Washington University in St. Louis

Washington University Open Scholarship

Arts & Sciences Electronic Theses and Dissertations Arts & Sciences

Spring 5-15-2018

Novel Approaches to Studying the Effects of Cis-
Regulatory Variants in the Central Nervous System

Susan Shen
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/art sci_etds

b Part of the Genetics Commons, Molecular Biology Commons, and the Neuroscience and
Neurobiology Commons

Recommended Citation

Shen, Susan, "Novel Approaches to Studying the Effects of Cis-Regulatory Variants in the Central Nervous System" (2018). Arts &
Sciences Electronic Theses and Dissertations. 1578.
https://openscholarship.wustl.edu/art_sci_etds/1578

This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open Scholarship. It has been accepted
for inclusion in Arts & Sciences Electronic Theses and Dissertations by an authorized administrator of Washington University Open Scholarship. For

more information, please contact digital@wumail.wustl.edu.


https://openscholarship.wustl.edu?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1578&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/art_sci_etds?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1578&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/art_sci?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1578&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/art_sci_etds?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1578&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/29?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1578&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/5?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1578&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/55?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1578&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/55?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1578&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/art_sci_etds/1578?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F1578&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

WASHINGTON UNIVERSITY IN ST. LOUIS

Division of Biology and Biomedical Sciences
Molecular Genetics and Genomics

Dissertation Examination Committee:
Joseph Corbo, Chair
Shiming Chen
Donald Conrad
Joseph Dougherty
Justin Fay
Ting Wang

Novel Approaches to Studying the Effects
of Cis-Regulatory Variants in the Central Nervous System
by
Susan Qi Shen

A dissertation presented to
The Graduate School
of Washington University in
partial fulfillment of the
requirements for the degree
of Doctor of Philosophy

May 2018
St. Louis, Missouri



© 2018, Susan Shen



TABLE OF CONTENTS

List of Figures and Tables...........oouiiiniiii e e Vi
LSt Of ADDIEVIATIONS. ...\ttt ittt ettt e e e e IX
ACKNOWICAZOMENLS. . ..ottt et e et et e e et Xi
YA o1 ¢ Yot S xiii
Chapter 1: INtrodUCHON. ...t e et e e e eeieens 1
1.1  The significance of cis-regulatory variants in biology and disease................... 3
1.2 Genomic insights into the properties Of CRES.............ccoooiiiiiiiiiiiien. 5
1.3 The retina as a model system for studying cis-regulation............................... 8
1.4 Massively parallel reporter assays for functional analysis of cis-regulatory
VAETANTS. . ettt e 11
1.5 Identification of disease-associated variants in the GWASera...................... 13
1.6 The post-GWAS era: convergence of GWAS and functional genomics............ 16
1.7 The brain as a frontier for cis-regulatory biology...................oooiiiiiii, 17
Chapter 2: Hybrid Mice Reveal Parent-of-Origin and Cis- and Trans-Regulatory Effects in the
=1 1] - USSP 22
2.1 AULhOr CONEIIDULIONS. ... et 23
2.2 ADSHIACT. ..ot s 24
2.3 INIrOQUCTION. ...t e 25
2.4 RESUIS. ..o 28
2.4.1 Strongly imprinted genes in other tissues show evidence of imprinting in
tNE TEHINA. ..o 29
2.4.2 One-third of differentially expressed genes between Cast/EiJ and
C57BL/6J retinas are associated with photoreceptor CREs................. 32
2.4.3 Cis-regulatory effects account for the bulk of gene regulatory divergence
between Cast/EiJ and C57BL/6J retinas...........ccoevviiiiiiiiinninannn.. 33
2.4.4 Higher frequency of variants in photoreceptor CREs correlates with
differential eXPresSioNn. ... .....c.oveiiiii i 35
2.4.5 The Cast/EiJ genome harbors both activating and silencing cis-regulatory
variants associated with retinal disease genes..................cooevveinin, 37
2.4.6 The majority of isolated cis effects and isolated trans effects are tissue-
SPECITIC. .. e, 38
2.5 DUHSCUSSION. ...ttt e e s 41
2.6 MEENOGS. ... 44
2.6.1 EthicsStatement.........cooiiiiii i 44
2.6.2 ANIMALS. ... 44
2.6.3 Sample collection and SEQUENCING...........coiviiiiiiiiiiieeene, 44
2.6.4 Read alignment and quantification.....................ooooiiiiiiiiiiienn, 45
2.6.5 Identification of imprinted genes.............coiiiiiiiiiiiiii 46



2.6.6 Mouse imprinting databases..............coooiiiiii 46

2.6.7 Categorization of genes according to cis and trans effects.................. 47
2.6.8 Calculation of weighted log fold change......................ocoo, 48
2.6.9 Assignment of genes to CRX ChlIP-seq peaks............ccooevviiiiiininn 48
2.6.10 Batch identification of variants................cooiiiiiiiiiiiiiia 49
2.6.11 Identification of variants at individual regions................................ 49
2.6.12 ReINBL gBNES. ...ttt e 49
2.6.13 DINA CONSIUCTS. . ...ttt 50
2.6.14 Retinal explant electroporation and quantification of promoter activity...50
2.7 DAtA ACCESS. . . ettt e 51
2.8 Supporting INnformation.......... ..o 51
2.9 ACKNOWIBAGEMENTS. ...ttt e 52
Chapter 3: Massively Parallel Cis-Regulatory Analysis in the Mammalian Central Nervous
051 =1 0 PP 65
3.1 AUthor ContribULIONS. .. ..ot 66
3.2 ADSHIAC. ..ot 67
3.3 INErOAUCTION. ... e e e 68
Bih  RESUIS. . 70
3.4.1 Identification and characterization of candidate CRE regions.............. 70
3.4.2 ‘Capture-and-clone’ allows synthesis of targeted cis-regulome
IDFArIES. . 71
3.4.3 AAV packaging and delivery preserves CRE-seq library composition....73
3.4.4 AAV-mediated CRE-seq demonstrates tissue-specific CRE activity of
DHSS IN VIVO. ...ttt e 75
3.4.5 Parameters that predict cis-regulatory activity....................ocooeinine. 77
3.4.6 Tiling of captured fragments allows for truncation mutation analysis.....80
3.4.7 Traditional reporter assays confirm that critical bases identified by
CRE-seq truncation mutation analysis are required for activity..............83
3.5 DHSCUSSION. ..ttt ettt et e e 85
36 MEENOGS. ... 91
361 ANIMALS. ..o 91
3.6.2 ReferenCe genome. ... ..oviirit i 91
3.6.3 Identification of target tissue-specific DHS peaks............................ 91
3.6.4 Capture bait library design and synthesis...............ccooeviiiiiiiinnnnn 92
3.6.5 GREAT analysis and Gene Ontology........c.ccovvviiiiiiiiiiiiiinnnn. 92
3.6.6 Restriction enzymes and PCR reagents.............coevvivieninieiieninnnnn. 93
3.6.7 Preparation of gDNA for capture............cooooviiiiiiiiiiiieieeeen, 93
3.6.8 Cis-regulome capture and preparation for cloning........................... 94
3.6.9 CRE-seq library construction................coooiiiiiiiiiiii e 95
3.6.10 Paired-end sequencing for CRE-barcode correspondence.................. 97



3.6.11 Analysis of paired-end sequencing for CRE-barcode correspondence....97

3.6.12 Retinal explant electroporation and culture for CRE-seq.................... 98

3.6.13 Viral producCtion............cooiniinii i 98

3.6.14 Stereotactic cortical INJection............ccoviiiiiiiii e 99

3.6.15 Isolation of RNA and DNA and preparation for sequencing................ 99

3.6.16 Illumina sequencing for CRE-seq barcode abundance..................... 100

3.6.17 CRE-seq data analysSiS. ........coovuiiriiiiiiiii e 100

3.6.18 HiStolOgY. .. .oviei i, 101

3.6.19 Cluster analysis of biological replicates..................cccooeiiiiiinin 102

3.6.20 Analysis of TF motif enrichment in low vs. high-expressing DHSs......102

3.6.21 Receiver operating characteristic (ROC) CUIVES............cccoveviininnnnn. 103

3.6.22 Expression scores for browser screenshots...............c.oceeeeiininnnn.n 104

3.6.23 Synthesis of individual constructs for validation............................ 105

3.6.24 Validation of individual constructs by fluorescent reporter assays....... 105

3.6.25 Comparison With CapSTARR-SE(......cuviviiiiiiiiieieeeeeeee e, 106

3.7 DAtA ACCESS. . .ttt et et 106

3.8 Supplemental Tables. ..o, 106

3.9  ACKNOWIEAGEMENTS. ...t 107
Chapter 4: A Candidate Causal Variant Underlying Both Higher Cognitive Performance and

Increased Risk for Bipolar DISOITer. .........ouviniiniii e 134

4.1 AUthor ContribUtIONS. . .....it e e e 135

4.2 ADSIIACT. ... 136

4.3 INtrOdUCHION. . .e e 137

A4 RESUIS. ..o 140

4.4.1 The MIR2113/POU3F2 locus harbors non-coding variants associated with

both increased cognitive performance and increased risk for BPD....... 140

4.4.2 Identification of the candidate causal variant rs77910749, a human-
specific non-coding variant that falls within a fetal brain-specific
open chromatin region...........ooviiirii e, 141
4.4.3 Mouse epigenomic data suggest that LC1 is an enhancer in the developing
brain and reveal that rs77910749 falls within a binding site for Pax6....144
4.4.4 Insilico and in vitro analysis demonstrate modest effects of rs77910749

ONPaxB biNding........ccooiiiiii 145
4.4.5 Transgenic reporter mice show evidence of LC1 enhancer activity in the
developing central nervous system (CNS)...........ccooviiiiiiiiiiiiini, 146
44.6 CRE-seq ‘Nano’ measures subtle gain-of-function enhancer activity of
ISTTOT0TAD. .o 147
4.4.7 Invivo deletion of LC1 confers region-specific changes in Pou3f2
=R (0] D PSPPI 149



