893 research outputs found

    Contributions to the foundations of a safety case for the use of GNSS in railway environments

    Get PDF
    The use of GNSS in the railways for passenger information services and selective door opening is already commonplace but the advancement of this increasingly popular navigation technique into safety of life rail applications has been hindered by the unknown level of measurement error caused by the local rail environment, especially that due to multipath. Current state of the art receiver technologies are discussed along with the additional advantages of signal differencing using local base stations. Limiting factors for hardware in a kinematic environment are also discussed and specific examples to the rail environment highlighted. Safety critical analysis techniques such as FMEA, HAZOP and FTA are reviewed to illustrate the evaluation of safety integrity values and the possibility of system risk, leading to the formation of a structured safety case. Three main data sets from electrified, rural and urban rail environments have been collected using dual frequency geodetic receivers in order to enable analysis of multipath effects in normal railway operations. The code and phase data have been combined to compute fluctuations in multipath errors and these have been used to characterise this effect in both space and time. Where phase positioning is possible comparisons with standard code-based positions have been made to assess the overall quality of the type of GNSS positioning expected to be operationally-viable on the railways. Experiments have also been undertaken to evaluate the possible effects of electromagnetic radiation from overhead cables used to power the trains. Finally, the ways in which the results of these experiments can be used to help build a safety case for the use of GNSS on the railways are discussed. Overall it is concluded that it is unlikely that multipath errors or electromagnetic interference will be the limiting factors in utilising GNSS for safety-critical railway applications

    A review of laser scanning for geological and geotechnical applications in underground mining

    Full text link
    Laser scanning can provide timely assessments of mine sites despite adverse challenges in the operational environment. Although there are several published articles on laser scanning, there is a need to review them in the context of underground mining applications. To this end, a holistic review of laser scanning is presented including progress in 3D scanning systems, data capture/processing techniques and primary applications in underground mines. Laser scanning technology has advanced significantly in terms of mobility and mapping, but there are constraints in coherent and consistent data collection at certain mines due to feature deficiency, dynamics, and environmental influences such as dust and water. Studies suggest that laser scanning has matured over the years for change detection, clearance measurements and structure mapping applications. However, there is scope for improvements in lithology identification, surface parameter measurements, logistic tracking and autonomous navigation. Laser scanning has the potential to provide real-time solutions but the lack of infrastructure in underground mines for data transfer, geodetic networking and processing capacity remain limiting factors. Nevertheless, laser scanners are becoming an integral part of mine automation thanks to their affordability, accuracy and mobility, which should support their widespread usage in years to come

    An integrated approach for the analysis and modeling of road tunnel ventilation. Part I: Continuous measurement of the longitudinal airflow profile

    Get PDF
    The knowledge of the flow field inside road tunnels under normal operation, let alone fire conditions, is only approximate and partial. The reason is that while the full three-dimensional, unsteady problem is out of reach of numerical methods, on the other hand accurate measurement of the airflow in road and railway tunnels constitutes an extremely demanding task. The present work, structured as a twofold study, takes up the challenge and proposes an original integrated experimental and numerical approach for the analysis and modeling of flow inside a road tunnel and its ventilation systems, aiming at defining a methodology for the creation of “digital twins” of the system itself, on which advanced ventilation and smoke control strategies can be tested and fine-tuned. In this first part, an innovative experimental facility for the continuous acquisition of the longitudinal velocity profile along the whole length of a road tunnel has been designed and built. The facility consists of a survey rake with five bidirectional vane anemometers, which is mounted on a small electric vehicle that can travel through the tunnel at constant speed. This paper reports the design procedure of the measurement facility, with particular focus on the conception and realization of the vehicle carrying the survey rake. Results of the first experimental campaign carried out under the 11611 meters long Mont Blanc road tunnel are presented to corroborate the validity of the approach adopted and the accuracy of the measurement chain

