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Abstract

In silico trials are a promising way to increase the efficiency of the development,

and the time to market of cardiovascular implantable devices. The development

of transcatheter aortic valve implantation (TAVI) devices, could benefit from in

silico trials to overcome frequently occurring complications such as paravalvular

leakage and conduction problems. To be able to perform in silico TAVI trials vir-

tual cohorts of TAVI patients are required. In a virtual cohort, individual

patients are represented by computer models that usually require patient-specific

aortic valve geometries. This study aimed to develop a virtual cohort generator

that generates anatomically plausible, synthetic aortic valve stenosis geometries

for in silico TAVI trials and allows for the selection of specific anatomical fea-

tures that influence the occurrence of complications. To build the generator, a

combination of non-parametrical statistical shape modeling and sampling from

a copula distribution was used. The developed virtual cohort generator success-

fully generated synthetic aortic valve stenosis geometries that are comparable

with a real cohort, and therefore, are considered as being anatomically plausible.

Furthermore, we were able to select specific anatomical features with a sensitiv-

ity of around 90%. The virtual cohort generator has the potential to be used by

TAVI manufacturers to test their devices. Future work will involve including cal-

cifications to the synthetic geometries, and applying high-fidelity fluid–structure-
interaction models to perform in silico trials.
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1 | INTRODUCTION

The process from development to the clinical introduction of cardiovascular implantable devices is very long and expen-
sive due to the strict regulatory requirements regarding device safety and efficacy. Depending on the type of device, the
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validation chain to achieve regulatory approval consists of several pre-clinical steps: in vitro bench testing, ex vivo test-
ing, and in vivo animal testing. Then, multi-phase clinical trials, that is, tests on humans must be completed.1,2 How-
ever, this validation chain faces some problems. Firstly, the animal model is not always a reliable representation of the
human body. As a result, devices may be rejected after the phase of human trials, despite significant financial invest-
ments during the animal testing phase. Moreover, animal testing involves ethical issues regarding animal welfare.
Thirdly, medical devices are typically tested at single physiological states, without taking into consideration varying
physiological conditions that can occur in the human body (e.g., varying heart rate, cardiac output, and blood pressure).
Iterative validation and refinement of the devices are also challenging since it requires new randomized clinical trials
every time the device is adapted. Lastly, the sample size in animal and clinical trials is relatively small, as a result of
which the heterogeneity of the population is not fully covered. These problems could possibly be solved by incorporat-
ing in silico trials into the validation chain prior to the animal tests and clinical trials.1,2

During in silico trials devices are tested on groups of virtual patients, that is, virtual cohorts, in which individual
patients are represented by computer models. These models can be either based on quantitative parameters measured
on an individual (subject-specific models) or sampled from population distributions of those parameters (population-
specific models).3 These computer models can be used to simulate physiological behavior and the response after device
implantation. There are many potential advantages of in silico trials. They can easily be repeated multiple times, with-
out the need to set up new animal trials or to organize new patient inclusions for clinical trials. Additionally, virtual
cohorts can be much larger than real patient cohorts, and rare cases that are challenging to include in real patient
populations can be incorporated more easily. Lastly, in silico simulations can help to improve the design of real clinical
trials, for example by gaining insight into the optimal number and selection of patients necessary to address the
research question effectively. Thus, by performing in silico trials, the number of animal tests and clinical trials could be
reduced. As a result animal, and patient burdens, as well as costs and time-to-market, can be reduced.1,2

An example of a cardiovascular implantable device that would benefit from in silico trials during its development is
the transcatheter aortic valve implantation (TAVI) device. TAVI is a minimally invasive treatment for patients with aor-
tic valve stenosis where the aortic valve is replaced with a prosthetic valve. Despite TAVI has been successfully
employed over the past two decades, many complications have been reported such as conduction problems, leading to
pacemaker dependency after treatment, and aortic regurgitation (AR).4–6 TAVI devices, that is, the prosthetic valves,
are subject to continuous development to improve current devices and overcome these complications. In silico trials
could possibly speed up the clinical introduction of improved TAVI devices. Computational fluid dynamics (CFD) and
fluid–structure interaction (FSI) models are typically used to simulate aortic valve dynamics before,7,8 and after
treatment.9–13 Furthermore, finite element methods can be used to simulate contact forces between the aortic root and
the TAVI valve during deployment.14–16 Performing in silico trials using these models requires patient-specific aortic
valve geometries and boundary conditions. These geometries, represented by three-dimensional meshes, could be
obtained from medical image data, such as computed tomography (CT) images. However, reconstructing the geometries
from those images is time-consuming and suffers from observer variability.17 Furthermore, the available patient data is
scarce and often incomplete. Additionally, sharing of patient data usually involves many ethical and data privacy issues.
A good alternative would be to generate synthetic geometries. Synthetic geometries must be realistic and should mimic
real patient populations, while simultaneously not representing any specific patients.

To generate synthetic aortic valve geometries, the geometries must be parameterized first. Several approaches have
been used in previous studies to parameterize aortic valve geometries. For example, Vergara et al.,18 parameterized bicus-
pid aortic valves by two parameters: valve opening and the opening's angle of rotation about the centerline of the aorta.
Hosny et al.19 proposed a method to parameterize the leaflets with seven points: the point of coaptation of the leaflets, the
three attachment points at the level of the sinotubular junction (STJ) and the three basal attachment points. Another
method to parameterize aortic valve geometries is statistical shape modeling (SSM),20 where the parameters describing a
geometry, that is, shape coefficients, are based on the shape variations within a data set of geometries. These shape coeffi-
cients are generally obtained using principal component analysis (PCA).21 SSM has been used in multiple studies to gener-
ate synthetic geometries. In Romero et al.17 the concept was used to generate synthetic aorta geometries for a virtual
patient cohort, whereas Hoeijmakers et al.8 used it to generate synthetic aortic valve geometries for training a surrogate
model of a CFD simulation model. The methods used in those studies are based on parametric methods for which iso-
topology between the meshes is required. However, especially when dealing with complex, amorphous geometries it is
challenging to preserve this iso-topology. Moreover, when geometries in the training data set are reconstructed or post-
processed differently, which is the case in this work (Section 2.2), iso-topology is also not maintained. Therefore, Mansi
et al.22–24 introduced the non-parametric SSM framework, developed by Durrleman et al.,25 to the cardiovascular field.
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This method relies on deformations of a template geometry to patient-specific geometries. An SSM is then built on these
deformations, instead of on the geometries themselves. The advantages of this framework are that it does not require iso-
topological geometries, and that it is applicable to sets of geometries with large variability. Several other studies success-
fully made use of this framework to obtain either an SSM to extract 3D shape biomarkers from aortic shapes after repair of
aortic coarctation,26 or to generate a set of synthetic geometries to train deep neural networks for fast acquisition of aortic
3D pressure and velocity flow fields.27 After setting up an SSM based on a real patient population, synthetic geometries
can be generated by sampling new combinations of shape coefficients.

