputs of all 

previous weak learners where the weights are assigned based on the error in prediction 

of each learning algorithm (University of Oxford, 2015). For decision trees as weak 

learners, AdaBoost improves the training process to build a good decision tree, by 

minimizing the sum of errors in prediction from each decision tree. In each iteration 

during training, each decision tree has a hypothesis of the value of output to predict. 

The hypothesis from each decision has a weight based on the previous error to predict 

the same output sample with that decision tree. These weights are also used next to 

improve the splits when building the subsequent decision tree. As this boosting method 

was very successful in building strong classification models (University of Oxford, 
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2015), it is employed in this study to test its performance and fitness with ship 

performance modelling as a regression problem. 

3.2.3. Artificial Neural Networks ANN 

 Using the ANN to solve a prediction problem is more complicated than using 

the lazy non-parametric algorithms. The ANN way to learn a function is inspired by 

human and animal brains, which follow a complex method to train themselves in 

information processing (Park, 2011). As illustrated in Figure 3-2, these brains are 

composed of neural networks, which contain neurons that collect information from 

each other using their dendrites. The neuron sends out electrical signals to the synapse 

through the axon, which will allow or inhibit the activity. Therefore, when a neuron 

receives an input electrical signal higher than the inhibition level, it resends lower 

signals through its axon and the process is repeated with many neurons until the brain 

learns how to process the information ((Shahin, Jaksa & Maier, 2008). 

 

Figure 3-2  The functioning of human neurons (Park, 2011) 

 The artificial neural networks are sets of neurons called nodes or processing 

elements (PE) arranged in an input layer, an output layer and one or more intermediate 

hidden layers. Each node is related to the nodes in the other layers by the weighted 

links (Rakhshandehroo, Vaghefi, Aghbolaghi, 2012). Each node’s input is multiplied 

by its weight and the summation of all weighted inputs with the biases represents the 

whole neuron network activity (Ij), which is illustrated in equation (9), where Xi is the 

input of the layer i, Wji is the weight of the layer i and n is the number of neurons. 

Biases (j) are constant non-zero additional weights (Shahin, Jaksa & Maier, 2008). 
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Ij = j + ΣWji Xi   (9)     (Shahin, Jaksa  & Maier, 2008)       

Next, the consequence of this summation is processed through a transfer function to 

find the output Yi. The type of function depends on the type the problem to solve by 

the network (sigmoidal, linear functions or else…) (Park, 2011). Yi is expressed in 

equation (10). 

Yi = f (Ii)   (10)    (Shahin, Jaksa  & Maier, 2008)       

Different studies have specified that the number of hidden layers depends on the 

complexity of the problem and can be improved by experiment while training the 

network (Flood and Kartam, 1994; Ripley, 1996; Sarle, 1994). Each layer’s outputs 

are the inputs of the next layer, which are processed with a transfer function as 

described previously. This network is called a multilayer feed forward neural network 

(see Figure 3-3).  

 

Figure 3-3  A model structure and modus operandi of Artificial Neural Networks (Shahin, Jaksa  & Maier, 2008)       

 The training process determines the optimised set of weights of the layers. The 

most common and efficient training process for these networks is the Back-

Propagation Algorithm (BPA) (Basheer & Hajmeer, 2000). It is a multiple iteration, 

or “Epoch”, training process. In each epoch, the prediction error is calculated and used 

as a benchmark to assess the current set of weights. The training is repeated until the 

error stops improving or the epoch finishes (Basheer & Hajmeer, 2000). The numbers 

of input and output nodes are the numbers of input and output variables of the problem. 
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The BPA has proven its efficiency in modelling different functions and has become 

the most popular in training multilayer ANN (Samarasinghe, 2007). ANN with BP 

training Algorithms has been successfully applied in ship performance modelling in 

different studies (Bal Besikci, Arslan, Turan, & Olcer, 2016; Pedersen & Larsen, 

2009).  

 For these reasons, this research employs a feed forward neural network with 

BPA for training in MATLAB (2015a) ANN toolbox. The number of hidden layers 

started with two and was improved by experiment. After each training the number of 

hidden layers was increased by one until no more improvement in error was recorded. 

3.3. Optimization with Genetic Algorithm (GA)  

 Genetic Algorithm is one of the first population based meta-heuristic 

algorithms that has been successfully applied to numerical optimization problems and 

one of the most powerful optimization tools actually available (Goldberg, 1989; 

McGookin, Murray-Smith & Li, 1996). It is inspired by the main biology evolution 

principles; reproduction, crossover, mutation and selection (Holland, 1975). Each 

solution of the given optimization problem is encoded as a chromosome composed of 

a number of genes. The population evolves in each iteration and preserves the 

important information in the chromosomes. A new generation of chromosomes 

(problem’s possible solutions) is produced by combining the old good chromosomes 

and discarding the bad ones (D.Vose, 2003). While the role of crossover and selection 

is to build a relationship between the old and the newly produced chromosomes and 

transferring the acquired information from old to new generation, the mutation is 

responsible for keeping diversity in the population by randomly introducing new 

information (De¸bski, 2010). Normally, the GA encodes each solution as a string of 

bites, but for numerical problems, it is rather a vector of values of the function’s 

variables. Each numerical vector represents a feasible solution to the optimization 

problem and the whole population is a group of the chromosomes candidates for the 

optimal solution (D.Vose, 2003). For the selection step to proceed to mating for a new 

generation, parents (best solutions) are selected based on their fitness to solve the 



30 

 

optimization problem. The fitness is defined by a function, which if maximized, the 

chromosomes are considered as best fitted ones and should be kept to become the 

parents that build the new generation.  The whole cycle is summarized in Figure 3-4. 