4.4.8 The novel CpG site created by rs77910749 is methylated at a low

frequency in the developing mouse brain...........................oe 150
4.4.9 The effect of rs77910749 on chromatin accessibility in human fetal
072V D 152
4.4.10 LC1 knockout animals have essentially normal behavior.................. 152
4.4.11 Humanized rs77910749 knock-in mice have defective sensory gating...153
A5 DISCUSSION. ...ttt ettt e e e e e 153
A6 MEINOUS. ... s 157
4.6.1 ANIMAlS. .. ..o 157
4.6.2 DNaSe-Se0 data.........c.ouviriiriie it 157
4.6.3 Calculation of linkage disequilibrium (LD)...............ccooiiiiiin. 158
4.6.4 Analysis Of primate genomES. .......ooviuiirii i 158
4.6.5 MotifanalysiS........oooiiiii 158
4.6.6 Electrophoretic mobility shift assays (EMSAS)...........cooiviiiiiiini 159
4.6.7 Generation of transgenic reporter MIiCe..........c.oovvvivriiiiininnaneannn. 160
4.6.8 LacZ stainingand histology.............ccooiiiiiii i 160
4.6.9 CRE-seq Nano library construction.............covueeeiiiineiiiiiiiieannnn. 161
4.6.10 Mouse cerebral cortex electroporations..............c.coevieviiiiiiininin 162
4.6.11 Human cerebral organoid electroporations...............cccevveiiiiinnn 163
4.6.12 CRE-seq Nano tissue processing and data analysis......................... 165
4.6.13 CRISPR-Cas mice generation...........c.o.eveeuiiniiriiiiiieianieeanenn, 165
4.6.14 Allele-specific expression (ASE) analysiS.............ccooveviiiiiiiinnn, 166
4.6.15 Allele-specific methylation analysis..................ocooiiiiiiiiiian.n. 167
4.6.16 AMPIICON-SEU. .. .iutini it 168
4.6.17 Allele-specific human fetal brain DNase-seq analysis..................... 168
4.6.18 Behavioral 8SSays. .........ocvuiuieiuitiiie e 169
4.7  ACKNOWIEAgEMENTS. ... e, 170
Chapter 5: Conclusions and Future DireCtions. .............oouiiiiiiiiiiiiiiiiii e 199
5.1  The utility of hybrid animals for studying cis-regulation and imprinting.........201
5.2  The future of high-throughput cis-regulatory analysis .............................. 202
5.3  Future directions for investigating the MIR2113/POU3F2 locus.................. 204
5.4  Cis-regulatory biology in the era of clinical whole-genome sequencing......... 206
RO OIONICES. . ..ottt 208
Appendix 1: Methylation in Photoreceptors During Development............cccoovvevieiiieviecieeniens 233
Appendix 2: The Role of CTCF inthe Retina..............ooiiiiiiiiiiii e 244
Appendix 3: High-coverage CRE-seq libraries tiling the MIR2113/POU3F2 locus............... 249



Chapter 1
Table 1.1:
Table 1.2:

Chapter 2
Figure 2.1
Figure 2.2
Figure 2.3

Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Table 2.1:
Table 2.2:
Table 2.3:

Chapter 3
Figure 3.1
Figure 3.2
Figure 3.3

Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.51
Figure 3.52
Figure 3.S3
Figure 3.54
Figure 3.S5

Figure 3.S6
Figure 3.57
Figure 3.58
Figure 3.59

LIST OF FIGURES AND TABLES

Summary of massively parallel reporter assay approaches........................... 20
Summary of functional studies that have identified the likely causal

cis-regulatory variant underlyinga GWAS signal..................ocooiiiiiin 21
SHUAY AESIgN. . e 53
Characterization of parent-of-origin effects inthe retina............................. 54
Comparison of differentially expressed and cis-effect genes associated with
PhOtOreCePtor CRES. ... .ot e 55
Classification of genes by mechanism of gene regulatory divergence.............. 56
Analysis of variant density in photoreceptor CRES.............ccooiviiiiiiiininnnn 57
Cis-effect genes associated with retinal disease and photoreceptor CREs......... 58
Comparison of cis effects and trans effects between liver and retina............... 60
Agreement between FO biological replicates................cccooviiiiiiiiiiiiinn, 62
Agreement between F1 biological replicates................ccooiiiiiiiiiiiinn, 63
Accuracy of X chromosomal read mapping in FLsamples........................... 64

‘Capture-and-clone’ allows synthesis of CRE-seq libraries with long CREs.....108

Tiling of captured fragments across target regions...............coevvevienineninnn. 109
Delivery of capture CRE-seq library into mouse retina ex vivo and cerebral cortex
10 PSPPI 111
Tissue-specific cis-regulatory activity of DHSS..............coooviiiiiiiiiinn 113
Parameters that predict CRE aCtivity..............cooiiiiiiiiie, 114
Truncation mutation analysis by CRE-SE(...........ccoevviriiiiiiiiiiieeiene, 116
Validation of individual loci by fluorescence reporter assays...................... 118
Distribution of 4,000 target DHS regions...........c.oviiiiiiiiiiiiiieieieneans 120
Distribution of overlap of captured fragments with target DHS regions.......... 122
Co-expression of the library and cellular markers...................coooiiiiin. 123
Comparison of biological replicates.............ccooiiiiiiiiiii 124
CRE activity, DNase-seq signal, GC content, and phylogenetic conservation of

assayed DHSs ina 1 kb centered Window..............cocoiiiiiiiiiiiiiii, 125
Length of CRE fragments vS. eXPresSion.........coeovviiriieiiiiiiiiiiiianeannnns 127
Distance to nearest TSS VS. eXPreSSiON........co.ouiiriiriieiiiiieieieeeeeeens 128
Additional examples of truncation mutation analysis by CRE-seq................ 130

Comparison between enhancer activity of short synthesized CREs and
autonomous activity of corresponding captured CRE fragments in the retina...132

Vi



Chapter 4
Figure 4.1

Figure 4.2
Figure 4.3
Figure 4.4

Figure 4.5

Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9

Figure 4.51
Figure 4.52

Figure 4.S3
Figure 4.54
Figure 4.S5
Figure 4.56
Figure 4.57

Table 4.1.

Table 4.2.
Table 4.3.

Appendices

Figure Al.1

Figure Al1.2
Figure A1.3

Figure Al.4
Figure A2.1

Figure A2.2
Figure A3.1

Prioritization of candidate variants at 6q16.1 associated with higher educational
attainment, increased cognitive performance, and risk for bipolar disorder...... 171

Epigenomic landscape around the orthologous LC1 region in mouse............ 173
In silico and in vitro analysis Pax6 binding...................coooiiiiiiii. 175
Transgenic reporter mice show evidence of LC1 activity in the developing

N S e 176
The variant rs77910749 causes a subtle increase in enhancer activity in
developing mouse brain and human cerebral organoids............................. 177
The effect of LC1 deletion on Pou3f2 expression is region-specific............... 179
Allele-specific methylation analysis of LC1.............ccoooiiiiiiiiiiiiiiiin, 181
Human fetal brain allele-specific DNase-seq analysis.................cccooeevenen.. 183
Prepulse inhibition (PPI) is defective in “humanized’ rs779710749 knock-in

1] 0 P 184
Phylogenetic conservation of rs13208578 and rs77910749......................... 185
Identification of a derived haplotype through construction of a human
PRYIOQGENELIC trEE. ... vttt e e 187
Global distribution of rs17814604 and rs77910749 frequencies................... 188
Absence of rs77910749 from non-human primate genomes........................ 190
LC1 falls within a conserved topologically associating domain (TAD)........... 191
Antibody staining of cerebral organoids................ccoviiiiiiiiiiiiiie 192
The methylation landscape of LC1 to LC5 in human primary tissues and cultured
o751 | TP 193
Measures of LD among lead SNPs in GWAS studies of educational attainment,
cognitive ability, and BPD..........ccooiriii e 194
Oligonucleotides used in this StUAY...........ccoooiiiiiiii e, 195
Allele-specific fetal brain DNase-seq analysiS...........ccoovvviiiiiiriiineenannn.. 197

The distribution of 5mC and 5hmC in mouse rod photoreceptors during
development reflects nuclear architeCture............cccoovvieiv i vceceee e 238
5mC and 5hmC distributions in models of rod-to-cone transdifferentiation......240
Bisulfite analysis of Rho and Opnlsw promoters in wild-type and Nrl knockout

retinas over development. ... .. ..o 242
FACS-sorted photoreceptors and bipolar cells reveal cell type-specific
methylation patterns at the Rho promoter................oooiiiiiiiiiiiinene. 243
Deletion of CTCF in the mouse neural retina results in retinal degeneration....247
Expression of cellular markers in CTCF knockout retinas.......................... 248
The 100 target regions in the MIR2113/POU3F2 locus for the PCR CRE-seq

I ALy . ., 252



Figure A3.2
Figure A3.3

Figure A3.4

Distribution of product lengths in the PCR library and coverage of target DHSs in

the MIR2113/POUSF2 LOCUS. .. ..utntitiiiteteee e 253
A BAC library tiling 440 kb of the MIR2113/POU3F2 locus at 40X

(001 o] - T [ 254
Distribution of fragment lengths in the BAC library and coverage of the
MIR2113/POUSBF2 LOCUS. ...ttt 255

viii



LIST OF ABBREVIATIONS

3C chromosome conformation capture
AAV adeno-associated virus

AEI allelic expression imbalance
AMD age-related macular degeneration
AUC area under the curve

BMI body mass index

BPD bipolar disorder

CBR CRX-bound region

Chlp chromatin immunoprecipitation
CNS central nervous system

CRE cis-regulatory element

DAPI 4’ 6-diamidino-2-phenylindole
DE differentially expressed

DHS DNase | hypersensitive site
DNMT DNA methyltransferase

eQTL expression gquantitative trait locus
EMSA electrophoretic mobility shift assay
ESC embryonic stem cell

FACS fluorescence-activated cell sorting
fl flox allele

FPKM fragments per kb of transcripts per million mapped reads
GCL ganglion cell layer

gDNA genomic DNA

GFP green fluorescent protein

GO Gene Ontology

GRN gene regulatory network

GS glutamine synthetase

GWAS genome-wide association study
H&E hematoxylin and eosin

IBD inflammatory bowel disease

INL inner nuclear layer

iIPSC induced pluripotent stem cell

ITR inverted terminal repeat

KO knockout

LD linkage disequilibrium

MAF minor allele frequency

MPRA massively parallel reporter assay
NBL neuroblast layer



NGS
ONL
OR
PCA
PPI
ROC
SD
SEM
SLE
SNP
TAD
TF
TSS
WGS
WT

next-generation sequencing
outer nuclear layer

odds ratio

principal component analysis
prepulse inhibition

receiver operating characteristic
standard deviation

standard error of the mean
systemic lupus erythematosus
single nucleotide polymorphism
topologically associating domain
transcription factor
transcription start site
whole-genome sequencing
wild-type



ACKNOWLEDGEMENTS

First, I would like to express my deepest gratitude to my advisor, Joseph Corbo, whose
scientific curiosity and intellectual drive inspire me every day. Thank you for your unwavering
support, openness to new ideas, and sense of humor. Thank you for training me to be a rigorous
scientist, for challenging me to think outside the box, and for exemplifying the role of the
physician-scientist. Most of all, thank you for all of the fun, thought-provoking conversations
that I hope will continue for many years to come.

