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Abstract 

Learning analytics (LA) seeks to enhance learning processes through systematic 

measurements of learning related data and to provide informative feedback to learners and 

educators (Siemens & Long, 2011). This study examined the use of preferred feedback 

modes in students by using a dispositional learning analytics framework, combining learning 

disposition data with data extracted from digital systems. We analyzed the use of feedback 

of 1062 students taking an introductory mathematics and statistics course, enhanced with 

digital tools. Our findings indicated that compared with hints, fully worked-out solutions 

demonstrated a stronger effect on academic performance and acted as a better mediator 

between learning dispositions and academic performance. This study demonstrated how e-

learners and their data can be effectively re-deployed to provide meaningful insights to both 

educators and learners.  

Keywords: blended learning; dispositional learning analytics; e-tutorials; learning 

feedback; learning dispositions; higher education; problem solving; STEM 
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Introduction 

In educational settings, an enormous volume of potentially valuable information is 

generated by both students and educators. Such information may include academic performance, 

tracking data from online learning environments, emails and social network data. In recent years, 

the term “learning analytics” has emerged as educational institutions and corporate learning started 

to harness this wealth of information to provide real time feedback to students while offering 

valuable insights for educators to improve teaching quality (Siemens, Dawson, & Lynch, 2013). 

In the corporate world, LA can help learning and development of professionals by identifying 

successful learning activities and patterns, with clear indications of the learning progress of its 

employees. In a higher education context, students and teachers may benefit from personalized 

and adaptive learning experiences (Knewton, 2016). To better catalyze the processes of learning 

for individuals and collectives, Buckingham Shum and Crick (2012) have proposed a dispositional 

learning analytics infrastructure that combines learning activity generated data with learning 

dispositions, values and attitudes measured through self-report surveys which are fed back to 

students and teachers through visual analytics. Tempelaar, Rienties, and Giesbers (2015) have 

investigated the predictive power of learning dispositions, outcomes of continuous formative 

assessments, and other system-generated data on modeling student performance and their potential 

to generate informative feedback. The study found that computer-assisted formative assessments 

can best detect underperforming student and academic performance. 

In learning theory, monitoring and evaluation play a crucial role as they provide feedback 

on how activities coordinate across several stages of studies (task definition, goal setting and 
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planning, and enacting study tactics and strategies) (Winne & Hadwin, 1998). Feedback assesses 

the level of understanding of learners and can provide cues for reinforcement. In a meta-study by 

Hattie (2013), feedback is considered one of the most powerful tools in enhancing the learning 

experience. In the past, traditional formal feedback is limited to taking the form of a grade, which 

is available only after finishing all learning activities. However, the involvement of educational 

technology allows us to gather feedback on learning-in-progress activities, which provides a real-

time assessment to both students and teachers. For instance, a study by Duffy and Azevedo (2015) 

revealed that students in the “prompt and feedback” condition deployed more self-regulated 

learning strategies and spent more time viewing relevant science material compared to students in 

the control condition, in which learners did not receive any support. Additionally, McLaren, van 

Gog, Ganoe, Karabinos, and Yaron (2016) categorized different feedback modes into worked 

examples, erroneous examples, tutored problems, and problem solving. Their study showed clear 

efficiency benefits of the use of worked examples in a web-based learning environment: equal 

levels of test performance were achieved, with significantly less investment of time and effort 

during learning. Given the importance of feedback and the advancement in assessment technology, 

the investigation of the effects of feedback use by students on their academic performance suggests 

being a promising research trajectory in learning analytics.  

This study examines how learning dispositions and feedback preferences affect academic 

performance. The article is organized as follows. The next section (Section 2) introduces the 

context of the study and its instruments. This is followed by Section 3, which presents the results, 

and is followed by the discussion in section 4. Finally, section 5 concludes the study and discusses 
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the implications of big data in education and learning analytics (LA) for online learners/instructors, 

and how this study bridges the gap between existing LA literature and pedagogy.  

Research design 

Data source 

The educational system in which students learn mathematics and statistics is best described 

as a ‘blended’ or ‘hybrid’ system. The main component is a face-to-face instruction that employs 

problem-based learning (PBL), in small groups (14 students), as an instructional strategy. As part 

of the PBL approach. Learners are coached by a content expert tutor (Schmidt, Van der Molen, Te 

Winkel, & Wijnen, 2009). Participation in these tutorial groups is required, as is the case for all 

courses based on the Maastricht PBL system. Within the online component of the blended learning, 

students can optionally make use of the two e-tutorials Sowiso (mathematics) and MyStatLab 

(statistics) (Tempelaar, Heck, Cuypers, van der Kooij, & van de Vrie, 2013; Tempelaar et al., 

2015). This choice is based on the philosophy of student-centered education, placing the 

responsibility for making educational choices primarily on the student. However, the use of e-

tutorials and achieving good scores in the practicing modes of the MyLab environments is 

stimulated by making bonus points available for good performance in the quizzes. Quizzes are 

taken every two weeks and consist of items that are drawn from the same item pools applied in the 

practicing mode. We chose this particular constellation as it stimulates students with limited prior 

knowledge to make intensive use of the MyLab platforms. The bonus is maximized to 20% of 

what one can score on the exam. 
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The student-centered characteristic of the PBL-based instructional model requires, first and 

foremost, adequate, informative feedback to students so that they are able to monitor their study 

progress and their topic mastery in absolute and relative sense. The provision of relevant feedback 

starts on the first day of the course when students take a diagnostic entry test for mathematics. 