 

 

Figure 3-4  The cycle of Genetic Algorithms (Konar, 2000) 

The fitness function is a translation of the optimization objective. If the optimization 

objective is to minimize a known function, the fitness function could be 1 / (objective 

function +1) as an example. When the objective is to maximize a certain function, 

then the fitness function could be the objective function itself.  

 In the case of ship performance optimization, the model function to minimize 

is usually a complex one with multiple variables, which make the GA a highly fitted 

method to apply to find the optimal ship-related input variable values that minimize 

fuel consumption. The Global Optimization Toolbox with GA in MATLAB 2015a was 

used to solve a single objective constrained optimization problem of ship operational 

performance. The best prediction model selected from the previous step was employed 

to define the fitness function. Therefore, the selected prediction model function was 

called in the GA. As the objective of optimization is to minimize fuel consumption, 

the fitness function was defined as a fraction with the model output underline in the 
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equation, as illustrated in equation 12. The smaller the fuel consumption function 

(model prediction) is, the better the chromosome is. 

Fitness = 1 / (Model output + 0.1)      (12) 

 In order to start the search in the space of possible solutions, an initial 

population of chromosomes is created with a certain size. The space of feasible 

solutions is limited in the case of constrained optimization. In this work, the ranges of 

the decision ship variables with a potential of fuel savings define the boundaries of the 

GA search as constraints.  

 From the initial population, the fitness of each chromosome is calculated (in 

this work by equation 12) and the best ones are selected to form the next generation. 

The reproduction is then carried out, which defines how many individuals from the 

“elites” are kept for next population and how many from the discarded will be replaced 

by crossover and mutation (Goldberg, 1989). The crossover recombines randomly 

selected genes (crossover points) of any two chromosomes (parents) to obtain new 

chromosomes called children or offspring (Figure 3-5). It can be a single point or two 

points’ crossover operation. 

 

Figure 3-5  GA Crossover (Goldberg, 1989) 

The mutation process then replaces the remaining poor solutions by randomly making 

small changes in the chromosome genes (Goldberg, 1989; McGookin, Murray-Smith 

& Li, 1996). 

 After the new population is formed, the fitness of each individual is evaluated 

again and the same steps are repeated until the stopping criteria is reached. The 

stopping criteria could be the maximum number of iterations (called generations in 

GA), a defined value of fitness or non-improvement from one generation to the next. 
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When the search in the bounded space ends, the result shows the optimal set of 

variables’ values that minimizes fuel consumption. Next, the values are decoded from 

the range 0-1 into the real variables numbers with the inverse of equation (1). 

 The flow chart below explains the whole developed methodology in this study, 

starting from the raw dataset delivery to the ship performance optimization results 

deployment. 

 

Figure 3-6  The developed methodology 
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3.4. Summary 

 This chapter presents the pre-processing methods used to prepare the dataset to 

be used in statistical models. The chapter then briefly describes the machine learning 

algorithms employed in this study. The KNN consists of estimating the mean of the 

given output values of the K closest data samples to a given point. AbaBoost Decision 

tree combines the weighted predictions of many Decision Trees to have a better 

accuracy. ANN is composed of sets of nodes arranged in an input layer, an output layer 

and intermediate hidden layers, which after the training process defines the 

relationship between the inputs and the output. The presented models are then 

evaluated, and the best is used with the GA for ship performance optimization. GA is 

an evolutionary algorithm that defines an initial population of the numerical vectors of 

the ship input variables solution to the problem of minimizing fuel consumption. After 

running the optimization, the optimal input variable values from a constrained search 

space are displayed.  

In the next chapter, all these models will be applied to a high frequency ship dataset. 

 

 

 

 

 

 

 

 

 

 

 

 



34 

 

 

 

 

 

4. Chapter IV: Case study 

 

 This chapter will present the experimental application of the previously 

developed ship performance and optimization methodology to a dataset of a case study 

ship. The dataset will first be described and pre-processed to be employed with the 

different machine learning algorithms used in this study. The parameters of each 

predictive model will be given. The chapter will also explain the GA parameters and 

the specified constraints to test different ship voyage optimization scenarios. 

4.1. The ship and the dataset 

4.1.1. Data type and sources 

 NAPA Group, a Finnish software house that provides solutions for ship design 

and operation to improve safety and energy efficiency in the maritime industry, 

delivered the dataset for this research. The dataset is a Comma Separated Values 

(CSV) document, with the names of the different measured variables in column 

headings and data samples in the rows. The variables include the speed, loading 

conditions, weather conditions and different fuel rates of a VLCC ship of 320000DWT 

during a three months period of operation between 15/01/2017 and 31/03/2017. The 

sample size is ten minutes and the whole data size is 9188 samples of 28 variables. For 

confidentiality reasons, NAPA did not give the ship characteristics or locations in the 

dataset. 