Next, | would like to thank my past and present coworkers (Stacy Donovan, Jennifer
Enright, Andrew Hughes, Jeongsook Kim-Han, Karen Lawrence, Cynthia Montana, Daniel
Murphy, Connie Myers, Matthew Toomey, and Natecia Williams), who make coming into the
lab an absolute joy. It has been a true pleasure and honor to work alongside them, learn from
them, and grow together. In particular, Cynthia Montana generously shared innumerable
protocols, reagents, and samples. Andrew Hughes spent countless hours patiently explaining
computational and mathematical concepts. Special thanks to Connie Myers, who has guided me
through this journey with patience, clarity, and wit.

| am grateful to my thesis committee (Shiming Chen, Donald Conrad, Joseph Dougherty,
Justin Fay, and Ting Wang) for their thoughtful input and sage advice, and to Justin Fay for
serving as chair prior to my defense. Thanks to my collaborators (Leah Byrne, John Flannery,
Omer Gokcumen, Vladimir Kefalov, Ernest Turro, and Yunlu Sawyer Xue) for being so
generous with their time and energy. Thanks to Jamie Kwasnieski, llaria Mogno, Michael A.
White, and the laboratory of Barak Cohen for sharing CRE-seq protocols and ideas.

Thanks to the Animal Behavior Core (David Wozniak), Center for Genome Sciences and

Systems Biology (Jessica Hoisington-Lopez), Department of Ophthalmology (Belinda

Xi



McMahan), Genome Engineering and iPSC Center (Shondra Miller), Genome Technology
Access Center, Hope Center Animal Surgery Core (Ronald Perez), Hope Center Viral Vectors
Core (Mingjie Li), Micro-injection Core (J. Michael White), Mouse Genetics Core (Mia
Wallace), and Protein and Nucleic Acid Chemistry Laboratory (Misty Veschak) for their
invaluable services.

| am grateful to Tim Schedl and James Skeath, co-directors of the Molecular Genetics
and Genomics Program, for their mentorship and support. Furthermore, I am indebted to Wayne
Yokoyama and the Washington University Medical Scientist Training Program (MSTP) for
investing in me as a trainee and as a person. Thanks to my friends and colleagues in the MSTP
for a memorable and enjoyable journey, and to Shuyi Ma for intellectual and emotional support.

| wish to acknowledge my parents, Jiehua Shen and Kejin Wang, whose footsteps |
follow while simultaneously forging a path of my own. The depth of their love and sacrifice is
beyond description, and | carry their dreams with me in everything I do. I also want to thank my
sister Sarah Shen, who was a delightful 11-year-old when | started my PhD and a brilliant 16-
year-old when | finished. | am grateful to my in-laws, Tim and Kathy Saylor, for their support.
Finally, I thank my husband James Saylor, who has been my significant other (p < 0.05) for
more than a decade, whose enjoyment of puns rivals my own, and whose presence | hope never
to take for granted.

This work was supported by the National Institutes of Health (5T32EY013360).

Susan Shen

Washington University in St. Louis

May 2018

xii



ABSTRACT OF THE DISSERTATION
Novel Approaches to Studying the Effects
of Cis-Regulatory Variants in the Central Nervous System
by
Susan Qi Shen
Doctor of Philosophy in Biology and Biomedical Sciences
Molecular Genetics and Genomics
Washington University in St. Louis, 2018

Professor Joseph C. Corbo, Chair

For decades, studies of the genetic basis of disease have focused on rare coding mutations
that disrupt protein function, leading to the identification of hundreds of genes underlying
Mendelian diseases. However, many complex diseases are non-Mendelian, and less than 2% of
the genome is coding. It is now clear that non-coding variants contribute to disease susceptibility,
but the precise underlying mechanisms are generally unknown. Cis-regulatory elements (CRES)
are transcription factor (TF)-bound genomic regions that regulate gene expression, and variants
within CREs can therefore modify gene expression. The putative locations of CREs in a variety
of cell types have been identified through genome-wide assays of TF binding and epigenomic
signatures, providing a starting point for probing the effects of cis-regulatory variants. Unlike
coding mutations, which can be interpreted based on the genetic code, the functional
consequence of any given cis-regulatory variant is difficult to predict even at the molecular level.

Therefore, a major bottleneck lies in interpreting the functional significance of these variants.
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In the present work, | study the effects of cis-regulatory variants in the central nervous
system (CNS), specifically in retina and brain. The retina is composed of well-characterized
neuronal cell types and an extensively studied transcriptional network, while the brain is the
center of human cognition and a target of devastating neuropsychiatric diseases. First, | take
advantage of the genetic diversity between two distantly related mouse strains to describe the
relationship between cis-regulatory variants and differences in retinal gene expression. | identify
cis- and trans-regulatory effects, as well as parent-of-origin effects. Second, | develop a new
technology based on an existing massively parallel reporter assay, CRE-seq, to enable the
functional study of long CREs in the CNS in vivo for the first time. | demonstrate the ability of
this approach to measure tissue-specific cis-regulatory activity in the brain and to pinpoint DNA
bases critical for activity. Finally, | conduct a detailed mechanistic study of a non-coding region
containing variants associated with both human cognitive performance and bipolar disorder. This
last study illustrates the complexities and challenges of establishing the causal role of non-coding

variants in disease.
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CHAPTER 1: INTRODUCTION

The following chapter has been adapted from my written qualifying examination, thesis proposal,
and grant proposals. The contents of this chapter are unpublished.



“I love gene regulation. I love the process of transcription so much that | regard RNA as an
unfortunate by-product of an otherwise elegant process!”

-Michael S. Levine (Levine and Vicente 2015)
“Mientras nuestro cerebro sea un arcano, el Universo, reflejo de su estructura, sera también un
misterio.” (As long as our brain is a mystery, the universe, a reflection of its structure, will also

be one.)

-Santiago Ramon y Cajal (Ramon y Cajal 1922)



1.1  The significance of cis-regulatory variants in biology and disease

A fundamental goal of genetics is to understand the phenotypic consequences of specific
mutations. For coding mutations, the immediate biochemical consequence of a mutation can be
deduced from the DNA sequence alone. From there, the impact on cellular function and
organismal phenotype can be investigated. This type of approach has revealed hundreds of genes
involved in Mendelian diseases (Hamosh et al. 2005). Often, the pathogenicity of a coding
mutation can be predicted based on known structural properties and biological functions of the
protein and/or the degree of phylogenetic conservation. However, for non-coding mutations,
even the biochemical consequences are unclear, and phylogenetic conservation is an imperfect
indicator of functionality (Ng and Henikoff 2006; Cooper and Shendure 2011). Given that over
98% of the genome is non-coding, understanding the impact of non-coding variants is a major
challenge. In particular, variants within cis-regulatory elements (CREs, e.g., enhancers and
promoters) may alter the expression of genes relevant to disease.

CREs are short stretches of genomic DNA that regulate the timing, location, and levels of
expression of the gene that they control. They are generally non-coding, although they can
overlap coding exons (Mercer et al. 2013; Stergachis et al. 2013). CREs are typically hundreds of
base pairs in length, and they are often located thousands of bases away from their target genes
(Kulaeva et al. 2012). CREs are the primary determinants of gene expression during
development, with cellular environment and epigenetic factors playing secondary roles (Levine
and Davidson 2005). By recruiting TFs, CREs allow for fine-tuning of gene expression and serve
as important substrates for phenotypic diversity between individuals and between species (Wray
2007; Wittkopp and Kalay 2012; Heinz et al. 2015).

The first detailed mechanism of gene regulation was elucidated for the /ac operon in E.



coli in 1961 by Jacob and Monod (Jacob and Monod 1961). Ten years later, Britten and
Davidson speculated that regulatory variants were crucial for phenotypic evolution in eukaryotes
(Britten and Davidson 1971). Soon thereafter, King and Wilson suggested that chimpanzees and
humans were too similar at the macromolecular level—nucleic acid and protein—to account for
inter-species phenotypic differences (King and Wilson 1975). They postulated instead that
regulatory variants might account for organismal-level differences, lamenting, “Biologists are
still a long way from understanding gene regulation in mammals.” Although much progress has
been made in the past decades, the cis-regulatory grammar of mammalian cells remains one of
the greatest unsolved problems in biology. Furthermore, cis-regulatory variants are increasingly
recognized as significant contributors to disease.

To illustrate the importance of regulatory variations for both evolution and human health,
consider the following examples. Certain single nucleotide polymorphisms (SNPs) upstream of
lactase (LCT) enhance transcription of the gene, allowing for the persistence of the lactase
enzyme and the ability to digest milk as adults (Enattah et al. 2002; Olds and Sibley 2003).
These SNPs have been under strong positive selection in populations that consume milk into
adulthood. Cis-regulatory SNPs that decrease gene expression can also confer a selective
advantage. The Duffy antigen chemokine receptor (DARC) is a protein required for erythrocyte
invasion by certain malarial parasites. A single SNP disrupts binding of GATA1 to the DARC
promoter, abolishing DARC expression in erythroid tissues and thereby conferring malarial
resistance (Tournamille et al. 1995).

