6 research outputs found

    TiBi-3D - a Guide through the World of Epigenetics

    Get PDF
    In the last two decades the study of changes in the genome function that are not induced by changes in DNA has consolidated a strong research field called ”epigenetics”. Chromatin state changes play an essential role in the regulation of transcription of many genes, thus controlling cell differentiation. A large part of these changes is due to histone modifications that alter the accessibility of the DNA. Current state of the art visualization methods for the analysis of epigenetic data sets are not suited to represent the relationship between the combinatorial pattern of histone modifications and their regulatory effects

    Characterization of Higher-order Chromatin Structure in Bone Differentiation and Breast Cancer: A Dissertation

    Get PDF
    Higher-order genome organization is important for the regulation of gene expression by bringing different cis-regulatory elements and promoters in proximity. The establishment and maintenance of long-range chromatin interactions occur in response to cellular and environmental cues with the binding of transcription factors and chromatin modifiers. Understanding the organization of the nucleus in differentiation and cancer has been a long standing challenge and is still not well-understood. In this thesis, I explore the dynamic changes in the higher-order chromatin structure in bone differentiation and breast cancer. First, we show dynamic chromatin contact between a distal regulatory element and the promoter of Runx2 gene, which encodes the Runtrelated transcription factor 2 (RUNX2) that is essential for bone development. Next, via using a genome-wide approach, we show that breast cancer cells have altered long-range chromatin contacts among small, gene-rich chromosomes and at telomeres when compared with mammary epithelial cells. Furthermore, we assess the changes in nuclear structure and gene expression of breast cancer cells following Runt-related transcription factor 1 (RUNX1) deficiency, an event frequently observed in breast cancer. Finally, I present the role of the central ATPase subunit of the SWI/SNF complex, SMARCA4 (BRG1), in mediating nuclear structure and gene expression. Taken together, the research presented in this thesis reveals novel insight and paradigm for the dynamic changes in disease and differentiation, as well as uncovers previously unidentified roles for two chromatin regulatory proteins, RUNX1 and SMARCA4

    Three-dimensional Folding of Eukaryotic Genomes

    Get PDF
    Chromatin packages eukaryotic genomes via a hierarchical series of folding steps, encrypting multiple layers of epigenetic information, which are capable of regulating nuclear transactions in response to complex signals in environment. Besides the 1-dimensinal chromatin landscape such as nucleosome positioning and histone modifications, little is known about the secondary chromatin structures and their functional consequences related to transcriptional regulation and DNA replication. The family of chromosomal conformation capture (3C) assays has revolutionized our understanding of large-scale chromosome folding with the ability to measure relative interaction probability between genomic loci in vivo. However, the suboptimal resolution of the typical 3C techniques leaves the levels of nucleosome interactions or 30 nm structures inaccessible, and also restricts their applicability to study gene level of chromatin folding in small genome organisms such as yeasts, worm, and plants. To uncover the “blind spot” of chromatin organization, I developed an innovative method called Micro-C and an improved protocol, Micro-C XL, which enable to map chromatin structures at all range of scale from single nucleosome to the entire genome. Several fine-scale aspects of chromatin folding in budding and fission yeasts have been identified by Micro-C, including histone tail-mediated tri-/tetra-nucleosome stackings, gene crumples/globules, and chromosomally-interacting domains (CIDs). CIDs are spatially demarcated by the boundaries, which are colocalized with the promoters of actively transcribed genes and histone marks for active transcription or turnover. The levels of chromatin compaction are regulated via transcription-dependent or transcription-independent manner – either the perturbations of transcription or the mutations of chromatin regulators strongly affect the global chromatin folding. Taken together, Micro-C further reveals chromatin folding behaviors below the sub-kilobase scale and opens an avenue to study chromatin organization in many biological systems

    Measuring Stability of 3D Chromatin Conformations and Identifying Neuron Specific Chromatin Loops Associated with Schizophrenia Risk

    Get PDF
    The 23 pairs of chromosomes comprising the human genome are intricately folded within the nucleus of each cell in a manner that promotes efficient gene regulation and cell function. Consequently, active gene rich regions are compartmentally segregated from inactive gene poor regions of the genome. To better understand the mechanisms driving compartmentalization we investigated what would occur if this system was disrupted. By digesting the genome to varying sizes and analyzing the fragmented 3D structure over time, our work revealed essential laws governing nuclear compartmentalization. At a finer resolution within compartments, chromatin forms loop structures capable of regulating gene expression. Genome wide association studies have identified numerous single nucleotide polymorphisms (SNPs) associated with the neuropsychiatric disease schizophrenia. When these SNPs are not located within a gene it is difficult to gain insight into disease pathology; however, in some cases chromatin loops may link these noncoding schizophrenia risk variants to their pathological gene targets. By generating 3D genome maps, we identified and analyzed loops of glial cells, neural progenitor cells, and neurons thereby expanding the set of genes conferring schizophrenia risk. The binding of T-cell receptors (TCRs) to foreign peptides on the surface of diseased cells triggers an immune response against the foreign invader. Utilizing available structural information of the TCR antigen interface, we developed computational methods for successful prediction of TCR-antigen binding. As this binding is a prerequisite for immune response, such improvements in binding prediction could lead to important advancements in the fields of autoimmunity and TCR design for cancer therapeutics

    Novel Approaches to Studying the Effects of Cis-Regulatory Variants in the Central Nervous System

    Get PDF
    For decades, studies of the genetic basis of disease have focused on rare coding mutations that disrupt protein function, leading to the identification of hundreds of genes underlying Mendelian diseases. However, many complex diseases are non-Mendelian, and less than 2% of the genome is coding. It is now clear that non-coding variants contribute to disease susceptibility, but the precise underlying mechanisms are generally unknown. Cis-regulatory elements (CREs) are transcription factor (TF)-bound genomic regions that regulate gene expression, and variants within CREs can therefore modify gene expression. The putative locations of CREs in a variety of cell types have been identified through genome-wide assays of TF binding and epigenomic signatures, providing a starting point for probing the effects of cis-regulatory variants. Unlike coding mutations, which can be interpreted based on the genetic code, the functional consequence of any given cis-regulatory variant is difficult to predict even at the molecular level. Therefore, a major bottleneck lies in interpreting the functional significance of these variants. In the present work, I study the effects of cis-regulatory variants in the central nervous system (CNS), specifically in retina and brain. The retina is composed of well-characterized neuronal cell types and an extensively studied transcriptional network, while the brain is the center of human cognition and a target of devastating neuropsychiatric diseases. First, I take advantage of the genetic diversity between two distantly related mouse strains to describe the relationship between cis-regulatory variants and differences in retinal gene expression. I identify cis- and trans-regulatory effects, as well as parent-of-origin effects. Second, I develop a new technology based on an existing massively parallel reporter assay, CRE-seq, to enable the functional study of long CREs in the CNS in vivo for the first time. I demonstrate the ability of this approach to measure tissue-specific cis-regulatory activity in the brain and to pinpoint DNA bases critical for activity. Finally, I conduct a detailed mechanistic study of a non-coding region containing variants associated with both human cognitive performance and bipolar disorder. This last study illustrates the complexities and challenges of establishing the causal role of non-coding variants in disease
    corecore