The variables are as below: 
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Real date 
Displacement 

(t) 

Speed over 

ground (m/s) 

Course over 

ground (deg) 

Current 

direction 

(deg) 

Current 

speed (m/s) 

Depth 

below keel 

(m) 

Heading 

(deg) 
Draft aft (m) 

Draft fwd 

(m) 

Fuel mass 

flow aux total 

(kg/h) 

Fuel mass 

flow boiler 

total (kg/h) 

Fuel mass 

flow ME 

total (kg/h) 

Fuel temp 

boilers (C) 

Trim (m) 
Propulsion  

power (kW) 

Propulsion  

RPM 

Speed through 

water (m/s) 

Combined 

Wave Height 

(m) 

Wind Wave 

Height (m) 

Wind Wave 

Period (s) 

Swell 

Height (m) 

Swell 

Crossing 

Period (s) 

Swell 

Direction 

(deg) 

True wind 

direction (deg) 

True wind 

speed (m/s) 

Distance 

travelled 

 Cargo 

mass (t) 

Table 4-1 Raw data variables 

Data collection tools, as provided by NAPA, are the ship’s existing sensors; 

*Fuel consumption: volumetric flowmeter, which improves the measurement accuracy 

compared to tank sounding. 

*Ship speed over ground: GPS. 

*Ship heading: GPS. 

*Propeller revolution: tachometer. 

*Propulsion power: combining the RPM measurements and torque measurements with 

torsiometer. 

*Displacement: calculations with hydrostatic information. 

*Trim: on-board dynamic trim monitoring system where positive trim refers to aft draft 

> forward draft. 
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The above data acquisition sensors have less error probability and margin compared 

to noon reports, which gives the data a high quality rank that will result in a reliable 

prediction model.  

NAPA does not have information on exact models of the sensors or uncertainty levels 

of the newscast-data (waves, swell and other) because an external weather service 

provider gave it. 

4.1.2. Scope and assumptions:  

 In this work, the hull and propeller were clean starting from January 2017 as 

the NAPA Group specified that the ship was in dry-dock just before this sailing period. 

In addition, it was assumed that their condition was unchanged during the three months 

period of the data as the typical effect of the hull and propeller fouling on the 

propulsion performance is only few percent. Therefore, the hull and propeller 

conditions were excluded from the ship performance model.  

The fuel consumption to predict is limited to main engines fuel mass flow as it 

represents the rate used for ship propulsion. 

This research considers the ship’s performance during the sailing period, out of time 

at port. 

4.1.3. Data analysis results 

 From all of the data variables, the fuel mass flow of auxiliary engines and fuel 

mass flow of the boilers were not considered, respecting the scope of the research. In 

addition, the draft aft and the draft forward had many missing values and were 

represented by the trim and the displacement, which together are sufficient to describe 

the loading conditions. The real date and the distance travelled were not considered as 

they are only a reference of sampling points and do not have any effect on fuel 

consumption. 

In Figure 4-1, the green correlation factors represent positive correlations greater than 

0.2 and the red ones are negative correlations with absolute value greater than 0.2. The 

analysis was conducted to remove the highly correlated input variables and to check 
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the effect of the variables on the output (fuel mass flow). As shown in the correlation 

matrix, the wind relative angle and the wave encounter angle are highly correlated, 

which was already demonstrated in the fluid dynamics (Wright, Colling, & Park, 

1999). As a result, only the wind relative angle will be considered as an input variable 

to the model. The correlation factor of cargo mass and displacement is more than 0.99, 

which was expected and displacement only was kept. 

For wind variables, the relative wind angle has higher correlation with fuel 

consumption than true and apparent wind directions, it was, thus, kept to replace them. 

The swell and current variables do not have redundancy, so they were all considered 

as input variables  

With further data analysis, Figure 4-2 shows that the ship has made three voyages with 

three different displacement values. Generally, the ship speed decreases when the ship 

is loaded and increases in case of ballast voyage and vice versa. In addition, the trim 

trend is negative when the ship is loaded and positive when it is a light ship. A 

displacement histogram is relevant in this case to visualize the three voyages with the 

different loading conditions. 

Figure 4-1  Correlation Matrix for all relevant variables 
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Figure 4-2  Speed, Displacement and Trim distribution for all data samples 

The histogram (Figure 4-3) shows that displacement during the three voyages is 

between 132086-145086 tons for ballast voyages and 314086-327086 tons for loaded 

ship. The other values in between were considered as outliers and were eliminated as 

they were only a few samples that will be noisy in the model training. In addition, 

Figure 4-2 allowed detecting the periods in harbour where the speed was almost zero 

and followed by a change in the displacement. The whole fuel consumption profile 

during the ship operation changes with the loading conditions.  
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Figure 4-3  Displacement histogram for all data samples 
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First voyage: From 19/01/2017 until 10/02/2017. The displacement is between 

132086 and 136086 tons, ballast voyage.  

 

Figure 4-4 Displacement histogram first voyage 

 

 

Figure 4-5 Trim histogram first voyage

Second voyage: From 18/02/2017 until 15/03/2017. The displacement is between 

320000 and 325000 tons, loaded ship.

 

Figure 4-6 Displacement histogram second voyage 

 

Figure 4-7 Trim histogram second voyage
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Third voyage: From 22/03/2017 until 30/03/2017. The displacement is between 

138443 and 140443 tons, ballast voyage. 

 

Figure 4-8 Displacement histogram third voyage 

 

Figure 4-9 Trim histogram third Voyage 

Figure 4-10 shows that there is a strong relationship between the trim distribution and 

the ship operational performance, which was not clear in the linear correlation analysis. 

The fuel consumption has different ranges corresponding to different trim ranges, 

which is the classical behaviour of ship operators who always set the same trim 

configuration for each loading condition, without considering other variables. 