On the other hand, cis-regulatory mutations can also cause harm. One such instance is
seen in a subset of patients with a-thalassemia: a SNP upstream of the a-globin gene cluster

creates a novel promoter that competes with the endogenous promoter, thereby decreasing the
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expression of the a-globin gene (De Gobbi et al. 2006). In retinal biology, the importance of
CREs became apparent in the study of cone opsins. On the human X chromosome, a locus
control region (LCR, a type of CRE) lies upstream of the red and green opsin genes, which are
arranged in a tandem array. The LCR is thought to randomly associate with one of the two opsin
gene promoters, thereby generating the two alternative cell types (red or green cones) in the
retina (Smallwood et al. 2003). Loss-of-function mutations in this LCR causes blue cone
monochromacy, a rare condition in which expression of both red and green cone opsin is lost
(Nathans et al. 1989).

Distal-acting elements also have critical roles in brain development, as exemplified by
cis-regulatory mutations that disrupt expression of SATB2, a TF important for skeletal
development and neuronal specification in the cerebral cortex (Dobreva et al. 2006). For years,
coding mutations in SA7B2 were known to underlie a syndrome characterized by craniofacial
abnormalities and intellectual disability. More recently, cis-regulatory mutations that disrupt
SATB?2 expression have also been found to cause this syndrome (Leoyklang et al. 2007; Docker
et al. 2014; Rainger et al. 2014; Zarate et al. 2015). These and dozens of other examples

highlight the role of CREs in both normal physiology and disease pathogenesis.

1.2 Genomic insights into the properties of CREs

Although studies of individual loci have provided valuable insights into the roles of
CREs, in order to fully understand the cis-regulatory logic of mammalian cell types, a
comprehensive approach is needed. Recent advances in next-generation sequencing (NGS) have
enabled large-scale efforts to study DNA in a systematic, genome-wide fashion (Mardis 2011).

The ENCODE Project and the NIH Roadmap Epigenomics Consortium have generated an
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unprecedented amount of data, ushering in a new era of data-driven biology (The ENCODE
Project Consortium 2012; Roadmap Epigenomics et al. 2015). These projects have sought to
annotate regulatory regions in a variety of mouse and human cell lines and primary tissues, using
a combination of techniques, namely: (1) ChIP-seq for histone marks and TFs, (2) DNase-seq
and FAIRE-seq for identifying regions of open chromatin, (3) chromosome conformation capture
(3C)-based techniques to examine chromatin looping, and (4) methylation analysis (Appendix 1).
These and related studies confirm earlier, smaller studies and also offer new insights, as
highlighted below.

Promoters are perhaps the most widely studied type of CRE across all fields of biology.
By definition, they are located directly upstream of their target gene. This ease of promoter-gene
mapping likely contributes to the observation that promoter activity correlates well with target
gene expression. Promoters come in two main varieties: (1) broad-type, CpG-rich promoters that
are often associated with housekeeping genes, and (2) narrow-type, TATA box-containing
promoters that tend to be associated with highly expressed, tissue-specific genes (Sandelin et al.
2007). Recent studies indicate that promoters and enhancers share many architectural features
and functional properties (Kim and Shiekhattar 2015). However, a detailed understanding of how
promoter-enhancer compatibility is established is still lacking (van Arensbergen et al. 2014).

Regardless of the type of CRE, transcriptional potential is presumably encoded by the
clusters of TF binding sites (TFBS’s) that recruit the binding of various TFs. Individual TFs
preferentially bind to certain sequence ‘motifs,’ stretches of typically ~6-12 bp of DNA. Multiple
motifs of different affinities, orientations, and relative spacing are thought to act in a
combinatorial fashion. Interestingly, TFs are able to recognize and selectively bind certain motifs

in the genome, while avoiding other similar motifs in the genome. This suggests the existence of
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additional properties within the bound regions that confer added functionality; for instance, the
GC content of the region (White et al. 2013; Kwasnieski et al. 2014). To dissect the grammatical
rules that govern TF motifs, it is necessary to systematically study the relationship between CRE
sequence and CRE activity.

In addition to the complexities of TF binding within a single CRE, the interactions
between CREs and target genes add another dimension of complexity. As revealed by a variety
of 3C-based methodologies, the physical landscape of gene regulation is highly complex. Many
physical looping interactions between a CRE and a target gene occur over a considerable
distance (Sanyal et al. 2012). Furthermore, the notion that a CRE has a single target gene is
overly simplistic: on average, each TSS interacts with multiple CREs, and a given CRE interacts
with multiple TSS’s (Thurman et al. 2012). Moreover, even promoters can physically interact
and serve as enhancers for each other (Li et al. 2012). Despite all of this seemingly chaotic
crosstalk, there is structure and order: studies using Hi-C (another 3C-based approach) have
found that topologically associating domains (TADs) are highly conserved not only across cell
types but also between species, although subdomains are more specific, presumably due to the
action of cell type-specific CREs (Dixon et al. 2016). TADs are thought to be established at least
in part by CTCF, a ‘master weaver’ of 3D genome architecture (Phillips and Corces 2009), but
how CTCEF establishes the chromatin states of specific cell types is unclear (Appendix 2).

The key question is which of the interactions between CREs and their target genes are
physiologically relevant in the context of a particular human disease, and which cis-regulatory
variants disrupt these interactions. The challenge lies in identifying the disease-relevant tissue
and developmental stage. By intersecting genotypic, epigenomic, and transcriptomic

information, and by applying powerful machine learning approaches (Libbrecht and Noble
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2015), the emergent field of functional genomics has the potential to bioinformatically predict
the effect of cis-regulatory variants on gene expression. Given its descriptive nature, however,
functional genomics is a hypothesis-generating approach that requires alternate means to

demonstrate causality.

1.3 The retina as a model system for studying cis-regulation

To decode the cis-regulatory logic of the mammalian genome, a physiologically relevant
system is needed that is genetically tractable as well as amenable to functional testing, but that
also harbors the complexities of mammalian gene regulation. Retinal photoreceptors meet these
criteria and provide an excellent model system for studying cis-regulation. The neural retina is a
part of the CNS and is composed of >60 cell types that fall into seven major classes: rod and
cone photoreceptors, bipolar cells, amacrine cells, horizontal cells, ganglion cells, and Miiller
glia (Masland 2012). All of these cell classes have been extensively studied, both with regards to
their normal roles in vision, as well as their roles in retinal disease.

Among the retinal cell classes, photoreceptors are by far the most abundant, constituting
~80% of retinal cells in the mouse (Jeon et al. 1998). Moreover, they are arguably the most
disease-relevant. Photoreceptors are uniquely susceptible to both Mendelian diseases and
complex diseases such as AMD, and nearly 300 retinal disease genes have been identified
(RetNet, http://www.sph.uth.tmc.edu/RetNet/). Photoreceptor fate specification has been well-
studied at the level of gene regulatory networks (GRNs). Although the catalogue of relevant TFs
is still incomplete, a hierarchy of TFs is known.

Early in development, OTX2 (orthodenticle homeobox 2) triggers the formation of

photoreceptor precursors and turns on another Otx gene family member, CRX (cone-rod
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homeobox) (Nishida et al. 2003). As a master regulator of photoreceptor differentiation, CRX
activates a large number of downstream photoreceptor genes (Chen et al. 1997; Furukawa et al.
1997; Hsiau et al. 2007). For instance, in conjunction with OTX2 and the ROR[3 (RAR-related
orphan receptor ), CRX activates NRL (neural retina leucine zipper), a key rod TF that activates
NR2E3 (Oh et al. 2008; Kautzmann et al. 2011; Montana et al. 2011a). Cone GRNs are not as
well understood as rod GRNs, but it is known that TRB2 (thyroid hormone receptor 32) regulates
the fate decision between the two mouse cone types, blue cones and red/green cones (Roberts et
al. 2000).

The transcriptional regulation of photoreceptors has been studied in detail not only in the
context of individual TFs, but also on the scale of genome-wide gene expression profiles. For
instance, in the retina of the NI~ mouse, rods are converted en masse into cones. Comparison of
Nrl” retinas to wild-type retinas has enabled identification of cone-enriched and rod-enriched
genes through microarray and RNA-seq studies (Corbo et al. 2007; Brooks et al. 2011). While
gene expression studies have been valuable for identifying photoreceptor genes, they are
particularly informative when combined with ChIP-seq, which profiles the genome-wide
occupancy of a TF. Together, ChIP-seq and RNA-seq provide insights about direct and indirect
connections within GRNSs.

ChIP-seq studies have been conducted in the mouse retina for several photoreceptor TFs,
including CRX (Corbo et al. 2010), NRL (Hao et al. 2012), and MEF2D (Andzelm et al. 2015).
Several principles emerge from these studies: first, a large fraction of the ChIP-seq peaks are
shared among these TFs, reflecting the role of combinatorial inputs in gene regulation. In
particular, CRX appears to recruit other TFs and may act as a ‘pioneer factor’ in this regard

(Zaret and Carroll 2011). Second, many of the ChIP-seq peaks are bona fide CREs that drive
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expression (as autonomous elements or as enhancers) in photoreceptors. Third, the binding
preferences of TFs, as assessed by motif enrichments within ChIP-seq peaks, agree well with in
vitro measurements of binding affinity. Fourth, the relationship between TF binding and gene
expression is highly complex and can be influenced by interactions at many levels: multiple
TFBS’s of different affinities, orientations, and relative spacing within a single CRE; multiple
TFs cooperating or competing for a given CRE; multiple CREs regulating a given gene; and
lastly, multiple negative and positive feedback loops at the GRN level.

In addition to ChIP-seq of photoreceptor TFs, DNase-seq data on mouse retinas at
multiple developmental time points (postnatal day 1, day 7, and week 8) have recently become
available. By profiling regions of open chromatin, DNase-seq identifies essentially all putative
regulatory regions (e.g., enhancers, silencers, promoters, insulators, and LCRs) regardless of the
specific TFs bound. Thus, the mouse retina offers the advantage of having comprehensive CRE
maps, with data about temporal dynamics (Wilken 2015). Moreover, a newer chromatin
accessibility assay, ATAC-seq, provides similar data as DNase-seq but requires far fewer cells,
opening the door for not only stage-specific but also cell type-specific profiling (Buenrostro et al.
2013).

