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Abstract

Insider Threat Detection using Profiling and Cyber-persona Identification

Badis Racherache

Nowadays, insider threats represent a significant concern for government and business

organizations alike. Over the last couple of years, the number of insider threat incidents

increased by 47%, while the associated cost increased by 31%1. In 2019, Desjardins, a

Canadian bank, was a victim of a data breach caused by a malicious insider who exfiltrated

confidential data of 4.2 million clients2. During the same year, Capital One was also a

victim of a data breach caused by an insider who stole the data of approximately 140 thou-

sand credit cards3. Thus, there is a pressing need for highly-effective and fully-automatic

insider threat detection techniques to counter these rapidly increasing threats. Also, after

detecting an insider threat security event, it is essential to get the full details on the entities

causing it and to gain relevant insights into how to mitigate and prevent such events in the

future. In this thesis, we propose an elaborated insider threat detection system leveraging

user profiling and cyber-persona identification. We design and implement the system as a

framework that employs a combination of supervised and unsupervised machine learning

and deep learning techniques, which allow modelling the normal behaviour of the insiders

passively by analyzing their network traffic. We can deploy the framework as part of online

traffic monitoring solutions for insider profiling and cyber-persona identification as well as

for detecting anomalous network behaviours. The different models employed are assessed

using specific metrics such as Accuracy, F1 score, Recall and Precision. The conducted

experimental evaluation indicates that the proposed framework is efficient, scalable, and

suitable for near-real-time deployment scenarios.
1https://www.proofpoint.com/, accessed on November 15, 2020
2https://www.cbc.ca/, accessed on November 15, 2020
3https://www.securityinfowatch.com/, accessed on November 15, 2020
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Chapter 1

Introduction

1.1 Motivations

Nowadays, businesses depend on Internet connectivity as part of their workflow activities.

However, the wide adoption of information technology (IT) as part of the business process

was accompanied by an exponentially increasing number of reported cyber-attacks1. An

insider is a current or former legitimate user or employee who has privileges, including

access to the organization’s IT infrastructure [22, 41]. A persona refers to the insider’s

role within an organization [12]. However, recent studies outline that 65% of reported

attacks against various organizations can be traced to malicious insiders2. Moreover, insider

attacks incur a whopping cost of around $400 billion yearly, with $348 billion directly tied

to privileged users3. Detecting insider threats represents a key concern for businesses and

governmental organizations alike due to the potential impact and related cost of such cyber-

attacks on their operations. Consequently, this topic is also of high interest in the research

community. The cyber-attacks planned by insiders might be more critical and potentially

more damaging than the attacks initiated by outside actors due to the following reasons:

1https://www.cpomagazine.com/, accessed on November 15, 2020
2https://www.pwc.co.uk/, accessed on November 15, 2020
3https://www.sans.org, accessed on November 15, 2020
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1. Traditional systems such as intrusion detection systems (IDS) have no specific capa-

bilities to deal with such situations.

2. Insiders already have access privileges compared to the outsiders.

Thus, based on the above mentioned facts, there is an urgent need to develop a system that

models the network’s insiders’ normal behaviour. The system should also profile insiders,

identify their cyber-persona types and flag any deviation from their normal behaviour.

1.2 Problem Statement

Insider threat attacks affect more than 34% of businesses around the globe every year [13].

Those attacks have increased by 47% since 20184. In 2019, Desjardins, a Canadian bank,

had a data breach incident caused by a malicious insider who stole the private informa-

tion of 4.2 million clients5. Therefore, it is crucial to design and implement an insider

threat detection framework based on the analysis of insiders’ network behaviour and flag

any deviation from their normal behaviour. The framework should have the capability

to classify network traffic generated by insiders automatically, profile them, identify their

cyber-persona types and flag any behavioural deviation. It should also handle specific sit-

uations, including an insider using different devices or a team sharing the same machine.

This capability can be beneficial for security analysts to detect and mitigate insider threats

before they cause damage to the company’s infrastructure. Moreover, the system should

prevent such threats from occurring in the future. Specifically, we aim at answering the

following research questions:

1. How can we segregate network traffic generated from human user devices and traffic

generated by machines?

4https://www.pandasecurity.com, accessed on November 15, 2020
5https://www.cbc.ca/, accessed on November 15, 2020
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2. How can we model the insiders’ behaviours?

3. How can we train models to identify insiders and their related cyber-persona types?

4. How can we use the trained models to flag insiders’ deviations from their normal

behaviour?

1.3 Objectives and Contributions

The objectives of this research are as follows:

• Design and implement a framework capable of segregating near-real-time network

traffic generated from insiders’ devices.

• Model the network behaviour of the insiders, profile them, identify their cyber-

persona types and flag their behavioural deviations.

• Assess the suitability of multiple machine learning and deep learning techniques and

conduct an extensive experimental evaluation and performance comparison.

The key contributions of the thesis are as follows:

1. We design and develop an automatic system to segregate network traffic generated

by insiders and non-human users using machine learning techniques.

2. We propose a novel machine learning-based framework for insider profiling and

cyber-persona identification based on network traffic.

3. We propose a user behaviour-based insider threat detection system.

3



1.4 Thesis Organization

The remainder of this thesis is organized as follows. Initially, Chapter 2 presents the back-

ground and the related work. Then, Chapter 3 provides an overview of our approach, the

feature engineering process and the details of our methodology. Thereafter, Chapter 4 il-

lustrates our experimental study and the results obtained using the different modules of our

framework. Finally, Chapter 5, provides the concluding remarks and comments on future

research directions.

4



Chapter 2

Background and Related work

In this chapter, we present the background and related work of this thesis. First, we define

the concepts of user profiling, cyber-persona and insider threats in Section 2.1. Then,

we present the related work, starting with user profiling, cyber-persona and insider threat

detection in Section 2.2. Finally, we conclude this chapter in Section 2.3.

2.1 Background

This section describes the technical terms used in this thesis, namely user-profiling, cyber-

persona, insider and insider threats. Then, we present the machine learning/deep learning

techniques used in our framework. Finally, we present techniques we use to extract embed-

dings from our data.

2.1.1 User Profiling

A profile is a unique representation containing important information about a user. In users’

context connected to a corporate network, a profile consists of a set of network traffic data

and metadata generated from the users’ devices [55]. Profiling users and modelling their

5



behaviour are used for advertising purposes by predicting the users’ interests and inten-

tions. Cybersecurity analysts also adopt the concept to detect users’ malicious behaviour

in corporate environments. Advanced user profiling involves applying machine learning

techniques to model the users’ network behaviour by analyzing their network traffic. In

some situations, profiling may include the extraction of new specific user-related informa-

tion from available and detailed user information [19]. A concrete example of applying

user profiling for cybersecurity-related problems is provided by Shaman et al. [57] where

the authors introduce a new user profiling system based on the analysis of network flows.

2.1.2 Cyber-Persona

In general, a persona is defined as the image that someone presents to the public or the role

he/she plays in a specific context1. In our research context, a persona is defined as a specific

role of insiders in a corporate environment performing the same tasks and duties [12].

Each type of personas represents particular job responsibilities or particular interests on a

given topic. Cyber-persona can be defined as any persona type connected to the digital

infrastructure of an organization1. In other words, a cyber-persona represents a group of

insiders executing similar tasks (developers, programmers, consultants, etc.) and having

similar behaviour on the network. For example, in Stathatos et al. [62], the authors identify

users by applying graph analysis techniques on indirect features obtained from the metadata

of the website forums that users are visiting.

2.1.3 Insider Threats

This section defines the insider’s concept, the threats that an insider might cause, and their

different types. We also present the different insider attacks and the challenges facing their

detection:
1https://www.business2community.com/, accessed on November 15, 2020
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Insider

An insider is a current or former legitimate user who has privileges, including access to

the organization’s IT infrastructure (e.g., business network, systems or data), with differ-

ent privilege levels. This access generally requires direct interaction with one or many

authentication mechanisms [22, 41].

Since the insider can be physically or logically present in the company, this term also

covers any processes or software agents created and executed by a legitimate user [14]. The

word “legitimate” represents the key difference between an insider and an outsider attacker.

It means that the insider always has an entry point to the system and does not need to put a

significant effort to gain more privileges compared to an outsider attacker.

According to Hunker et al. [25], there are many other scenarios in which we consider

an entity as an insider:

• A former employee who has valid system credentials.

• An employee of a third-party development firm who developed its software and has

information on accessing the system.

• An entity with physical access (e.g., janitor) who finds an unlocked machine.

Insider Threats

We define insider threats as any harmful acts causing damage to the organization’s cyber-

security or data and initiated by someone inside the organization2. The insiders’ dangerous

actions can be illegitimate access to resources, abuse targeting the systems/computers, data

exfiltration, data integrity loss, or any activities causing an interruption of business services.

The insider threat is considered a daunting problem in many cybersecurity studies for many

reasons [5, 14]:
2https://www.clearswift.com, accessed on November 15, 2020
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• Most of the security tools do not handle insider threats.

• Insiders might have an extensive array of privileges.

• The insiders’ in-depth knowledge of existing organizational policies and rules (un-

known to an outsider attacker).

The leading cause of insider threats is insiders having elevated privileges required to

fulfill their organization’s tasks, and other insiders access sensitive data3. According to

the literature, insider threats can be intentional or unintentional (e.g., due to negligence or

lack of training). With respect to the unintentional cases, typical threats relate to situations

where an insider visits a phishing web page or clicks on a malicious link received as part of

an email. In contrast, intentional threats occur with premeditation on the insider part; it in-

cludes installing back-doors or unauthorized access to sensitive information and resources.