Feedback from this entry test provides a first signal of the importance of using the digital learning 

platforms made available to the students. Next, the Sowiso and MyStatLab environments take over 

the monitoring function: at any time, students can see their progress in preparing the next quiz, get 

feedback on the performance in completed quizzes, and on their performance in the practice 

sessions.  

Participants in this study are 1069 students in a blended introductory quantitative course at a 

public university in the Netherlands during 2015-2016. A large diversity in the student population is 

present: only 24% were educated in the Dutch high school system. The largest proportion, 46% of 

the students, was educated according to the German Abitur system. High school systems in Europe 

differ strongly, most particularly in the teaching of mathematics and statistics. Therefore, it is 

crucial that the first module offered to these students is flexible and allows for individual learning 

paths (Tempelaar et al., 2013; Tempelaar et al., 2015). In the investigated course, students work 

an average 10 hours in Sowiso, and 25 hours in MyStatLab, which represents 12.5% to 31% of the 

available time of 80 hours for learning on both topics. 
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Instruments and procedure 

In this empirical study, we investigate the relationships between course performance 

measures, learning management system (LMS) trace variables, student information system (SIS) 

based variables, and learning disposition variables measured in six self-report surveys. Most 

learning dispositions incorporated in this study are assumed to be relative context-independent. 

Examples of such are attitudes and learning styles. These are relative stable constructs, not 

impacted by the specific learning activity the student is in: trait-like type of variables. For that 

reason, these self-report surveys were all administered at the start of the course, to make their data 

available as early as possible. On the other hand, learning emotions are context-dependent: they 

relate to emotions of students in specific learning activities. These state-like variables cannot be 

measured at the start of the course, since students need to have sufficient experience with the 

learning context in order to be able to assess their contextual learning emotions. To differentiate 

between test emotions and learning emotions, the measurement should also not take place too late 

in the course, and therefore, we opted to do so exactly half way the course. Thus, it gives students 

sufficient experience with the topics and the learning activities, without being in danger that the 

approaching exam would strongly impact learning emotions. In the subsections that follow, several 

instruments are described to provide the groundwork for our analysis. 

Course Performance Measures 

The ultimate aim of the predictive modeling endeavor is to understand how student 

dispositions and learning activity relate to four relevant course performance measures: 
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performance on the exam, both for mathematics (MathExam) and statistics (StatsExam), and the 

aggregated bonus for both topics, which was based on performance in the three quizzes: 

MathBonus and StatsBonus, combined with the mastery level achieved in the e-tutorials for each 

topic: MathMastery and StatsMastery.  

LMS Trace Data 

Three different digital systems have been used to organize the learning of students, and to 

facilitate the creation of individual learning paths: BlackBoard (learning management system), and 

the two e-tutorials Sowiso and MyStatLab (MSL). Students worked in the two e-tutorials for all 

seven weeks, practicing homework exercises selected by the module coordinator. The e-tutorial 

systems track the mastery score achieved in each task, which is measured as the number of 

successful attempts, (MathMastery and StatsMastery), time on task (MathHours and StatsHours), 

the total number of attempts required to get to the mastery level achieved (MathAttempts and 

StatsAttempts), the number of fully worked-out solutions called for (MathSolutions and 

StatsSolutions), and the number of hints asked for (MathHints and StatsHints). In this study, 

feedback preferences imply the use of fully worked-out solutions and the use of hints. Overall, 

students who see more fully worked-out solutions, and who ask for more hints, perform better. 

These data were aggregated over the on average 25 weekly tasks for mathematics, and about 20 

tasks for statistics, to produce ten predictor variables, five for each topic, for each of the seven 

weeks, and next, aggregated over all seven education weeks. Less aggregated data sets have been 

investigated, but due to high collinearity in data of individual tasks, these data sets produced less 

stable prediction models.  
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The preliminary results from this study suggest that the five types of track data for both 

topics appear to be collinear: in general, active students spend more time in the e-tutorials, making 

more attempts, achieving higher mastery, and in doing so, they use more hints and examples. Due 

to this collinearity, the added value of time on task and number of attempts in predicting course 

performance appeared to be minimal, with mostly non-significant betas. Therefore, in the final 

version of prediction models, only mastery level, the use of hints and the number of examples were 

included. In this article, we are particularly interested in which factors influence the way students 

use feedback (fully worked-out solutions versus hints), and how different feedback modes can help 

to explain students’ academic performance.  

SIS System Data 

The Maastricht University SIS provided four further variables which are used as controls. 

Standard demographic variables are Gender (an indicator variable for female students), Studytrack 

(Economics and Business Economics, Fiscal Economics, and International Business) and 

MathMajor (indicator for the advanced mathematics track in high school). Distinguishing between 

national and international students is key, given the strong focus on statistics in the Dutch high 

school system (with a large variation in other countries, but never as extreme as in the Dutch case). 

The MathMajor indicator is constructed on the basis of distinguishing prior education preparing 

for sciences, or for social sciences. Students in the sample are from 45 different national high 

school systems, all being very different, but in all cases differentiating between advanced and 

intermediate level mathematics track (students of basic mathematics track are not admitted into 

the program). 
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Upon entering the course, students were required to do a mathematics diagnostic entry test 

(MathEntryTestScore), of which the scores were added to the SIS data.  

Dispositional Attitude Data 

Attitudes towards the learning of mathematics were assessed with the SATS instrument 

(Tempelaar, Gijselaers, van der Loeff, & Nijhuis, 2007), based on the expectancy-value theory 

(Wigfield & Eccles, 2000). The instrument contains six mathematics related attitudes, and two 

general attitudes. However, in this study, we only focus on the two general learning related self-

perceptions referred to as RiskTaking, how strong risk seeking and how less risk avoidant students 

are, and Procrastination, the tendency to avoid doing learning activities. 