Even with a comprehensive CRE map, the mouse retina would not be a powerful system
for studying cis-regulation if it were not experimentally tractable. Fortunately, the retina is highly
amenable to functional testing (Matsuda and Cepko 2008): plasmids can be introduced into
explanted retinas via ex vivo electroporations, and the explanted retinas can then be grown in
culture (Montana et al. 2011b). Alternatively, plasmids can be injected into the eyes of mice and
electroporated in vivo (de Melo and Blackshaw 2011). The electroporation efficiency of neonatal

mouse retinas is high, especially for photoreceptors, rendering these cells particularly suitable for
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cis-regulatory analysis.

With a relatively well-defined cis-regulatory landscape, and with experimental tools
available for functional testing, the mouse retina is an ideal system for investigating the effects of
cis-regulatory variation. In Chapter 2, | analyze the genome-wide effects of cis-regulatory

variants on gene expression in the mouse retina.

1.4 Massively parallel reporter assays for functional analysis of cis-regulatory variants

The functional effects of cis-regulatory variants on transcriptional activity can be
experimentally tested with reporter constructs. Plasmid reporters have the advantage of isolating
the effects of DNA sequence on transcriptional activity, independent of genomic context.
Typically, the CRE of interest is cloned upstream of a promoter and reporter gene (e.g., LacZ,
fluorescent protein or luciferase) and then transfected into cultured cells, primary tissues, or even
living organisms (Rosenthal 1987; Vesuna et al. 2005). The level of reporter activity serves as a
quantitative measure of transcriptional activity. Although theoretically feasible on a genome-
wide scale, individually synthesizing and testing CRE plasmid constructs is laborious, costly, and
time-consuming.

Recent studies have shown that the challenges of one-at-a-time CRE-reporter analysis can
be overcome by engineering massively parallel plasmid reporter assays (MPRAs), which enable
efficient large-scale functional testing of cis-regulatory variants. The first MPRA was developed
in 2009, in which a large library of DNA oligos containing promoter sequences and 3’ barcodes
were synthesized on oligonucleotide arrays and then transcribed in vitro (Patwardhan et al.
2009). The resulting barcoded RNA molecules (i.e., the output of the experiment) were reverse-

transcribed into cDNA and sequenced. At the same time, the original DNA oligos (i.e., the input
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of the experiment) were also sequenced. The number of barcoded cDNA sequence reads,
normalized to the number of barcoded DNA sequence reads, served as a quantitative measure of
CRE activity. Using this method, the authors conducted synthetic saturation mutagenesis in three
bacteriophage promoters and three mammalian core promoters as a proof-of-principle. They
were able to quantify the effects of mutations in known TFBS’s, and perhaps more importantly,
to identify sites outside of known TFBS’s that appeared important for CRE activity.

In 2012, the same group used a similar approach to conduct saturation mutagenesis of
three mammalian enhancers in vivo (Patwardhan et al. 2012). Instead of in vitro transcription of
oligos, they constructed plasmids that were introduced into mouse liver via tail vein injection.
Most mutations had little or modest effect, but among those with larger effects, many affected
conserved binding motifs for known liver-specific tissue factors (Patwardhan et al. 2012).
Another group independently developed an MPRA to test the effects of enhancer variants in
human cell lines, and they also found mutations in known TFBS’s that caused decreased CRE
activity (Melnikov et al. 2012).

Around the same time, the Corbo lab and the lab of Barak Cohen collaborated to develop
CRE-seq, an MPRA in which barcoded plasmid reporter constructs are introduced into living
tissue by electroporation. CRE-seq was used to conduct saturation mutagenesis on a portion of
the promoter of Rhodopsin (Rho), a highly expressed gene in rod photoreceptors. This study
analyzed ~1000 variants of the Rho promoter, including all SNPs within a central 52 bp region,
as well as a large number of double-mutant constructs. Unexpectedly, 86% of all single
mutations caused a change in CRE activity, even at positions without any known TFBS’s. These
bases may lie within novel TFBS’s, or they may correspond to regions of DNA that do not

directly bind to TFs but nonetheless affect CRE activity. Surprisingly, double mutants often
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showed unpredictable, non-additive effects on CRE activity (Kwasnieski et al. 2012). Eventually,
with a sufficiently deep understanding of cis-regulatory grammar, the effect of any given cis-
regulatory variant on CRE activity should be predictable.

In the past few years, numerous MPRAs have been developed by independent groups
(reviewed in (Levo and Segal 2014; Shlyueva et al. 2014; White 2015)). These are summarized
in Table 1.1. Some notable variations are as follows: in STARR-seq, the CRE serves as its own
reporter, such that transcripts of the CRE itself are quantified (Arnold et al. 2013). While most
MPRASs use non-integrating plasmids, several use targeted (site-specific) integration or random
integration. Some MPRAs use the fluorescence intensity of individual cells (measured by FACS)
instead of transcript levels as the readout. As evidenced by their diversity, MPRAs have quickly
gained popularity as a potential means for assaying cis-regulatory variants.

Thus far, most MPRAs have been implemented in cell culture, but it should be possible to
implement MPRAs in a wide array of disease-relevant tissues. Such methods would be
invaluable for understanding the cis-regulatory logic of mammalian cells, and for interpreting the
significance of the thousands of non-coding variants found in human patients. A number of
technical issues remain, such as delivery of MPRA libraries into cell types that are not amenable
to transfection, and the difficulty of assaying CREs longer than the ~200 bp limit of

oligonucleotide array-synthesized fragments. These issues are addressed in Chapter 3.

1.5  Identification of disease-associated variants in the GWAS era
Even prior to the emergence of high-throughput sequencing technologies, efforts were
underway to systemically identify associations between genotype and phenotype through

genome-wide association studies (GWAS’s). Early GWAS’s typically included a few hundred
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cases (i.e., individuals with the phenotype of interest) and controls (Visscher et al. 2012). The
genotypes of the individuals were determined by SNP arrays, which probed for thousands of
known, common (>1% MAF) human SNPs across the genome. Statistical tests were then
implemented to identify significant associations between allele frequency and phenotype. The
phenotype of interest is typically presence or absence of a disease, but it can also be a
continuous, quantitative trait such as height or blood pressure.

SNP arrays serve as a cheaper alternative to whole-genome sequencing (WGS), but
because they provide incomplete genotypic information, genotypes are inferred based on
knowledge of linkage disequilibrium (LD). LD refers to the tendency for sequence variants to be
inherited together and is influenced by recombination rates and other factors (Ardlie et al. 2002;
Slatkin 2008). For instance, SNPs in close proximity tend to be in high LD, as measured by an r?
value near 1. Nowadays, GWAS’s often include thousands or even tens of thousands of cases and
controls. SNP arrays are still used for genotyping, although this may change in the near future as
the cost of WGS continues to decline (Hayden 2014). With improved knowledge of LD
architecture, more sophisticated statistical tools, fine-mapping and conditional analysis
strategies, and larger sample sizes, GWAS’s are increasingly able to detect even weak signals at
loci of small effect (Visscher et al. 2012; Yang et al. 2012; Spain and Barrett 2015).

A fundamental assumption underlying GWAS’s is that common variants (detectable by
SNP arrays) underlie complex traits. At one extreme, a rare variant with a large effect size would
cause complete penetrance, resulting in a Mendelian inheritance pattern with the genotype fully
predicting the phenotype (Schork et al. 2009). Even for Mendelian traits, however, genetic
background and environmental factors modify the phenotype (Dipple and McCabe 2000). At the

other extreme, a common variant with a vanishingly small effect size would contribute to disease
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susceptibility, albeit almost imperceptibly (Visscher et al. 2012; Loh et al. 2015). Evidence is
accumulating that both classes of variants are important (Gibson 2011; Auer and Lettre 2015).

To date, GWAS’s have identified thousands of loci associated with hundreds of complex
traits, ranging from autoimmune disorders to psychiatric disease (Welter et al. 2014). The vast
majority of observed effect sizes are small, with odds ratios rarely above 1.5. One of the few
exceptions is age-related macular degeneration (AMD), a common cause of blindness that had
previously been assumed to originate in the retina or RPE. In 2005, a landmark GWAS of 96
AMD patients and 50 controls, using ~100,000 SNP markers (paltry numbers by today’s
standards), identified a risk allele in an intron of CFH, a gene encoding a component of the
complement cascade (Klein et al. 2005). This allele was associated with ~5-fold higher risk for
AMD. Follow-up studies not only confirmed this GWAS result, but also confirmed the central
role of the immune system in AMD pathogenesis (Black and Clark 2016).

The success of GWAS for AMD illustrates the potential for GWAS’s to reveal novel
disease pathways. The number of GWAS’s is now so large that meta-analysis of GWAS’s has
become possible (Evangelou and loannidis 2013). For instance, GWAS’s of neuropsychiatric
disorders have revealed both shared and distinct genetic contributions among bipolar disorder
(BPD), major depressive disorder (MDD), and schizophrenia (SCZ), with neuronal pathways and
immune pathways playing prominent roles (Cross-Disorder Group of the Psychiatric Genomics
et al. 2013; Network and Pathway Analysis Subgroup of Psychiatric Genomics 2015). Another
study of GWAS’s for 42 traits not only identified genetic associations between seemingly
unrelated traits, such as SCZ and inflammatory bowel disease (IBD), but also inferred the causal
relationship between associated traits using statistical approaches (Pickrell et al. 2016). However,

GWAS’s are ultimately descriptive in nature: the lead GWAS SNP at a locus (that is, the most
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statistically significant SNP) is not necessarily the ‘causal variant’ that contributes directly to
disease pathogenesis. Instead, the lead SNP may serve simply as a tag for the underlying causal

variant, which may not have been directly genotyped.

1.6 The post-GWAS era: convergence of GWAS and functional genomics

In recent years, human statistical geneticists and functional genomicists have converged
upon the realization that the vast majority of GWAS hits are non-coding, suggesting etiologic
roles for underlying causal cis-regulatory variants (Maurano et al. 2012a; Schaub et al. 2012). In
particular, disease-associated variants are often enriched within DHSs, and the tissue specificity
of the DHSs may reflect disease pathogenesis. For instance, variants associated with attention
deficit hyperactivity disorder (ADHD) are enriched within fetal brain DHSs (Maurano et al.
2012a). In light of the realization that many GWAS signals are likely due to cis-regulatory
mechanisms, efforts are now routinely made to intersect GWAS hits with functional genomic
annotations and eQTL data (Ward and Kellis 2012b; Edwards et al. 2013).