In both scenarios, the threats can result in the sabotage of the IT systems, resource misuse,

denial of service, and data loss or data exfiltration [14]. Such threats can have severe con-

sequences on the IT infrastructure and business operations of an organization. Intentional

insider threats can be influenced or motivated by the background of the insider, including3:

• Insider collaborating with direct competitors and intelligence agencies

• Insider seeking for a financial gain

• Insider member of political or social activism group

• Insider unhappy with his/her salary, supporting a new position with another company

or starting his own business

It is also important to know the reasons behind the increase of insider threats during the

past few years3:

3https://advisory.kpmg.us, accessed on November 15, 2020

8

https://advisory.kpmg.us


• Workforce became more and more transitory and hence vulnerable to high turnover;

therefore, employees became like free agents with less loyalty to their organizations.

• Incapacity of monitoring insiders working from home or using their own devices,

this can also include third party contractors getting direct access to the organization’s

sensitive information without any monitoring.

• The growing use of the cloud puts more data outside of the company’s immediate

control.

Types of Insider Threats

According to the literature, we can categorize insider threats into three main categories:

compromised, careless and malicious insiders4.

• Compromised Insiders. This type is considered the most important threat because

the insider is not aware that his system is compromised. It mainly occurs when an

employee clicks on a phishing email link and grants access to the attacker.

• Careless Insiders. This type of insiders represents the main target of outside at-

tackers due to the insiders’ lack of security awareness; they could be insiders leaving

their workstations un-locked, visiting suspicious websites or installing software from

untrusted sources.

• Malicious Insiders. This type of insider might be a current or former insider having

legitimate access to the corporate infrastructure. They can steal confidential data or

any kind of intellectual property.

Types of Insider Attacks

Steven M. Bellovin et al. [4] classified the insider attacks into three types:
4https://phoenixnap.com/, accessed on November 15, 2020
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• Misuse of Access Privileges. In this type of attack, an insider with malicious in-

tentions takes advantage of his/her legitimate access privileges to execute malicious

tasks.

• Bypassing Defenses. In this type of attack, the insider has an advantage over the

outside attackers since they are already connected to the organization’s system.

• Access-control Failure. In this type of attack, technical problems are the leading

cause of the attack’s success; in this case, the access system might not be configured

correctly. Therefore, unauthorized insider gains access to the company’s network.

Challenges of Insider Threat Detection

Even though insider threat detection is a hot topic, and many works have been done in this

area, it still faces many challenges [38]:

• Lack of Balanced Datasets. Malicious events represent a small percentage of real-

world datasets since they do not occur all the time, and they are mitigated quickly.

Hence, it represents a significant challenge to applying machine learning and deep

learning techniques for insider threat detection because those techniques require bal-

anced datasets to be effective.

• Less Focus on Temporal Features. The temporal aspect of security-related events

is as important as the other user’s activity data. For example, insider copying files

during work hours can be considered as usual. Still, if he copies the data at midnight

or copies data during an extended period, it should be flagged as suspicious.

• Attackers Adaptability. Malicious insiders can always improve their attacks to

evade the detection mechanisms, making the trained models inefficient against new

attacks; hence, there is a need to develop adaptive detection systems.

10



Improving the Insider Threat Detection Capability

The following are some recommendations to improve the insider threat detection capabil-

ity5:

• Collect Insider Threats Data. This technique involves selecting a set of insider

threats, collecting data, and training detection models on it. The choice of insider

threats depends on the organization’s infrastructure.

• Detect Spikes in Activity. Monitor the network to detect any unusual spikes in the

insiders’ activity (e.g., it could be a high number of attempts to access sensitive data).

• Monitor Access Attempts: Monitor in real-time successful and failed access at-

tempts, and flag the suspicious ones in terms of the number of attempts and their

frequency during a given amount of time.

• Restrict Access to Sensitive Data. Prevent unauthorized insiders from accessing the

organization’s sensitive data using policies. Flag any continued access to files during

a given amount of time and flag any insider trying to access different files.

• Identify and Monitor Shared Accounts. Monitor the use of those accounts is es-

sential since they do not belong to a single insider. The most important parameter to

consider is the frequency of logins.

2.1.4 Text Representation Techniques

This section will present the two text representation techniques we have used in our exper-

imental analysis to represent the categorical features numerically. The first technique we

have used is FastText [7], a text representation technique that represents each word as a bag

of character n-grams; the summation of those n-grams represents the word representation.

5https://blog.netwrix.com. accessed on November 15, 2020

11

https://blog.netwrix.com


The main advantage of using this technique is the small amount of time required to train

models on large corpora and its capability to compute a representation for unseen words.

The second technique we have used is paragraph2vector; this technique is used to learn

in an automatic way the embedding representation and the semantic in sequences of words

from their appearances in a given context. Thus, the words appearing together will have a

close representation in the embedding space [33].

2.1.5 Machine Learning and Deep Learning Techniques

Machine learning techniques are widely used to solve different problems, especially when

classical algorithms become inefficient.

Unsupervised Machine Learning Techniques

Unsupervised machine learning techniques aim to find similar data groups with high simi-

larity in the absence of labels. K-means [46], Auto-encoders [49] and Isolation Forests [36]

are examples of clustering techniques used to solve various problems in the absence of la-

belled datasets.

• K-Means. K-means is one of the most used clustering algorithms. This algorithm

creates K clusters (the number of clusters user-defined) by first finding the best K

centroids, then each data point is assigned to the clusters closest to its centroid [46].

• Autoencoders: Autoencoders are a special architecture of neural networks used in an

unsupervised way, with the particularity that the output is set as the same value of the

features vector as the input. This algorithm’s main idea is to learn an approximation

to the identity functions using the back-propagation learning algorithm [49].

Deep Autoencoders. This type of autoencoders has a high number of hidden layers;

the number of hidden layers depends on the complexity of the problem being solved.

12



• Isolation Forests. This method was designed for anomaly detection purposes. An

isolation forest is a set of isolation trees (an Isolation tree is built by randomly par-

titioning data until all the data points are separated or isolated). This technique is

first built for the dataset being experimented with, then flag as anomalous data points

having short average path lengths on the Isolation Trees. This method is known to

have the number of trees that we desire to build and the sub-sampling size as the only

two hyperparameters to configure to get the best performances [36].

Supervised Machine Learning Techniques

It is also called classification; it is applied on a labelled dataset and learns a function map-

ping between the data instances and their corresponding labels. Decision Trees, Random

Forests [35] and neural networks are examples of such techniques.

• Decision Tree. A decision tree is tree-like graph-based decision support in a su-

pervised way. Each node of the decision tree represents a test on the feature being

analyzed; the test outcomes are branches leading to other nodes. Finally, a leaf rep-

resents the final prediction or the label [51].

• Random Forest. Random Forest is a powerful and widely used supervised machine

learning algorithm for both classification and regression. This algorithm consists

of an ensemble of decision trees; the number of decision trees within the ensemble

defines the random forest model’s robustness. Given a data instance, each decision

tree outputs a class, and the class with the highest number of votes is considered the

prediction of the random forest [9, 35].

• Multi Layer Perceptron (MLP). Multi-layer perceptron (MLP) is an artificial neu-

ral network mainly used for classification purposes. However, it can also be used for

regression. Its design was inspired by the human brain and based on studies made by
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cognitive scientists and neuroscientists. The perceptron is the main processing unit

for MLPs; it receives inputs from the environment or other perceptrons. The per-

ceptron’s output results from the activation function’s application on the weighted

summation of its inputs. An MLP is composed of many layers of perceptrons. In

the first layer, the number of perceptrons is the same as the number of features, the

same thing for the output layer, in which the number of perceptrons is the same as

the number of labels. It is determined empirically concerning the number of hidden

layers and the number of perceptrons per hidden layer. Finally, the MLP is trained

using the back-propagation algorithm [1].

• Deep Learning (Supervised). A deep neural network is a neural network with a

high number of hidden layers depending on the problem being solved (the higher

the number of hidden layers is, the deeper the model is). The main advantage of

deep learning over classical machine learning techniques is that the classical machine

learning techniques require feature engineering; in other words, the security expert

should select the security event features. In contrast, in deep learning, no feature

selection is needed. Moreover, deep learning helps solve more complex problems

and can learn data representations at different abstractions levels. A deep neural

network is composed of an input layer with a number of units equal to the number

of features, an output layer with a number of units equals the number of classes

and many hidden layers where the number of units per hidden layer depends on the

neural network architecture, the nature of the data and the nature of the problem been

solved. Each layer’s units are connected to the next layer’s units depending on the

type of the model [34].
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2.2 Related Work

In this section, we present the related work of this thesis. First, we present research initia-

tives dealing with user profiling and cyber-persona identification. Then, we present insider

threat detection techniques.

2.2.1 User Profiling

Pang et al. [48] present a user identification system by analyzing the network flows gen-

erated by users connected to wireless networks, even if they are using pseudonyms. Conti

et al. [11] present a system capable of identifying specific actions performed by android

users when using a set of selected android applications. They apply advanced supervised

machine learning techniques on the encrypted network flows generated by android devices

and achieved 95% accuracy. Soh et al. [61] propose a novel framework for the early de-

tection of insider threats by profiling insiders using aspect-based sentiment analysis and

social network information. The authors profile the insiders’ temporal sentiments using an

ensemble of deep learning techniques. Shaman et al. [57] propose a novel user profiling

system based on the analysis of features derived from application-level flow sessions. They

have collected 60 days of network flow data generated by 23 users and use it to model the

users’ behaviour on the network using classification algorithms. They obtained up to 74%

accuracy. Gratian et al. [20] investigate the usefulness of features extracted from network

traffic to profile users and flag infected ones. They used two months of network traffic

data collected from the university network; they applied different dimensionality reduction

techniques to 36 features extracted from this data. Their detection capability uses a combi-

nation of supervised and unsupervised machine learning techniques. In their experiments,

Principal Component Analysis [69] gave the best 10 features responsible for 92.8% of the

users’ variance, K-means [46] clustering algorithm segregated users into groups of benign

and infected users. Finally, classification gave an accuracy equals to 79% and ROC AUC
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up to 86%. Saltaformaggio et al. [54] present NetScope, a system capable of identifying

fine-grained user activities through the passive analysis of encrypted network traffic. This

last can learn different behavioural activities run by users using both Android and IOS de-

vices. Their experimental evaluation used 35 popular application activities and obtained a

precision equal to 78.04% and recall equals 76.04%.