 

Figure 4-10  Fuel mass flow and trim data distribution, all dataset 

During the different voyages, the ship encountered different weather conditions that 

influenced its operational performance. Apparent wind speed on ship direction is a 

strong variable to describe the weather encountered by the ship and its effect on the 

ship’s performance. The correlation matrix (Figure 4-1) confirms also this relationship 
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with the high correlation factor that the apparent wind speed had with fuel 

consumption. The figures 4-11, 4-12, 4-13 show the frequency of the different 

encountered wind speeds during each voyage. It can be seen that during the third 

voyage, high wind speed on ship direction were more frequent than on the other 

voyages. This could be considered to examine the potential of route optimization. 

 

Figure 4-11 Histogram of apparent wind speed on 

ship direction first voyage 

 

Figure 4-12 Histogram of apparent wind speed on 

ship direction second voyage 

 

Figure 4-13 Histogram of apparent wind speed on ship direction third voyage 
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The data examination can further demonstrate that the fuel consumption is influenced 

by both the loading conditions and the weather conditions. The general trend of the 

fuel mass flow during the third voyage is compared to the true swell angle and swell 

height in Figures 4-14 and 4-15. Fuel consumption is at its maximum while the swell 

angle is at its minimum for the same voyage and vice versa. In addition, during most 

of the voyage samples, the fuel consumption profile decreases with an increased true 

swell angle. In addition, Figure 4-15 shows that the swell height when increasing 

affects the fuel consumption profile considerably. Both the swell angle and height are 

responsible for additional ship resistance, which could be avoided by possible course 

alteration in order to reduce fuel consumption.

 

Figure 4-14 Fuel mass flow and true swell angle trend for third voyage 
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Figure 4-15 Fuel mass flow and swell height trend for third voyage 

Finally, the dataset variables used for modelling are as follow; 
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Table 4-2 Final dataset variables for modelling 

Total number of inputs: Thirteen variables. 

Ship specific inputs: Four (Heading, Speed, displacement and trim). 

Weather inputs: two for wind, two for wave, two for current and three for swell 

Output variable:  one variable (fuel mass flow ME). 
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4.2. Models parameters 

 The dataset after cleaning resulted in 8544 samples instead of 9188 and the 

general description is presented in Figure 4-16 as loaded into Python Software.  

 

Figure 4-16 The pre-processed dataset description in Python Software 

4.2.1. Decision Tree and AdaBoost 

 During the training step, the max decision tree depth, which is the length from 

the root node to the leaf, should be defined and optimized in order to avoid overfitting. 

The optimum depth can be found only by experiment and model accuracy calculation. 

The tree giving best accuracy is selected, which is the one that has the best depth value. 

The depth of the tree for testing started with the random value four. After conducting 

many experiments, best accuracy was found at depth six. It was then used with 

AdaBoost to improve the weak learner.  

4.2.2. K Nearest Neighbours (KNN) 

 For KNN, during training the parameter, K was first fixed at five and after 

many experiments, the model with four nearest neighbours was the best according to 

its prediction performance with the test dataset. The weight was represented by Kernel 

inversion as a function of the distance from neighbours as explained in Chapter 3. Due 

to time constraints, a deep search for the best weighting factors was not conducted and 

only a distance weighted algorithm with Kernel Inversion was used. 
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4.2.3. Artificial Neural Network 

 In order to build ANN model, two hidden layers may be always sufficient to 

solve any problem, with the first layer to save the local characteristics of the inputs 

and the second to extract the general features of the input patterns (Shahin, Jaksa & 

Maier, 2008). The same dataset was loaded to MATLAB 2015a to start the training of 

ANN with two hidden layers. After many training cycles, best results were recorded 

with 21 hidden layers. The number of input nodes is 13, which is the number of input 

variables and the output node is only one as presented in Figures 4-17 and 4-18.  

 

Figure 4-17 ANN model structure 

 

Figure 4-18 ANN Model structure, screenshot MATLAB2015a 
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In order to better understand and show the nature of the machine learning algorithms, 

which learn from their experience, and the ANN especially, a model with only the first 

voyage dataset (3060 samples) and same structure was tested, and all the results were 

compared to the main ANN model. 

4.3. Optimization  

4.3.1. Genetic Algorithm parameters 

 In this work, the population chromosomes ranking considers the fittest 

according to the fitness function. Ten per cent of the ranked elites are kept and 90% 

(poor solutions) will be replaced by crossover and mutation. 

The two points’ crossover was conducted with a percentage of 80% replacement of the 

poor chromosomes in order to have a high opportunity to find an optimal trim, which 

is in a very limited range. 

The mutation replaces 10% of the population and does not follow any rule except 

respecting the defined constraints. 

A solution is considered as optimum when the fitness value stops improvement and it 

gets worse for a certain number of iterations (200 iterations for this case). In order to 

have a logical time of processing, 120 seconds was defined as a time limit, which, if 

reached before the first condition, the search stops and shows the current optimal set 

of variable values that minimizes fuel consumption. 

4.3.2. Scenarios 

 The speed, heading and trim are the variables that the ship operator can control 

and which have a potential to minimize fuel consumption and, thereby, optimize the 

ship voyage. However, the ship operator is able to vary the speed, heading and trim in 

a certain feasible interval that optimizes the voyage, while respecting the safety of the 

ship and its commercial engagement. Due to the lack of information on the ship times 

of arrivals and locations, the speed optimization, which is known for being highly 

successful in reducing fuel consumption, was not conducted. In this case, other 

scenarios of voyage optimization were tested. 
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4.3.2.1. Real time trim optimization for ballast voyage:  

 In order to show the potential of fuel savings of the VLCC case study ship 

during its voyage, the dataset of the third voyage with a displacement of 140000 tons 

was used to conduct a first trim optimization scenario. As shown in Figure 4-9, the 

trim during the third voyage was almost all the time between 4,72m and 5,72m with 

the displacement of a light ship. In order to be able to conduct the optimization with 

the information illustrated in the dataset, an hour of continuous sailing period was 

picked. The same data sample period of ten minutes was respected. The GA will be 

employed for the sample at each 10mn with the current trim value in order to find the 

optimal value from the voyage range for the same sample (same displacement and sea 

conditions). 