Thus far, however, there are relatively few examples in which the likely causal cis-
regulatory variant underlying a non-coding GWAS signal has been identified and experimentally
tested. These are summarized in Table 1.2. One particularly interesting example is the F70
locus, where intronic variants have been reproducibly associated with body mass index (BMI)
and obesity. Two groups have independently demonstrated that this intronic region contains
multiple enhancers (or possibly a single superenhancer) that regulate /RX3 and perhaps other
genes (Smemo et al. 2014; Claussnitzer et al. 2015). However, whereas one group argues that
adipocytes are the relevant cell type based on experiments in primary human adipocytes

(Claussnitzer et al. 2015), the other group argues that the relevant tissue is the hypothalamus
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based on a mouse model (Smemo et al. 2014). The FTO story illustrates the challenges of
demonstrating causality for cis-regulatory variants in disease, even when the target gene is
known. In Chapter 4, I seek to identify the causal variant underlying a GWAS locus associated

with neuropsychiatric phenotypes, specifically human cognition and bipolar disorder.

1.7  The brain as a frontier for cis-regulatory biology

The same changes that endowed human with expanded intellectual abilities may also
render them susceptible to neuropsychiatric diseases (Somel et al. 2013). Many devastating
neuropsychiatric disorders are multifactorial in etiology but are thought to have
neurodevelopmental origins. Cis-regulatory variants likely contribute substantially to
susceptibility for these disorders, via mechanisms that are not well understood.

Compared to the retina, the brain is many orders of magnitude more complex; for
instance, there are ~108 vs. ~10! neurons in the respective tissues, giving rise to many orders of
magnitude more synapses in the brain (Herculano-Houzel 2012; Masland 2012). The brain
possesses tremendous cellular diversity of both neuronal and non-neuronal (e.g., glial) cell types.
Large-scale efforts to understand the complexities of the brain at the level of gene expression,
anatomy, and functional connectivity are now underway (Sunkin et al. 2013; Van Essen et al.
2013). Many of these efforts rely on approaches that were first developed in the retina, reflecting
the utility of the retina as a model system for understanding the brain (London et al. 2013).

Numerous studies have sought to map the epigenomic landscape of the brain (Roadmap
Epigenomics et al. 2015). In particular, the GRNs of the developing cerebral cortex have been
extensively studied (Molyneaux et al. 2007; Nord et al. 2015). One-at-a-time transgenic LacZ

reporter assays have also been used to functionally test a subset of candidate CREs in the
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developing CNS (Nord et al. 2013; Visel et al. 2013). The cellular complexity of the brain arises
from a series of highly overlapping but coordinated developmental programs involving a host of
TFs, including TFs such as Pax6 that regulate neurogenesis in both the retina and the brain
(Osumi et al. 2008).

Given its anatomical complexity and developmental dynamics, the study of CREs in the
brain requires special consideration of the relevant cell types and developmental stage. Methods
have been developed for in vivo and ex vivo electroporation of plasmid reporters into developing
mouse brains (Langevin et al. 2007; Nichols et al. 2013). However, due to spatiotemporal
gradients during brain development, even small differences in electroporation timing and
positioning can dramatically affect what cellular populations are transfected.

Although fundamental developmental programs are conserved between mouse and
human brains, there are important differences. For example, the mouse brain is lissencephalic
instead of gyrencephalic and lacks the expanded outer subventricular zone of the human brain
(Lui et al. 2011). As an alternative to mouse models, human iPSCs can be differentiated into
neurons in vitro (Denham and Dottori 2011), or fibroblasts can be directly converted into
neurons in vitro (Yoo et al. 2011). Furthermore, protocols for growing iPSC-derived cerebral
organoids have recently been developed (e.g., (Lancaster et al. 2013)). However, the robustness
of iPSC-based protocols and the precise properties of the derived cells remain to be fully
characterized. Thus, mouse models and iPSC-based systems both have advantages and
disadvantages.

With the biological complexities and technical challenges of assaying the brain, the study

of cis-regulatory variants in the context of CNS disease remains a major frontier. In the
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subsequent chapters, | describe my forays into this frontier, with the aid of the retina as a

‘window’ into the brain.
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Table 1.1. Summary of massively parallel reporter assay approaches.

Reference Method Distinguishing features Assayed system Plasmid or
integrated

(Patwardhan et al. MPRA First MPRA proof-of-concept Uses in vitro transcription N/A

2009)

(Nam et al. 2010; NanoString Delivery of library via injection | Sea urchin embryos Integrated

Nam and Davidson into fertilized egg (random)

2012)

(Melnikov et al. MPRA One of the first MPRAS Human cell line Plasmid

2012)

(Patwardhan et al. MPRA One of the first MPRASs Mouse liver (hydrodynamic Plasmid

2012) tail vein assay)

(Sharon et al. 2012) | MPRA One of the first MPRAS; uses Yeast Plasmid

fluorescent readout (FACS)

(Kwasnieski et al. CRE-seq One of the first MPRAS Mouse retina (explant Plasmid

2012) electroporation)

(Mogno et al. 2013) Yeast Integrated
(site-specific)

(Akhtar et al. 2013) | TRIP Transposase-mediated Mouse ESCs Integrated

integration (random)

(Arnold et al. 2013) | STARR-seq CRE serves as its own reporter | Drosophila cell lines, human Plasmid

cell lines

(Gisselbrechtetal. | enhancer- Uses phiC31 integrase; Drosophila embryos Integrated

2013) FACS-seq fluorescent readout (FACS) (site-specific)

(Dickel et al. 2014) | SIF-seq Targeted integration via Human and mouse ESCs Integrated

homologous recombination; (site-specific)
fluorescent readout (FACS)

(Murtha et al. 2014) | FIREWACh Uses lentivirus Mouse ESCs Integrated
(random)

(Vanhille et al. CapSTARR- Uses capture-and-clone and Mouse cell lines Plasmid

2015) seq STARR-seq

(Shen et al. 2016)* | Capture-and- Uses capture-and-clone for Mouse brain (stereotactic Non-integrated

clone AAV truncation mutation analysis; injection of AAV)
CRE-seq uses AAV for the first time

(Nguyen et al. AAV MPRA Uses AAV Primary cultured neurons Non-integrated

2016)

(Verfaillie et al. CHEQ-seq Uses capture-and-clone Human cell line Plasmid

2016)

(Inoue et al. 2017) lentiMPRA Uses lentivirus Human cell line Non-integrated
(mutant
integrase) vs.
integrated
(random)

*See Chapter 3.
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Table 1.2. Summary of functional studies that have identified the likely causal cis-
regulatory variant underlying a GWAS signal.

Reference Causal Phenotype(s) Relevant cell Target Disrupted Types of evidence
variant(s) type(s) gene(s) TF motifs
Coronary artery
(Harismendy rs10811656, | disease, type 2 | Vascular Multiple
etal. 2011) rs10757278 diabetes endothelial cells | genes STAT1 Looping, TF binding
Looping, TF binding,
HbF level gene expression,
(Bauer et al. (sickle cell GATAL, transgenic reporter
2013) rs1427407 disease) Erythroblasts BCL11A TAL1 mice
TF binding, gene
(Sakurai et al. SLE, IBD, type | Bcells, T cells, expression, protein
2013) rs3122605 1 diabetes monocytes IL-10 ELK-1 expression
(Zeron- TF binding, enhancer
Medina et al. Testicular activity, allele-
2013) rs4590952 cancer Various KITLG p53 specific expression
TF binding, enhancer
activity, transgenic
(Guenther et Blond hair reporter mice, knock-
al. 2014) rs12821256 color Hair follicles KITLG LEF1 in mice
(Fogarty et al. Liver/pancreatic FOXA1, TF binding, enhancer
2014) rs11257655 Type 2 diabetes | islets? Unknown FOXA2 activity
TF binding, enhancer
(Kulzer et al. Pancreatic beta PAX®, activity, gene
2014) rs11603334 | Type 2 diabetes | cells ARAP1 PAX4 expression
Neuronal TF binding,
progenitors in transgenic reporter
(Spieler et al. Restless legs ganglionic zebrafish, transgenic
2014) rs12469063 syndrome eminence Meisl CREB1 reporter mice
Chromatin
accessibility,
(Visser et al. Skin enhancer activity,
2014) rs12350739 | pigmentation Melanocytes BNC2 Unknown gene expression
Adipocyte
(Claussnitzer precursors Looping, TF binding,
et al. 2015) (hypothalamus enhancer activity,
(see also according to gene expression,
(Smemo et al. (Smemo et al. IRXS, CRISPR-Cas
2014)) rs1421085 BMI 2014)) IRX5 ARID5B modification of cells
(Gaulton et al. Liver/pancreatic TF binding, enhancer
2015) rs10830963 | Type 2 diabetes | islets? Unknown NEUROD1 | activity
TF binding, enhancer
(Oldridge et Neuroblastoma activity, allele-
al. 2015) rs2168101 Neuroblastoma | tumor LMO1 GATA3 specific expression
TF binding, allele-
Neural specific expression,
(Soldner et al. Parkinson's precursors, EMX2, CRISPR-Cas
2016) rs356168 disease neurons SCNA NKX6-1 modification of cells
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CHAPTER 2:

Hybrid Mice Reveal Parent-of-Origin and Cis- and Trans-Regulatory Effects in the Retina
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2.2 ABSTRACT