    Sustainable seabed mining: guidelines and a new concept for Atlantis II Deep

    No full text
    The feasibility of exploiting seabed resources is subject to the engineering solutions, and economic prospects. Due to rising metal prices, predicted mineral scarcities and unequal allocations of resources in the world, vast research programmes on the exploration and exploitation of seabed minerals are presented in 1970s. Very few studies have been published after the 1980s, when predictions were not fulfilled. The attention grew back in the last decade with marine mineral mining being in research and commercial focus again and the first seabed mining license for massive sulphides being granted in Papua New Guinea’s Exclusive Economic Zone.Research on seabed exploitation and seabed mining is a complex transdisciplinary field that demands for further attention and development. Since the field links engineering, economics, environmental, legal and supply chain research, it demands for research from a systems point of view. This implies the application of a holistic sustainability framework of to analyse the feasibility of engineering systems. The research at hand aims to close this gap by developing such a framework and providing a review of seabed resources. Based on this review it identifies a significant potential for massive sulphides in inactive hydrothermal vents and sediments to solve global resource scarcities. The research aims to provide background on seabed exploitation and to apply a holistic systems engineering approach to develop general guidelines for sustainable seabed mining of polymetallic sulphides and a new concept and solutions for the Atlantis II Deep deposit in the Red Sea.The research methodology will start with acquiring a broader academic and industrial view on sustainable seabed mining through an online survey and expert interviews on seabed mining. In addition, the Nautilus Minerals case is reviewed for lessons learned and identification of challenges. Thereafter, a new concept for Atlantis II Deep is developed that based on a site specific assessment.The research undertaken in this study provides a new perspective regarding sustainable seabed mining. The main contributions of this research are the development of extensive guidelines for key issues in sustainable seabed mining as well as a new concept for seabed mining involving engineering systems, environmental risk mitigation, economic feasibility, logistics and legal aspects

    Desenvolvemento de modelos de información de infraestructuras segundo estándares abertos e parametrización automática a partir de datos xeomáticos.

    Get PDF
    It seeks to develop procedures that allow generating information models of these structures, created from the relevant information of the point clouds obtained with these systems. For this purpose, the BIM standards for civil engineering structures, both currently available and those that will be published for the duration of the thesis, will be exploited and adopted. Information modeling techniques will be used in these standards, with the aim of obtaining a system that allows modeling the structures automatically. The models will also be made compatible with other methodologies designed for BIM, whose purpose is to take full advantage of the information available for management and maintenance tasks. Meeting these objectives, an automatic modeling system will be developed according to the BIM standards for transport infrastructures, suitable for automatic feeding from geomatic data and remote sensing, which is in turn integrable into management and maintenance systems for these types of structures of civil engineering.Esta tesis busca el desarrollo de metodologías para la exportación de la información geomática de infraestructuras de transporte, particularmente estructuras ferroviarias y carreteras, obtenida mediante tecnologías de mapeado móvil. Se busca desarrollar procedimientos que permitan generar modelos de información de estas estructuras, creados a partir de la información relevante de las nubes de puntos obtenidas con estos sistemas. Con este propósito, se explotarán y adoptarán los estándares BIM para estructuras de ingeniería civil, tanto los actualmente disponibles como aquellos que serán publicados durante la duración de la tesis. Se utilizarán técnicas de modelado de información en estos estándares, con objetivo de obtener un sistema que permita realizar un modelado de las estructuras de manera automática. Se llevará a cabo también la compatibilización los modelos con otras metodologías diseñadas para BIM, cuyo propósito es el aprovechamiento total de la información disponible para tareas de gestión y mantenimiento. Cumpliendo estos objetivos se desarrollará un sistema automático de modelado según los estándares BIM para infraestructuras de transporte, apto para su alimentación automática a partir de datos geomáticos y teledetección, el cual es a su vez integrable en sistemas de gestión y mantenimiento para este tipo de estructuras de ingeniería civil.Esta tese busca o desenvolvemento de metodoloxías para a exportación da información xeomática de infraestruturas de transporte, particularmente estruturas ferroviarias e estradas, obtida mediante tecnoloxías de mapeado móbil. A tese busca o desenvolvemento de procedementos que permitan xerar modelos de información destas estruturas, creados a partir da información relevante das nubes de puntos obtidas con estes sistemas. Con este propósito, se explotarán e adoptarán os estándares BIM para estruturas de enxeñería civil, tanto os actualmente dispoñibles como aqueles que serán publicados durante a duración da tese. Utilizaranse técnicas de modelado de información nestes estándares, con obxectivo de obter un sistema que permita realizar un modelado das estruturas de maneira automática. Levarase a cabo tamén a compatibilización dos modelos con outras metodoloxías diseñadas para BIM, cuxo propósito é o aproveitamento total da información dispoñible para tarefas de xestión e mantemento. Cumplindo estes obxectivos se desenvolverá un sistema automático de modelado segundo os estándares BIM para infraestruturas de transporte, apto para a súa alimentación automática a partir de datos xeomáticos e teledetección, o cal é a súa vez integrable en sistemas de xestión e mantemento para este tipo de estruturas de enxeñería civil

