813 research outputs found

    Internal hacking detection using machine learning

    Get PDF
    Tese de mestrado, Ciência de Dados, Universidade de Lisboa, Faculdade de Ciências, 2020Being able to prevent and early detect insider threats through an automated forewarning system has been a massive challenge for large companies. In recent years, to fill this gap several anomaly user behavior algorithms based on machine learning have been proposed, experimentally evaluated and analyzed in numerous surveys. The present work was conducted in the cybersecurity department (DCY) of Altice Portugal (MEO) and aims to address this problem identifying the families of unsupervised anomaly detection techniques that are more effective for insider threats detection based on a large dataset corresponding to a collection of users’ access log records. To this end, multi-domain attributes related to possible insider threats are interactively extracted and processed, creating a summary of user account’s daily activity. A clusteringbased algorithm that groups and characterizes similar accounts was applied. Without any example anomalies required in the training set, anomaly detection techniques were computed over those profiles, identifying unusual changes in user account behavior on a current day. Finally, to make it easier for analysts and managers to understand the anomaly, anomaly metrics and a visualization dashboard were created. To evaluate the efficiency of this project ten insider threat scenarios were injected and was found that the system can successfully detect anomalous behavior that may be an insider threat event

    Detecting and characterizing lateral phishing at scale

    Get PDF
    We present the first large-scale characterization of lateral phishing attacks, based on a dataset of 113 million employee-sent emails from 92 enterprise organizations. In a lateral phishing attack, adversaries leverage a compromised enterprise account to send phishing emails to other users, benefit-ting from both the implicit trust and the information in the hijacked user's account. We develop a classifier that finds hundreds of real-world lateral phishing emails, while generating under four false positives per every one-million employee-sent emails. Drawing on the attacks we detect, as well as a corpus of user-reported incidents, we quantify the scale of lateral phishing, identify several thematic content and recipient targeting strategies that attackers follow, illuminate two types of sophisticated behaviors that attackers exhibit, and estimate the success rate of these attacks. Collectively, these results expand our mental models of the 'enterprise attacker' and shed light on the current state of enterprise phishing attacks

    Role based behavior analysis

    Get PDF
    Tese de mestrado, Segurança Informática, Universidade de Lisboa, Faculdade de Ciências, 2009Nos nossos dias, o sucesso de uma empresa depende da sua agilidade e capacidade de se adaptar a condições que se alteram rapidamente. Dois requisitos para esse sucesso são trabalhadores proactivos e uma infra-estrutura ágil de Tecnologias de Informacão/Sistemas de Informação (TI/SI) que os consiga suportar. No entanto, isto nem sempre sucede. Os requisitos dos utilizadores ao nível da rede podem nao ser completamente conhecidos, o que causa atrasos nas mudanças de local e reorganizações. Além disso, se não houver um conhecimento preciso dos requisitos, a infraestrutura de TI/SI poderá ser utilizada de forma ineficiente, com excessos em algumas áreas e deficiências noutras. Finalmente, incentivar a proactividade não implica acesso completo e sem restrições, uma vez que pode deixar os sistemas vulneráveis a ameaças externas e internas. O objectivo do trabalho descrito nesta tese é desenvolver um sistema que consiga caracterizar o comportamento dos utilizadores do ponto de vista da rede. Propomos uma arquitectura de sistema modular para extrair informação de fluxos de rede etiquetados. O processo é iniciado com a criação de perfis de utilizador a partir da sua informação de fluxos de rede. Depois, perfis com características semelhantes são agrupados automaticamente, originando perfis de grupo. Finalmente, os perfis individuais são comprados com os perfis de grupo, e os que diferem significativamente são marcados como anomalias para análise detalhada posterior. Considerando esta arquitectura, propomos um modelo para descrever o comportamento de rede dos utilizadores e dos grupos. Propomos ainda métodos de visualização que permitem inspeccionar rapidamente toda a informação contida no modelo. O sistema e modelo foram avaliados utilizando um conjunto de dados reais obtidos de um operador de telecomunicações. Os resultados confirmam que os grupos projectam com precisão comportamento semelhante. Além disso, as anomalias foram as esperadas, considerando a população subjacente. Com a informação que este sistema consegue extrair dos dados em bruto, as necessidades de rede dos utilizadores podem sem supridas mais eficazmente, os utilizadores suspeitos são assinalados para posterior análise, conferindo uma vantagem competitiva a qualquer empresa que use este sistema.In our days, the success of a corporation hinges on its agility and ability to adapt to fast changing conditions. Proactive workers and an agile IT/IS infrastructure that can support them is a requirement for this success. Unfortunately, this is not always the case. The user’s network requirements may not be fully understood, which slows down relocation and reorganization. Also, if there is no grasp on the real requirements, the IT/IS infrastructure may not be efficiently used, with waste in some areas and deficiencies in others. Finally, enabling proactivity does not mean full unrestricted access, since this may leave the systems vulnerable to outsider and insider threats. The purpose of the work described on this thesis is to develop a system that can characterize user network behavior. We propose a modular system architecture to extract information from tagged network flows. The system process begins by creating user profiles from their network flows’ information. Then, similar profiles are automatically grouped into clusters, creating role profiles. Finally, the individual profiles are compared against the roles, and the ones that differ significantly are flagged as anomalies for further inspection. Considering this architecture, we propose a model to describe user and role network behavior. We also propose visualization methods to quickly inspect all the information contained in the model. The system and model were evaluated using a real dataset from a large telecommunications operator. The results confirm that the roles accurately map similar behavior. The anomaly results were also expected, considering the underlying population. With the knowledge that the system can extract from the raw data, the users network needs can be better fulfilled, the anomalous users flagged for inspection, giving an edge in agility for any company that uses it