A fundamental challenge in genomics is to map DNA sequence variants onto changes in
gene expression. Gene expression is regulated by cis-regulatory elements (CREs, i.e., enhancers,
promoters, and silencers) and the trans factors (e.g., transcription factors) that act upon them. A
powerful approach to dissecting cis and trans effects is to compare F1 hybrids with FO
homozygotes. Using this approach and taking advantage of the high frequency of polymorphisms
in wild-derived inbred Cast/EiJ mice relative to the reference strain C57BL/6J, we conducted
allele-specific MRNA-seq analysis in the adult mouse retina, a disease-relevant neural tissue. We
found that cis effects account for the bulk of gene regulatory divergence in the retina. Many
CREs contained functional (i.e., activating or silencing) cis-regulatory variants mapping onto
altered expression of genes, including genes associated with retinal disease. By comparing our
retinal data with previously published liver data, we found that most of the cis effects identified
were tissue-specific. Lastly, by comparing reciprocal F1 hybrids, we identified evidence of
imprinting in the retina for the first time. Our study provides a framework and resource for
mapping cis-regulatory variants onto changes in gene expression, and underscores the

importance of studying cis-regulatory variants in the context of retinal disease.
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2.3 INTRODUCTION

Photoreceptors mediate vision by converting light into an electrical signal, which is then
processed by the inner retina and sent to the brain as visual information. Photoreceptors
constitute the vast majority (>70%) of cells in the mouse retina (Young 1985), and they are
prominent targets for disease: the majority of more than 200 genetic forms of retinal
degeneration affect photoreceptors (SP Daiger 1998). Many of the key transcriptional regulators
in photoreceptor development are known, and the transcriptomes of these cells have been
profiled over normal development as well as in disease states (Corbo et al. 2007; Hsiau et al.
2007; Swaroop et al. 2010). Furthermore, the regulatory regions of mature photoreceptors in
adult mouse retinas have been mapped genome-wide, based on the binding patterns of two key
photoreceptor transcription factors, CRX (cone-rod homeobox) (Corbo et al. 2010) and NRL
(neural retina leucine zipper) (Hao et al. 2012), as well as the patterns of ENCODE DNasel
hypersensitivity sequencing (DNase-seq) data (The ENCODE Project Consortium 2012).
Photoreceptors therefore represent a disease-relevant cell type well-suited for studying the
mechanisms of mammalian gene regulation.

Changes in gene expression give rise to cell-type identity, intraspecies variation, and
interspecies diversity, thereby acting as the molecular underpinnings for development, disease,
and evolution, respectively (Wray 2007; Wittkopp and Kalay 2012). Alterations in gene
expression can arise from changes in cis-regulatory elements (CREs, i.e., enhancers, promoters,
and silencers), or from changes in the trans factors (e.g., transcription factors) that interact with
CREs. To distinguish between cis and trans effects, a powerful approach is to compare F1
heterozygous hybrids with FO homozygotes. In F1 hybrids, both alleles of a gene are contained

within the same nucleus and are exposed to the same set of trans factors. A trans-regulatory
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difference (‘trans effect”) manifests as conserved expression between the two alleles in the F1
hybrids, despite differential expression of the gene in the FO homozygotes. In contrast, a cis-
regulatory difference (‘cis effect’) manifests as an allelic expression imbalance (AEIl)—i.e.,
differential expression between the two alleles of a gene in the F1 hybrids, with an allelic ratio
that recapitulates the ratio of gene expression levels in the FO homozygotes. By measuring allele-
specific gene expression, the relative contributions of cis and trans effects can be dissected
genome-wide. AEI can also arise from parent-of-origin effects (e.g., imprinting). Importantly, by
conducting reciprocal crosses, parent-of-origin effects can be identified and filtered to avoid
confounding the analysis of cis and trans effects.

Prior studies utilizing the F1 hybrid study design in yeast and Drosophila have yielded a
range of results: earlier pyrosequencing and microarray-based studies found that cis effects
predominate (Wittkopp et al. 2004; Tirosh et al. 2009), while more recent RNA-seq studies
indicate a greater role for trans effects (Emerson et al. 2010; McManus et al. 2010). Regardless,
all studies acknowledge a high prevalence of cis effects. The F1 hybrid study design has been
used to investigate gene regulation in one mammalian tissue thus far, the mouse liver (Goncalves
et al. 2012). In that study, the authors found that cis and trans effects often act together in
opposite directions, with the net effect of stabilizing gene expression.

Here, we conduct an F1 hybrid study using allele-specific mMRNA-seq analysis to chart
the regulatory landscape of a portion of the mature mammalian central nervous system, the adult
mouse retina. We utilize two distantly related strains of mice, Cast/EiJ and C57BL/6J, whose
retinas are known to exhibit phenotypic differences (Haider et al. 2008; Jelcick et al. 2011). The
primary goal of our study is to dissect the contributions of cis and trans effects on gene

regulation in photoreceptors. As part of our study, we identify parent-of-origin effects in the
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retina, a tissue in which imprinting has not previously been studied. By re-analyzing available
liver data (Goncalves et al. 2012) and comparing them to our data from the retina, we assess the
degree of tissue specificity of the observed cis- and trans-regulatory effects. Furthermore, we
integrate our gene expression data with knowledge about the location of CREs, thereby

providing insights into the effects of cis-regulatory variants on gene expression.
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24 RESULTS

The ancestors of two inbred Mus musculus strains, the standard reference strain
C57BL/6J and the wild-derived inbred strain Cast/EiJ, diverged ~1 million years ago (Wade et al.
2002). Cast/EiJ harbors ~18 million single nucleotide polymorphisms (SNPs) and ~3 million
insertions/deletions (indels) relative to C57BL/6J, involving nearly 1% of the accessible genome
(Keane et al. 2011). In addition, Cast/EiJ retinas show substantial phenotypic differences, namely
reduced photopic and scotopic electroretinogram amplitudes compared to C57BL/6J retinas
(Haider et al. 2008; Jelcick et al. 2011). We reciprocally crossed these two strains to obtain four
genotypic classes for analysis (Figure 2.1A): FO C57BL/6J, FO Cast/EiJ, F1 B6xCast (resulting
from C57BL/6J male x Cast/EiJ female), and F1 CastxB6 (resulting from Cast/EiJ male X
C57BL/6J female). For each class, we analyzed three biological replicates, each consisting of a
pool of retinas.

We collected retinas from adult mice at age 8 weeks, a time point at which mouse retinal
CRX ChIP-seq (Corbo et al. 2010) and ENCODE DNase-seq (The ENCODE Project
Consortium 2012) were previously conducted. To control for sex-linked effects and because the
X chromosome of Cast/EiJ is preferentially expressed in F1 hybrid females (Chadwick et al.
2006), we used retinas from male mice only and focused our analyses on autosomal genes. We
conducted paired-end mRNA-seq and calculated gene expression for FO samples and allele-
specific expression for F1 samples by mapping reads to the C57BL/6J and Cast/EiJ
transcriptomes using MMSEQ (Figure 2.1B; see Methods) (Turro et al. 2011).

We verified that biological replicates for each FO or F1 class exhibited a high degree of
agreement for gene expression or allele-specific expression estimates, respectively (Table 2.1

and Table 2.2). We also verified the accuracy of our mapping strategy by examining the X
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chromosomal reads in the F1 samples. Since samples derived solely from male retinas, the X
chromosomal reads should map exclusively to the maternal genome. Accordingly, X
chromosomal reads for F1 B6xCast should map to Cast/EiJ, while those for F1 CastxB6 should
map to C57BL/6J. In validation of our mapping strategy, we found high accuracy (>99%) of X
chromosomal reads for all F1 samples (Table 2.3). Importantly, the accuracy of mapping to the X
chromosome of F1 B6xCast and F1 CastxB6 samples was similar, indicating that there was no
substantial read-mapping bias toward the standard reference genome, C57BL/6J, a potential

confounding factor in the allele-specific quantification (Degner et al. 2009).

2.4.1 Strongly imprinted genes in other tissues show evidence of imprinting in the retina
To evaluate cis and trans effects on gene expression in the retina, we first needed to filter
genes affected by parent-of-origin effects (e.g., imprinting). Genomic imprinting is an epigenetic
phenomenon that causes an imbalance in allelic expression depending on whether the allele is
maternally or paternally derived (Reik and Walter 2001). In the extreme case, one allele is
completely silenced, rendering the locus functionally monoallelic; for this reason, many
mutations in imprinted loci are associated with human disease (Falls et al. 1999). Differential
methylation of alleles provides a molecular basis for imprinting, but because methylation can
occur in a tissue-specific manner, a gene can be imprinted in one tissue but not another, despite
being expressed in both (Prickett and Oakey 2012). Although imprinting has been extensively
studied in a number of human and mouse tissues, including brain and placenta (Prickett and
Oakey 2012; Xie et al. 2012; Court et al. 2014), it has not previously been studied in the retina.
By analyzing the reciprocal F1 hybrids, we identified autosomal genes that exhibited a

significant maternal bias (maternally expressed, paternally silenced) or paternal bias (paternally
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expressed, maternally silenced) (Figure 2.2A and 2.2B; Supporting Information S1). To
determine whether these genes have been identified as imprinted in other tissues, we searched for
known imprinted mouse genes in four databases (see Methods). Using a Bayesian model
selection approach implemented in the MMDIFF program (Turro et al. 2014), we ranked genes
in our dataset by the probability of imprinting and observed a clear enrichment of known
imprinted genes among highly-ranked genes (Figure 2.2C). Among the top-ranked genes, the
vast majority were well-characterized imprinted genes listed in multiple imprinting databases
(see Methods) and displayed the same allelic bias as previously reported (Figure 2.2D).

We identified 75 genes as highly likely to be imprinted (Bayes factor >10). Among these,
39 genes were extremely likely to be imprinted (Bayes factor >30), of which 29/39 (74%) were
known imprinted genes. In 27 out of 29 cases, the direction of parental bias that we observed was
consistent with that reported in the literature. For instance, Peg3 (paternally expressed 3) and
Meg3 (maternally expressed 3) were our 2" and 3" ranked imprinting genes, respectively. Igf2
and Igf2r were our 30" and 34™ ranked imprinted genes, respectively. Igf2 and its receptor lgf2r
were the first imprinted mouse genes discovered and remain among the best-characterized, with
paternally expressed Igf2 promoting growth and maternally expressed Igf2r inhibiting growth
(Moore and Haig 1991; Wilkins and Haig 2003). Consistent with an emerging view of
imprinting occurring on a spectrum rather than being an all-or-none event (Goncalves et al. 2012;
Xie et al. 2012), we found varying degrees of allelic bias even for well-characterized imprinted
genes, ranging from subtle (e.g., <2-fold preference for the maternal over the paternal allele of
Igf2r) to extreme (e.g., >1000-fold preference for the maternal over the paternal allele of Rian).