2.2.2 Cyber-Persona Identification

Stathatos et al. [62] identify users on website forums. The authors employ features derived

from website metadata extracted from websites visited by users. Similarity scores between

users across various website forums are then derived using a decision tree and random

forest. Experimental results show that their system achieves 96.3% of F1 score. Yang et

al. [17] use network access traces and network traffic data to identify cyber-persona types

of users connected to the university WIFI internet access. They have collected two months

of data generated from more than 2000 devices; each device’s number of access records

varies from 300 to 2000 access records; each record contains the device’s mac address,

the login logout time, and the location. The features engineering phase computes each

connection’s duration, the proportion of time spent in each department and uses under-

sampling to solve the imbalanced dataset issue. Their system comprises three prediction

components: implementing different classifiers (linear regression, Support Vector Machine

(SVM), decision tree, etc.). The first two components use binary classifiers to identify

whether a user is a student or a faculty member and whether they are an undergraduate

or graduate. The third component detects the major of the student been identified. Their

evaluation shows that in the first component (Faculty members and students segregation)

and the second component(undergraduate from graduate), SVM gave the best accuracy

with 87,67% and 88,77%, respectively. Finally, linear regression provides the best accuracy

with 72,27% in the students’ discipline prediction component. Bakhshi et al. [2] propose
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a real-time network traffic-based campus users profiling system. They apply the K-means

clustering algorithm to separate users into different clusters based on their behaviour. They

obtained six unique types of users extracted from real-world data collected from a campus

switch.

2.2.3 Insider Threat Detection

Insider threat detection can be classified as host-based (collecting and analyzing system

calls, system logs, etc.) or network-based (analyzing network traffic). Since the last one is

closely related to our work line, we will discuss the most prominent approaches in this area.

According to the literature, the selected approaches can be classified based on the employed

machine learning techniques as depicted in Fig 1. Unsupervised-based insider threat detec-

tion, approaches [18, 27, 37] mainly employ clustering algorithms such as k-means [46].

On the other hand, supervised-based techniques [16, 18, 30, 39] use classification algo-

rithms such as random forests [35], linear regression and MLP. More recent approaches

favour the use of deep learning techniques involving deep neural networks.

Detection based on Unsupervised Machine Learning

This type of approach use clustering algorithms such as k-means [46], isolation forests [36]

and autoencoders [49]. Liu et al. [37] propose the use of auto-encoder [49] for insider de-

tection. Their approach involves three components (log2corpus, feature extraction and in-

sider threat detection). In the log2corpus component, the authors transform security-related

logs into Word2vec [63] trainable corpus. The obtained corpus is unified and uses the

same format, irrespective of the type of security-related event. The feature extraction com-

ponent uses Word2vec feature vectors from log text, with the key benefit of not requiring

any domain knowledge. The threat (malicious event) detection component employs an

auto-encoder trained on the features generated by the feature extraction component. If the
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Network Traffic-based Insider Threat Detection

Unsupervised techniques Supervised techniques

Auto-encoder
[37, 58]

k-means [27]

Isolation forest
[18, 67, 74]

Recurrent
Neural Net-

works(RNN) [67]

Deep Neural Net-
works (DNN) [67]

Principal Com-
ponents Analysis

(PCA) [67]

Robust-
Covariance [74]

Local Outlier
factor [74]

Gaussian mix-
ture [74]

One-class Support
Vector Machine

(OCSVM) [58, 72]

Logistic Regression
[16, 30, 32]

Random Forests
[16, 18, 30, 32, 60]

Hidden Markov
Model [39]

Multi Layer
Perceptron [16, 32]

Decision
Trees [32, 60]

Naive Byse
(NB) [60]

Support Vec-
tor Machine

(SVM) [60, 67]

Long Short
Term Memory
(LSTM) [72]

Convolutional
Neural Network

(CNN) [72]

Figure 1: Types of Insider Threat Detection: First Taxonomy
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insider threat detection

Real-time Not Real-time

Synthetic
Data [37, 40] Synthetic Data [31,

32, 58, 60, 70, 74]

Real data [42, 62]

Figure 2: Types of Insider Threat Detection: Second Taxonomy

reconstruction error of the features is above a threshold, they flag the event as suspicious.

Moreover, They flag any user associated with many suspicious events as a malicious insider.

Gavai et al. [18] use social and online activity data in an enterprise to identify abnormal

behaviour using isolation forests [36]. Kim et al. [27] propose a combination of behaviour

modelling and anomaly detection algorithms to detect threats using three different types of

user log data (daily activity summary, the topic contribution of e-mail and e-mail commu-

nication history per week) from the CERT insider threat test dataset [65]. For the anomaly

detection, the authors use Gaussian density estimation [59], Principal Component Analysis

(PCA) [75] and k-means [46] algorithms. Tuor et al. [67] propose a real-time anomalous

network activity detection using a traffic log analysis-based system that leverages unsuper-

vised deep learning models. They generate user-specific daily data vectors from the raw

data taken from the CERT insider threat test dataset [65]. They feed the obtained vectors

into the user’s corresponding machine learning models to learn his/her normal behaviour

and then flag abnormal behaviour and report it to the security practitioners. The authors

employ Deep Neural Network (DNN), and Recurrent Neural Network (RNN) [44] as deep

learning models. To compare the performance results of their system, they also employ

other outlier detection methods, mainly one-class SVM (SVM) [64], Isolation Forests [36]
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and PCA [69]. Zhang et al. [74] propose a new unsupervised, data-driven method using

denoising autoencoders. The method is completely independent of any domain knowledge

and insider’s specific information. It is made up of three modules (data preprocessing,

user behaviour construction and abnormal behaviour detection). In the data preprocessing

module, they construct the insider’s cross-domain behavioural descriptions using CERT

dataset [65]. In their second module, they use denoising autoencoders to construct insider

behaviour features. Finally, in the abnormal behaviour detection modules, they adopt the

Gaussian Mixture Model (GMM) [47], Robust-Covariance and one-class SVM [43], Isola-

tion Forest [36] and Local Outlier factor [10] to detect insider threats. Sharma et al. [58]

propose an anomaly detection system by modelling users’ behaviour using unsupervised

machine learning techniques. First, they collect, aggregate, preprocess and normalize data

collected from CERT insider threat test dataset [65]. Second, they model the user’s normal

behaviourby feeding normal data into LSTM RNN-based autoencoder. Finally, they use the

autoencoder’s reconstruction error as a metric to determine the maliciousness of the user

behaviour; the higher is the reconstruction error more suspicious is the user’s behaviour.

Detection based on Supervised Machine Learning

In this section, we discuss insider threat detection approaches employing supervised tech-

niques, including traditional machine learning classification algorithms and deep learning

algorithms. Yu et al. [71] employ mobile phone sensory data such as application usage

and screen activity events to generate user profiles. They use those profiles to segregate

users based on their gender, age and personality attributes in order to provide them with

personalised services. User gender and age are estimated using random forest, while per-

sonality attributes are identified via Support Vector Regression (SVR). They experimentally

evaluate the performance of their approach on real-world data. Duc et al. [30] leverage a
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collection of machine learning algorithms, including logistic regression [28], random for-

est [35] and Artificial Neural Networks (ANN) for insider threat modelling and detection.

They use data with multiple granularity levels to support the design of a user-centred sys-

tem for insider threat detection. In the data collection and processing phases, they extract

activity logs, organization structure and user information from CERT insider threat test

dataset [65]. Subsequently, they generate two types of features: frequency features (eg.

the number of copied files) and statistical features (eg. the size of an email). In the ma-

chine learning phase, they train logistic regression, random forests, and neural networks

to detect unknown insiders based on limited ground truth. Finally, the security analyst

generates feedback on all the detected insiders. This feedback is then used to validate

the classification models. Pedro et al. [16] introduce an experimental study on the im-

pact of feature normalization techniques and the exploration of temporal information on

insider threat detection. In the second part of the previously mentioned work of Gavai et

al. [18], the authors apply random forest [35] to detect insider threat activities using the

indication when employees quit the company as labels. Lo et al. [39] introduce a Hidden

Markov Model (HMM) based approach for insider threat detection using the CERT insider

threat test dataset [65]. Subsequently, the authors conduct an experimental study on de-

tecting the change of user behaviour by employing different distance metrics. Rashid et

al. [52] present an insider threat detection system involving the modelling of the insider’s

normal behaviour using HMMs [56]. Their feature extraction module uses the CERT in-

sider threat test dataset [65] raw data to generate sequences of user actions every week.

