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Introduction
We congratulate the authors of Hero et al. (2023) for a very interesting and comprehensive review of the 

current challenges in the field of statistics and data science for cybersecurity applications. In this commentary, 

we would like to contribute by expanding upon some of the points raised by the authors in their Section 3, 

“Data-Driven Cybersecurity for Enterprise Systems,” describing some of the challenges faced by statisticians 

working in cybersecurity, in particular regarding data structures, and emphasising directions for future work 

and research in statistical modeling for cybersecurity.

As Hero et al. (2023) point out, statistical modeling currently represents the main tool for anomaly-based 

detection, which looks for deviations from a model of the normal behavior of the network (see, for example, 

Chandola et al., 2009). As discussed in the article, statistical models have the main advantage of being able to 

assign anomaly scores to previously unseen events, by borrowing strength between different users, hosts, and 

processes. In this way, previously unobserved attacks, or zero-day exploits, can still potentially be identified. 

This remarkable feature of statistical models has been demonstrated extensively in the literature, with the 

objective, for example, to discover compromised credentials and lateral movement within a computer network 

(Neil et al., 2013).

Statistical models for cybersecurity also present domain-specific challenges that might not be commonly 

observed in other applications. For example, as the authors point out in their list of challenges in data-centric 

cybersecurity, training of statistical models is often difficult because of the dearth of labels problem. Labels 

about attacks and intrusions are often available only on a small and controlled subset of the data, whereas the 

remaining activity is its large majority, assumed to be benign. For example, in user-authentication and network 

flow data, only events from red-team exercises might be labeled and considered as malicious. From a statistical 

perspective, caution is needed when evaluating models only using a small subset of known labels: we might be 

at risk of overfitting models on the available labels, potentially ignoring undetected attacks in the unlabelled set 

of observations. Therefore, constant feedback and communication between cyber analysts and data scientists is 

required for calibrating models and understanding their output. Furthermore, automated threat detection should 

ideally be based on highly interpretable models, which can be appropriately modified and updated to react and 

adjust to novel attack patterns.

Keeping these challenges in mind, this commentary discusses three common data structures that are observed 

in cybersecurity and related statistical methodologies. This is followed by a discussion on future possible 

research directions in data fusion and streaming data analysis, which are needed to combine evidence from 

different data sources and update models when new data are available.



Harvard Data Science Review • Issue 5.1, Winter 2023
Statistical Cybersecurity: A Brief Discussion on Challenges, Data Structures, and Future

Directions

3

Three Examples of Data Structures in Cybersecurity
Data collected on Internet of Things (IoT) devices come in heterogeneous forms. Three of the most common 

data structures observed in cybersecurity applications are graphs, point processes, and textual data. Each of 

these data types requires different statistical techniques for analysis. It is important to remark that data in 

cybersecurity applications do not come exclusively in these forms. Also, different data structures and 

corresponding models in cybersecurity are often deeply intertwined by complex dependencies. Therefore, 

different data sources might be appropriately combined via meta-analysis and data fusion techniques, in order 

to capture the full complexity of a computer network.

Graphs. Enterprise computer networks can be mathematically interpreted as complex dynamic graphs. For 

example, in network flow data, hosts and their IP addresses correspond to the nodes, and edges are drawn if 

data transfers between them are observed. In cybersecurity, nodes and edges have additional information that 

could be incorporated into statistical models. In the network flow data example, nodes might have associated 

geolocations, and edges could occur on different ports. Under the representation of an enterprise computer 

network as a graph, there are essentially three main types of models that can be built, at different levels of 

resolution: global, node-based, and edge-based models.

Global models describe the connectivity patterns observed over the entire network by modeling, for example, 

the graph adjacency matrix or a transformation thereof. Latent position models (LPMs; Hoff et al., 2002) have 

emerged as suitable techniques to find low-dimensional hidden structures from adjacency matrices. In 

cybersecurity, two special cases of LPMs are particularly useful: generalized random dot product graphs 

(GRDPG; Rubin-Delanchy et al., 2022), which can be estimated quickly via spectral decompositions, and 

hierarchical Poisson matrix factorization models (HPMF; Gopalan et al., 2015), whose likelihood function only 

depends on the number of observed links, which is particularly advantageous for sparse large graphs observed 

in cybersecurity.

Node-based and edge-based models are constructed at the level of an individual host or host pair (see, for 

example, Turcotte et al., 2014). These models can capture complex relationships at a finer level of granularity, 

that would be missed from a global graph analysis. Data on nodes and edges could usually be interpreted as 

realizations of point processes, the second data type discussed in this commentary.

Point processes. When analyzing individual hosts, data often consist of realizations of events over time, with 

additional features characterizing the event type. In the statistics literature, such data structures are named 

marked point processes. A particular class of point processes is represented by mutually exciting processes, 

which include popular models such as Hawkes processes, commonly used in numerous applications including 

empirical high-frequency trading in finance and geological sciences. Mutually exciting processes have a 

particularly appealing construction for modeling computer networks for intrusion detection, as these are 

designed to learn complex dependencies between observations both within and between different processes 
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running simultaneously on a network or on a host. Promising work evaluating the performance of such 

processes for the purposes of anomaly detection has been developed (Shchur et al., 2021), including 

applications to network security (Shlomovich, Cohen, & Adams, 2022; Zheng et al., 2021.

One of the main difficulties for successfully fitting point process models on cybersecurity data is that a deep 

understanding of the data collection process is required. For example, in network flow data, some events occur 

periodically in bursts of activity caused by the division in packets: these events are appropriately modeled via 

point processes with periodic intensity functions. On the other hand, events triggered by a human user are 

better modeled via self-exciting processes (Price-Williams & Heard, 2020), and would need to be modeled 

separately from automatically generated and periodic events. Therefore, even on individual nodes or edges, it is 

necessary to combine different modeling approaches in order to produce reliable anomaly scores.