Assumptions and constraints: 

The other input values were assumed to change after each 10mn period of time as it 

was the frequency of data collection tools. 

The trim range of 4,72-5,72m for the third voyage was assumed to be respecting the 

safety and stability conditions. 

The constraint specified in the GA was the specified trim range. 

4.3.2.2. Real time trim optimization for loaded ship 

 For this optimization scenario, the voyage considered is the one with the loaded 

ship. The displacement is 321000 tons. During this voyage, the histogram (Figure 4-

7) shows the general range of the trim between –0,60m and 1,40m. The GA is 

employed again to find the optimal trim for each sample during one hour in order to 

examine the potential of savings for a loaded ship. 

Assumptions and constraints: 

The same assumptions were taken for this scenario with the new range for trim -0,60 

and 1,40, which became the new constraint in the GA configuration. 
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4.3.2.3. Real time trim and route optimization for ballast voyage 

 In this case, the third voyage samples considered in the first trim optimization 

scenario are considered. The weather encountered by the ship during this voyage, as 

previously shown in Figures 4-13, 4-14 and 4-15, could be routed to allow for fuel 

savings with possible course alterations. The trim margin is 4,72-5,72 m. In addition, 

it is proposed to have a margin of course alteration of 20° East and 20° West to allow 

for possible route optimization considering the weather conditions. Twenty degrees 

was chosen randomly as a small range in order to give an idea of the ability of the 

optimization model to find optimal input variables values that would reduce the voyage 

CO2 emissions and fuel cost. 

Assumptions and constraints: 

The other input values were assumed to be unchanged during the 10mn period of time 

as it was the frequency of data collection tools. 

The trim range of 4,72-5,72m for the third voyage was assumed to be respecting the 

ship safety and stability conditions. 

The margin for course alteration of 20° East-West is assumed to be respecting the 

safety and stability conditions. 

It is assumed that the new optimized heading will not result on additional travelled 

distance. 

This scenario is informative, as some input variables such as relative current direction, 

are dependent on the ship heading and should be re-calculated to have the real values 

with the optimized heading. However, the GA while running will give an idea about 

the optimal heading that should have been set in the actual weather conditions to have 

less ship resistance and, thereby, lower fuel consumption. Due to time constraints, it 

was not possible to load the interdependent input variables as other functions of the 

independent ones.  

The constraints specified in the GA were the specified trim and heading ranges. 
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4.4. Summary 

 In this chapter, the data is cleaned, transformed and filtered to include only 

sailing periods. The data visualization allows understanding of the hidden relations 

between variables and detecting of different voyages to separate them. The models 

parameters were set and predictive performance was quantified.  The chapter presented 

the different optimization scenarios tested with the best predictive model associated 

with the GA.  

All the results will be displayed in the next chapter and the fuel savings from each 

voyage optimization scenario will be assessed.  
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5. Chapter V: Discussion of results 

 

 In order to validate the developed methodology in this thesis, the results from 

the case study are illustrated in this chapter. Interpretation of the results will allow the 

tested models and the methodology’s applicability as a decision support system (DSS) 

for energy efficient ship operation to be assessed. The chapter will conclude by 

presenting and explaining the proposed DSS. 

5.1. Predictive results 

 The performance evaluation metrics of all models are shown in Figures 5-1 and 

5-2 in the Software in normalized values. They were converted into real values of fuel 

mass flow (kg/h) and summarized in Table 5-1; 

Model MSE RMSE MAE R² 

Decision Tree 12,99 234,76 kg/h 124,92 kg/h 0,74 

AdaBoost DT 6,94 171,5 kg/h 111,55 kg/h 0,86 

KNN 9,11 196,51 kg/h 119,31 kg/h 0,82 

ANN 5,55 153,4 kg/h / 0,96 

Table 5-1 Models predictive performance 

The Figure 5-1 shows a screenshot of the prediction results of the three models built 

in Python. The results are the error metrics normalized values that were converted and 

summarized above. 

In Figure 5-2, a screenshot from MATLAB shows the minimum MSE found with the 

ANN structure of 21 hidden layers.  
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Figure 5-1 Decision Tree, AdaBoost and KNN Predictive performances, Python 

 

 

Figure 5-2 ANN Predictive performance, MATLAB 

 

Not all the tested models performed adequately to predict the ship fuel consumption 

as the prediction accuracy of KNN and AdaBoost are only 82% and 86%. These values 

could be improved by a deeper search of the hyper-parameters of the algorithms with 

training. In addition, testing different weights for the input variables according to their 

detected effect on the fuel consumption, such a high weight for the speed having a 
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great influence on the fuel consumption is a good technique to improve the KNN and 

AdaBoost accuracy. 

ANN has the best prediction accuracy with 96% of correct predictions on test data 

(unseen data).  