Dispositional Academic Motivation Scale 

Vallerand et al. (1992) propose three main categories of motivations in learning: Intrinsic, 

Extrinsic, and Amotivation. First, Intrinsic motivations (IM) refer to the pleasure and satisfaction 

derived from doing the task itself. IM consists of (1) Intrinsic motivation to know (IMknow), that 

refers to the satisfaction while learning or trying to understand something new, (2) Intrinsic 

motivation toward accomplishments (IMacc), in which individuals get pleasure from 

accomplishing or creating something, and (3) Intrinsic motivation to experience stimulation 

(IMstim), referring to the fulfillment from engaging in the activity. Second, Extrinsic motivations 

(EM) pertains to a wide variety of behaviors which are engaged in as a means to an end and not 

for their own sake. EM can be differentiated between (1) EM external regulation (EMext), which 

refers to rewards or constraints, (2) EM introjection (EMint), in which individuals begin to 
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internalize the reason for his or her actions, and (3) EM identification (EMiden), in which the 

behavior is perceived as valuable and important for oneself. Third, individuals are Amotivated 

when they are neither intrinsically or extrinsically motivated. They perceive their behaviors are 

caused by forces that are out of their control.  

In this study, we combine IMknow, IMacc, IMstim, and EMiden into a new construct 

called Autonomous, which is the total average of the mentioned motivations. In addition, Control 

is also created by taking the mean of EMintro, and EMext.  

Dispositional Help-Seeking Behavior Data 

Help seeking can be conceptualized as a general problem-solving strategy that allows 

learners to cope with academic difficulties in gaining the assistance of others. Gall (1985) draws a 

distinction between "executive" or dependency-oriented help seeking and "instrumental" or 

mastery-oriented help seeking. The former refers to those instances in which the student's intention 

is to have someone else solve a problem or attain a goal on his or her behalf, whereas the latter is 

limited to the amount and type of assistance needed for the student to solve the problem 

independently. Avoidance of help-seeking is a situation in which help is needed, but the student 

refuses to seek help. Perceived benefits of help seeking are students’ beliefs about the outcomes 

of help-seeking activities, such as interest or learning. In addition, the source of help can also be 

distinguished between Formal source and Informal source. The former refers to institutional 

resources such as instructors, or tutors, while the latter refers to non-institutional resources such as 

classmates, friends, and family members (Knapp & Karabenick, 1988).  
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Dispositions on Self-Regulated Learning 

The learning processing and regulation strategies that shape self-regulated learning are 

based on the Inventory of Learning Styles (ILS) instrument (Vermunt, 1996). Our study focuses 

on two of the four domains or components of learning of Vermunt’s model: cognitive processing 

strategies, and metacognitive regulation strategies. Each of these components are composed of 

three scales. Different processing strategies include Deep processing strategy, in which students 

relate, structure and critically process the new knowledge they learn, Stepwise processing strategy 

(also called surface processing) based on memorizing, rehearsing and analyzing, and Concrete 

processing strategy, focusing on making new knowledge concrete, and applying it (Vermunt, 

1996). Likewise, three metacognitive regulation strategies are Self-Regulation of learning 

processes and learning content, External Regulation of learning processes and learning results, and 

lastly, Lack of Regulation: the absence of regulation be it by the student or out of the environment. 

Dispositional Epistemic Emotions Data 

Epistemic emotions distinguish from activity emotions in that they are related to cognitive 

aspects of the task itself (Pekrun, 2011). Prototypical epistemic emotions are curiosity and 

confusion. In this study, epistemic emotions were measured with the Epistemic Emotion Scales 

(EES) (Pekrun & Meier, 2011), including Surprise, Curiosity, Confusion, Anxiety, Frustration, 

Enjoyment, and Boredom. 
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Research questions 

In order to examine how learning dispositions and feedback preferences affect academic 

performance, the following research questions were posed: 

Q1: How do feedback preferences influence academic performance? 

Q2: How do learning dispositions influence feedback preferences? 

Q3: To what extent do feedback preferences mediate the relationship between learning 

dispositions and academic performance? 

Data analysis 

The data analysis steps of this study are all based on linear, multivariate models, making 

use of Sobel-Goodman mediation analysis (Figure 1). In the first step, we investigate the direct 

effects of the four performance measures, the feedback preferences data derived from LMS, and 

several types of disposition data, with SIS data as controls. For space limitations, we restrict 

ourselves to static models that are estimated on all available, aggregated track data, rather than 

dynamic models estimated on weekly data. In the second step, we focus on the indirect effects of 

dispositional data on academic performance through feedback preferences track data: the 

mediation effect is calculated as the product of the coefficients of dispositional data and feedback 

preferences, and feedback preferences and academic performance. In the final step, the total effect 

is computed as the sum of direct effect and indirect effect.  
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Figure 1: Research design 

Results 

Feedback preferences (LMS Track Data) 

Figure 2 summarizes the relationship between feedback preferences, as revealed by student 

behavior which represented through their actions within the tools, and academic performance. 

MasteryLevel1 in both tools, that is the average number of exercises successfully finished, is 

strongly positively related to all performance measures. Most strongly for performance in quizzes, 

with MathBonus and StatsBonus with betas of .78 and .92, respectively, and somewhat less strong 

for performances in the exams, with MathExam and StatsExam with betas of .40 and .53, 

respectively (p < .01). This difference in explained variation is easily interpreted using the strong 

tie between quizzes and practicing in the tools. Second, the average number of fully worked-out 

solutions asked for per exercise, MathSolutions and StatsSolutions, are associated with a 

                                                 

1 See section 2.2.2 LMS Trace Data 

Learning dispositions Academic performance 

Feedback preferences 
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significant decrease in Mathexam (B = -.16, p < .01) and Statsexam (B = -.31, p < .01), respectively. 