Another major issue is that point processes, while generally modeled as continuous time objects, rarely reveal 

themselves as such, with events often being binned into a time series of counts. The extent to which data are 

binned is typically dictated by the data storage or recording devices and results in a loss of temporal resolution 

and information. New inference methodology that can counter these binning operations has recently been 

developed for the cybersecurity setting (Shlomovich, Cohen, Adams, & Patel, 2022), and models that directly 

handle the count data themselves is an active area of research (Fokianos et al., 2020). However, more broadly, 

the effects on inference and prediction tasks resulting from applying binning transformations to the data is yet 

to be fully understood.

The final difficulty we highlight here is that events might have associated marks: for example, a user logging 

on to a host might also run some commands on the machine, expressed in the form of text, the third data source 

discussed in this commentary. The difficulty of incorporating these marks in point process models often means 

they are ignored, while in fact they are information-rich and there to be exploited, if used correctly.

Textual data. In the introduction to this commentary, it was noted that statistical models in cybersecurity often 

suffer from the dearth of labels problem. An exception to this rule is session data collected on honeypots, 

which could be used as examples of attacks to an enterprise computer network, which makes them particularly 

useful for developing intrusion detection systems (Highnam et al., 2021). Session data correspond to sequences 

of commands, which can be interpreted as text data. Cyber analysts are often interested in classifying such 

sessions into groups with similar behavior, and identifying sessions corresponding to novel attacks. A popular 

statistical model for textual data is latent Dirichlet allocation (LDA), where each word is drawn from a mixture 

of distribution corresponding to latent unknown topics. Unfortunately, vanilla LDA is not suitable for honeypot 

data, since it presents unidentifiability and convergence issues that make its interpretation complex for cyber 

analysts and threat experts. Therefore, LDA and other more general language models require careful adaptation 

for use in cybersecurity applications. For example, extensions of LDA that aid identifiability and interpretation 

have been employed in the literature to classify session data collected on honeypots Sanna Passino et al., 2023; 
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, helping analysts at Microsoft to discover a variant of the MIRAI malware that attempts to take over existing 

coin miner infrastructure (Bevington, 2021).

More generally, methods for text analysis have great potential for tasks such as malware identification and 

classification (see, for example, Gibert et al., 2020). Recent advancements in language modeling in the field of 

deep learning could provide significant benefits to cybersecurity applications. Such models are not only useful 

for the analysis of session data, but also for their preprocessing and parsing. For example, software libraries 

based on deep neural networks and transformers have been developed for flexibly parsing computer logs, 

adding the flexibility that architectures based on regular expressions might lack.

Future Directions: Streaming Methods and Data Fusion
In the previous section, we noted three common data types in cybersecurity and some of the related statistical 

challenges. As discussed in Hero et al. (2023), one of the main difficulties is the adversarial nature of the 

problem. Therefore, all the statistical methodologies developed for cybersecurity applications must be resilient 

to new threats, and adapted when necessary. Also, because of the multiple data sources available, evidence 

from different models must be appropriately combined. In statistics, these challenges could be addressed via 

streaming data analysis and data fusion methods.

Streaming data analysis. Streaming data analysis methods are aimed at processing data that are generated as 

continuous flows, using a fixed and limited amount of memory and computational power. In statistical 

applications, this usually translates into models with sequential updates for estimates of the model parameters, 

which could be adapted when new observations are available. A flexible framework for streaming data analysis 

methods is to incorporate a forgetting factor parameter within the model, used to express how far into the past 

data is ‘remembered’ and consequently how quickly the parameter estimates adapt to changes in the state of 

nature. Forgetting factor approaches have been successfully applied on a variety of streaming anomaly 

detection tasks in cybersecurity (see, for example, Riddle-Workman et al., 2018).

Anomaly detection models for cybersecurity applications should also be able to score events involving 

previously unseen entities. For example, in text analysis, models should be capable of handling previously 

unobserved tokens appearing in the vocabulary, which might correspond to new examples of malware, or new 

variants of bots. Also, new attack types might arise, and algorithms should be able to identify whether new 

observations are not a good match with previously identified intents. Within this context, Bayesian 

nonparametric methods could be used as a principled way to model infinite dimensional discrete distributions, 

providing statistical tools to score events involving previously unseen entities (see, for example, Sanna Passino 

et al., 2023; Zheng et al., 2021).

Data fusion and meta-analysis. As discussed in Hero et al. (2023), and in other parts of this commentary, data 

collected in cybersecurity applications tend to be highly complex. Therefore, it is often beneficial to break down

 the full model for a given data structure into simpler components, at a finer level of granularity. Under this 
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framework, it is crucial to understand how to combine evidence obtained from such models. In statistics, this 

task is usually known as meta-analysis, a procedure aimed at merging the results of multiple independent 

studies, obtaining an overall global effect (see, for example, Hedges & Olkin, 2014).

Also, statistical models for cybersecurity could benefit from fusing information collected from different 

sources. A specific challenge observed with cybersecurity data is that data observed from different sources 

cannot be considered independent, and often present correlation. For example, consider the case of the unified 

host and network data set released by the Los Alamos National Laboratory (Turcotte et al., 2018): a model for 

the network connectivity observed from a given host should be combined with models for the processes that 

are run on the machine, giving a full picture of the activity of the node by fusing two different data sources (for 

an example with multi-type clustering, see Riddle-Workman et al., 2021). We believe that efforts in this 

direction are needed from the community of researchers in statistical cybersecurity, with the objective of 

improving existing anomaly detection systems.
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