    Mobile laser scanning based determination of railway network topology and branching direction on turnouts

    Get PDF
    GNSS is often inaccurate and satellite signals are not always available, which results in ambiguous situations. In order to reduce their negative effects on train-borne localization, this work proposes an approach for the detection of tracks, turnouts, and branching directions solely from 2d lidar sensor measurements. The experimental evaluation shows highly correct and complete results. In summary, these detections are sufficient to reduce ambiguity problems in train-borne localization

    Performance Measures to Assess Resiliency and Efficiency of Transit Systems

    Get PDF
    Transit agencies are interested in assessing the short-, mid-, and long-term performance of infrastructure with the objective of enhancing resiliency and efficiency. This report addresses three distinct aspects of New Jersey’s Transit System: 1) resiliency of bridge infrastructure, 2) resiliency of public transit systems, and 3) efficiency of transit systems with an emphasis on paratransit service. This project proposed a conceptual framework to assess the performance and resiliency for bridge structures in a transit network before and after disasters utilizing structural health monitoring (SHM), finite element (FE) modeling and remote sensing using Interferometric Synthetic Aperture Radar (InSAR). The public transit systems in NY/NJ were analyzed based on their vulnerability, resiliency, and efficiency in recovery following a major natural disaster

    Seamless Positioning and Navigation in Urban Environment

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    NB-IoT via non terrestrial networks

    Get PDF
    Massive Internet of Things is expected to play a crucial role in Beyond 5G (B5G) wireless communication systems, offering seamless connectivity among heterogeneous devices without human intervention. However, the exponential proliferation of smart devices and IoT networks, relying solely on terrestrial networks, may not fully meet the demanding IoT requirements in terms of bandwidth and connectivity, especially in areas where terrestrial infrastructures are not economically viable. To unleash the full potential of 5G and B5G networks and enable seamless connectivity everywhere, the 3GPP envisions the integration of Non-Terrestrial Networks (NTNs) into the terrestrial ones starting from Release 17. However, this integration process requires modifications to the 5G standard to ensure reliable communications despite typical satellite channel impairments. In this framework, this thesis aims at proposing techniques at the Physical and Medium Access Control layers that require minimal adaptations in the current NB-IoT standard via NTN. Thus, firstly the satellite impairments are evaluated and, then, a detailed link budget analysis is provided. Following, analyses at the link and the system levels are conducted. In the former case, a novel algorithm leveraging time-frequency analysis is proposed to detect orthogonal preambles and estimate the signals’ arrival time. Besides, the effects of collisions on the detection probability and Bit Error Rate are investigated and Non-Orthogonal Multiple Access approaches are proposed in the random access and data phases. The system analysis evaluates the performance of random access in case of congestion. Various access parameters are tested in different satellite scenarios, and the performance is measured in terms of access probability and time required to complete the procedure. Finally, a heuristic algorithm is proposed to jointly design the access and data phases, determining the number of satellite passages, the Random Access Periodicity, and the number of uplink repetitions that maximize the system's spectral efficiency
    corecore