This may seem counter-intuitive, but is to be interpreted in a multivariate context: given the same 

MasteryLevel, students who requested less fully worked-out solutions are the better performers, 

and therefore, scored higher on the final exam. The effect of StatsSolutions is salient on StatsBonus 

whereas MathSolutions has an insignificant impact on MathBonus. Third, while the average 

number of hints asked for per exercise (Mathhints) has no significant effect on Mathexam and 

MathBonus, the Statshints variable is negatively correlated with Statsexam (B = -.14, p < .01) and 

Statsbonus (B = -.08, p < .01). Its interpretation follows the multivariate context: given the same 

level of mastery in Statistics, students who asked for fewer hints are the ones who perform better 

on the quizzes and the final exam.  

 

Figure 2: The effects of mastery and feedback preferences on academic performance 

(standardized beta coefficients, p<.01) 

SIS System Data 
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In terms of academic performance, there are no significant differences amongst study 

tracks and revealed feedback preferences, except for Economics students, for whom the 

performance in Mathexam is significantly higher than International Business students (B = .05, p 

< .1).  

The indicator for prior mathematics schooling, MathMajor, impacts both academic 

performance and feedback preferences (Table 1). The beta weights of advanced level prior 

education are .12 for MathExam, .07 for StatsExam, and .09 for MathBonus. Evidently, the benefits 

of having more prior knowledge in mathematics are greater on Mathematics related performance 

than Statistics related performance. Regarding feedback preferences, students with MathMajor 

level asked for less fully worked-out solutions than non-MathMajor students in both mathematics 

and statistics, with the stronger effect on the former. Similarly, MathEntryTestScore also 

demonstrated similar patterns with stronger effects on MathExam and MathBonus than on 

StatsExam and StatsBonus.  

While the difference in academic performance across gender is not significant, there are 

some interesting patterns in feedback preferences between females and males. On average, female 

students use more fully worked-out solutions and have higher mastery score than male students in 

Mathematics. However, in the multivariate model, the beta of the indicator Female is negative. 

This is to be understood by the gender difference in MathMajor, the main predictor of the Solutions 

variable. Female students are underrepresented in the MathMajor category, but within both 

categories, female students use fewer Solutions than male students.  
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Table 1: The effects of SIS system data on academic performance and feedback 

preferences 

 Math Stats 

 Exam Bonus Mastery Solutions Hints Exam Bonus Mastery Solutions Hints 

Economicsa .05* .02 -.04 -.03 .00 .00 .02 .00 -.04 .02 

FiscalEconomicsa .03 .01 -.06* -.03 -.01 -.02 -.03* .02 .00 -.05 

MathMajor .12*** .09*** .05 -.14*** -.01 .07** .01 .02 -.06* -.03 

MathEntryTestScore .17*** .09*** .18*** .01 .03 .05* .01 .13*** .04 .01 

Female .04 .02 .08** -.06* .02 .04 .01 .03 .03 -.06* 

Note: standardized coefficients; Baseline groups are InternationalBusiness, MathMinor, and Male; * p < .1; ** p < .05; ** p < 

.01 

Mediation tests  

After carrying out the analysis of the direct effects of revealed feedback preferences on 

academic performance, and how SIS system data impact feedback preferences, we are interested 

in investigating how learning dispositions influence feedback preferences, and to what extent 

feedback preferences mediate the relationship between learning dispositions and academic 

performance. In order to do so, we once more apply Sobel-Goodman mediation tests to measure 

the indirect effect of any learning disposition on academic performance, multiplying the coefficient 

of the learning disposition on feedback preference, as well as the coefficient of feedback preference 

on academic performance.  

Dispositional Attitude Data 

Direct effects of dispositional attitudes on performance measures are limited, with only one 

significant relation: students with higher levels of Procrastination perform on average worse on 

Mathexam (B = -.06, p < .1). In contrast, indirect effects through feedback preferences are resilient 
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(Table 2). Procrastination hinders all student activity, and above all, has deteriorating effects on 

mastery in the tools. Due to the strong tie between mastery in the tools and bonus (the score on the 

quizzes), major negative indirect effects are those from Procrastination through Mastery to Bonus 

score. There is a weak positive indirect effect, composed of two negative paths, from 

Procrastination through both types of Solutions to Exam and Bonus scores.   

Long-term orientation has no direct effects on performance and a very weak indirect effect 

through Hints for both statistics performance types. 

Table 2: Mediation analyses from dispositional learning attitudes to activity measures to academic 

performance 

 Direct path Indirect path through the following mediators 

 Math Stats Math  Stats  

   Mastery Solutions Hints Mastery Solutions Hints 

Procrast   -.18*** -.14*** -.09** -.22*** -.09** -.02 

Longterm   .03 .05 .08** .05 -.04 .08** 

Procrast  Exam -.06* -.04 -.07 .02*** .00 -.18*** .03*** .00 

Procrast  Bonus .02 .02 -.14*** .00 .00 -.20*** .02** .00 

Longterm  Exam -.01 .02 .01 -.01 .00 .03 .01 -.01*** 

Longterm  Bonus -.02 .01 .02 .00 .00 .04 .01 -.01** 

Note: standardized coefficients; * p <.1 ; ** p <.05 ; *** p <.01 

Dispositional Academic Motivation Scale 

In reporting the role of autonomous, controlled, and lack of motivation, indirect effects are 

of a very limited size, and absent for both Mastery and Hints variables, as shown in Table 3. The 

only significant indirect effect is through the Solutions variable. Autonomously motivated students 

more often follow ‘their own learning plan’ by calling fully worked-out examples, rather than 
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solving the problems themselves, both in mathematics and statistics. Amotived students do too, for 

mathematics. This negatively impacts performance scores, mostly for the exam scores. These 

negative indirect effects add to direct effects, also negative, of all motivation types: Autonomous 

and Amotivation, as well as Controlled motivation, producing all negative total effects. It is 

especially the exam component of performance, Mathexam and Statsexam that is most strongly 

affected. 