In Niederer et al.28 two different sampling strategies for obtaining a virtual cohort were proposed. The first strategy
is sampling parameter sets, representing virtual patients, from an inferred distribution, which is a statistical distribution
fitted to the parameters of a real patient cohort. The second strategy is random sampling a parameter set and using
acceptance criteria to decide if these result in anatomically or physiologically plausible models. Romero et al.17 intro-
duced two types of acceptance criteria: data-driven, and clinically-driven acceptance criteria. The first type requires that
the virtual cohort is compatible with a certain reference cohort, for example, a real patient cohort. An example of a
data-driven acceptance criterion is that the parameters must be within the minimum and maximum of the parameters
observed in the real patient cohort. For the second type, the members of the virtual cohort have to meet certain clinical
requirements, such as specific anatomical features.

Clinically-driven acceptance criteria are relevant for in silico trials of cardiovascular implantable devices, as some
specific anatomical features might affect the success of device implantation and performance. For example, specific ana-
tomical features of aortic valves are associated with the occurrence of complications after TAVI. In the study of Ishizu
et al.4 it was found that patients with a converging left ventricular outflow tract (LVOT), that is, LVOT smaller than
annulus, have a higher chance of suffering from conduction problems that can lead to pacemaker dependency. Further-
more, Condado et al.5 found that non-tubular, that is, converging and diverging LVOTs are associated with mild to
severe paravalvular leakage. Sherif et al. found a positive relationship between the chance of significant AR, and the
angle between the LVOT and the ascending aorta.6

To be effective, in silico trials need to include virtual cohorts with anatomical features associated with the complica-
tions that are being addressed in these trials. For example, if a TAVI device is improved to address the conduction prob-
lems, virtual patients with a converging LVOT should be included in the in silico trials. By using in silico trials, one can
easily scale up the number of study samples in which this feature is present. Therefore, the aim of this research is to
develop a framework that is (1) able to generate anatomically plausible aortic valve stenosis geometries (data-driven
approach), and (2) allows for the selection of clinically relevant anatomical features; in our case two: the shape of the
LVOT (converging or diverging), and the angle between the LVOT and the ascending aorta (clinically-driven approach).
The framework, required for this aim, makes use of a novel combination of techniques: non-parametric statistical shape
modeling to generate synthetic geometries and clinically-driven acceptance criteria for the selection of the anatomical
features of interest.

2 | METHODS

The presented work is based on a data set op 97 aortic valve geometries with a severe stenosis (Section 2.2). These
geometries were all post-processed differently, because of which, iso-topology was not maintained. To tackle this non-
iso-topology, we used a non-parametric SSM framework, proposed by Durrleman et al.25 to generate synthetic aortic
valve stenosis geometries. In this section, we will first give an elaborate explanation of the theory behind the frame-
work, aiming to ensure a shared conceptual understanding among all readers (Section 2.1). Then, the data that was
used to build the SSM is described (Section 2.2) in more detail and the required steps to build the model are discussed
(Section 2.5). Once the SSM is built, data-driven synthetic geometries are generated with a sampling technique dis-
cussed in Section 2.6. After validating the synthetic geometries, clinically-driven geometries are generated by applying
several filtering methods (Section 2.7).

2.1 | Theory behind the statistical shape modeling framework

The non-parametric SSM framework proposed by Durrleman et al.,25 does not require iso-topology between the geome-
tries on which the SSM is built. This framework relies on deformations of a template geometry to approximate patient-
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specific geometries, that is, target geometries. Each target geometry can be described by a unique set of deformation
vectors (momenta) that induce this deformation. These momenta are located at grid points, that is, control points, that
are identical for all geometries. Any point x

!
0ð Þ¼ x

!
0, belonging to the template geometry, can be deformed into a

corresponding point x
!

tð Þ in the deformed template using a time-varying velocity field _x
!

tð Þ with pseudo-time t � [0,1].
The deformed position of each point at time instant t is then given by25:

x
!

tð Þ¼ x
!

0þ
Z t

0

_x
!

tð Þdt: ð1Þ

We are interested in the final deformed template x
!
def ¼ x

!
1ð Þ. The velocity field depends on time-varying control

points c
!
p tð Þ and momenta β

!
p tð Þ:

_x
!

tð Þ¼
Xp¼Ncp

p¼1

KV x
!

tð Þ, c!p tð Þ
� �

β
!
p tð Þ, ð2Þ

with c
!

p tð Þ the pth control point, β
!
p tð Þ the momentum vector located at the pth control point, and Ncp the number of

control points. KV is a Gaussian kernel with width λV that has any two points x
!
1 and x

!
2 in the 3D space as an input:

KV x
!

1, x
!

2

� �
¼ e

�k x
!
1� x

!
2k2

λ2
V : ð3Þ

In other words, each template point x
!

0 follows the integral curve of Equation 1 to deform to x
!
def . The contribution

of any momentum vector β
!
p, located at control point c

!
p to the path of x

!
0 is weighted by the distance between x

!
and

c
!

p, by means of KV . Equation (2) also describes the motion of the kth control point c
!

k tð Þ:

_c
!

k tð Þ¼
Xp¼Ncp

p¼1

KV c
!
k tð Þ, c!p tð Þ

� �
β
!
p tð Þ: ð4Þ

The time-varying momenta that deform x
!