    An Evasion Attack against ML-based Phishing URL Detectors

    Full text link
    Background: Over the year, Machine Learning Phishing URL classification (MLPU) systems have gained tremendous popularity to detect phishing URLs proactively. Despite this vogue, the security vulnerabilities of MLPUs remain mostly unknown. Aim: To address this concern, we conduct a study to understand the test time security vulnerabilities of the state-of-the-art MLPU systems, aiming at providing guidelines for the future development of these systems. Method: In this paper, we propose an evasion attack framework against MLPU systems. To achieve this, we first develop an algorithm to generate adversarial phishing URLs. We then reproduce 41 MLPU systems and record their baseline performance. Finally, we simulate an evasion attack to evaluate these MLPU systems against our generated adversarial URLs. Results: In comparison to previous works, our attack is: (i) effective as it evades all the models with an average success rate of 66% and 85% for famous (such as Netflix, Google) and less popular phishing targets (e.g., Wish, JBHIFI, Officeworks) respectively; (ii) realistic as it requires only 23ms to produce a new adversarial URL variant that is available for registration with a median cost of only $11.99/year. We also found that popular online services such as Google SafeBrowsing and VirusTotal are unable to detect these URLs. (iii) We find that Adversarial training (successful defence against evasion attack) does not significantly improve the robustness of these systems as it decreases the success rate of our attack by only 6% on average for all the models. (iv) Further, we identify the security vulnerabilities of the considered MLPU systems. Our findings lead to promising directions for future research. Conclusion: Our study not only illustrate vulnerabilities in MLPU systems but also highlights implications for future study towards assessing and improving these systems.Comment: Draft for ACM TOP

    Obfuscation of Malicious Behaviors for Thwarting Masquerade Detection Systems Based on Locality Features

    Get PDF
    In recent years, dynamic user verification has become one of the basic pillars for insider threat detection. From these threats, the research presented in this paper focuses on masquerader attacks, a category of insiders characterized by being intentionally conducted by persons outside the organization that somehow were able to impersonate legitimate users. Consequently, it is assumed that masqueraders are unaware of the protected environment within the targeted organization, so it is expected that they move in a more erratic manner than legitimate users along the compromised systems. This feature makes them susceptible to being discovered by dynamic user verification methods based on user profiling and anomaly-based intrusion detection. However, these approaches are susceptible to evasion through the imitation of the normal legitimate usage of the protected system (mimicry), which is being widely exploited by intruders. In order to contribute to their understanding, as well as anticipating their evolution, the conducted research focuses on the study of mimicry from the standpoint of an uncharted terrain: the masquerade detection based on analyzing locality traits. With this purpose, the problem is widely stated, and a pair of novel obfuscation methods are introduced: locality-based mimicry by action pruning and locality-based mimicry by noise generation. Their modus operandi, effectiveness, and impact are evaluated by a collection of well-known classifiers typically implemented for masquerade detection. The simplicity and effectiveness demonstrated suggest that they entail attack vectors that should be taken into consideration for the proper hardening of real organizations

    Insider Threat Detection using Profiling and Cyber-persona Identification

    Get PDF
    Nowadays, insider threats represent a significant concern for government and business organizations alike. Over the last couple of years, the number of insider threat incidents increased by 47%, while the associated cost increased by 31%. In 2019, Desjardins, a Canadian bank, was a victim of a data breach caused by a malicious insider who exfiltrated confidential data of 4.2 million clients. During the same year, Capital One was also a victim of a data breach caused by an insider who stole the data of approximately 140 thousand credit cards. Thus, there is a pressing need for highly-effective and fully-automatic insider threat detection techniques to counter these rapidly increasing threats. Also, after detecting an insider threat security event, it is essential to get the full details on the entities causing it and to gain relevant insights into how to mitigate and prevent such events in the future. In this thesis, we propose an elaborated insider threat detection system leveraging user profiling and cyber-persona identification. We design and implement the system as a framework that employs a combination of supervised and unsupervised machine learning and deep learning techniques, which allow modelling the normal behaviour of the insiders passively by analyzing their network traffic. We can deploy the framework as part of online traffic monitoring solutions for insider profiling and cyber-persona identification as well as for detecting anomalous network behaviours. The different models employed are assessed using specific metrics such as Accuracy, F1 score, Recall and Precision. The conducted experimental evaluation indicates that the proposed framework is efficient, scalable, and suitable for near-real-time deployment scenarios
    • …
    corecore