In their Anomaly detection module, assuming that the first five weeks of data are clean

(does not contain any abnormal behaviour), they train the HMM [56] on it. Then, they feed

each sequence from the rest of the weeks to the model to get a corresponding prediction

probability. The HMM model is then trained on that sequence. After going through all

the sequences, they empirically select a threshold and use it as an indicator such that if
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the prediction probability of a given sequence is below the threshold, an anomaly will be

flagged. Yuan et al. [72] present a deep learning-based insider threat detection using the

CERT insider threat test dataset [65]. Inspired by natural language processing, the authors

consider the user’s action as a word, his/her sequence of actions as a sentence, and they em-

ploy Long Short Term Memory (LSTM) [21] neural network to generate a representation of

the user’s “language”. This representation is then fed to a Convolutional Neural Network

(CNN) [29] model to detect anomalous behaviour. Sheykhkanloo et al. [60] conduct an

experimental study on the impact of using a highly-imbalanced dataset on the performance

of supervised machine learning techniques. Furthermore, they study the impact of data re-

sampling on the performance results of three machine learning models: J48 decision tree,

SVM [64], Naive Bayes (NB) [53] and random forests [9]. The authors experimentally

prove that balancing the data does not improve the performance results of the employed

models. However, it improves the model’s training and testing time. Also, using parame-

ters different from the default ones impacts the performance of the machine learning models

in both scenarios (using imbalanced and balanced data), with a higher impact in the case

of imbalanced data. Happa et al. [23] introduce an automated method to detect insider

threat anomalies. In their experiments, they study the performance of applying the GMM

while considering the use of contextual information to improve the performance of their

method by taking advantage of security experts’ feedback during the visual analysis of the

data. They prove that their method can help to improve the detection rate and reduce the

false alarm rate. Maloof et al. [42] present a machine learning-based system for detecting

insider threats by flagging the insiders operating outside of their normal duties; this system

is meant to help the cyber-security analysts in their investigations of the malicious insiders.

In the first step of their system, they process network traffic and flag abnormal traffic based

on security experts’ presence. Second, they train a Bayesian Network (BN) to predict each

event’s threat score; if the score is above a given threshold, it will be flagged as suspicious.
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Kandias et al. [26] propose a novel, interdisciplinary model combining computer science

and psychology techniques to predict insider threats. They monitor the insiders’ behaviour

using the company’s information systems, the insiders’ psychological features to evaluate

their aptitude to execute malicious acts. Le Duc et al. [32] present a machine learning-

based and user-centred insider threat detection system composed of four modules: data

collection, data pre-processing, machine learning and data analytic modules. In the data

collection module, they collect user activity data, organization structure data and insider

profiles information from the CERT insider threat test dataset [65]. The data pre-processing

module aggregates and processes the data to generate vectors of features representing user

activities; those features are either statistical or frequency features. The machine learning

module trains and validates supervised machine learning models. Finally, the data analytic

module displays instant alerts, user alerts, and malicious behaviour analysis to the network

administrator. Elmrabit et al. [15] propose a novel approach for predicting insider threats

related to data breaches. In their framework, they predict every insider’s risk level and flag

any potential threat risk. In the first phase of their framework, they collect three types of

data from an educational institution and a small enterprise located in the United Kingdom.

The three types of data are human factor, technological aspect and organizational data.

They collect human factor data by addressing surveys to 70 insiders; they collect the tech-

nological aspect data by addressing surveys the It services while collecting organizational

impact data by addressing a survey to the human resources department. For the small enter-

prise, the authors collect both the technological and the organizational data by addressing

a survey to the director; however, the authors collect human factor data by addressing sur-

veys to all the employees. After organizing, processing and exploring the data, they feed it

to a Bayesian neural network. They compare the framework’s obtained prediction results

with the security expert’s decisions. The comparison shows that the framework can achieve

better predictions than security experts.
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Jiuming Lu et al. [40] propose a deep learning-based insider threat detection system

called Insider Catcher. They model the insiders’ normal behaviour using system logs from

the CERT insider threat test dataset [65], considering them as a structured natural sequence

containing patterns that can be used as an indicator to detect malicious acts. In their exper-

iments, they use LSTM as a deep learning technique, and for their comparison, they use

PCA and SVM as classical anomaly detection models.

Detection Based on Other Techniques

Bishop et al. [6] propose an insider detection method; they consider each set of activities

run by an insider within his/her specific task as a process and represent it formally us-

ing process modelling techniques. Also, they study how a process can be compromised

and propose a solution to prevent it. Le Duc et al. [31] present a new hybrid user-centred

abnormal behaviour and insider threat detection system combining supervised and unsu-

pervised machine learning techniques and consider multiple data granularity levels on data

collected from a CERT insider threat test dataset [65]. In the data pre-processing phase,

they reduce the correlation between features and project the data into a low dimensional

space using different data engineering techniques such as autoencoders [3], PCA [66], and

random projection (RP) [68]. The unsupervised anomaly detection part of their system

feeds unlabeled data to autoencoder. In contrast, in the supervised insider threat detection

part, they feed the data to Linear Regression [45], ANN, random forest [9] and NB [53].
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Table 1: Related Work Summary
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Zhang
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Le Duc
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Sheykhkanloo
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Sharma
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Le Duc
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Xiaoyun
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Stathatos
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Lo
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Yuan
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Rashid
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Gavai
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Vegas and
CERT   - -  - -

Maloof
et al. [42] 2007 - - - - - - - - - - - - - - -  - - - - - - - - - - - - -
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Table 2: Comparison Between Different insider threat detection Research Papers

Reference Performance Indicators(%) Strengths Weaknesses
Acc. F1 Rec. Pre. TP FP TN Det. AUC

Zhang
et al. [74] 75 81 88.9 - - - - - -

• Multiple clustering techniques
• Comparison with outlier
detection techniques

• Not Real-time
• Accuracy is not high

Le Duc
et al. [32] - 77.6 - 72 - 1.4 - 86.5 -

• Multiple classifiers
• Multiple data granularity
Levels
• Limited Ground truth
• Different insider threats
scenarios

• Not Real-time
• Do not use
temporal information

Sheykhk
anloo

et al. [60]
90 90 90 90 90 10 - - -

• Handle Imbalanced data
• Detect 6 data Breach scenarios
• Experimental Analysis of the
importance of model’s
parameters

• Not Real-time
• Detects few data
breaches scenarios
only

Sharma
et al. [58] 90.2 - 91 - - 9.8 90.2 - 0.95

• Detect unseen
behaviour and flag
anomalous patterns

• Not Real-time
• No automatic
feature extraction

Maloof
et al. [42] - - - - - 1.5 - 84 92 • Use real-world dataset

• Not Real-time
• Detect 5 specific scenarios
only

Le Duc
et al. [31] 99.8 - - 0.79 32 0.02 - - aa

• User centred detection
• Multiple data granularity
levels
• Analysis performed on data
instances, normal and malicious
insiders

• Not Real-time

Xiaoyun
et al. [70] - - - - 99 - 94 - -

• Rapid detection
of abnormal behaviour

• Detection depends on the
amount of data
• Do not handle new users and
userswith less data

Liu
et al. [37] - - - - - 0.59 - - 99.8

• Low false
positive rate
• Is real-time

• Need more
evaluation metrics

Elmrabit
et al. [15] squared correlation = 0.87

• Combine technical,
organizational and human factor
related features
• Framework’s evaluation
done on challenging conditions
• Achieve better results than
empirical judgment of security
experts

• Probability distribution
designed based on literature
review

Jiuming Lu
et al. [40] - 80 90 72 - - - - - • Is real-time

• Does not provide
comparison with
other models
• Needs more
evaluation metrics

Gavai
et al. [18] 73.4 - - - - - - - 0.77

• Use supervised and
unsupervised machine
learning techniques
• Offer a Dashboard
• Real-world dataser

• Law Accuracy
• Needs more
evaluation metrics

2.3 Conclusion

In this chapter, we presented the background of our research topic and its related work. In

the background part, we defined the essential concepts used in this thesis, with an emphasis

on user profiling, cyber-persona identification, insider threats, and insider threat detection
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challenges. We have then presented text representation techniques that we have used in our

data processing and the machine learning and deep learning techniques we have used in our

framework. With respect to the related research, we presented a number of relevant works

on the user profiling and cyber-persona identification, and insider threat detection. Finally,

we have presented insider threat detection techniques. In the next chapter, we will present

our insider threat detection framework.
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Chapter 3

Insider Threat Detection

In this chapter, we will present our network traffic-based user profiling, cyber-persona iden-

tification and anomaly detection framework. First, we provide an overview of our approach

in Section 3.1. Second, we detail the feature extraction procedure and dataset preparation

in Section 3.2. Finally, we present our methodology in Section 3.3.

3.1 Approach

Our main goal is to detect insider threats from network traffic. We model the normal

behaviours of an organization’s current insiders and detect possible deviations from the

profiled behaviour. The detection is completely passive, without installing any software

agent in the insiders’ devices. To this end, we perform user profiling and cyber-persona

identification for the active users in an organization.

The overall architecture of our solution is illustrated in Fig. 3. As can be seen,

the raw data received from our partners (details in Section 4.1.1) is fed to the Net-

work Traffic pre-processing and Labeling module to pre-process the data, and fur-

ther label it (details in Section 3.3.1). We assign a tuple of labels consisting of

〈0,user_id,cyber_persona_type〉 to each network flow generated by an insider.
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Figure 3: Approach Overview
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However, if network flows are generated by machines (e.g., routers, etc.), only a single

label will be assigned to the flow (〈0,NaN,NaN〉).

Next, in the case of single flow-based detection, Features Selection and Engineering

module extracts additional flow features, such as the flow duration and normalizes the

data. In other experiments, we group the above flows in windows of flows, where each such

window contains from 1 to 50 flows. Moreover, for each feature within the window, we

compute its mean and standard deviation, and we concatenate them with the representation

of the hostnames within the window.