Table 3: Mediation analyses from dispositional academic motivation to activity measures to 

academic performance 

  Direct path Indirect path through the following mediators 

 Math Stats Math  Stats  

 
  Mastery Solutions Hints Mastery Solutions Hints 

Autonomous   .03 .10** .01 .05 .12*** -.01 

Control   .04 .02 -.01 .02 .01 -.02 

Amotivation  
-.01 .09** .03 -.01 .03 -.04 

AutoExam -.08** -.06 .01 -.02** .00 .03 -.04*** .00 

AutoBonus -.06** -.06** .02 .00 .00 .05 -.02*** .00 

ControlExam -.06** -.07** .02 .00 .00 .01 .00 .00 

ControlBonus -.03 .03 .03 .00 .00 .02 .00 .00 

AmotivExam .01 -.08** .00 -.01** .00 -.01 -.01 .01 

AmotivBonus -.02 -.03 -.01 .00 .00 -.01 -.01 .00 

Note: Standardized coefficients; * p < .1 ; ** p <.05 ; *** p <.01 

Dispositional Help-Seeking Data 

In help-seeking dispositions, we find more instances of opposite directions of direct and 

indirect effects. The direct effect of the preference to solve problems independently (Instrumental) 

is positive for Mathbonus, Statsexam, and Statsbonus (Table 4). The indirect effect for 

performance in statistics, is, however, negative and about the same size, making the total effect 
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indeterminate. The same mechanism is at work for the Executive help-seeking disposition, the 

preference to have someone else solve the problem on one’s behalf. For performance in statistics, 

its direct effect is positive and its indirect effect negative. It is only in students who are in need of 

help but refuse to seek it (Avoidance), that negative direct effects add to negative indirect effects.  

Indirect effects are mainly through lower levels of mastery in both tools. Concerning 

feedback preferences, students with an Executive help-seeking disposition ask for more worked-

out solutions in Statistics (B = .10, p < .05), which lead to lower performance (StatsBonus & 

StatsExam). By comparison, students whose help-seeking is Perceived to support Learning, search 

for help that is beneficial for their learning, and ask for less worked-out solutions (B = - .07, p < 

.05).  

Table 4: Mediation analyses from help-seeking behaviors to learning activities to academic 

performance 

 Direct path Indirect path through the following mediators 

 Math Stats Math  Stats  

 
  Mastery Solutions Hints Mastery Solutions Hints 

Instrumental 
 

 -.03 -.05 -.06 -.07** -.02 .00 

Avoidance 
  

-.10*** -.02 -.01 -.09** -.06 -.05 

Executive 
  

.02 .06 .06 .04 .10** .05 

Perceived interest  
 

.00 -.03 .00 -.01 -.06 .02 

Perceived learning   -.02 .06 .06 -.01 -.07** -.04 

Formal   .00 .00 .01 -.03 -.07 .01 

InstrumentalExam .00 .06* -.01 .01 .00 -.04** .01 .00 

InstrumentalBonus .03* .07*** -.02 .00 .00 -.06** .00 .00 

AvoidanceExam -.05 -.06* -.04** .00 .00 -.05** .02 .01 

AvoidanceBonus -.04** -.09*** -.08*** .00 .00 -.08** .01 .00 

ExecutiveExam .02 .04 .01 -.01 .00 .02 -.03** -.01 

ExecutiveBonus .03 .06*** .01 .00 .00 .04 -.02** .00 

Perceived InterestExam -.02 -.03 .00 .01 .00 -.01 .02 .00 

Perceived InterestBonus .01 .00 .00 .00 .00 -.01 .01 .00 
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Perceived LearningExam .02 .00 -.01 -.01 .00 -.01 -.02 .01 

Perceived LearningBonus .00 -.01 -.02 .00 .00 -.01 -.01 .00 

FormalExam .01 .06** .00 .00 .00 -.02 .02** .00 

FormalBonus .02 .01 .00 .00 .00 -.03 .01** .00 

Note: standardized coefficients; * p < .1 ; ** p < .05 ; *** p < .01 

Dispositions on Self-Regulated Learning 

The effects of self-regulated learning strategies on academic performance are summarized 

in Table 5. First, students with performing a Deep processing style, who tend to relate elements of 

the subject matter to each other and to prior knowledge, structure these elements into a whole, and 

form a critical view on the materials, performing focused better in Mathexam, Statsexam, and 

Statsbonus. In this case, direct and indirect effects are reinforcing: both are positive. The Step-wise 

processing style, focused more on memorizing and analyzing the subject matter, and the Concrete 

processing style, where students have the tendency to apply the subject matter in practice, are 

unrelated to performance measures, lacking both direct and indirect effects.  