 

Figure 5-3 Plot of predicted fuel mass flow and the 

real fuel mass flow with KNN 

 

 

Figure 5-4 Plot of predicted fuel mass flow and the 

real fuel mass flow with Decision Tree 

 

 

Figure 5-5 Plot of predicted fuel mass flow and the 

real fuel mass flow with AdaBoost 

 

 

Figure 5-6 Plot of predicted fuel mass flow and the 

real fuel mass flow with ANN 

In these figures (5-3 to 5-6), the predicted fuel mass flow of the test dataset was plotted 

against the real values in order to better see the regression between both values that 

represents the model accuracy. The figures show a significant improvement of the 

prediction between Decision Tree and AdaBoost Tree, which was the objective of 

Adaboosting. At low fuel mass flow values, many samples are far from the perfect 
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regression line in all figures including ANN. This can be explained by unstable sailing 

time, where the ship is reducing its speed for a certain reason. Those samples were not 

sufficient for good model learning and could be improved by more data samples for 

these speeds. ANN was the best prediction model compared to all the other models. 

Moreover, in the prediction of high fuel consumption points, where the KNN and 

AdaBoost had noisy points with high error, ANN has had more accurate predictions.

It is difficult to directly compare the current models to the ones presented in the 

literature, as they do not have the same data and the same output variables. However, 

an indication of the performance of the built models can be presented. Petersen & 

Winther (2011) reported ANN error results with RMSE equal to 47L/h, which was 

better than the ANN model on shaft power prediction of Pedersen and Larsen (2009). 

The same research presented an RMSE of fuel consumption with Gaussian process as 

52L/h. SVR, and KNN algorithms were used in Pétursson (2009) research to predict 

the shaft power and have not been used before for fuel consumption prediction. The 

model accuracy was presented on RMSE, which has not allowed a comparison. 

Bagging, Random Forest and Bootstrap were employed recently by Soner, Akyuz & 

Celik (2018) with the same data used by Petersen  and Winther (2011) for a ferry ship 

and RMSE for fuel consumption were 45,2L/h, 43,5L/h and 41,3L/h respectively.  

Bootstrap performance was then better than ANN when used with the same dataset. 

ANN prediction results for fuel consumption were given by Bal Besikci, Arslan, 

Turan, & Olcer (2016) with ANN having better performance than Multiple Regression. 

The MSE and RMSE were 0,037 and 0,193mt/h. The ANN model results in this thesis 

are better with MSE and RMSE of 5,5 and 153kg/h for fuel consumption. In general, 

they are good results compared to all the cited research results. However, as already 

explained a direct comparison is not possible because the ship case for this study is a 

VLCC and the data samples are very different as the voyages are not short and similar 

to the ones made by a car ferry.  

In order to confirm this conclusion, the results of the model built using only the first 

voyage with 3060 samples of same displacement and trim range are presented in 
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Figures 5-7 and 5-8. ANN model was over-fitted having a very high accuracy with this 

dataset. 

 

Figure 5-7 First voyage ANN model predictions 

 

Figure 5-8 First voyage ANN error histogram

This gives a strong justification for the current main model error margin. The whole 

dataset is for a period of three months with the ship having different loading conditions 

and weather status. However, the number of samples on ship operation when it is 

loaded may not have been sufficient to train the model on all operational conditions in 

order to learn the performance pattern and be able to predict it with new data. A larger 

dataset for a longer period, including many data samples for different operational 

conditions, is always preferred to build black box models for ship performance 

prediction.  

 As a result, the ANN fuel consumption prediction model is considered a 

reliable model   for future ship fuel consumption prediction with high accuracy 

compared to what was presented in the literature. In addition, as it is the best among 

the tested models in this study, its predictions are used in order to optimize normal 

ship operational performance. 

5.2. Optimization results 

 Figure 5-9 shows a screenshot from the MATLAB Global Optimization 

Toolbox while the search for optimal solution to minimize fuel consumption is running 
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with GA. The fitness value and the best individual vector are selected to be displayed 

while running. 

 

Figure 5-9 Screenshot while GA optimization is running 

 The tables 5-2, 5-3, 5-4 include the reference values of the trim, fuel 

consumption and ship heading for the samples of the different voyage optimization 

scenarios introduced to the GA optimization model. The new decision variable values 

are the optimal solution for the ship fuel minimization problems.  
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  Displacement 140000 ton   
 

TRIM optimization scenario for 24 hours 

Date 

Base 
case 
trim 
(m) 

Optimized 
Trim (m) 

Trim 
change 

(cm) 

Base 
case 
fuel 

mass 
flow  

(kg/h) 

Optimized 
fuel mass 

flow 
(kg/h) 

Sample 
fuel saving 

(kg) 

Total fuel 
saving 

(kg/day) and 
percentage 

Fuel cost 
savings 
per day 

CO2 
emission 
reduction 

(kg CO2/day) 

26/03/2017 14:16 5,35 4,71 64 2454,21 2430,92 3,88 

747,65 kg/day     
(1,27%) 

525$/day 2317,73 

26/03/2017 14:26 5,00 4,70 30 2455,19 2420,59 5,77 

26/03/2017 14:36 5,31 4,70 61 2455,19 2427,27 4,65 

26/03/2017 14:46 5,20 4,70 50 2455,19 2429,05 4,36 

26/03/2017 14:56 5,11 4,70 41 2455,19 2437,46 2,96 

26/03/2017 15:06 5,19 4,70 49 2455,19 2397,96 9,54 
Table 5-2 First ship voyage optimization scenario, trim optimization for ballast voyage 

 

  Displacement 321000 ton   
 

TRIM optimization scenario for 24 hours 

Date 

Base 
case 
trim 
(m) 

Optimized 
Trim (m) 

Change 
in the 
Trim 
(cm) 

