2,669 research outputs found

    Challenges in 3D scanning: Focusing on Ears and Multiple View Stereopsis

    Get PDF

    Topographic hub maps of the human structural neocortical network

    Get PDF
    Hubs within the neocortical structural network determined by graph theoretical analysis play a crucial role in brain function. We mapped neocortical hubs topographically, using a sample population of 63 young adults. Subjects were imaged with high resolution structural and diffusion weighted magnetic resonance imaging techniques. Multiple network configurations were then constructed per subject, using random parcellations to define the nodes and using fibre tractography to determine the connectivity between the nodes. The networks were analysed with graph theoretical measures. Our results give reference maps of hub distribution measured with betweenness centrality and node degree. The loci of the hubs correspond with key areas from known overlapping cognitive networks. Several hubs were asymmetrically organized across hemispheres. Furthermore, females have hubs with higher betweenness centrality and males have hubs with higher node degree. Female networks have higher small-world indices

    Unsupervised deep learning of human brain diffusion magnetic resonance imaging tractography data

    Get PDF
    L'imagerie par résonance magnétique de diffusion est une technique non invasive permettant de connaître la microstructure organisationnelle des tissus biologiques. Les méthodes computationnelles qui exploitent la préférence orientationnelle de la diffusion dans des structures restreintes pour révéler les voies axonales de la matière blanche du cerveau sont appelées tractographie. Ces dernières années, diverses méthodes de tractographie ont été utilisées avec succès pour découvrir l'architecture de la matière blanche du cerveau. Pourtant, ces techniques de reconstruction souffrent d'un certain nombre de défauts dérivés d'ambiguïtés fondamentales liées à l'information orientationnelle. Cela a des conséquences dramatiques, puisque les cartes de connectivité de la matière blanche basées sur la tractographie sont dominées par des faux positifs. Ainsi, la grande proportion de voies invalides récupérées demeure un des principaux défis à résoudre par la tractographie pour obtenir une description anatomique fiable de la matière blanche. Des approches méthodologiques innovantes sont nécessaires pour aider à résoudre ces questions. Les progrès récents en termes de puissance de calcul et de disponibilité des données ont rendu possible l'application réussie des approches modernes d'apprentissage automatique à une variété de problèmes, y compris les tâches de vision par ordinateur et d'analyse d'images. Ces méthodes modélisent et trouvent les motifs sous-jacents dans les données, et permettent de faire des prédictions sur de nouvelles données. De même, elles peuvent permettre d'obtenir des représentations compactes des caractéristiques intrinsèques des données d'intérêt. Les approches modernes basées sur les données, regroupées sous la famille des méthodes d'apprentissage profond, sont adoptées pour résoudre des tâches d'analyse de données d'imagerie médicale, y compris la tractographie. Dans ce contexte, les méthodes deviennent moins dépendantes des contraintes imposées par les approches classiques utilisées en tractographie. Par conséquent, les méthodes inspirées de l'apprentissage profond conviennent au changement de paradigme requis, et peuvent ouvrir de nouvelles possibilités de modélisation, en améliorant ainsi l'état de l'art en tractographie. Dans cette thèse, un nouveau paradigme basé sur les techniques d'apprentissage de représentation est proposé pour générer et analyser des données de tractographie. En exploitant les architectures d'autoencodeurs, ce travail tente d'explorer leur capacité à trouver un code optimal pour représenter les caractéristiques des fibres de la matière blanche. Les contributions proposées exploitent ces représentations pour une variété de tâches liées à la tractographie, y compris (i) le filtrage et (ii) le regroupement efficace sur les résultats générés par d'autres méthodes, ainsi que (iii) la reconstruction proprement dite des fibres de la matière blanche en utilisant une méthode générative. Ainsi, les méthodes issues de cette thèse ont été nommées (i) FINTA (Filtering in Tractography using Autoencoders), (ii) CINTA (Clustering in Tractography using Autoencoders), et (iii) GESTA (Generative Sampling in Bundle Tractography using Autoencoders), respectivement. Les performances des méthodes proposées sont évaluées par rapport aux méthodes de l'état de l'art sur des données de diffusion synthétiques et des données de cerveaux humains chez l'adulte sain in vivo. Les résultats montrent que (i) la méthode de filtrage proposée offre une sensibilité et spécificité supérieures par rapport à d'autres méthodes de l'état de l'art; (ii) le regroupement des tractes dans des faisceaux est fait de manière consistante; et (iii) l'approche générative échantillonnant des tractes comble mieux l'espace de la matière blanche dans des régions difficiles à reconstruire. Enfin, cette thèse révèle les possibilités des autoencodeurs pour l'analyse des données des fibres de la matière blanche, et ouvre la voie à fournir des données de tractographie plus fiables.Abstract : Diffusion magnetic resonance imaging is a non-invasive technique providing insights into the organizational microstructure of biological tissues. The computational methods that exploit the orientational preference of the diffusion in restricted structures to reveal the brain's white matter axonal pathways are called tractography. In recent years, a variety of tractography methods have been successfully used to uncover the brain's white matter architecture. Yet, these reconstruction techniques suffer from a number of shortcomings derived from fundamental ambiguities inherent to the orientation information. This has dramatic consequences, since current tractography-based white matter connectivity maps are dominated by false positive connections. Thus, the large proportion of invalid pathways recovered remains one of the main challenges to be solved by tractography to obtain a reliable anatomical description of the white matter. Methodological innovative approaches are required to help solving these questions. Recent advances in computational power and data availability have made it possible to successfully apply modern machine learning approaches to a variety of problems, including computer vision and image analysis tasks. These methods model and learn the underlying patterns in the data, and allow making accurate predictions on new data. Similarly, they may enable to obtain compact representations of the intrinsic features of the data of interest. Modern data-driven approaches, grouped under the family of deep learning methods, are being adopted to solve medical imaging data analysis tasks, including tractography. In this context, the proposed methods are less dependent on the constraints imposed by current tractography approaches. Hence, deep learning-inspired methods are suit for the required paradigm shift, may open new modeling possibilities, and thus improve the state of the art in tractography. In this thesis, a new paradigm based on representation learning techniques is proposed to generate and to analyze tractography data. By harnessing autoencoder architectures, this work explores their ability to find an optimal code to represent the features of the white matter fiber pathways. The contributions exploit such representations for a variety of tractography-related tasks, including efficient (i) filtering and (ii) clustering on results generated by other methods, and (iii) the white matter pathway reconstruction itself using a generative method. The methods issued from this thesis have been named (i) FINTA (Filtering in Tractography using Autoencoders), (ii) CINTA (Clustering in Tractography using Autoencoders), and (iii) GESTA (Generative Sampling in Bundle Tractography using Autoencoders), respectively. The proposed methods' performance is assessed against current state-of-the-art methods on synthetic data and healthy adult human brain in vivo data. Results show that the (i) introduced filtering method has superior sensitivity and specificity over other state-of-the-art methods; (ii) the clustering method groups streamlines into anatomically coherent bundles with a high degree of consistency; and (iii) the generative streamline sampling technique successfully improves the white matter coverage in hard-to-track bundles. In summary, this thesis unlocks the potential of deep autoencoder-based models for white matter data analysis, and paves the way towards delivering more reliable tractography data