The full process, as well as the data normalization, are described in Section 3.2. Since

our primary goal is to model users’ network behaviour, only the network flows generated by

human users are considered. Therefore, we design a Machine/Human Segregation module

to automatically segregate flow data generated by machines from the flow data generated

by users. After the segregation, we feed user-related data in parallel into the User Profiling

module, responsible for the identification of the insider’s user_id (Section 3.3.3 part

(i)), and into the Cyber-Persona Identification module, responsible for the detection of

the user’s cyber-persona type (Section 3.3.3 part (ii)). In both of the modules mentioned

above, different machine learning models are employed, and their results are compared to

highlight the most suitable for our problem. Moreover, single flows, as well as windows of

flows, are considered with and without extracting embeddings from the hostnames visited

by the insider.

Finally, in the Insider Threat Detection module, we flag anomalies by analyzing user

behavioural deviations, which include the deviation from the user-specific profile or devia-

tion from the cyber-persona type.

3.2 Features

In this section, we provide details about our features, normalization and data re-sampling.
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Table 3: Flow Feature Description

Feature Description Feature Description

id
A unique ID for
identifying a flow local_port Local port

other_port Destination port local_mac MAC address of local device

last_seen_at
Timestamp for the last time
the flow was seen local_ip

IP address of the
local (LAN) device

other_ip IP address of remote system other_ip_geo Geolocation of destination IP

group_name Cyber-persona type protocol_name Protocol detected byNetify1

protocol_detection
_method

Detected protocol using
deep packet inspection application_name Application generating traffic

application_detection
_source

Application categorization
based on host-names
and address blocks

first_seen_at
Timestamp for the first
time the flow was seen

total_local_bytes
Total number of local
bytes typically
"upload" bytes

total_other_bytes Total number of other bytes

total_bytes Total number of bytes total_packets Total number of packets

hostname Visited Hostname

3.2.1 Feature Selection

The network traffic data provided by our partners contains 19 features. An overview of

the raw data features and their description is provided in Table 3. Before employing these

features, some pre-processing (discarding some of the features) is needed. For instance,

local_ip and local_mac are discarded since they can also be used as labels. Fi-

nally, the features with no change in the data (identical values) such as id are discarded

as well. Raw data where the values are missing are similarly discarded. With respect to

feature extraction, a new feature (duration) is calculated from the first_seen_at

and last_seen_at. Moreover, the mac-vendor-lookup API2 is employed in order to

extract Device_type and MAC_vendor from a given MAC address. Finally, the

2 https://pypi.org/project/mac-vendor-lookup/. accessed on November 15, 2020
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Application_category and Application_description are extracted from

hostname using a mapping provided by our partners. At the end, we employ 21 fea-

tures, as shown in Table 4. The labels (group_name and user_id) are provided in a

mapping dictionary, as discussed in Section 3.3.1. In the case of is_machine, used as a

label in the machine/human segregation module, its value is set to zero if the traffic flow has

the above two labels (traffic generated by a user) and one otherwise (machines generated

traffic).

Table 4: Used Features after Pre-processing

Selected Features Selected Features
other_ip other_ip_geo
protocol_name protocol_detection_method
application_name MAC_vendor
hostname first_seen_at
application_detection_source last_seen_at
mac_vendor local_port
other_port duration
total_local_bytes total_other_bytes
total_bytes total_packets
application_category application_description
device_type

3.2.2 Data Normalization

Initially, we generate a mapping of nominal/categorical feature data to integer values. In

this pursuit, we construct a feature dictionary mapping between each categorical value and

a corresponding integer value. Then, we employ a Min-Max scaling technique to normalize

integer values into [0, 1] interval, using the following formula:

x′ =
x+min

max−min
(1)
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Where x represents a number in a given data record element while min and max represent

the minimum and maximum numbers across all corresponding record elements in the data.

3.2.3 Handling Imbalanced Data

From our analysis, we notice that some profiles/cyber-persona types have a small number

of flows, not enough for appropriate use in machine learning. Thus, the corresponding

data needs to be discarded. To solve this issue, we have used user_id and cyber_persona

types, generating a reasonable number of flows, enough to properly apply machine learn-

ing. With respect to the data used in the cyber-persona identification module, we select

the ones generating more than 120, 000 network flows. These represent 30 devices and

17 persona types. With respect to user profiling, we retain the profiles generating more

than 120, 000 flows, representing 16 devices and 16 profiles. After selecting data for both

cyber-persona identification and user profiling, we notice that the data is not balanced,

affecting our trained models’ performance. According to the literature, up-sampling and

down-sampling techniques [24] are recommended. The Up-sampling technique involves

data duplication, applied on the class data where the number of instances is comparatively

small. In contrast, the Down-sampling technique involves data deletion, applied on the

class data where the number of instances is relatively high.

Up-Sampling. To address the data imbalance issue, we conduct an empirical analysis

and comparison between the two techniques. According to the obtained results, the up-

sampling technique outperforms the down-sampling one. Therefore, we up-sample our

data using SMOTE python library3. Figure 4 presents the histogram of flows per cyber-

persona types on the small dataset after and before up-sampling.

3https://imbalanced-learn.readthedocs.io, accessed on January 28, 2021.
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3.2.4 Flow Windowing and Embeddings Extraction

In the extension of our approach, we consider the aggregation of sets of network flows

generated by the same user for both cases: user profiling and cyber-persona identification.

The number of flows per window is empirically determined based on a grid search that we

conducted during our experiments. We also extract the context of the hostnames visited by

the insiders using fasttext4, a skip-gram model-based method for generating word represen-

tations [8]. For each flow window, we first start by computing the mean and the standard

deviation of each one of the flow features, which are then concatenated with the embedding

generated from the hostnames belonging to the same flow window using fasttext. The re-

sulting feature vector will be fed to each one of our models (decision trees, random forests,

FFNN, CNN, LSTM and ensemble) in each module.

3.3 Methodology

In this section, we present the details of our approach. To apply supervised machine

learning techniques, we label the received network flows designated for model training.

However, once our framework is in production, the labelling step is skipped, and the pro-

cessed flows are fed directly to the Machine/human segregation module, which outputs

whether a device used by an employee generates the flow. If so, the flow data will be fed

in parallel to the user profiling and cyber-persona identification modules to respectively

detect the user id and cyber-persona type (role/position in the company). The results of

the aforementioned three steps represent a tuple, as follows: (is_machine, user_id,

cyber_persona_type). After identifying the insider’s cyber-persona type, the cor-

responding network flows are fed to the anomaly detection module to detect abnormal

behaviour. The main steps of our framework are presented in Algorithm 1.

4 https://fasttext.cc/, accessed on January 28, 2021.

34

https://fasttext.cc/


Algorithm 1: Insider Threat Detection
input : network_flows_queue
while network_flows_queue not empty do

flow ← next(network_flows_queue)
// Machine/human segregation model
is_machine← segregate.predict(flow);
if not(is_machine) then

// User profiling model
user_id← get_profile.predict(flow);
// Cyber-persona identification model
cyber_persona_type← get_persona.predict(flow);
// List of outlier detection models for each

cyber-persona-type
persona_alert← outlier[cyber_persona_type].predict(flow);
// List of outlier detection models for each User

Profile
user_alert← outlier[user_id].predict(flow);
if persona_alert or user_alert then

alert← Anomalous;

else
alert← Normal;

// Save the network flow into elasticsearch
Save (flow, user_id, cyber_persona_type, alert)

3.3.1 Network Traffic Pre-processing and Labeling

Since we aim at solving a classification problem, we first start with labelling our datasets.

To this aim, our partners provide us with two dictionaries:

• Profiling Dictionary. The dictionary’s keys are the mac_address’ of the devices

used by human users, and the values are the user_ids’.

• Cyber-persona Dictionary. The dictionary’s keys are the mac_address’ of

the devices used by human users and the values are the group_name’ (cy-

ber_persona_types).

We utilize the above information and assign labels to the network traffic flows as follows:
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• Traffic type (is_machine): A binary label value, which is 0 if the flow originates

from a device used by an insider, and 1 if the flow originates from a machine.

• Profiling Label (user_id): A unique positive integer label value representing the

ID of the user using the device that the flows are originating from.

• group_name (cyber_persona_type): A unique integer label value representing

the persona type of the insider using the device that the flows are originating from.

Therefore, the data coming from a user is labelled with a tuple

〈0,user_id,cyber_persona_type〉. The dataset contains some MAC addresses

that have no corresponding entries in the provided dictionaries. Therefore the related data

flows are considered as machine-specific traffic. We assign them the label 〈1,NaN,NaN〉,

which represents machines.

3.3.2 Segregating Human from Machine Traffic

We aim to automatically segregate network traffic generated by users from the traffic of

other machines and IoT devices, such as printers, routers, etc. The main reason for devel-

oping this module relates to the fact that our goal is to first profile insiders, identify their

cyber-persona types and then flag their behavioural deviations. Thus, machine-related traf-

fic should be discarded not to affect the results of our models. We feed labelled flow data

to this module; if the flows are generated by machines, they will be discarded automat-

ically; otherwise, we feed to the next modules (user profiling, persona identification and

insider threat detection). This module trains different classical supervised machine learn-

ing algorithms (decision trees, random forests) and widely used deep learning models (Feed

Forward Neural Network (FFNN), Convolutional Neural Network (CNN) and Long Short-

Term Memory (LSTM)) in order to compare their performances and experimentally iden-

tify the best-suited model. We detail the configurations of the different hyper-parameters
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of models we use in the experimental setup provided in Section 4.1.

3.3.3 User Profiling and Cyber-Persona Identification

We aim at timely detecting insider threats when an insider’s network behaviour deviates

from its normal behaviour. To this end, we consider two possibilities:

(i) User Profiling: Profiling the users based on their network traffic allows to fingerprint

their specific behaviours. This includes visited websites, utilized email services, time

and duration of the connections, the volume of the data, etc. To this end, we design

and implement a network traffic-based user profiling system to discriminate the traf-

fic generated by each network user. The system feeds the network flows to classifi-

cation algorithms to predict the id of the users who generate the flows. We use the

same type of classifiers as the machine/human segregation module.