Base 
case 
fuel 

mass 
flow  

(kg/h) 

Optimized 
fuel mass 

flow 
(kg/h) 

Sample 
fuel 

saving 
(kg) 

Total fuel 
saving 

(kg/day) 
and 

percentage 

Fuel cost 
savings 

per day ($) 

CO2 emission 
reduction     

(kg CO2/day) 

13/03/2017 14:15 0,28 1,02 74,02 3124,71 3116,07 1,44 

2347 
kg/day     
(3,13%) 

1647$/day 7278,60 

13/03/2017 14:25 0,30 1,10 80,32 2901,87 2860,94 6,82 

13/03/2017 14:35 0,33 1,10 76,59 3125,70 3102,63 3,85 

13/03/2017 14:45 0,31 1,10 79,45 3571,38 3121,00 75,06 

13/03/2017 14:55 0,28 -0,22 49,82 2901,87 2895,27 1,12 

13/03/2017 15:05 0,22 -0,18 39,59 3124,71 3063,11 10,27 
Table 5-3 Second ship voyage optimization scenario, trim optimization for loaded ship 
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  Displacement 140000 ton   

 

TRIM and ROUTE optimization scenario for 24 hours 

Date 

Base 
case 
trim 
(m) 

Optimized 
Trim (m) 

Base 
case 

course 
(deg) 

Optimized 
course 
(deg) 

Base 
case 
fuel 

mass 
flow  

(kg/h) 

Optimized 
fuel mass 

flow 
(kg/h) 

Sample 
fuel 

saving 
(kg) 

Total fuel 
saving 

(kg/day) 
and 

percentage 

Fuel cost 
savings per 

day 

CO2 
emission 
reduction     

(kg 
CO2/day) 

26/03/2017 14:16 5,35 4,74 313,90 295,00 2454,21 2401,83 8,73 

1328 
kg/day     
(2,25%) 

930$/day 4118,18 

26/03/2017 14:26 5,00 4,73 316,40 295,00 2455,19 2392,56 10,44 

26/03/2017 14:36 5,31 4,73 315,70 295,00 2455,19 2403,77 8,57 

26/03/2017 14:46 5,20 4,73 315,80 295,00 2455,19 2405,83 8,23 

26/03/2017 14:56 5,11 4,71 316,20 295,00 2455,19 2420,39 5,80 

26/03/2017 15:06 5,19 4,73 316,00 295,00 2455,19 2373,69 13,58 
Table 5-4 Third ship voyage optimization scenario, trim and route optimization for ballast voyage 

 After applying the optimization model to the first scenario, it has been found 

that the vessel did not have the optimal trim during the first voyage samples. The 

adjustment of the trim by 30cm to 64cm could result in fuel savings of 747kg/day. 

Generally, for a ballast voyage, the GA real time trim optimization saved 1,27% of the 

fuel cost and the CO2 emission of the ship during 24hours. This perfectly meets the 

aim of this research, which contributes to reducing CO2 emissions from ships. 

 In the second case, the ship was loaded and it is known that the ship operators 

usually have a small margin to change the trim in this case. However, considering the 

assumptions made for this scenario, it has been demonstrated that changing the actual 

trim by 39cm to 80 cm could save 3,13% of the fuel consumed per day. This is a greater 

economy than the scenario of ballast voyage, which is justified by the greater 

resistance that the ship has when the underwater hull is bigger. 

 The third scenario results confirmed the same optimal trim as the first scenario, 

which had the same samples for testing. It has almost the same trim changes between 

30cm and 65cm. In this case, the optimal trim was combined with the optimal route to 
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save 2,25% of the fuel consumed per day, compared to 1,27% for the same case with 

only trim optimization. 

 It should be mentioned that the possible fuel savings with trim optimization 

presented above might not be a net gain if the ballast exchange process is not a gravity 

assisted one because transferring the ballast water in this case, will be associated with 

additional consumed energy.  

5.3. The prediction and optimization models as a Decision Support 

System for Energy Efficient Ship Operation 

 The ANN model has shown good predictive results and while called into GA 

for optimization, both methods employed together have shown their success to 

optimize ship voyage performance. These machine-learning algorithms, combined can 

perform as a Decision Support System (DSS) for energy efficient ship operation. The 

input variables could be fed to the system from the different ship navigation equipment 

and weather forecast receivers and the build system will, first, predict the fuel 

consumption from this input data, and then run an optimization cycle. The results are 

the optimal decision variables values for minimum fuel consumption, such as optimal 

trim and heading.  This helps the ship operators to technically define their constraints 

and decide on their voyage plan based on the results displayed in the system. Figure 

5-10 explains the information flow in the proposed DSS. 
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Figure 5-10 The Decision Support System 

5.4. Summary 

 The tested models with the case study performed well with the unseen data. 

The ANN model was the best among all presented models, confirming that it is viable 

in estimating ship fuel consumption for future ship operation. The model then 

employed with the GA to form the DSS performed very well to make significant fuel 

savings in all the tested scenarios. As a result, the whole methodology developed in 

this thesis is considered as very successful in making fuel consumption predictions and 

optimizing ship operation with respect to the fuel usage. 
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6. Chapter VI: Conclusion and future research 

 

 Ship fuel consumption can represent more than 50% of ship voyage cost. With 

the new IMO strategy that has fixed an objective of reducing GHG emissions from 

ships by 50% before 2050, the future regulations may include market-based measures 

that will make the fuel voyage cost much greater than now. Furthermore, the 

environmental impact of the mass of the carbon emitted by ships is more than three 

times the mass of the fuel they burn, which has a major impact on the ecosystem. 

