64,944 research outputs found

    Analyzing the effects of emotion management on time and self-management in computer-based learning

    Get PDF
    Emotional learning involves the acquisition of skills to recognize and manage emotions, develop care and concern for others, make responsible decisions, establish positive relationships, and handle challenging situations effectively. Time is an important variable in learning context and especially in the analysis of teaching-learning processes that take place in collaborative learning, whereas time management is crucial for effective learning. The aim of this work has been to analyze the effects of emotion management on time and self-management in e-learning and identify the competencies in time and self-management that are mostly influenced when students strive to achieve effective learning. To this end, we run an experiment with a class of high school students, which showed that increasing their ability to manage emotions better and more effectively enhances their competency to manage the time allocated to the learning practice more productively, and consequently their learning performance in terms of behavioral engagement and achievement and partly, in terms of cognitive engagement and self-regulation. Teacher affective feedback was proved to be a crucial factor to enhance cognitive engagement.Peer ReviewedPostprint (author's final draft

    What learning analytics based prediction models tell us about feedback preferences of students

    Get PDF
    Learning analytics (LA) seeks to enhance learning processes through systematic measurements of learning related data and to provide informative feedback to learners and educators (Siemens & Long, 2011). This study examined the use of preferred feedback modes in students by using a dispositional learning analytics framework, combining learning disposition data with data extracted from digital systems. We analyzed the use of feedback of 1062 students taking an introductory mathematics and statistics course, enhanced with digital tools. Our findings indicated that compared with hints, fully worked-out solutions demonstrated a stronger effect on academic performance and acted as a better mediator between learning dispositions and academic performance. This study demonstrated how e-learners and their data can be effectively re-deployed to provide meaningful insights to both educators and learners

    A model for providing emotion awareness and feedback using fuzzy logic in online learning

    Get PDF
    Monitoring users’ emotive states and using that information for providing feedback and scaffolding is crucial. In the learning context, emotions can be used to increase students’ attention as well as to improve memory and reasoning. In this context, tutors should be prepared to create affective learning situations and encourage collaborative knowledge construction as well as identify those students’ feelings which hinder learning process. In this paper, we propose a novel approach to label affective behavior in educational discourse based on fuzzy logic, which enables a human or virtual tutor to capture students’ emotions, make students aware of their own emotions, assess these emotions and provide appropriate affective feedback. To that end, we propose a fuzzy classifier that provides a priori qualitative assessment and fuzzy qualifiers bound to the amounts such as few, regular and many assigned by an affective dictionary to every word. The advantage of the statistical approach is to reduce the classical pollution problem of training and analyzing the scenario using the same dataset. Our approach has been tested in a real online learning environment and proved to have a very positive influence on students’ learning performance.Peer ReviewedPostprint (author's final draft

    Considering Human Aspects on Strategies for Designing and Managing Distributed Human Computation

    Full text link
    A human computation system can be viewed as a distributed system in which the processors are humans, called workers. Such systems harness the cognitive power of a group of workers connected to the Internet to execute relatively simple tasks, whose solutions, once grouped, solve a problem that systems equipped with only machines could not solve satisfactorily. Examples of such systems are Amazon Mechanical Turk and the Zooniverse platform. A human computation application comprises a group of tasks, each of them can be performed by one worker. Tasks might have dependencies among each other. In this study, we propose a theoretical framework to analyze such type of application from a distributed systems point of view. Our framework is established on three dimensions that represent different perspectives in which human computation applications can be approached: quality-of-service requirements, design and management strategies, and human aspects. By using this framework, we review human computation in the perspective of programmers seeking to improve the design of human computation applications and managers seeking to increase the effectiveness of human computation infrastructures in running such applications. In doing so, besides integrating and organizing what has been done in this direction, we also put into perspective the fact that the human aspects of the workers in such systems introduce new challenges in terms of, for example, task assignment, dependency management, and fault prevention and tolerance. We discuss how they are related to distributed systems and other areas of knowledge.Comment: 3 figures, 1 tabl

    Affective Medicine: a review of Affective Computing efforts in Medical Informatics

    Get PDF
    Background: Affective computing (AC) is concerned with emotional interactions performed with and through computers. It is defined as “computing that relates to, arises from, or deliberately influences emotions”. AC enables investigation and understanding of the relation between human emotions and health as well as application of assistive and useful technologies in the medical domain. Objectives: 1) To review the general state of the art in AC and its applications in medicine, and 2) to establish synergies between the research communities of AC and medical informatics. Methods: Aspects related to the human affective state as a determinant of the human health are discussed, coupled with an illustration of significant AC research and related literature output. Moreover, affective communication channels are described and their range of application fields is explored through illustrative examples. Results: The presented conferences, European research projects and research publications illustrate the recent increase of interest in the AC area by the medical community. Tele-home healthcare, AmI, ubiquitous monitoring, e-learning and virtual communities with emotionally expressive characters for elderly or impaired people are few areas where the potential of AC has been realized and applications have emerged. Conclusions: A number of gaps can potentially be overcome through the synergy of AC and medical informatics. The application of AC technologies parallels the advancement of the existing state of the art and the introduction of new methods. The amount of work and projects reviewed in this paper witness an ambitious and optimistic synergetic future of the affective medicine field
    • …
    corecore