(ii) Cyber-Persona Identification: Identifying the cyber-persona types based on the

users’ network traffic allows fingerprinting their role-specific behaviours. In this

module, we model the behaviours of users based on their roles within an organi-

zation (e.g., Developer, C-level, Student). We assume that users belonging to the

same cyber-persona type are generally working on similar tasks. Consequently, they

should have, in general, a shared network behaviour. For instance, the developers

would utilize more network traffic compared to human resources personnel. We use

the same type of classifiers as the user profiling module.

Those two modules outputs the user_id, and cyber_persona_type of the insider gen-

erating the flows. We feed three types of inputs to the user profiling and cyber-persona

identification modules:

(i) When considering single flows, we feed the machine learning models with the 23

normalized flow features.
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(ii) When considering single flows with embeddings, we feed the machine learning mod-

els with 123 normalized flow features (the extra 100 features represent embeddings

resulting from feeding the hostnames to the fasttext module).

(iii) When considering windows of flows, we feed the models with the average and the

standard deviation of the 23 flow features within the flow window, representing 46

new features. Also, we use the 100 embeddings as previously mentioned in (ii).

Thus, we end-up with 146 features.

3.3.4 Insider Threat Detection

In this module, we use data corresponding to different cyber-persona types to flag anoma-

lies. With respect to the small dataset, we use different network flows from an unknown

cyber-persona type to test our anomaly detection capability. To this end, we feed the net-

work flows to the FFNN model used in the cyber-persona identification module, which

generates two types of outputs: the cyber-persona type and the prediction probability. If

the latter is lower than an empirically selected threshold, we flag the network flow as ab-

normal; otherwise, we consider it normal. The lower the persona prediction probability is,

the more suspicious the network activity is.

With respect to the large dataset, we apply unsupervised machine learning techniques

to detect any behavioural deviations from the user’s normal behaviour (profile) or the be-

haviour of the group of users he belongs to (cyber-persona type). According to the lit-

erature, outlier detection techniques [73] is an excellent choice to solve the above issue.

After profiling the user and identifying the corresponding cyber-persona type, we feed the

generated flows to this module. The latter isolates the abnormal flows and flags them as

suspicious. We use isolation forests [36] to isolate suspicious flows. We use this method

since anomalous flows are few and different from normal flows. Therefore, the path length

from the tree’s root to the leaf containing suspicious flows will be shorter than the normal
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ones. We train an isolation forest for each profile and each cyber-persona type. Moreover,

We use two other outlier detection techniques: robust covariance and One-class SVM. We

present models’ parameter and experimental details in the next chapter.

3.4 Conclusion

In this chapter, we have presented in details our user profiling, cyber-persona identifica-

tion and insider threat detection framework. We first started by explaining our approach.

Second, we presented our features engineering, including features selection, data normal-

ization, handling imbalanced data issue and flow windowing and embedding extraction.

Finally, we explained in details our methodology. In the next chapter, we will present in

details our experiments and the results we have obtained.
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Chapter 4

Experimental Evaluation

This chapter explains our experimental setup, followed by the obtained results from our

different modules (machine/human segregation, user profiling, cyber-persona identifica-

tion and insider threat detection). Furthermore, we present a discussion about the results.

Finally, we present a screenshot of our dashboard.

4.1 Experimental Setup

All of our experiments are conducted on a server running Debian GNU/Linux release 9.12

with Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz and 64GB RAM. The code is written

in python and utilizes sklearn1 and keras2 for data processing and machine learning. The

profiling and cyber-persona results are stored in elasticsearch3, and the results are visual-

ized in Kibana dashboards.
1https://scikit-learn.org/stable/, accessed on January 28, 2021.
2https://keras.io/, accessed on January 28, 2021.
3https://www.elastic.co/, accessed on January 28, 2021.
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Figure 4: Small Dataset: Flow Distribution per Cyber-Persona Types

4.1.1 Dataset

Our main goal is to profile insiders, identify their cyber-persona types and flag any be-

havioural deviation using network traffic. We use real-world network traffic flow data

involving a home-generated dataset (named Small Dataset), along with a dataset (called

Large Dataset) from the business operations of a company-provided by our industry part-

ners. The corresponding details are presented in the following.

Small Dataset. The small dataset represents traffic collected from a small network

and contains approximately 230 thousand flows. This dataset is labelled and separated

into four cyber-persona types (three cyber-persona-types will be used for cyber-persona

identification while the fourth one is used to test the insider threat detection capability).

Moreover, it contains traffic collected from routers, printers or other IoT devices. We use

this traffic in our machine/Huma segregation module.

41



(a) Flow Distribution per User (anonymized)

(b) Flow Distribution per Cyber-persona type

Figure 5: Large Dataset: Flow Distribution
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Large Dataset. Our partners collected the large dataset from a real-world business

network with a total number of 4,472,391 flows. They also provided us with a dictio-

nary mapping between each user’s device’s MAC address and the user’s id and persona

type (e.g., Developer, Student, Professor). There are 18 types of persona. Furthermore,

the total number of users is 35. However, for confidentiality concerns, the users’ id’s are

anonymized and replaced by integer values from 0 to 34. After labelling the received net-

work traffic (Section 3.3.1), we notice that users utilize only 35 devices out of 220 devices

connected to the business network. Figures 5a, and 5b, present the number of flows per

insider and the number of flows per cyber-persona type, respectively.

4.1.2 Evaluation Metrics

To evaluate the performance of the different components of our framework, we use the

accuracy, precision, recall and F1 Score metrics that are typically used in the literature.

These metrics [50] are defined as follows:

Accuracy =
TP + TN

Total Number of Predictions
(2)

Precision =
TP

Positive Predictions Count
(3)

Recall =
TP

TP + FN
(4)

F1 Score =
2 · precision · recall
precision+ recall

(5)

Where TP indicates the number of correctly identified users/personas (profiles) as anoma-

lous, TN presents the number of correctly identified profiles as normal, FP indicates the

number of incorrectly identified profiles as anomalous, and FN represent the number of

anomalous profiles, which have not been identified as anomalies.
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4.1.3 Data Splitting

Before training machine learning models, we need to split the dataset. Splitting this last

into training, testing, and validation portions is crucial since training the model on a small

amount of data will lead to over-fitting instead of a generalization. If the dataset is big

enough, multiple data splitting ratios can be adopted. However, if the dataset is limited,

data splitting can influence the performance of the models.

In our case, we adopt the splitting ratio mostly used in the literature (80% for training

and 20% for testing). Thus, we train and validate our models on 80% of the data, while the

remaining data is used for testing. However, we have used 10% of the training data in the

case of the Small Dataset and 33% of the training data in the case of the Large Dataset for

cross-validation.

4.1.4 Handling Imbalanced Dataset

In Section 3.2.3, we have discussed techniques used to re-sample imbalanced datasets

(mainly up-sampling and under-sampling). Our experimental analysis shows that up-

sampling the data improves the performances of our different models, while under-

sampling the data decreased the performances of the models. Fig. 6 shows the F1 score

and accuracy obtained from applying up-sampling and under-sampling on the large dataset

for both user profiling and cyber-persona identification.

4.1.5 Models and Parameters

With respect to the employed models, we adopt 3 deep neural networks, which are Deep

Feed Forward Neural Network4 (FFNN), Convolutional neural network4 (CNN) and Long

short-term memory4 (LSTM). The input layer contains a set of neurons equals to the num-

ber of features, and the output layer contains a number of neurons equal to the number
4https://keras.io/, accessed on January 28, 2021
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(a) Large Dataset: Acc. for Different Re-sampling Techniques

(b) Large Dataset: F1 for Different Re-sampling Techniques

Figure 6: Large Dataset: Effects of Data Re-Sampling on Cyber-Persona Identification
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Figure 7: Small Dataset: Results of Keras Tuner

of desired labels. We use the three deep neural networks in our three modules (ma-

chine/human segregation, user profiling and cyber-persona identification). The models are

trained during 200 epochs, each with a learning rate of 0.0001. The architectures of the

neural networks depend on the problem being solved. We have used Keras Tuner5 to find

out the best architecture of the neural network in our three modules. The result of the appli-

cation of Keras tuner to find the best FFNN architecture for cyber-persona identification in

the small dataset is presented in Fig. 7. It gave us an architecture that employs three hidden

layers containing respectively 120, 48 and 16 units.

To compare the results obtained when using deep learning, we also use decision trees

and random forests to have a reference base for comparison. Notice that for the two above

mentioned models, random_state is set to 0, and max_depth is set to 100. Finally, we

used an ensemble of classifiers to perform better. We have used sklearn ensemble Voting-

Classifier6 with the voting parameter set to “hard” to use majority rule voting.

With respect to the anomaly detection part, The following are the outlier detection

techniques we have used:

• Robust Covariance: with a contamination rate set to 15%.

• One-Class SVM: with a ν set to 0.15, a kernel set to rbf and γ set to 0.1
5https://www.tensorflow.org/, accessed on January 27, 2021.
6https://scikit-learn.org, accessed on January 28, 2021.
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• Isolation Forest: with a contamination the rate set to 12%, the random state set to 42,

n_estimatiors set to 200 and warm_start set to true.

