24,664 research outputs found

    Analysis of source code metrics from ns-2 and ns-3 network simulators

    Get PDF
    Ns-2 and its successor ns-3 are discrete-event simulators which are closely related to each other as they share common background, concepts and similar aims. Ns-3 is still under development, but it offers some interesting characteristics for developers while ns-2 still has a large user base. While other studies have compared different network simulators, focusing on performance measurements, in this paper we adopted a different approach by focusing on technical characteristics and using software metrics to obtain useful conclusions. We chose ns-2 and ns-3 for our case study because of the popularity of the former in research and the increasing use of the latter. This reflects the current situation where ns-3 has emerged as a viable alternative to ns-2 due to its features and design. The paper assesses the current state of both projects and their respective evolution supported by the measurements obtained from a broad set of software metrics. By considering other qualitative characteristics we obtained a summary of technical features of both simulators including, architectural design, software dependencies or documentation policies.Ministerio de Ciencia e Innovación TEC2009-10639-C04-0

    Annotated bibliography of Software Engineering Laboratory literature

    Get PDF
    An annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory is given. More than 100 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. All materials have been grouped into eight general subject areas for easy reference: The Software Engineering Laboratory; The Software Engineering Laboratory: Software Development Documents; Software Tools; Software Models; Software Measurement; Technology Evaluations; Ada Technology; and Data Collection. Subject and author indexes further classify these documents by specific topic and individual author

    Software development: A paradigm for the future

    Get PDF
    A new paradigm for software development that treats software development as an experimental activity is presented. It provides built-in mechanisms for learning how to develop software better and reusing previous experience in the forms of knowledge, processes, and products. It uses models and measures to aid in the tasks of characterization, evaluation and motivation. An organization scheme is proposed for separating the project-specific focus from the organization's learning and reuse focuses of software development. The implications of this approach for corporations, research and education are discussed and some research activities currently underway at the University of Maryland that support this approach are presented

    Towards understanding software: 15 years in the SEL

    Get PDF
    For 15 years, the Software Engineering Laboratory (SEL) at GSFC has been carrying out studies and experiments for the purpose of understanding, assessing, and improving software, and software processes within a production software environment. The SEL comprises three major organizations: (1) the GSFC Flight Dynamics Division; (2) the University of Maryland Computer Science Department; and (3) the Computer Sciences Corporation Flight Dynamics Technology Group. These organizations have jointly carried out several hundred software studies, producing hundreds of reports, papers, and documents: all describing some aspect of the software engineering technology that has undergone analysis in the flight dynamics environment. The studies range from small controlled experiments (such as analyzing the effectiveness of code reading versus functional testing) to large, multiple-project studies (such as assessing the impacts of Ada on a production environment). The key findings that NASA feels have laid the foundation for ongoing and future software development and research activities are summarized

    Evolution of Ada technology in the flight dynamics area: Implementation/testing phase analysis

    Get PDF
    An analysis is presented of the software engineering issues related to the use of Ada for the implementation and system testing phases of four Ada projects developed in the flight dynamics area. These projects reflect an evolving understanding of more effective use of Ada features. In addition, the testing methodology used on these projects has changed substantially from that used on previous FORTRAN projects

    Data collection procedures for the Software Engineering Laboratory (SEL) database

    Get PDF
    This document is a guidebook to collecting software engineering data on software development and maintenance efforts, as practiced in the Software Engineering Laboratory (SEL). It supersedes the document entitled Data Collection Procedures for the Rehosted SEL Database, number SEL-87-008 in the SEL series, which was published in October 1987. It presents procedures to be followed on software development and maintenance projects in the Flight Dynamics Division (FDD) of Goddard Space Flight Center (GSFC) for collecting data in support of SEL software engineering research activities. These procedures include detailed instructions for the completion and submission of SEL data collection forms

    Distributed intelligent control and management (DICAM) applications and support for semi-automated development

    Get PDF
    We have recently begun a 4-year effort to develop a new technology foundation and associated methodology for the rapid development of high-performance intelligent controllers. Our objective in this work is to enable system developers to create effective real-time systems for control of multiple, coordinated entities in much less time than is currently required. Our technical strategy for achieving this objective is like that in other domain-specific software efforts: analyze the domain and task underlying effective performance, construct parametric or model-based generic components and overall solutions to the task, and provide excellent means for specifying, selecting, tailoring or automatically generating the solution elements particularly appropriate for the problem at hand. In this paper, we first present our specific domain focus, briefly describe the methodology and environment we are developing to provide a more regular approach to software development, and then later describe the issues this raises for the research community and this specific workshop
    corecore