933 research outputs found

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    A survey on fault diagnosis in wireless sensor networks

    Get PDF
    Wireless sensor networks (WSNs) often consist of hundreds of sensor nodes that may be deployed in relatively harsh and complex environments. In views of hardware cost, sensor nodes always adopt relatively cheap chips, which makes these nodes become error-prone or faulty in the course of their operation. Natural factors and electromagnetic interference could also influence the performance of the WSNs. When sensor nodes become faulty, they may have died which means they cannot communicate with other members in the wireless network, they may be still alive but produce incorrect data, they may be unstable jumping between normal state and faulty state. To improve data quality, shorten response time, strengthen network security, and prolong network lifespan, many studies have focused on fault diagnosis. This survey paper classifies fault diagnosis methods in recent five years into three categories based on decision centers and key attributes of employed algorithms: centralized approaches, distributed approaches, and hybrid approaches. As all these studies have specific goals and limitations, this paper tries to compare them, lists their merits and limits, and propose potential research directions based on established methods and theories

    Game Theoretical Approach for Joint Relay Selection and Resource Allocation in Mobile Device Networks

    Get PDF
    With the improvement of hardware, more and more multimedia applications are allowed to run in the mobile device. However, due to the limited radio bandwidth, wireless network performance becomes a critical issue. Common mobile solutions are based on the centralized structure, which require an access point to handle all the communication requirement in the work area. The transmission performance of centralized framework relies on the density of access points. But increasing the number of access points will cost lot of money and the interference between access point will reduce the transmission quality. Thanks to the wireless sensor network implementations, the distributed wireless network solution has been well studied. Now, many mobile network studies introduce the device to device idea which is a distributed structure of mobile network. Unlike wireless sensor networks, mobile networks have more movability and higher transmission speed requirement. In order to be used in mobile networks, a distributed network management algorithm needs to perform faster and more accurate. In this thesis, a new pairing algorithm is proposed to provide a better transmission quality for multimedia data. In the proposed approach, the multimedia data is quantized by distortion reduction. Then, the source-relay pairing solution is optimized by a history tracing system using game theory to improve the expected overall distortion reduction of the entire network. Several parameters are introduced in the proposed solution, so the optimization would fit for different situations. Simulation results show that the proposed algorithm achieves higher overall distortion reduction by avoiding the competition between nodes. Simulation results also show the parameters would affect the system performance, such as optimization speed, system stability and system overall transmit speed

    Enhancing Security and Energy Efficiency in Wireless Sensor Network Routing with IOT Challenges: A Thorough Review

    Get PDF
    Wireless sensor networks (WSNs) have emerged as a crucial component in the field of networking due to their cost-effectiveness, efficiency, and compact size, making them invaluable for various applications. However, as the reliance on WSN-dependent applications continues to grow, these networks grapple with inherent limitations such as memory and computational constraints. Therefore, effective solutions require immediate attention, especially in the age of the Internet of Things (IoT), which largely relies on the effectiveness of WSNs. This study undertakes a comprehensive review of research conducted between 2018 and 2020, categorizing it into six main domains: 1) Providing an overview of WSN applications, management, and security considerations. 2) Focusing on routing and energy-saving techniques. 3) Reviewing the development of methods for information gathering, emphasizing data integrity and privacy. 4) Emphasizing connectivity and positioning techniques. 5) Examining studies that explore the integration of IoT technology into WSNs with an eye on secure data transmission. 6) Highlighting research efforts aimed at energy efficiency. The study addresses the motivation behind employing WSN applications in IoT technologies, as well as the challenges, obstructions, and solutions related to their application and development. It underscores that energy consumption remains a paramount issue in WSNs, with untapped potential for improving energy efficiency while ensuring robust security. Furthermore, it identifies existing approaches' weaknesses, rendering them inadequate for achieving energy-efficient routing in secure WSNs. This review sheds light on the critical challenges and opportunities in the field, contributing to a deeper understanding of WSNs and their role in secure IoT applications

    Miniature and Low-Power Wireless Sensor Node Platform: State of the Art and Current Trends

    Get PDF
    Wireless sensor node is an autonomous and compact device that has capability to monitor a variety of real-world phenomena. It is designed composed of sensing device, embedded processor, communication module, and power equipment. Wireless sensor node is part of wireless sensor network where hundred or thousand sensor node can be deployed. Over the past decade Wireless Sensor Networks (WSNs) have emerged as one of the computing platforms of note within the electronics community. In prediction, there will be more than 127 million wireless sensor nodes deployed worldwide by 2014. We have surveyed 100 currently available wireless sensor network node platforms have been developed and produced not only by the research institutions, the universities but also some companies in last ten years. In this paper, we present a review of 27 different wireless sensor node platforms. We review these devices under a number of different parameters, and we highlight the key advantages of each node platform according to dimension and power consumption. We also discuss the characteristics and trend of development and deployment a wireless sensor node technology

    Wireless body sensor networks for health-monitoring applications

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication in Physiological Measurement. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0967-3334/29/11/R01

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig
    • 

    corecore