Therefore, from both, financial and environmental points of view, voyage optimization 

is extremely needed nowadays and ship operators are going to be more and more 

interested in reducing ship fuel consumption in order to be able to survive in a very 

competitive market. With increasingly stringent regulations for the shipping industry, 

the ship operators’ incentives have become not only economic but also environment 

and rule-driven. This has resulted in intensive research to test new voyage optimization 

methods using the modern machine learning tools to build DSS for energy efficient 

ship operation. 

 This research examined the applicability of black box models to predict the 

ship fuel consumption of a vessel for different ship and weather conditions and 

combined them with the Genetic Algorithm as an optimization model in order to find 

an optimal trim configuration and route options with respect to fuel usage. The aim 

was to build a combined model to be used as a DSS for potential fuel savings and CO2 

emission reduction. 
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 The investigation has been possible with the use of numerical data sampled 

from a VLCC with 320000Dwt. 

 The data pre-processing was given special attention. The main dataset was 

segmented corresponding to the voyages of the ship. The harbour periods were 

excluded. Data series with many missing instances were removed. Inconsistent data 

were filtered and outliers were excluded.  Finally, all the data were normalized and 

standardized in order to make them well formed to be ready to use in black box 

modelling. 

 The number of input variables selected for programming was a large one, 

including thirteen input variables from ship conditions (speed, trim, displacement…) 

and weather conditions (wind, current, swell…). This is a highlight of this research 

comparing to what appeared in the literature with lower number of variables or with a 

set of variables excluding the ship loading conditions or other external conditions.  

 The output variable was the fuel mass flow of the main engines as it represents 

the fuel consumed by the propulsive system, which was the subject of the optimization. 

 Four statistical models were tested with the dataset, Decision Tree, 

AdaBoosted Decision Tree, K-Nearest Neighbours and Artificial Neural Network. 

Another highlight of this research is the comparative analysis between these models, 

conducted based on their accuracy in order to decide on the best model to use in the 

DSS.  

 The non-parametric black box models, AdaBoost and KNN had not been used 

before to predict ship fuel consumption, which made their investigation in this research 

very interesting. Their performance to estimate ship fuel consumption for unseen data 

(different from training data) was not sufficiently adequate to be employed for ship 

voyage optimization and, due to time constraints, the selection of their hyper-

parameters was not deeply investigated. ANN performance was the best among the 

tested models and turned out to be adequate for making fuel consumption predictions 

on test data (unseen data samples). ANN was also performant when compared to the 

black box models used to predict the ship operational performance found in the 
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literature. Moreover, a similar ANN model was built using only one voyage data sub-

set in order to justify the main model’s error margin and explain the importance of data 

understanding and its role in avoiding over-fitness when using statistical models. The 

ANN prediction model has an acceptable error in estimating fuel consumption, which 

is related to the nature of the ship data, which was not large enough in some conditions 

to allow a complete accurate predictive model to be built. Collecting large datasets 

with a complete range of operational conditions is not evident as the weather and sea 

conditions are not controllable. However, testing the black box models with broader 

datasets could generate highly performant models. 

Subsequently, the main ANN model has been employed to predict ship fuel 

consumption as a first step in the DSS. 

 The genetic Algorithm, one of the most popular and successful evolutionary 

algorithms to solve optimization problems, was employed for the first time in the 

operational performance optimization. The objective was to minimize the ship fuel 

consumption by finding the optimal set of decision variables from a defined space of 

search. Fuel consumption was predicted by the ANN model and optimized by GA, 

which is a novel combination proposed in this thesis. The space to search the vector of 

input variables values solution to this optimization problem was defined by different 

constraints on decision variables. The proposed DSS was tested in three different 

scenarios and showed its success in making important fuel savings up to 2,25% by real 

time trim optimization, and 3,13% by real time trim and route optimization. It is an 

effective real time optimization with ten minutes time sampling, which is the same as 

the sensors feedback. The DSS can then be used on-board the vessel to assist the 

shipmaster to make real time decisions that may result in potential fuel savings by cost-

free and simple actions. 

 The method presented in this research was applied to a VLCC and can likewise 

be tailored and applied to other ship types. The objective is to introduce this DSS to a 

global energy management system on-board a merchant ship in order to reduce GHG 

emissions from shipping. 
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6.1. Future Research 

 Due to time constraints, the weights for the KNN model were not further 

improved, which should be considered in future work.  Weighting the different 

input variables could also be deeply examined in order to make more accurate output 

prediction with different models. This could be achieved by testing different sets of 

input variables from the main dataset and comparing the prediction performance of the 

different models with different hyper-parameters. 

 Investigating grey box models in modelling ship operational performance 

should be considered in future research in order to improve the model’s accuracy while 

using less historical data. 

 Some input parameters such as ship speed could be introduced as a function of 

the independent parameters and a multi-objective ship performance optimization by 

the GA could be considered, such as minimizing fuel consumption while maximizing 

ship speed.  

 The number of thirteen input variables could be extended and the hull condition 

could be considered to improve the model’s accuracy.  

 Applying this DSS on-board ships will require an autonomous method of 

retraining the model as the ship’s physical data is continuously changing and thereby 

changing its total resistance. 

 Employing the same method to other ship types will further contribute to 

understanding the differences in the trim optimal configuration of different ship types. 

 A graphical user interface (GUI) for the DSS has to be built in order to facilitate 

the implementation of the system and take advantage of easily displayed advice 

messages. 
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