0 into x
!
def are not unique. Therefore, the momenta that minimize the

integral of the “kinetic” energy along the path are chosen, which satisfies the following differential equation25:

_
β
!

k tð Þ¼�
Xp¼Ncp

p¼1

β
!
k tð Þ � β!p tð Þ rx

!
1
KV x

!
1, x

!
2

� �h i
x
!
1¼ c

!
k tð Þ,x!2¼ c

!
p tð Þ

, ð5Þ

where β
!

k is the momentum vector at the kth control point, and rx
!
1
is the gradient with respect to x

!
1. For a detailed

proof of this equation, we refer to the work of Durrleman et al.25 In summary, to determine the deformation of the tem-
plate shape towards the target shape the following set of ordinary differential equations should be solved:

_S¼
_X tð Þ X 0ð Þ¼X0

_C tð Þ C 0ð Þ¼C0

_B tð Þ B 0ð Þ¼B0

8><
>: , ð6Þ

where C, and B are the Ncp�3 matrices of control points and momenta respectively, and X the Nv�3 matrix with the
Nv template vertices. The three columns in those matrices store the x�, y�, and z� coordinates of the control points,
momenta and template points. Thus, to approximate each target geometry a template geometry X0, a set of initial con-
trol points C0, and a set of initial momenta B0 is required. The template and control points are equal for all target geom-
etries, but the initial momenta are different for each geometry. Therefore, each target geometry of the data set can be
parameterized by a unique set of initial momenta. Figure 1 visualizes the deformation of a template by means of
momenta to approximate an aortic valve geometry. Now, we understand how the initial momenta deform the template
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shape to approximate the target shape. In the next paragraph, it will be explained how these initial momenta and the
template are obtained.

Suppose that Φi is the deformation, induced by initial momenta B0,i, that maps the template geometry T to the
deformed template, approximating the ith target geometry Si

29:

Si ≈Φi B0,ið ÞT: ð7Þ

The template and deformations are estimated by alternately minimizing a cost function C with respect to the tem-
plate and to the deformations:

C¼
Xi¼NS

i¼1

dW Φi Bi,0ð ÞT,Sið Þ2=σ2þ
Xi¼NS

i¼1

B0,i
>KW c

!
, c
!� �

B0,i, ð8Þ

with NS the number of target geometries in the data set. In the upcoming paragraph, this cost function will be
explained step by step. The first term of the cost function contains the sum of the distances dW between all target geom-
etries Si and their approximations Φi B0,ið ÞT. This distance is the Varifold distance, a similarity metric that does not
require point-to-point correspondence between geometries. In the Varifold framework, two geometries, that is, meshes,
are embedded into a Hilbert space W�ð Þ, where the inner-product between two meshes S and S0 is defined as25:

S,S0ð ÞW� ¼
Xp¼Nf

p¼1

Xp¼N 0
f

q¼1

KW c
!
p, c

!
q

0� � n
!

p � n!q

0� �
j n!p

���n!q

0
j
, ð9Þ

with Nf and N 0
f the number of faces, c

!
p and c

!
q

0
the centers of the faces and n

!
p and n

!
q

0
the face normals of the meshes

S and S0 respectively. KW is a Gaussian kernel function equal to Equation (3). The distance between S and S0 is then:

dW S,S0ð Þ2 ¼k S�S0k2W� ¼ S,Sð ÞW� þ S0,S0ð ÞW� �2 S,S0ð ÞW� : ð10Þ

Thus, Equation (10) is the definition of the distance dW that is used in the first term of the cost function
(Equation (8)). The second term of the cost function is a penalization term to avoid deformations with high “kinetic”
energy,30 where B0,i is the Ncp�3 matrix of momenta belonging to target geometry Si. KW ð c!, c!Þ is the matrix that is
obtained by computing KW for all combinations of control points c

!
. The relative importance of the two terms in the

cost function (Equation (8)) is determined by σ.
To minimize the cost function in Equation (8) two steps are alternated.29 The first step is to keep the tem-

plate geometry fixed and minimize the cost function with respect to the initial momenta B0,i. This step consists of

FIGURE 1 The deformation of the template geometry (gray) into the approximation (red) of the target geometry (black) with help of

the initial momenta (red) belonging to the target geometry.
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NS registrations of the template T to each target geometry Si. The second step is to fix the deformations and minimize
the cost function with respect to the template, which leads to minimizing the first term of Equation (8). For this mini-
mization, a gradient descent scheme is used. These two steps are alternated until convergence. Figure 2 visualizes the
two-step minimization approach. For detailed information about the minimization process, we refer to Durrleman
et al.29

After estimating the template and initial momenta, each geometry can be represented by a unique set of initial
momenta, all located at the same grid of control points. Then, the initial p momenta for each geometry Si are
concatenated in a row vector:

v�
>
i ¼ βx,1,…,βx,p,βy,1,…,βy,p,βz,1,…,βz,p

h i
, ð11Þ

with βx , βy, and βz, the x, y, and z component of each momentum vector respectively. The average of NS sets of
momenta was calculated as follows:

v�¼
1
NS

Xi¼NS

i¼1

v�i: ð12Þ

The row vectors v�
>
i were collected in a matrix of size NS,3p½ �, in which each row contained the 3p-dimensional

coordinates, representing one geometry. Principal component analysis (PCA)21 was performed to reduce the dimension-
ality of this matrix. The resulting principal components, that is, shape modes, describe the directions in which the data
varies the most. The shape modes ϕ

�m are vectors with length 3p, and they are ordered from high to low explained vari-
ance. Each set of momenta v�i can be approximated

�bv�i

�
by adding a weighted combination of Nm shape modes to the

average set of momenta:

FIGURE 2 Visualization of the two-step minimization approach to estimate the momenta (black vectors) and the template geometry

(middle). The first step (black, solid arrows) is minimizing the cost function (Equation (8)) with respect to the momenta, that is, registering

the template to the target geometries (red). The second step (black, dashed arrows) is minimizing the cost function with respect to the

template.
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bv�i ¼ v�þ
Xm¼Nm

m¼1

αi,mϕ�m i� 1,2,…,NSf g, ð13Þ

with ϕ
�m the mth shape mode, and αi,m the shape coefficient for the mth shape mode, belonging to the ith geometry.

Shape coefficients are the projections of the vectors v�i onto the directions of the shape modes. Each target geometry Si
can be approximated by deforming the template with momenta bv�i according to Equation (1). The larger the number of
shape modes that are taken into account, the more accurate the approximation is.