This pattern of reinforcing direct and indirect effects repeats itself with metacognitive 

learning regulation styles. Students with a Self-regulated learning style, who prefer to regulate their 

learning process themselves, do less well, both as a direct effect, and an indirect effect through 

mastery. In contrast, students with an External-regulated learning style, who prefer to orient on 

tutors and peers in the regulation of learning, do slightly better due to positive indirect effects 

through mastery. Neither Solutions nor Hints play any role in the indirect effects of learning styles.  

Table 5: Mediation analyses from self-regulated learning styles to activity measures to academic 

performance 
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 Direct path Indirect path through the following mediators 

 Math Stats Math  Stats  

 
  Mastery Solutions Hints Mastery Solutions Hints 

Deep 
 

 .03 -.01 -.02 .12*** .01 -.01 

Step 
  

-.06 .00 .00 -.03 -.01 .01 

Concrete 
  

-.05 -.10** .04 -.06 .00 .00 

Self  
 

-.04 .00 -.05 -.10** -.01 .00 

Extern   .07* .00 .05 .08** .06 .04 

Lackr   -.03 .02 -.04 -.01 .03 -.03 

DeepExam .09** .12*** .01 .00 .00 .06*** .00 .00 

DeepBonus .03 .05** .03 .00 .00 .11*** .00 .00 

StepExam -.06* -.01 -.02 .00 .00 -.02 .00 .00 

StepBonus -.03 -.03 -.05 .00 .00 -.03 .00 .00 

ConcreteExam -.02 -.07 -.02 .02 .00 -.03 .00 .00 

ConcreteBonus -.01 -.01 -.04 .00 .00 -.06 .00 .00 

SelfExam -.08** -.10** -.02 .00 .00 -.05** .00 .00 

SelfBonus -.03 -.03 -.03 .00 .00 -.09** .00 .00 

ExternExam -.03 -.03 .03 .00 .00 .04** -.02 -.01 

ExternBonus .03 .02 .05* .00 .00 .07** -.01 .00 

LackrExam .03 -.02 -.01 .00 .00 -.01 -.01 .00 

LackrBonus .02 .01 -.02 .00 .00 -.01 -.01 .00 

Note: standardized coefficients; * p < .1 ; ** p < .05 ; *** p < .01 

Dispositional Epistemic Emotions Data 

The direct effects of epistemic emotions for mathematics, reported in Table 6, are mostly 

in line with expectations: positively valenced epistemic emotions have positive effects, such as 

Curiosity, and negatively valenced epistemic emotions have negative effects, such as Anxiety and 

Frustration. The emotion without a straightforward valence, Confusion, carries a small positive 

effect. Surprisingly, enJoyment comes with a negative effect on performance in statistics (but not 

in mathematics). Its reason may be in the specific constellation of high school mathematics 

education in Europe: students who enjoy mathematics will typically opt for advanced mathematics 

tracks, but such tracks do not include statistics, whereas students not enjoying mathematics may 

opt for social science oriented tracks that do contain statistics.  
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In the indirect effects, the Solutions variables act as mediator variables. In the statistics 

domain students high in Frustration call for more worked-out Solutions, lowering on average their 

performance scores in statistics. In mathematics, students with high levels of Confusion call for 

fewer worked-out Solutions, increasing on average their Exam score. 

Table 6: Mediation analyses from epistemic emotions to activity measures to academic 

performance 

 Direct path Indirect path through the following mediators 

 Math Stats Math  Stats  

 
  Mastery Solutions Hints Mastery Solutions Hints 

Surprise 
 

 -.04 .00 .02 -.02 .01 .03 

Curiosity 
  

.05 .03 -.04 -.01 -.05 .04 

Confusion   -.04 -.13** .07 -.03 -.06 .02 

Anxiety  
 

-.09* .03 -.08 -.06 .00 .06 

Frustration   .04 .03 .04 .09* .12** -.03 

Joy   .04 -.05 .01 .03 .04 -.01 

Boredom   -.03 -.05 -.05 -.05 -.05 -.01 

SurpriseExam .05 -.02 -.02 .00 .00 -.01 .00 .00 

SurpriseBonus -.01 .02 -.03 .00 .00 -.02 .00 .00 

CuriosityExam .04 .07* .02 -.01 .00 -.01 .02 -.01 

CuriosityBonus .05** .05** .04 .00 .00 -.01 .01 .00 

ConfusionExam -.03 -.03 -.02 .02** .00 -.02 .02 .00 

ConfusionBonus .00 .05* -.03 .00 .00 -.03 .01 .00 

AnxietyExam -.19 -.04 -.04* -.01 .00 -.03 .00 -.01 

AnxietyBonus -.06** -.01 -.07* .00 .00 -.06 .00 -.01 

FrustExam -.04 -.01 .02 .00 .00 .05* -.04** .00 

FrustBonus -.04 -.07** .03 .00 .00 .08* -.02** .00 

JoyExam -.05 -.07* .02 .01 .00 .02 -.01 .00 

JoyBonus .04 -.09*** .03 .00 .00 .03 -.01 .00 

BoredomExam .00 -.01 -.01 .01 .00 -.03 .02 .00 

BoredomBonus .03 -.01 -.02 .00 .00 -.05 .01 .00 

Note: standardized coefficients; * p < .1 ; ** p < .05 ; *** p < .01 
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Discussion and conclusion 

Q1: How do feedback preferences influence academic performance? 