    Reverse-engineering the locomotion of a stem amniote

    Get PDF
    Reconstructing the locomotion of extinct vertebrates offers insights into their palaeobiology and helps to conceptualize major transitions in vertebrate evolution. However, estimating the locomotor behaviour of a fossil species remains a challenge because of the limited information preserved and the lack of a direct correspondence between form and function. The evolution of advanced locomotion on land—that is, locomotion that is more erect, balanced and mechanically power-saving than is assumed of anamniote early tetrapods—has previously been linked to the terrestrialization and diversification of amniote lineages. To our knowledge, no reconstructions of the locomotor characteristics of stem amniotes based on multiple quantitative methods have previously been attempted: previous methods have relied on anatomical features alone, ambiguous locomotor information preserved in ichnofossils or unspecific modelling of locomotor dynamics. Here we quantitatively examine plausible gaits of the stem amniote Orobates pabsti, a species that is known from a complete body fossil preserved in association with trackways8. We reconstruct likely gaits that match the footprints, and investigate whether Orobates exhibited locomotor characteristics that have previously been linked to the diversification of crown amniotes. Our integrative methodology uses constraints derived from biomechanically relevant metrics, which also apply to extant tetrapods. The framework uses in vivo assessment of locomotor mechanics in four extant species to guide an anatomically informed kinematic simulation of Orobates, as well as dynamic simulations and robotics to filter the parameter space for plausible gaits. The approach was validated using two extant species that have different morphologies, gaits and footprints. Our metrics indicate that Orobates exhibited more advanced locomotion than has previously been assumed for earlier tetrapods, which suggests that advanced terrestrial locomotion preceded the diversification of crown amniotes. We provide an accompanying website for the exploration of the filters that constrain our simulations, which will allow revision of our approach using new data, assumptions or methods

    Generation of synthetic aortic valve stenosis geometries for in silico trials

    Get PDF
    In silico trials are a promising way to increase the efficiency of the development, and the time to market of cardiovascular implantable devices. The development of transcatheter aortic valve implantation (TAVI) devices, could benefit from in silico trials to overcome frequently occurring complications such as paravalvular leakage and conduction problems. To be able to perform in silico TAVI trials virtual cohorts of TAVI patients are required. In a virtual cohort, individual patients are represented by computer models that usually require patient‐specific aortic valve geometries. This study aimed to develop a virtual cohort generator that generates anatomically plausible, synthetic aortic valve stenosis geometries for in silico TAVI trials and allows for the selection of specific anatomical features that influence the occurrence of complications. To build the generator, a combination of non‐parametrical statistical shape modeling and sampling from a copula distribution was used. The developed virtual cohort generator successfully generated synthetic aortic valve stenosis geometries that are comparable with a real cohort, and therefore, are considered as being anatomically plausible. Furthermore, we were able to select specific anatomical features with a sensitivity of around 90%. The virtual cohort generator has the potential to be used by TAVI manufacturers to test their devices. Future work will involve including calcifications to the synthetic geometries, and applying high‐fidelity fluid–structure‐interaction models to perform in silico trials
    corecore