2.2 | Data acquisition

To set up the statistical shape model, a data set of 97 peak systolic aortic valve geometries in STL format was used, orig-
inating from a population of patients with aortic stenosis. The meshes included the LVOT, the sinuses of Valsalva, the
ascending aorta, and the aortic arch. The retrospective data set was collected by the Institute of Computer-assisted Car-
diovascular Medicine, Charité Universitaetsmedizin Berlin. The data were collected in the scope of the H2020 project
SIMCor. Data were obtained from clinical routine. The collection of informed consent was waived by the institutional
review board which approved the study. The meshes were reconstructed from pre-operative CT images of patients who
underwent TAVI treatment. Reconstruction of the patient-specific anatomy of the left ventricular outflow tract, the aor-
tic root including the aortic valve leaflets, as well as the ascending aorta was performed semi-automatically using a
combination of a shape-constrained deformable model for the whole heart31 and one for the tricuspid aortic valve.32

A detailed description of the definition of the parametric aortic valve model and the methods for fitting the model to
the CT image data is provided in Weese et al.32 However, a manual correction of these automated reconstructions was
necessary to account for the complex asymmetry in the stenosed valves. To facilitate this, a new coordinate system was
introduced that allowed to slice through the CT image data in an orientation parallel to the aortic annulus. Using this
orientation, the contours of the valve leaflet model were manipulated via drag and drop. The contours of each leaflet
were moved to match the Hounsfield contrasts and contours visible in the CT image data. This procedure was per-
formed slice by slice from the annulus towards the slice in which no leaflet tip was discernible anymore. This procedure
is also described in more detail in Franke et al.33 After reconstruction, the meshes were meshed, which led to non-
iso-topological meshes. Therefore the non-parametric SSM framework described in Section 2.1 was used.

2.3 | Pre-processing

For the non-parametric SSM, a registration of the geometries was required. Therefore, all target geometries were trans-
lated, rotated and scaled to align with the template geometry (Section 2.5). For this purpose, the ascending aorta was
temporarily cut off at 1–2 cm from the sinotubular junction (STJ). This step was performed to be able to align the
sinuses of the geometries and to avoid the alignment being influenced by the ascending aorta. The first step in aligning
two geometries was to identify the geometry with the smallest number of vertices. Then, for each point in this geome-
try, the closest point in the other geometry was selected, resulting in a number of point pairs. In the second step, these
point pairs were aligned by a Procrustes analysis34 which determined the optimal translation, rotation and scaling by
minimizing the sum of squared errors between the point pairs. The resulting transformation was applied to the target
geometry to align it with the template. Steps one and two were repeated until convergence. After alignment, the center-
lines of the geometries were extracted using VMTK.35 The geometries were cut proximally 0.5 cm below the valve annu-
lus and distally, 3 cm above the STJ, perpendicular to the centerline. For 37 geometries, the LVOT was too short. For
those geometries, the LVOT was extruded by a straight tube. Lastly, the meshes were made coarser (4300 vertices) to
reduce computational time during the computation of the template and initial momenta.

2.4 | Extract geometrical features

For purposes that will be discussed in Sections 2.6 and 2.7, eight anatomical features were automatically extracted from
the aortic valve geometries: the diameters of the LVOT, annulus, sinuses Valsalva, and STJ, the aortic valve area
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(AVA), the ratio between the LVOT and annulus area, the sinuses of Valsalva height (Figure 3A), and the angle
between the LVOT and the ascending aorta (Figure 3B). To determine the LVOT, annulus and STJ diameter respec-
tively, the geometry was divided into 0.5 mm slices by planes parallel to the LVOT cutting plane. The cross-section
of the first plane with the geometry was the LVOT area. The annulus area was measured just before the plane of
insertion of the aortic cusps. The insertion plane could be easily detected automatically since it is the first plane that
resulted in a cross-section consisting of more than one piece. To compute the STJ area, the cross-sections with all the
planes after the leaflets were determined. The cross-section with the smallest area corresponds to the STJ area. To
determine the area of the sinus of Valsalva all vertices between the annulus and STJ plane were projected onto the
annulus plane. The outline of the resulting point cloud defined the sinus area. The diameters were extracted from
the measured areas by assuming circular cross-sectional areas. To determine the AVA, random points were gener-
ated within the outline surrounding the sinus of Valsalva. Imaginary beams, perpendicular to the LVOT plane, were
sent from these points through the geometry. The beams passing through the geometry without intersecting formed
the AVA. The angle between the LVOT and the ascending aorta was calculated by extracting the centerlines of the
LVOT (from the annulus to the proximal end of the geometry) and the ascending aorta (from the STJ to the distal
end of the geometry), fitting a straight line through the centerlines and computing the angle between those lines
using the inner product.

2.5 | Application of the statistical shape modeling framework

In Section 2.1 the non-parametric SSM framework was explained. In this section, it will be discussed how it was applied
to the 97 aortic valve geometries. First, the template and the patient-specific initial momenta were computed in
Deformetrica.30 To be able to do the computation, three preparation steps had to be completed first.

The first preparation step was to obtain an initial template geometry that was used in the very first iteration of the
two-step minimization approach to estimate the initial momenta and the final template geometry. As an initial tem-
plate, the mean geometry of another data set of aortic valve geometries, that was used in the study of Hoeijmakers
et al.,8 was used. The original LVOT and ascending aorta were extended with a straight and a slightly curved tube,
respectively (Figure 4).

The second step was to find optimal values for the two parameters mentioned in Section 2.1: λV , the kernel width of
KV , and λW , the kernel width of KW . Kernel width λV , that is, the stiffness parameter, influences the stiffness of the
deformations. For high values of λV the deformations are more global (“stiffer”), whereas for low values the deforma-
tions are more local (“less stiff”). Kernel width λW , that is, the resolution parameter, influences the level of detail that is

(A) (B) (C)

FIGURE 3 Schematic overview of the eight anatomical features: (A) STJ diameter DSTJð Þ, AVA, sinus of Valsalva diameter Dsinusð Þ,
annulus diameter Dannulusð Þ, LVOT diameter DLVOTð Þ, sinus of Valsalva height Hsinusð Þ, and the ratio between LVOT and annulus area

ALVOT=Aanð Þ. (B) The angle between the LVOT and the ascending aorta θð Þ. (C) The shape of the LVOT, either converging (dashed line) or

diverging (dotted line).
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captured in the Varifold distance between two geometries. The higher λW , the more detail is captured. To find suitable
settings for this application, parameter optimization was performed. The template and initial momenta were computed
with different combinations of λV and λW , varying between 5 and 15mm, and between 3 and 10mm respectively. The
optimal values of λV and λW were assessed by using only two aortic valve geometries of the data set: the one with
the smallest and the one with the largest aortic valve area. These two geometries were chosen because it is important
that the template can deform to these two extremes regarding valve opening. Only two geometries were used to increase
the speed of the optimization. The quality of the resulting deformations was expressed in the maximum surface distance
between the target geometry and the deformed template geometry. The combination that resulted in the smallest dis-
tance was λV ¼ 5 mm, and λW ¼ 8 mm, and was therefore used to calculate the momenta for all geometries and the final
template geometry.

The last preparation step was to initialize the control points. To this end, a box filled with points at a distance of λV
from each other surrounded all the geometries. Then, the points that were at a distance greater than 10mm from any
geometry were removed. The resulting initial control points are visualized in Figure 4C.