Trace data from the two e-tutorials, Sowiso and MSL, are incorporated in all models with 

a consistent pattern: mastery levels in the tools are by far the strongest predictor of all performance 

types, whilst number of fully worked-out solutions called for (and in some cases the number of 

hints called for), negatively impact performance. These findings are in line with previous studies 

(Tempelaar et al., 2015). These negative betas may surprise, since all bivariate relationships 

between the number of hints, and the number of solutions, demonstrate positive correlations with 

each of the four performance types. Overall, students who see more fully worked-out solutions, 

and who ask for more hints, do perform better. However, in the context of multivariate prediction 

equations, the favorable effect of intensive practicing is already contained in the mastery variables, 

reducing the impact of the “hints" and “fully worked-out solutions” variables on conditional 

relationships. The negative betas tell us that for students with a given mastery level, requiring more 

hints to reach that mastery level, or requiring more worked-out solutions, lowers the expected 

performance for each of the performance categories.  

The findings also indicate the stronger effect of fully worked-out solutions compared with the 

use of hints as a feedback channel. Furthermore, the use of hints has little to no impact on 

mathematics performance, while the effect is more salient in statistics performance. Our results 

confirm the advantage of fully worked-out solutions in multimedia learning environments as 

indicated in previous literature (Hoogerheide, Loyens, & Van Gog, 2014; McLaren et al., 2016; 
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Renkl, 2005). It especially addresses a common limitation of the methodology of the 

aforementioned studies, which is the generalizability from lab/controlled settings to authentic 

settings. In real life, the effects of feedback preferences are interlinked rather than being isolated 

and individually examined. Thus, LA help resolves this issue by using trace data which reflect 

actual user behaviors. 

Q2: How do learning dispositions influence feedback preferences? 

Out of 25 dispositions, only nine have a statistically significant impact on feedback 

preferences (Figure 3). Overall, learning dispositions have stronger and more significant impact 

on fully worked-out solutions, when compared to hints. Students who are inclined toward 

Autonomous and Amotivation types of academic motivation, the Executive help-seeking 

disposition or the Frustration emotion use more fully worked-out solutions. In contrast, the 

Concrete learning strategy, Procrastination attitude, Formal help-seeking disposition, or the 

Confusion emotion are associated with the lower use of fully worked-out examples. 

Procrastination, and Longterm are the only two measurements which have a salient impact on the 

use of hints, in which the use of hints is lower in the former and higher in the latter.  
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Figure 3: The effects of learning dispositions on feedback preferences: standardized beta 

coefficients, p<.05) 

Our findings contribute to the development and implications of educational policies 

concerning learner/instructor data by bridging the existing gap between LA and pedagogy 

(Gašević, Dawson, & Siemens, 2015). Most studies at the early stage of LA have built upon data 

extracted from both institutional SIS and the log data retrieved from digital platforms that organize 

and facilitate learning, such as LMSs and e-tutorials (Arnold & Pistilli, 2012; Macfadyen & 

Dawson, 2010). While these studies provide important markers on the potential of LA in education, 

most are still unable to go beyond the descriptive function of LA, largely based on demographic data, 

grades, and trace data. Hence, effective instructional and intervention practices are hindered by the 

lack of pedagogically-based findings. Using dispositional characteristics of students, this study has 

addressed some of the limitations of conventional LA research by providing educators with ‘actionable 

feedback’, which not only describes how students prefer certain feedback types but also explains why 

students follow certain behavioral patterns based on their learning dispositions. 
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Q3: To what extent do feedback preferences mediate the relationship between learning 

dispositions and academic performance? 

In general, fully worked-out solutions appear to be a better mediator than hints. The mediating 

effect is stronger for performance in statistics (the topic about which most students had little prior 

knowledge) than for mathematics. Next, we find several cases of feedback preferences where 

direct and indirect effects of dispositions have opposite directions. In general, the use of more 

Hints has little to no impact on performance measures beyond the effect already included in the 

mastery level, whereas the use of more worked-out Solutions tends to have a negative effect on 

performance levels. In all situations where the learning disposition is positively related to the 

mediator variable Solutions, the indirect effect (being the product of a positive and a negative beta), 

becomes negative. An example is the Executive feedback disposition: the tendency to use others 

to solve your own (academic) problems. Students who score high on Executive feedback tend to 

call for more worked-out Solutions, which, for example, in turn lowers their expected performance 

scores. However, this small indirect effect is completely offset by the positive direct effect of 

Executive feedback on performance in the statistics quizzes. Apparently, in the end, it pays to have 

the disposition to let others work for you. 

 A crucial conclusion relates to the role of systematic comparison of direct and indirect 

model effects, and the diverging outcomes, to which such a comparison may lead. Learning 

analytics (LA) models are typically of input-output kind, directly relating performance 

components, (the outputs) to measured input variables. Restricting to direct effects only, 

surpassing the process effects visible in an input-process-output type of model, would leave all 
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indirect effects unobserved. As the example above indicates, this could lead to incorrect 

conclusions, and incorrect interventions, derived from an input-output prediction model. 

A second important finding from this research is similar in nature: it relates to the 

importance of a systematic comparison of bivariate and multivariate relationships. Simple 

correlations, often applied in LA applications, do not provide proper insight. In our context 

correlational analyses would have led us to the conclusion that feedback modes, the use of hints, 

and the use of fully worked-out solutions, all contribute positively to all performance types. This 

would suggest that positive instructional strategies would include stimulating students to use more 

hints, and having students use more worked-out solutions in their learning. However, these 

bivariate relationships are confounded by overall student activity in the e-tutorials. When 

correcting for this confound, by looking at multivariate relationships, we find opposite 

conclusions: the use of hints is completely neutral, and the use of worked-out solutions is, in fact, 

detrimental to learning outcomes. Another striking example of the divergence between bivariate 

and multivariate modeling outcomes relates to gender differences in revealed feedback behavior 

of students. Within the Dutch context, empirical research into mathematics education suggests that 

female learners may profit more from example-based education (Tempelaar, Rienties, & Nguyen, 

