220,567 research outputs found

    Accurate angle-of-arrival measurement using particle swarm optimization

    Get PDF
    As one of the major methods for location positioning, angle-of-arrival (AOA) estimation is a significant technology in radar, sonar, radio astronomy, and mobile communications. AOA measurements can be exploited to locate mobile units, enhance communication efficiency and network capacity, and support location-aided routing, dynamic network management, and many location-based services. In this paper, we propose an algorithm for AOA estimation in colored noise fields and harsh application scenarios. By modeling the unknown noise covariance as a linear combination of known weighting matrices, a maximum likelihood (ML) criterion is established, and a particle swarm optimization (PSO) paradigm is designed to optimize the cost function. Simulation results demonstrate that the paired estimator PSO-ML significantly outperforms other popular techniques and produces superior AOA estimates

    Angle-of-Arrival Estimation Using Difference Beams in Localized Hybrid Arrays.

    Full text link
    Angle-of-arrival (AoA) estimation in localized hybrid arrays suffers from phase ambiguity owing to its localized structure and vulnerability to noise. In this letter, we propose a novel phase shift design, allowing each subarray to exploit difference beam steering in two potential AoA directions. This enables the calibration of cross-correlations and an enhanced phase offset estimation between adjacent subarrays. We propose two unambiguous AoA estimation schemes based on the even and odd ratios of the number of antennas per subarray N to the number of different phase shifts per symbol K (i.e., N/K), respectively. The simulation results show that the proposed approach greatly improves the estimation accuracy as compared to the state of the art when the ratio N/K is even

    Joint received signal strength, angle-of-arrival, and time-of-flight positioning

    Get PDF
    This paper presents a software positioning framework that is able to jointly use measured values of three parameters: the received signal strength, the angle-of-arrival, and the time-of-flight of the wireless signals. Based on experimentally determined measurement accuracies of these three parameters, results of a realistic simulation scenario are presented. It is shown that for the given configuration, angle-of-arrival and received signal strength measurements benefit from a hybrid system that combines both. Thanks to their higher accuracy, time-of-flight systems perform significantly better, and obtain less added value from a combination with the other two parameters

    3D angle-of-arrival positioning using von Mises-Fisher distribution

    Get PDF
    We propose modeling an angle-of-arrival (AOA) positioning measurement as a von Mises-Fisher (VMF) distributed unit vector instead of the conventional normally distributed azimuth and elevation measurements. Describing the 2-dimensional AOA measurement with three numbers removes discontinuities and reduces nonlinearity at the poles of the azimuth-elevation coordinate system. Our computer simulations show that the proposed VMF measurement noise model based filters outperform the normal distribution based algorithms in accuracy in a scenario where close-to-pole measurements occur frequently.Comment: 5 page

    Cooperative positioning using angle of arrival and time of arrival

    Get PDF
    Localization has been one of the most highly researched topics in wireless communications in the past decade. Localization of wireless nodes can be achieved using a variety of techniques, in which range measurement and angle measurement are most commonly used. In the presence of both angle and range measurement, a hybrid model can be developed. In this paper we analyze a hybrid angle of arrival-time of arrival (AoA-ToA) model for localization of wireless nodes, the model is modified to remove the bias from the estimated positions. We also explore the idea of cooperative localization using both angle and range measurements and develop a linear least squares (LLS) scheme. It is shown via simulation that the modified model is unbiased and that the performance of the proposed cooperative LLS is superior to its non-cooperative counterpart

    Implementation of accurate broadband steering vectors for broadband angle of arrival estimation

    Get PDF
    Motivated by accurate broadband steering vector requirements for applications such as broadband angle of arrival estimation, we review fractional delay filter designs. A common feature across these are their rapidly decreasing performance as the Nyquist rate is approached. We propose a filter bank based approach, which operates standard fractional delay filters on a series of frequency-shifted subband signals, such that they appear in the filters’ lowpass region. We demonstrate the appeal of this approach in simulations

    Broadband angle of arrival estimation methods in a polynomial matrix decomposition framework

    Get PDF
    A large family of broadband angle of arrival estimation algorithms are based on the coherent signal subspace (CSS) method, whereby focussing matrices appropriately align covariance matrices across narrowband frequency bins. In this paper, we analyse an auto-focussing approach in the framework of polynomial covariance matrix decompositions, leading to comparisons to two recently proposed polynomial multiple signal classification (MUSIC) algorithms. The analysis is complemented with numerical simulations
    corecore