The initial control points, the initial template, and the selected values for λV and λW were used to compute the final
template geometry and the patient-specific initial momenta in Deformetrica. To prepare the template for CFD and FSI
simulations, small holes and distorted elements in the proximity of the STJ and the annulus were removed. Subse-
quently, the template was remeshed to obtain suitable surface mesh density for simulations. The mesh consisted of
2934 vertices and 5685 triangles, and the edge size ranged from 0.2 to 1.9mm. Then, the 97 target geometries were
approximated by applying the resulting momenta to the template. Next, the shape modes and shape coefficients of the
resulting momenta were computed in Matlab 2021a. To approximate the patient-specific momenta sets, according to
Equation (13), a finite number of shape modes Nm was used. Since the geometries were all scaled for alignment
(Section 2.3), the vertices of the approximated geometries had to be multiplied by the corresponding scaling factors s to
obtain the original size of the geometries. Thus, each target geometry was described by Nmþ1 parameters, that is, Nm

shape coefficients, and one scaling factor s.

2.6 | Data-driven generation of synthetic geometries

To generate synthetic aortic valve geometries, new combinations of shape coefficients α1…αNm and scaling factors sð Þ
were obtained by random sampling from an inferred distribution.28 This distribution was obtained from the shape coef-
ficients and scaling factors of the real patient data set. Each patient-specific geometry was represented by a point in the
Nmþ1-dimensional space Nmð shape coefficients and one scaling factor). The distribution was mapped to a uniform
distribution between 0 and 1 with a cumulative distribution function. To ensure that the correlations between the
parameters were accurately captured, a Gaussian copula36 was fitted to the data, which allowed for modeling the
relationship between the parameters while being independent of their marginal distributions. This approach was
necessary since the individual parameters were not all normally distributed. New points were randomly sampled
from this copula distribution. Lastly, these new points, that is, the synthetic data, were mapped back to the original
distribution with an inverse cumulative distribution. The synthetic momenta were reconstructed using Equation (13),
and the synthetic geometries were created by deforming the final template (Figure 6) with these momenta

(A) (B) (C)

FIGURE 4 Initial template geometry from side view (A) and top view (B), and the initial control points surrounding one of the target

geometries (C).
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(Equation (1)). In this way, 500 synthetic aortic valve geometries were generated. To validate whether the generated
virtual cohort of synthetic aortic valve geometries was realistic, it was compared to the real patient cohort, based on
the eight anatomical features described in Section 2.4. The Spearman correlation coefficients between all features
were determined and the correlations within the two cohorts were compared. Thereafter, a non-parametric multivar-
iate ANOVA test was done to assess if the 8-dimensional distribution of the synthetic data differed significantly from
the distribution of the real data. This test was done using the R statistical software package “non-parametric compar-
ison of multivariate samples (npmv)”.37 Moreover, we performed a literature study to be able to compare the distri-
butions (mean ± standard deviation) for the eight features we found in our real and virtual cohorts, with
distributions found in the literature.

2.7 | Clinically-driven generation of synthetic geometries

In addition to the data-driven approach, a clinically-driven approach17 was used to generate aortic valve geometries
with certain clinically relevant anatomical requirements. We focused on the two anatomical features that strongly influ-
ence the occurrence of procedural complications after TAVI (Section 1). The first feature is the LVOT shape, either con-
verging or diverging (Figure 3C), thereby increasing the chance of conduction problems, and paravalvular leakage
respectively. The second feature is the angle between LVOT and the ascending aorta (Figure 3B), which is also corre-
lated with the degree of paravalvular leakage. Therefore, an LVOT shape filter and an angle filter were designed and
implemented in the workflow to generate synthetic geometries.

To obtain the LVOT shape filter, the annulus and LVOT diameter were extracted from the 500 synthetic geometries
as explained in Section 2.4. The difference between the two diameters was calculated. The LVOTs were considered to
be converging for a positive difference, and diverging for a negative difference (Figure 3C). Then, a logistic regression
model was fitted to the data, with α1…αNm , s as predictors, and the LVOT shape as the dependent variable. After sam-
pling a new point from the copula distribution, the probability to obtain a converging geometry was calculated by
substituting the sampled parameters in the model. To generate converging geometries, the set of parameters was
accepted if the probability was 0.9, otherwise, it was discarded. To generate diverging geometries, the set of predictors
was accepted if the probability was below 0.1.

The angle filter was obtained by extracting the angle between LVOT and the ascending aorta, as explained in
Section 2.4, from the 500 synthetic geometries. A linear regression model with linear and quadratic terms was fitted to
the data with α1…αNm , s the predictors, and the angle between the LVOT and the ascending aorta the dependent vari-
able. Using this model, it was possible to estimate the angle and its corresponding 5% confidence interval for a newly
sampled point. If the confidence interval's lower and upper bounds fell within the desired angle range, the point was
accepted; otherwise, it was rejected.

The data-driven and clinically-driven approaches to generate synthetic aortic valve geometries were combined in
one virtual cohort generator, implemented in Matlab 2021a code. The user of the virtual cohort generator can set the
desired number of synthetic geometries, the preferred LVOT shape, and the desired angle range. A flowchart summariz-
ing the process of generating synthetic geometries within the virtual cohort generator is visible in Figure 5. The virtual
cohort generator was used to create several virtual cohorts, including 500 purely data-driven synthetic geometries
(Section 2.6), 500 geometries with converging LVOT, 500 geometries with diverging LVOT, and 500 geometries for each
of the following angle ranges: a small angle range (0�–20�), medium angle range (20�–40�), and a large angle
range (>40�).

FIGURE 5 Flowchart showing how one synthetic geometry is generated within the virtual cohort generator.
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3 | RESULTS

In the non-parametric SSM framework, the 97 aortic valve geometries were approximated in two steps. There-
fore, the accuracy of the approximations is evaluated in Section 3.1. Then, the plausibility of the generated
data-driven and clinically-driven virtual cohorts of synthetic geometries is assessed in Sections 3.2 and 3.3.