2016). Based on this finding, one would expect female students to more often make use of worked-

out solutions than male students. And indeed, in a bivariate context, we can confirm that 

hypothesis. However, in a multivariate context, the confounding factor “prior mathematics track” 

pops up: female students more often take the social-science track in high school, male students 

more often take the science track, and social-science track students use worked-out solutions more 
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often. Correcting for this confound, the gender effect completely disappears, and is even reversed 

in direction (but not statistically significant). Therefore, consider how inadequate an intervention 

could have been, derived from a simple, correlation-based LA prediction model. 
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Appendix A 

Table 8: Descriptive statistics for demographics  

Variable N Percent 

Sex   
Male 616 56.1 

Female 482 43.9 

Total 1098 100 

   
Study   

International Business 752 70.81 

Economics 269 25.33 

Fiscal Economics 41 3.86 

Total 1062 100 

   

MathMajor   

0 722 66 

1 372 34 

Total 1094 100 

Table 9: Descriptive statistics for academic performance and learning activities 

Variable Obs Mean Std. Dev. Min Max 

Performance      

FinalGrade 1062 6.60 2.40 1.00 10.00 

MathExam 1062 12.05 3.72 2.00 21.00 

StatsExam 1062 13.20 3.50 3.00 20.00 

      

Activity      

MathMastery 1061 0.51 0.30 0.00 0.99 

MathSolutions 1061 0.38 0.39 0.00 4.32 

MathHints 1061 0.13 0.18 0.00 1.36 

StatsMastery 1056 0.70 0.32 0.00 1.00 

StatsSolutions 1058 0.30 0.33 0.00 1.50 

StatsHints 1058 0.07 0.11 0.00 0.80 
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Table 10: The effects of learning dispositions on academic performance and learning activities 

 Math Stats 

 Exam Bonus Mastery Solutions Hints Exam Bonus Mastery Solutions Hints 

MathMastery .4*** .78***         

MathSolutions -.16*** .00         

MathHints .00 .00         

StatsMastery      .53*** .92***    

StatsSolutions      -.31*** -.17***    

StatsHints      -.14*** -.08***    

Autonomous -.08** -.06** .03 .10** .01 -.06 -.06** .05 .12*** -.01 

Control -.06** -.03 .04 .02 -.01 -.07** .03 .02 .01 -.02 

Amotivation .01 -.02 -.01 .09** .03 -.08** -.03 -.01 .03 -.04 

Deep .09** .03 .03 -.01 -.02 .12*** .05** .12*** .01 -.01 

Step -.06* -.03 -.06 .00 .00 -.01 -.03 -.03 -.01 .01 

Concrete -.02 -.01 -.05 -.10** .04 -.07 -.01 -.06 .00 .00 

Self -.08** .03 -.04 .00 -.05 -.1** -.03 -.10** -.01 .00 

Extern -.03 .03 .07* .00 .05 -.03 .02 .08** .06 .04 

Lackr .03 .02 -.03 .02 -.04 -.02 .01 -.01 .03 -.03 

Acadbuoy -.08*** -.04** -.07* -.02 -.01 -.05 -.03 -.12*** -.04 -.06 

Procrast -.06* .02 -.18*** -.14*** -.09** -.04 .02 -.22*** -.09** -.02 

Longterm -.01 -.02 .03 .05 .08** .02 .01 .05 -.03 .08** 

Instrumental .00 .03* -.03 -.05 -.06 .06* .07*** -.07** -.02 .00 

Avoidance -.05 -.04** -.10*** -.02 -.01 -.06* -.09*** -.09** -.06 -.05 

Executive .02 .03 .02 .06 .06 .04 .06*** .04 .1** .05 

Perceived interest -.02 .01 .00 -.03 .00 -.03 .00 -.01 -.06 .02 

Perceived learning .02 .00 -.02 .06 .06 .00 -.01 -.01 .07 -.04 

Formal .01 .02 .00 .00 .01 .06** .01 -.03 -.07** .01 

Surprise .05 -.01 -.04 .00 .02 -.02 .02 -.02 .01 .03 

Curiosity .04 .05 .05 .03 -.04 .07* .05** -.01 -.05 .04 

Confusion .03 .00 -.04 -.13** .07 -.03 .05* -.03 -.06 .02 

Anxiety -.19*** -.06** -.09* .03 -.08 -.04 -.01 -.06 .00 .06 

Frustration -.04 -.04 .04 .03 .04 -.01 -.07** .09* .12** -.03 

Joy -.05 .04 .04 -.05 .01 -.07* -.09*** .03 .04 -.01 

Boredom .00 .03 -.03 -.05 -.05 -.01 -.01 -.05 -.05 -.01 

Economicsa .05* .02 -.04 -.03 .00 .00 .02 .00 -.04 .02 

FiscalEconomicsa .03 .01 -.06* -.03 -.01 -.02 -.03* .02 .00 -.05 

MathMajor .12*** .09*** .05 -.14*** -.01 .07** .01 .02 -.06* -.03 

MathEntryTestScore .17*** .09*** .18*** .01 .03 .05* .01 .13*** .04 .01 

Female .04 .02 .08** -.06* .02 .04 .01 .03 .03 -.06* 

Constant 16.41*** 1.42*** .79*** .73*** .17 14.85*** 2.05*** 1.09*** .13 .08 

Observations 959 958 959 959 959 960 960 960 960 960 

R-squared .400 .764 .214 .116 .051 .365 .743 .189 .094 .050 

Note: All coefficients are standardized * p < .1 ; ** p < .05 ; *** p < .01 