4.1.6 Effects of Data Splitting

To highlight the effects of the data splitting ratios, we conduct extra experiments to measure

the three models’ accuracy and time complexity. We split the data into different ratios of

80/20%, 70/30% and 60/40% for the training and testing. The corresponding accuracy

and F1 score obtained by our three models are presented in Fig. 8. Similarly, the training

and prediction time of our three models under different splitting ratios for the training time

and the prediction time is illustrated in Fig. 9a and Fig. 9b, respectively.
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(a) Accuracy per Different Testing Ratios

(b) F1 Score per Different Testing Ratios

Figure 8: Large Dataset: Profiling F1 Score and Accuracy for Different Testing Ratios
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(a) Training Time

(b) Prediction Time

Figure 9: Large Dataset: Models Complexity per Different Splitting Ratios
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4.2 Machine/Human Segregation Results

This module aims to answer our first research question to identify the user-specific traffic

from the overall device-generated traffic. To this end, we employ three deep learning mod-

els (FFNN, CNN and LSTM), decision tree and random forest and an ensemble of models

as a binary classifier to segregate humans from machine flow traffic. We present the ob-

tained experimental results on the small and large Datasets in Table 5. Concerning the

small dataset, the random forest gave the best results with 97.96% of accuracy and 97.96%

of F1 score. Concerning the large dataset, decision trees gave the best results with 97.95%

of accuracy and 97.38% of F1 score, followed by random forests with 97.90% and 97.32%

of F1 score. Moreover, we notice that having imbalanced data did not negatively affect our

machine/human segregation module’s performance. Therefore, there is no need to apply

up-sampling techniques in this case.

Table 5: Machine/Human Segregation Results

Small Dataset Large Dataset

Models Acc. F1 Acc. F1
Decision Trees 97.41% 97.41% 97.95% 97.38%
Random Forests 97.96% 97.96% 97.90% 97.32%
FFNN 95.62% 95.62% 95.50% 95.30%
LSTM 96.16% 95.96% 91.94% 91.94%
CNN 95.15% 95.15% 89.97% 89.97%
Ensemble 97.64% 97.64% 97.76% 97.13%
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Table 6: Small Dataset: Acc. and F1 Results using Single Flows

Before Up-sampling After Up-sampling

Models Acc. F1 Acc. F1
Decision Trees 75.58% 75.58% 75.49% 75.49%
Random Forests 74.17% 74.17% 73.87% 73.87%
FFNN 73.73% 73.73% 73.67% 73.67%
LSTM 73.66% 66.05% 73.23% 73.23%
CNN 72.71% 72.71% 72.87% 72.87%
Ensemble 75.59% 75.59% 75.82% 75.82%

(a) User Profiling

Before Up-sampling After Up-sampling

Models Acc. F1 Acc. F1
Decision Trees 86.08% 86.08% 85.26% 77.08%
Random Forests 89.54% 89.54% 87.02% 78.09%
FFNN 89.94% 89.94% 86.18% 77.6%
LSTM 89.89% 89.89% 88.36% 88.36%
CNN 89.89% 89.89% 88.85% 88.85%
Ensemble 87.57% 87.57% 85.53% 85.53%

(b) Cyber-persona Identification

Figure 10: Small Dataset: Profiling Recall and Precision before Up-Sampling
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Table 7: Large Dataset: Acc. and F1 Results using Single Flows

Before Up-sampling After Up-sampling

Models Acc. F1 Acc. F1
Decision Trees 97.96% 91.74% 98.52% 98.52%
Random Forests 97.96% 91.74% 94.74% 98.72%
FFNN 93.78% 93.69% 95.69% 95.68%
LSTM 94.8% 89.89% 92.54% 87.7%
CNN 89.05% 89.05% 90.94% 90.94%
Ensemble 98.86% 98.86% 98.89% 98.89%

(a) User Profiling

Before Up-sampling After Up-sampling

Models Acc. F1 Acc. F1
Decision Trees 98.65% 98.68% 98.36% 98.35
Random Forests 98.35% 98.38% 98.71% 98.71
FFNN 92.95% 92.93% 95.33% 95.32%
LSTM 93.52% 93.58% 93.74% 93.84%
CNN 91.26% 91.26% 90.96% 90.96%
Ensemble 98.85% 98.88% 98.91% 98.91%

(b) Cyber-persona Identification

4.3 User Profiling Results

We further answer the second and the first part of our third research question on identifying

users based on their network traffic. To this end, we similarly apply the six models on both

datasets (home and large datasets) before and after up-sampling the data.

Small Dataset. The obtained accuracy and F1 score for the small dataset are shown in

Table 6. The recall and precision scores before and after up-sampling are shown in Fig. 10

and Fig. 11. As can be seen, the ensemble provides the best results with an accuracy of

75.59% and an F1 score of 75.59% before up-sampling. Up-sampling the data slightly im-

proves our models’ performance, with an accuracy of 75.82% and an F1 score of 75.82%

for the ensemble model. To improve the performance, we extended our experiments by

considering windows of flows instead of single flows. We combine the flow windows with

the embedding vectors obtained from the application of fasttext on the hostnames within
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the window. We illustrate the grid search results on the small dataset (in the case of user

profiling) in Fig. 12. We considered many window flow sizes before and after up-sampling.

Table 10 shows the flow windows sizes providing the best results for decision trees, ran-

dom forest and neural networks. As can be seen, Feed Forward Neural Network gave the

best results before up-sampling, with 77.15% of accuracy and 69.94% of F1 score when

considering 10 flows per window. On the other hand, after up-sampling, Random Forest

gave the best results with 93.65% of accuracy and 93.46% of F1 score when considering

30 flows per window.

Figure 11: Small Dataset: Profiling Recall and Precision after Up-Sampling
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(a) Accuracy per Different Flow Windows Sizes

(b) F1 Score per Different Flow Windows Sizes

Figure 12: Small Dataset: Profiling Grid Search after Up-Sampling

54



Figure 13: Large Dataset: Profiling Recall and Precision before Up-Sampling

Figure 14: Large Dataset: Profiling Recall and Precision after Up-Sampling
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Large Dataset. For the large dataset, Table 7 presents our profiling models’ perfor-

mance results, both before and after up-sampling the data. The precision and recall are

shown in Fig. 13 and Fig. 14. The ROC curve is shown in Fig. 15a and the FFNN loss and

accuracy for user profiling are illustrated in Fig. 16 and Fig. 17 respectively. The ensemble

gave the best results before up-sampling, with 98.86% of accuracy and 98.86% of F1 score.

After up-sampling, the ensemble also gave the best results with 98.89% of accuracy and

98.89% of F1 score. With respect to the grid search results, Fig. 21 presents the results

obtained from applying grid search on the large dataset, considering different flow win-

dows sizes before and after up-sampling. Table 9 shows the flow window sizes providing

the best results for decision trees, random forests and FFNN. As can be seen, FFNN gave

the best results before up-sampling with 96.07% of accuracy and 94.44% of F1 score when

considering 20 flows per window. After up-sampling, FFNN also gave the best results with

98.56% of accuracy and 98.54% of F1 score when considering 30 flows per window.
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(a) User Profiling ROC Curve

(b) Cyber-persona Identification ROC Curve

Figure 15: Large Dataset: Profiling and Cyber-persona ROC Curve
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(a) User Profiling model’s Training Loss

(b) User Profiling model’s Validation Loss

Figure 16: Large Dataset: Profiling Training and Validation Loss
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(a) User Profiling model’s Training Accuracy

(b) User Profiling model’s Validation Accuracy

Figure 17: Large Dataset: Profiling Training and Validation Accuracy
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(a) Cyber-Persona Identification Training Loss

(b) Cyber-Persona Identification Validation Loss

Figure 18: Large Dataset: Cyber-persona Training and Validation Loss
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(a) [Cyber-Persona Identification Training Accuracy

(b) Cyber-Persona Identification Validation Accuracy

Figure 19: Large Dataset: Cyber-persona Training and Validation Accuracy
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(a) Accuracy per Different Flow Windows Sizes

(b) F1 Score per Different Flow Windows Sizes

Figure 20: Small Dataset: Cyber-persona Grid Search after Up-Sampling
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(a) Accuracy per Different Flow Windows Sizes

(b) F1 Score per Different Flow Windows Sizes

Figure 21: Large Dataset: Profiling Grid Search after Up-Sampling
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Table 8: Large Dataset: Acc. and F1 Results using Single Flows with Embeddings

Before Up-sampling After Up-sampling

Models F1 Acc. F1 Acc.
Decision Trees 98.37% 98.48% 98.17 % 98.30 %
Random Forests 97.61% 97.79% 97.63% 97.81%
FFNN 86.24% 87.06% 84.43% 85.23%
LSTM 96.94% 97.06% 97.02% 97.14%
CNN 82.00% 83.12% 80.35% 81.56%
Ensemble 98.59% 98.68% 98.45% 98.55%

(a) User Profiling

Before Up-sampling After Up-sampling

Models F1 Acc. F1 Acc.
Decision Trees 98.08% 98.10% 98.20% 98.25%
Random Forests 97.76% 97.79% 97.77% 97.83%
FFNN 87.10% 87.39% 85.33% 85.18%
LSTM 96.04% 96.12% 96.93% 96.98%
CNN 79.06% 79.56% 81.79% 81.44%
Ensemble 98.35% 98.37% 98.44% 98.47%

(b) Cyber-persona Identification

Table 9: Large Dataset: Best Results using Flow Windows and Embedings

Before Up-sampling After Up-sampling

Models
Flow Win.

Size F1 Acc.
Flow Win.

Size F1 Acc.

Decision Trees 3 93.66% 94.15% 2 93.42% 94.05 %
Random Forests 2 92.61% 93.21 % 2 92.39% 93.1%
FFNN 2 78.96% 80.32% 2 81.3% 82.39%
LSTM 2 92.49% 92.95 % 2 91.49 % 91.78%
CNN 2 75.25% 76.55% 2 76.81% 78.14%
Ensemble 2 95.12% 95.49% 2 94.24 % 94.78 %

(a) User Profiling

Before Up-sampling After Up-sampling

Models
Flow Win.