3.1 | Application of the statistical shape modeling framework

A set of momenta for each of the 97 real aortic valve geometries, together with a final template were obtained with
Deformetrica. The final template is shown in Figure 6. The 97 geometries were approximated by applying the
resulting momenta to the template. The accuracy of the approximations was evaluated by computing the distance
from each vertex of the approximated geometry to the target geometry. We considered a distance as being accept-
able when it was below 0.47 mm, which is the accuracy of the algorithm with which the geometries were
reconstructed from CT images.32 For three geometries the surface distances, normalized with respect to 0.47 mm,
are visualized in Figure 8 (approximation 1). This group of three geometries has been selected for visualization
because it contains the geometry with the smallest AVA (Figure 8A), the geometry with the largest AVA
(Figure 8B), and the geometry with the largest sum of surface distances (Figure 8C). The distances at all vertices of
the approximated geometry are summarized in the box plots. Overall, the target geometries and their approxima-
tions showed high similarity with errors reported as median (first quartile-third quartile) of 0.09 mm (0.04–
0.18 mm), 0.11 mm (0.05–0.22 mm), and 0.12 mm (0.05–0.26 mm) for the cases in Figure 8A–C respectively. The
highest errors were found at the valve leaflets and equaled 1.50, 1.43, and 1.87 mm for the cases in Figure 8A–C,
respectively. However, even in the approximation with the largest sum of absolute errors (Figure 8C), 88% of all
surface distances were still below 0.47 mm. Therefore, we consider the approximations to be sufficiently accurate
to represent the target geometries.

Principal component analysis was applied to the 97 sets of momenta. The momenta sets were approximated with an
increasing number of shape modes and applied to the template to approximate the target geometries. The eight anatom-
ical features were computed for all approximations and compared to the anatomical features of the target geometries.
Moreover, the surface distance, averaged over all vertices and all geometries was computed for an increasing number of
shape modes. Figure 7 shows how the errors between approximated and target geometries decrease with the increasing
number of shape modes used for the approximation. Note, that the sharp drops in the sinus height error plot (Figure 7)
are due to the discrete nature of the measurement method, which uses 0.5 mm slices to measure the distance between
the annulus and the STJ, that is, the sinus height (Section 2.4). For most of the anatomical features, the mean error
seems to be stabilized after 32 shape modes. Furthermore, the mean surface distance is below 0.47 mm after 32 modes.
These 32 shape modes capture 91% of the shape variation within the data set. The normalized surface distance between

(A) (B)

FIGURE 6 Final template geometry obtained through atlas computation in Deformetrica from side view (A) and top view (B).
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the geometry reconstructed with 32 shape modes and the target geometry is visualized in Figure 8 (approximation 2). It
is visible that the overall characteristics of the target geometries are still captured in the reconstruction with 32 modes.
The errors, reported as median (first quartile-third quartile) were 0.26 mm (0.13–0.45 mm), 0.28 mm (0.13–0.46 mm),
and 0.26 mm (0.12–0.49) and the maximum distances were 1.63, 1.92, and 1.88 mm for the cases in Figure 8A–C,
respectively. Approximately 74% of the surface distances were still below the reconstruction accuracy of 0.47 mm.
Therefore, it was decided to generate synthetic geometries with 32 shape modes.

3.2 | Data-driven generation of synthetic geometries

The first eight geometries from the virtual cohort, are shown in Figure 9. The individual geometries appear realistic and
physiologically plausible.

To evaluate the compatibility of the virtual cohort with the real cohort, the eight-dimensional distributions of fea-
tures of both cohorts were compared by means of a non-parametric multivariate ANOVA test. The test revealed that
the 500 synthetic geometries do not differ significantly from the real geometries (p = 0.86 > 0.05). To visualize the simi-
larity between the features of both cohorts, scatter plots of all combinations of features are depicted in Figure 10. It
shows that the trends and distributions of anatomical features in both cohorts were similar. The similarity is also con-
firmed by the Spearman correlation coefficient matrices in Figure 11, with a mean difference in correlation of 0.03.
Thus, based on the correlations and the ANOVA test, we consider the synthetic cohort as being physiologically plausi-
ble and realistic.

Finally, the anatomical feature values of both the synthetic and real cohorts were compared with values reported in
the literature (Table 1). The diameters of the LVOT, annulus, sinus and STJ were compared with area-derived diameters
from Buellesfeld et al.,38 which were determined based on CT images. Additionally, we compared AVA values with the
results from the same study. Both the diameters and the AVA values were in good agreement. However, the values in
Buellesfeld et al. were approximately 1 mm lower on average. To assess the angles between the LVOT and ascending
aorta, we referred to the values presented by Sherif et al.,6 who derived their measurements from 2D angiography
images. In contrast to their findings, our study's angles were on average seven degrees higher. The LVOT over annulus

FIGURE 7 Median (black solid line), first and third quartile (gray dashed lines) of error in eight geometric features, and the surface

distances as a function of the number of shape modes included in the approximation of the geometry. The largest error reduction is reached

within 32 shape modes (indicated with black vertical line). The abbreviations DLVOT , Dan, Dsinus, DSTJ , AVA, θ, ALVOT=Aan, and Hsinus stand

for the diameters of the LVOT, the annulus, the sinuses of Valsalva, and the STJ, the aortic valve area, the angle between the LVOT and the

ascending aorta, the ratio between LVOT and annulus area, and the sinus height respectively.
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(A)

(B)

(C)

FIGURE 8 Target geometry (first column), approximated geometry after applying momenta to the template (approximation 1, second

column), and geometry approximated with 32 shape modes (approximation 2, third column) for the geometry with the smallest AVA (A), the

geometry with the largest AVA (B), and the geometry with the largest sum of surface distances (C). The colors on the geometries indicate the

distance at each vertex to the target geometry, normalized with respect to the reference value, that is, the reconstruction accuracy of 0.47 mm.32

Box plots showing all surface distances are shown in the fourth column, with the percentile of distances below 0.47 mm indicated.
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area values were in good agreement with the values found in Ishizu et al.4 Lastly, the sinus heights found by Delgado
et al.39 were on average 3 mm lower than the sinus heights in our study. Overall, there are no extreme differences
between the anatomical feature values in our study and those reported in the literature, which reinforces the plausibil-
ity of our synthetic cohort.