Size F1 Acc.
Flow Win.

Size F1 Acc.

Decision Trees 2 93.72% 93.83 % 2 94.28% 94.64%
Random Forests 2 93.09% 93.2% 2 92.68% 93.03%
FFNN 2 78.86% 79.61% 2 78.58% 78.71 %
LSTM 2 91.49 % 91.78 % 2 90.93% 91.32%
CNN 2 76.43 % 76.96% 3 73.92 % 74.41%
Ensemble 2 94.85% 94.93% 2 94.61% 94.94%

(b) Cyber-persona Identification
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Table 10: Small Dataset: Best Results using Flow Windows and Embedings

Before Up-sampling After Up-sampling

Models
Flow Win.

Size F1 Acc.
Flow Win.

Size F1 Acc.

Decision Trees 10 67.86% 75.76% 50 83.43% 83.23%
Random Forests 10 69.75% 76.77% 30 93.46% 93.65%
FFNN 10 69.94% 77.15% 30 92.78% 92.93%

(a) User Profiling

Before Up-sampling After Up-sampling

Models
Flow Win.

Size F1 Acc.
Flow Win.

Size F1 Acc.

Decision Trees 20 94.72% 95.78% 50 96.08% 96.04%
Random Forests 50 95.46% 96.36% 30 98.49% 98.48%
FFNN 20 94.44% 96.07% 30 98.54% 98.56%

(b) Cyber-persona Identification

Table 11: Small Dataset: Acc. and F1 Results using Single Flows and Embeddings

Before Up-sampling After Up-sampling

Models F1 Acc. F1 Acc.
Decision Trees 69.67% 76.08% 81.88% 81.87%
Random Forests 65.84% 73.42% 78.91% 79.13%
FFNN 66.55% 74.15% 71.79% 71.87%

(a) User Profiling

Before Up-sampling After Up-sampling

Models F1 Acc. F1 Acc.
Decision Trees 77.58% 86.24% 85.65% 85.66%
Random Forests 78.37% 88.25% 84.83% 84.95%
FFNN 78.34% 89.84% 78.13% 78.63%

(b) Cyber-persona Identification

65



4.4 Cyber-Persona Identification Results

In this section, we aim to answer the second part of our third research question. Thus, we

present the cyber-persona identification results obtained on the small and large datasets.

Small Dataset. We aim to identify three cyber-persona types on the small dataset (see

Section 4.1.1 for its description). Table 6 shows the accuracy and F1 score results, while

Fig. 22 and Fig. 23 illustrate the recall and precision scores. As can be seen, FFNN model

provide better results with 89.94% of accuracy and F1 score before up-sampling, while

CNN model provide the best results after up-sampling the data with 88.85% of accuracy

and F1 score. Moreover, Fig. 20 present the results obtained during the grid search con-

ducted on the small dataset by considering different flow window sizes. Table 10 shows the

flow window sizes providing the best results for decision trees, random forest and FFNN.

As can be seen, before up-sampling the data, random forest gave the best performance with

96.36% of accuracy and 95.46% of F1 score when considering 50 flow per window. How-

ever, after up-sampling the data, FFNN gave the best results with 98.56% of accuracy and

98.54% of F1 score when considering 30 flows per window.

Figure 22: Small Dataset: Cyber-persona Recall and Precision before Up-Sampling
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Figure 23: Small Dataset: Cyber-persona Recall and Precision after Up-Sampling

Large Dataset. In this section we present the results of our cyber-persona identification

on the large dataset. the accuracy and F1 score are presented in Table 7, while the recall and

precision are presented in Fig 24 and Fig. 25. The loss and accuracy of the FFNN model are

illustrated in Fig. 18 and Fig. 19, respectively. The results show that the ensemble provides

the best performance before data up-sampling, with an accuracy equal to 98.85%, and F1

score equal to 98.88%. The ensemble gave the best performance after up-sampling the data,

with an accuracy equal to 98.88% and F1 score equal to 98.88%. Moreover, Fig. 29 and

Fig. 27 present the results obtained during the grid search conducted on the large dataset by

considering different flow window sizes in the case of cyber-persona identification. Table

9 shows the flow window sizes providing the best results. As can be seen, considering one

flow with embeddings provides the best results before and after up-sampling. Decision tree

provides the best performance before up-sampling, with an accuracy equal to 98.41% and
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F1 equal to 98.38%. It also provides the best performance after up-sampling, with accuracy

and F1 equal to 98.77%.

Figure 24: Large Dataset: Cyber-persona Recall and Precision before Up-Sampling

Figure 25: Large Dataset: Cyber-persona Recall and Precision after Up-Sampling
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4.5 Insider Threat Detection Results

We test our insider threat detection approach on the small data, using the FFNN model

trained and presented in Section 4.4. We experimentally derive a threshold value equal to

0.788 (see Fig. 26), whereby all predictions with a probability below this threshold will be

flagged as suspicious. We obtain an AUC equal to 92.91%.

On the other hand, we have applied three outlier detection models on the large dataset

to detect behavioural deviations. Fig. 28a, Fig. 28b and Fig. 28c illustrate respectively

the results provided by our insider threat detection module in the case of cyber-persona

type victim of an insider threat incident. The mentioned figures illustrate the network

flows flagged as abnormal in red while normal ones are in green. Notice that the data

dimensionality was reduced to two dimensions for the visualization, using t-sne7.

Figure 26: Small Dataset: Insider Threat Detectio ROC Curve

7https://scikit-learn.org/, accessed on November 15, 2020
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4.6 Results Analysis and Discussion

This section compares the results obtained by considering single flows or windows of flows

with embedding and with/without data up-sampling.

4.6.1 User Profiling

The experiments conducted indicate the following: in the case of the small dataset, when

considering single flows and up-sampling the data, the best results are obtained by the en-

semble of models (75.82% accuracy and 75.82% F1 score). In contrast, when considering

the flow window size of 30 and up-sampling the data, the best results are achieved by ran-

dom forests (93.65% accuracy and 93.46% F1 score). However, for the large dataset, single

flows and up-sampling provide the best performance results using the ensemble model with

98.89% of accuracy and 98.89% of F1 score.

(a) Accuracy per Different Flow Windows Sizes

Figure 27: Large Dataset: Cyber-persona’s Accuracy Grid Search after Up-Sampling
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(a) Robust Covariance (b) One Class SVM

(c) Isolation Forests

Figure 28: Example of Insider Threat Detection on the Large Dataset

4.6.2 Cyber-persona Identification

The experiments conducted indicate the following: In the small dataset, considering a flow

window size of 30 and data up-sampling provides the best results for the FFNN model

(98.56% accuracy and 98.54% F1 score). In contrast, when considering a flow window

size of 50 without up-sampling, the best results are achieved by random forest (96.36%

accuracy and 95.46% F1 score). In the case of the large dataset, when considering single

flows, the best results are obtained by the ensemble (98.85% for accuracy and 98.88 forF1

score) before up-sampling and 98.91% for both accuracy and F1 score, after up-sampling.
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(a) F1 Score per Different Flow Windows Sizes

Figure 29: Large Dataset: Cyber-persona’s F1 Score Grid Search after Up-Sampling

4.7 Visualization

It is essential to visualize our approach’s results in a dashboard to extract the actionable

threat intelligence on time. To this end, we insert the network flows and their correspond-

ing predictions (the most important ones are insider’s Id, cyber-personaand alerts) into an

elasticsearch index and visualizes them using kibana dashboards.

4.8 Conclusion

In this chapter, we have presented our experimental evaluation. We first presented our ex-

perimental setup. Second, we have presented the results obtained using the different mod-

ules (machine/human segregation, user profiling, cyber-persona identification, and insider

threat detection). Third, we have provided a comparison between the different employed
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models. Finally, we have presented our dashboard. In the next chapter, we will present this

thesis’s conclusions and the future work of this thesis.
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Chapter 5

Conclusion and Future Work

Insider threat detection has become a relevant research topic due to the dramatic increase

in its frequency and financial impact on targeted organizations. Cybercriminals take advan-

tage of the careless insiders to launch cyberattacks from inside the organizations, making

the firewalls and sophisticated techniques to prevent attacks from the outside insufficient.

This thesis presented an automatic framework for analyzing the insiders’ behaviour in the

organizations’ network. We designed and implemented a network traffic-based user profil-

ing, cyber-persona identification, and abnormal behaviour detection system in this context.

The system leverages supervised machine learning and deep learning techniques (including

decision trees, random forests and deep feed-forward neural networks, LSTMs and CNNs)

and outlier detection techniques (including isolation forests, one-class SVM and robust

covariance).

When receiving streams of network flows, our framework first segregates the flows gen-

erated by machines (e.g., routers, printers) using a binary classifier. After that, we feed each

network flow to the user profiling and the cyber-persona identification modules. Those two

modules detect the Id and the cyber-persona type of the users by analyzing their network

flows using supervised machine learning algorithms. Finally, we feed the network flows

to the insider threat detection module, which employs an outlier detection model to detect
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user’s behavioural deviations. Our framework detects any behavioural deviation from the

user’s normal behaviour or the user’s cyber-persona type’s normal behaviour. We applied

our approach to a real-world dataset provided by our partners and conducted an experi-

mental study, which involved training different machine learning models. We used labelled

network traffic data for training the models to provide the capability to timely detect the

behavioural deviations of users with respect to their profiles and cyber-persona types. Our

results demonstrated that our framework has a high performance, as demonstrated by our

extensive experimental study. Corporate and academic organizations can benefit from de-

ploying the presented framework to detect insider threats in near-real-time. In future work,

we aim to investigate further the use of other machine learning and deep learning models.

We will also apply our approach to large datasets from different sources.
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