3.3 | Clinically-driven generation of synthetic geometries

The LVOT shape filter and angle between LVOT and ascending aorta filter were derived from the data set of 500 syn-
thetic geometries and used to generate five virtual cohorts with 500 geometries each, with the following clinical require-
ments: converging LVOT, diverging LVOT, angles between LVOT and ascending aorta in range 0�–20�, 20�–40�, and
greater than 40�. The effectiveness of these filters was assessed and summarized in Table 2. The sensitivity of the filters
was evaluated by calculating the ratio between the number of geometries that met the desired clinical requirements
and the total number of geometries in that virtual cohort. The sensitivity of the filters was found to be high, with values
exceeding 0.89. The sampling efficiency of the filters was also evaluated by calculating the ratio between the number of
samples accepted by the filter and the number of discarded samples. The sampling efficiencies were relatively low and
strongly dependent on the percentage of geometries with the corresponding clinical requirement in the data-driven vir-
tual cohort of 500 synthetic geometries. Despite the low sampling efficiencies, the computational times required to gen-
erate 500 synthetic geometries with these clinical requirements remained within reasonable limits, taking no longer
than 70 min. Figure 12 shows an example geometry for each of the five clinically-driven cohorts. For the cohorts with a

(A) (B)

(C) (D)

(E) (F)

(G) (H)

FIGURE 9 The first eight geometries ((A)–(H)) of the data-driven virtual cohort from the side view (left) and top view (right).
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specific angle range as a clinical requirement, the geometry at the median of the resulting angles is shown. For the
cohorts with a converging and diverging LVOT shape as clinical requirements, the geometry with the largest and
the geometry with the smallest LVOT over the annulus area are shown respectively. These geometries were chosen to
provide a clear visualization of the difference between a converging and diverging LVOT.

4 | DISCUSSION

The goal of this study was to develop a framework to generate synthetic aortic valve stenosis geometries. The frame-
work had to satisfy two main requirements. First, the framework had to be capable of generating synthetic geometries

FIGURE 10 Scatter plots of all combinations of anatomical features for both the real (black) and synthetic geometries (red). On the

diagonal, the distributions of the individual features are shown in histograms. The abbreviations DLVOT , Dannulus, Dsinus, DSTJ , AVA, θ,

ALVOT=Aan, and Hsinus stand for the diameters of the LVOT, the annulus, the sinuses of Valsalva, and the STJ, the aortic valve area, the angle

between the LVOT and the ascending aorta, the ratio between LVOT and annulus area, and the sinus height, respectively. The features are

indicated in the schematic in the upper right corner.
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FIGURE 11 Spearman correlations describing the relations between the anatomical features shown in Figure 10 for the real geometries

(left) and the synthetic geometries (right).

TABLE 1 Anatomical feature values measured in the synthetic and real geometries and those reported in the literature.

Synthetic geometries Real geometries Literature

LVOT diameter (mm) 24.2 ± 3.3 24.2 ± 3.0 22.9 ± 3.238

Annulus diameter (mm) 24.6 ± 2.5 24.5 ± 2.4 23.3 ± 2.238

Sinus diameter (mm) 32.7 ± 3.4 32.6 ± 3.3 31.4 ± 3.038

STJ diameter (mm) 29.4 ± 3.0 29.4 ± 3.0 28.0 ± 3.038

AVA (cm2) 0.64 ± 0.2 0.62 ± 0.2 0.60 ± 0.238

θ (�) 26.7 ± 9.6 26.4 ± 8.9 19.7 ± 7.96

LVOT area/annulus area (�) 0.97 ± 0.10 0.97 ± 0.09 0.96 ± 0.064

Sinus height (mm) 25.1 ± 3.3 24.7 ± 3.0 22.2 ± 3.239

Note: The values are reported as mean ± standard deviation.

TABLE 2 Effectiveness of the filters in generating geometries with five clinical requirements, expressed in filter sensitivity, sampling

efficiency, and required time to generate 500 geometries. The occurrence of geometries with a certain clinical requirement in the unfiltered

virtual cohort is shown in the fifth column.

Filter
Clinical
requirement

Filter
sensitivity

Sampling
efficiency

Occurrence in unfiltered
virtual cohort

Time generating one
geometry (ms)

LVOT shape Converging 0.98 0.59 62% 36

Diverging 0.90 0.41 38% 60

Angle between LVOT and
ascending aorta

0�–20� 0.91 0.15 23% 52

20�–40� 0.93 0.52 69% 56

>40� 0.89 0.04 8% 140
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that are anatomically plausible using a data-driven approach. Second, it had to enable the selection of specific, clinically
relevant anatomical features using a clinically-driven approach. We focused on two anatomical features: the LVOT
shape (either converging or diverging), and specific ranges of angles between the LVOT and the ascending aorta.

With the use of non-parametric SSM, we managed to generate synthetic aortic valve geometries that are comparable
with a real-patient cohort and therefore, are considered as being physiologically plausible. The plausibility of our syn-
thetic geometries was reinforced by comparison with literature. In general, the values of the anatomical features were
in good agreement with those reported in the literature. The small differences between the values found in the litera-
ture and our values can be attributed to differences in measurement strategies. Furthermore, by using clinically-driven
acceptance criteria, we were able to select specific anatomical features: converging and diverging LVOTs and three dif-
ferent ranges of angles, with a sensitivity of around 90%. This novel combination of non-parametric SSM and clinically-
driven acceptance criteria enables us to create virtual cohorts of aortic valve stenosis geometries with distinct anatomi-
cal features, such as a cohort comprising exclusively converging geometries. We only focused on two features as an
example. However, the proposed framework could also be used to select other features, such as aortic valve area.

Furthermore, the template used to generate the synthetic geometries is very suitable for finite element,
CFD or FSI simulations, since it does not contain any holes or distorted elements. Moreover, its refinement
level aligns with, or even surpasses the refinement reported by Hoeijmakers et al.7 As a result, the synthetic
geometries are well-suited for simulations and require minimal pre-processing steps before integration into a
simulation pipeline.

Therefore, the virtual cohort generator that was developed has the potential to be used by TAVI manufacturers to
test their new or improved devices. They can generate any number of geometries with the desired anatomical feature
and perform device effect simulations via for example finite element, CFD or FSI simulations on the geometries. For
example, the synthetic geometries could be used to investigate the occurrence of paravalvular leakage or conduction
problems in new devices, using simulation strategies similar to the studies of Jaegere et al.40 and Rocatello et al.16

respectively. Synthetic geometries can also be helpful to train machine learning surrogates for high-fidelity models such
as CFD and FSI models.27 To train machine learning models, very large data sets are required, especially for high-
fidelity model surrogates with a large number of parameters. For this purpose, real patient data sets are often too small.
Therefore, generating synthetic geometries with the generator developed in this study could be a good alternative. In

(A) (B) (C)

(D) (E)

FIGURE 12 Synthetic geometries from clinically-driven cohorts. For the cohorts with specific ranges of angles between the LVOT and

the ascending aorta, the median angle geometry is shown (A–C). For the converging LVOT cohort, the geometry with the smallest ratio

between LVOT and annulus area is shown (D) and for the diverging LVOT cohort, the geometry with the largest ratio between LVOT and

annulus area (C) is shown.
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the next two paragraphs, the differences and improvements of our work with respect to other studies in this field are
discussed.

The current study is building on the previous work of Hoeijmakers et al.8 in which, synthetic aortic valve geometries
were generated as well. We made two main improvements compared to the previous study. The first improvement is
that we used non-parametric instead of conventional SSM. A non-parametric SSM framework does not require iso-
topology between input geometries to build the SSM. The use of this framework makes our framework wider applica-
ble, especially for complex shapes where obtaining iso-topologic meshes is challenging. For example, our framework
could also be applied to generate synthetic pulmonary artery geometries for in silico trials of pulmonary artery pressure
sensors. The second improvement is that we introduced a sampling strategy to make sure that the distribution of
parameters in the virtual cohort was equal to that of the real cohort.

Compared to other studies focusing on the generation of synthetic aorta geometries, such as those of Romero et al.17

and Pajaziti et al.,27 our study distinguishes itself by the sampling strategy that is used. In this study, sampling from a
copula distribution was used. Copulas disconnect marginal distributions from the dependence structure between vari-
ables. When using copulas the correlation between variables is modeled without the need to assume specific distribu-
tions of each variable.36 Therefore, we believe that the copula distribution is a sufficiently accurate estimation of the
real cohort's distribution. Points sampled from this distribution are by definition compatible with the real cohort and
therefore it was not necessary to use acceptance criteria as was done in the study of Romero et al.17

Our approach also has some limitations. First of all, the downside of non-parametric SSM is that geometries are
approximated in two steps instead of in one step. First, the geometries are approximated by deformation vectors that
deform the template to the target geometries, introducing a certain level of error. Then, the momenta are approximated
with PCA, adding another source of error. In contrast, conventional SSM approximates geometries solely with PCA,
without introducing the error from the first step. Despite the two approximation steps, the biggest part (around 75%) of
the surface distances between approximated and target geometries were below the reconstruction accuracy of 0.47 mm
that was reported in Reference 32. Furthermore, for the purpose of generating synthetic data, the approximations are
sufficiently accurate, since we do not aim to reproduce each patient in the real cohort. To validate if the introduced
approximation errors influence physical parameters such as pressure drops, flows and wall shear stresses, CFD or FSI
simulations should be performed on both the original and the approximated geometries.

The second limitation is that a relatively short segment of the ascending aorta was included in the geometries, compared
to the studies of Romero et al.17 and Pajaziti et al.27 There is much variation in the shape of the aortic arch and descending
aorta among different patients. Including a longer part of the aorta in the geometries would lead to shape modes describing
this variation dominating shape modes describing variation in the valve itself. Therefore we chose to focus on a shorter seg-
ment of the aorta. Nonetheless, the segment we included is still sufficiently long to enable device effect simulations, and we
do not believe that this relatively shorter segment poses a significant problem for our framework's target application.

Furthermore, the sample efficiencies for the specific anatomical features during clinically-driven geometry genera-
tion were low compared to the sample efficiencies found in Romero et al.17 This difference is due to the fact that we
always sampled from the same distribution, despite the desired anatomical features, whereas Romero et al.17 sampled
from different distributions for different anatomical features. The disadvantage of a low sample efficiency is that it takes
longer to generate the desired number of geometries. The clinical requirement with the lowest sample efficiency, and
thus the highest computational time was the angle greater than 40�. However, when compared to the time it takes to
acquire one CT scan to obtain a patient-specific geometry, the computational time of 144ms is still very reasonable.

Additionally, some clinically relevant anatomical features that are crucial for TAVI were absent in this study. First
of all, we did not include calcifications in the aortic valve geometries. According to the Euro Heart Survey on Valvular
Heart Disease, calcified leaflets accounted for approximately 82% of the patients with aortic stenosis included in the
study.41 Calcifications significantly increase the stiffness of the leaflets, which strongly influences device implantation.
Thus, it is important to take calcifications into account. Therefore, a future extension to our work is adding calcifica-
tions to the synthetic geometries. Moreover, we did not include the bicuspid aortic valve, which is present in 25% of the
population of patients aged 80 years or older who undergo valve replacement.42 A bicuspid aortic valve only has two
leaflets instead of three and often leads to stenosis. Bicuspid valves were not included in the data set used in our study
but should be considered in future studies by using another data set that includes this valve type. Eventually, the posi-
tion of the coronary arteries could be included in the synthetic geometries as it influences the occurrence of another
TAVI complication: coronary artery occlusion.43 During coronary artery occlusion, the TAVI valve blocks the coronary
artery, resulting in a lack of blood flow to the heart muscle. However, this complication is rare (incidence <1%), and
therefore was not prioritized in this study.
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The last limitation is that the validation process only compared synthetic geometries to the real geometries used to
build the SSM. It is important to note that the SSM inherently depends on the data set used to build it. Therefore,
to establish the plausibility of the synthetic geometries it is crucial to demonstrate that their parameter distributions are
comparable with those of an independent data set. To address this issue we plan to conduct cross-validation in the
future by comparing the distributions and correlations of the eight anatomical features, extracted from the synthetic
data set, with those from a data set of aortic valve geometries, originating from another hospital.

In future research, we plan to build an FSI model applied to synthetic geometries. Using this FSI model we could also
filter on physiological plausibility, in order to obtain realistic combinations of geometries, boundary conditions and physi-
ological outputs. Furthermore, using this model in silico TAVI trials could be performed to investigate the difference in
paravalvular leakage between geometries with a converging and diverging LVOT, and to investigate the influence of the
angle between the LVOT and the ascending aorta. Once we set up a high-fidelity model with which we can perform in
silico trials we would like to develop a machine learning surrogate, to be able to perform real-time simulations.

5 | CONCLUSION

In conclusion, this study successfully developed a virtual cohort generator for the generation of synthetic aortic valve
stenosis geometries, with the ability to select specific, clinically relevant anatomical features. Our results demonstrate
that the generated geometries are anatomically plausible and their parameter distributions are comparable to those of a
real-patient cohort, which makes them suitable for in silico TAVI trials. Furthermore, the generated synthetic geome-
tries can be used to train machine learning surrogates for high-fidelity models such as CFD and FSI models. Although
this study focused on aortic valve geometries, the proposed framework is more generally applicable, due to the use of
non-parametric SSM. Overall, the presented work is a significant step towards implementing in silico trials in the vali-
dation chain for cardiovascular implantable devices, to make the whole process from development to the clinical intro-
duction, faster, safer and more efficient.
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