Rtl1, also known as Pegl1l, is a gene in the DIk1-Dio3 imprinted cluster (da Rocha et al.

2008). In our dataset, reads mapped preferentially to the maternal allele at the Rtl1 locus.
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Previous studies in other tissues found that Rtl1l is expressed from the paternal allele, while an
antisense RNA, anti-Rtl1, is transcribed from the same locus on the maternal allele and gives rise
to two maternally expressed microRNAs (Seitz et al. 2003; da Rocha et al. 2008). Since our
RNA-seq was not strand-specific, we could not discern whether Rtl1 or anti-Rtl1 is maternally
expressed in the adult mouse retina.

Grb10 is unique among imprinted genes in that it exhibits opposite patterns of imprinting
depending on the tissue where it is expressed. In adult mice, Grb10 is maternally expressed in
some tissues, such as muscle and adipose, where it plays a role in glucose metabolism (Smith et
al. 2007). However, it is paternally expressed in the brain, where it affects social behavior
(Garfield et al. 2011). This tissue-specific parent-of-origin effect is associated with usage of a
paternal-specific Grb10 promoter during neural fate commitment (Sanz et al. 2008). Interestingly,
in the retina, we found that Grb10 follows the pattern of muscle and adipose tissue, with
preferential expression of the maternal allele. Thus, although the retina belongs to the central
nervous system, it does not follow the imprinting pattern observed in the brain for this locus.

Together, these analyses indicate that imprinting occurs in the retina, and that the pattern
of imprinting is largely, but not always, concordant between the retina and the brain. Notably,
the developing retina expresses the DNA methyltransferase DNMT3A, which is required for the
germline methylation of imprinted loci (Kaneda et al. 2004; Nasonkin et al. 2011). Methylation
analysis (e.g., bisulfite sequencing) of the retina would confirm whether the parent-of-origin
effects identified here correspond to differentially methylated regions (DMRs), as methylation-

independent parent-of-origin effects have also been reported (Court et al. 2014; Mott et al. 2014).
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2.4.2 One-third of differentially expressed genes between Cast/EiJ and C57BL/6J retinas
are associated with photoreceptor CREs

Previous microarray studies have suggested substantial gene expression differences
between C57BL/6J and Cast/EiJ retinas (Jelcick et al. 2011). Thus, we surveyed differentially
expressed (DE) genes between the adult male FO Cast/EiJ and FO C57BL/6J retinas. We
identified 3,799 autosomal DE genes between the FO samples at a false discovery rate (FDR) of
5% using DESeq (Anders and Huber 2010) (Supporting Information S2). Among these,
1,701/3,799 (45%) showed higher expression in Cast/EiJ.

CRX is a key photoreceptor transcription factor required for the expression of many rod
and cone genes (Chen et al. 1997; Furukawa et al. 1999). Previous CRX ChIP-seq studies
conducted in adult C57BL/6 mouse retinas demonstrated that CRX-bound regions (CBRS)
demarcate both known and putative photoreceptor CREs (Corbo et al. 2010). CBRs have a
propensity to cluster around genes expressed in photoreceptors, and knowledge of CBR locations
has helped pinpoint novel human retinal disease genes (Langmann et al. 2010; Ozgul et al. 2011).

We used available adult mouse retinal CRX ChlP-seq data to determine whether the
differentially expressed genes were CBR-associated (Corbo et al. 2010). We found that among
all 34,964 autosomal genes, 6,257 (18%) had at least one CBR assigned to them. However,
among the 3,799 DE genes between the two strains, 1,275 (34%) were CBR-associated,
representing a significant enrichment (P < 104, hypergeometric distribution). Thus, among all
autosomal genes, those that were differentially expressed between Cast/EiJ and C57BL/6J were
more likely to be CBR-associated.

Furthermore, differentially expressed CBR-associated genes more often had lower

expression in Cast/EiJ than C57BL/6J when compared to differentially expressed non-CBR-

32



associated genes (Figure 2.3A). This effect was especially pronounced for genes with greater
fold change between the two strains. Together, these findings suggest that Cast/EiJ overall has
lower expression of photoreceptor genes than C57BL/6J, consistent with a previous microarray
analysis (Jelcick et al. 2011). The physiological function of rods, which constitute >97% of the
photoreceptors in the mouse retina (Jeon et al. 1998), can be measured by the a-wave of the
scotopic electroretinogram (ERG). Interestingly, the gene expression differences may be
reflected in the rod photoreceptor physiology of Cast/EiJ, which has a scotopic a-wave amplitude

~40-50% that of C57BL/6J, despite intact morphology (Jelcick et al. 2011; Grubb et al. 2014).

2.4.3 Cis-regulatory effects account for the bulk of gene regulatory divergence between
Cast/EiJ and C57BL/6J retinas

Next, we determined whether gene expression divergence was attributable to cis effects,
trans effects, or a combination of both. For this analysis, we examined allele-specific expression
in the F1 hybrids in conjunction with gene expression in the FO parents (Figure 2.4A; Supporting
Information S3). After excluding 306 genes with an imprinting Bayes factor >3, we were able to
classify 11,484 autosomal genes with high confidence (see Methods). Among these,
6,380/11,484 (56%) were best modelled as conserved (i.e., no significant difference),
3,537/11,484 (31%) as divergent due to cis effects, 850/11,484 (7%) as divergent due to trans
effects, and 717/11,484 (6%) as divergent due to a combination of cis and trans effects.
Therefore, cis-regulatory effects were the primary mechanism of gene regulatory divergence
between Cast/EiJ and C57BL/6J retinas.

We then subcategorized the genes whose divergence was due to a combination of cis- and

trans effects into the following classes: (1) CIS — trans (cis and trans effects acting in opposite
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directions, with cis effects stronger) had 195/717 (27%) of the genes, (2) TRANS — cis (cis and
trans effects acting in opposite directions, with trans effects stronger) had 327/717 (46%) of the
genes, (3) CIS + trans (cis and trans effects acting in the same direction, with cis effects stronger)
had 60/717 (8%) of the genes, and (4) TRANS + cis (cis and trans effects acting in the same
direction, with trans effects stronger) had 135/717 (19%) of the genes (Figure 2.4B).

When cis and trans effects acted together in the retina, they acted in opposite directions
to stabilize gene expression in the majority (522/717 or 73%) of cases, while they acted in the
same direction to shift gene expression in a minority (195/717 or 27%) of cases. However, the
primary mechanism of gene regulatory divergence was cis-regulatory effects acting with little or
no contribution from trans-regulatory effects, accounting for 3,537/5,104 (69%) of gene
regulatory divergence. This suggests that functional cis-acting sequence variants in the Cast/EiJ
genome often drive altered gene expression.

We further examined the 3,537 cis-effect genes, of which 1,751/3,537 (50%) showed
higher expression of the Cast/EiJ allele than the C57BL/6J allele, and of which 1,256/3,537
(36%) were CBR-associated. We found that cis-effect genes that were CBR-associated more
often had lower Cast/EiJ allele expression than cis-effect genes that were not CBR-associated,
for genes with higher fold change between the two alleles (Figure 2.3B). These results are
consistent with the notion that the Cast/EiJ genome overall harbors many cis-regulatory variants
whose net effect is to diminish photoreceptor gene expression.

Trans effects could arise from differential activity of transcription factors. Therefore, we
inspected the rod photoreceptor transcriptional network, whose members include the
transcription factors CRX, RORB, NRL, and NR2E3 (Swaroop et al. 2010). We found that Crx

and Nrl transcript levels were both conserved in the FO and F1 retinas. Rorb was a solely trans-
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effect gene, with lower expression in Cast/EiJ, suggesting that the upstream regulators of RORf
in the retina (whose identities are unknown) have altered activity in Cast/EiJ. Nr2e3 was also a
solely trans-effect gene, with higher expression in Cast/EiJ. Since NR2E3 is known to be
regulated by CRX and NRL (Oh et al. 2008), and the mRNA levels of Crx and Nrl were
unaltered, we examined whether CRX or NRL harbored coding mutations that might alter their
protein activity. However, we did not find any non-synonymous mutations in Nrl or in the best-
characterized isoform of Crx (Chen et al. 1997; Freund et al. 1997). Thus, we identified
differential trans-regulation of Rorb and Nr2e3 in Cast/EiJ relative to C57BL/6J, but the reasons

for these trans effects are unknown.

2.4.4 Higher frequency of variants in photoreceptor CREs correlates with differential
expression

Whereas trans-regulatory effects are due to the levels or activities of upstream signaling
cascades and transcriptional regulators (e.g., transcription factors), cis-regulatory effects can
arise from functional cis-acting variants within CREs. We undertook a survey of Cast/EiJ
variants relative to C57BL/6J that fell within CBRs. First, we asked whether CBRs were
depleted or enriched for Cast/EiJ variants by tabulating the number of SNPs and indels across the
2 kb region centered on CBRs. We found that the frequency of variants decreased toward the
center of CBRs (Figure 2.5A). The bulk of the depletion occurred within the central 300 bp,
consistent with the previous finding that phylogenetic conservation, as measured by PhastCons
scores (Siepel et al. 2005), is markedly elevated within the central region of CBRs (Corbo et al.
2010). Also consistent with this result, a recent functional analysis of ~1,300 CBRs in the mouse

retina demonstrated that short fragments corresponding to the central 84 bp of CBRs possess
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substantial cis-regulatory activity (White et al. 2013). When we conducted the same analysis of
variant depletion for Spret/EiJ, an inbred strain of Mus spretus that diverged from Mus musculus
~2 million years ago (Dejager et al. 2009), we obtained similar results (Figure 2.5A). Thus,
CBRs are functionally constrained and have likely undergone selection in the mouse lineage,
particularly in the central-most portion of the CBR.

If cis effects are due to altered transcriptional activity driven by cis-regulatory variants,
we would expect to find a higher frequency of functional variants in the CREs around cis-effect
genes compared to the trans-effect genes. We first observed that the proportion of genes that
were CBR-associated was approximately equal across categories: 2,149/6,380 (34%) of
conserved genes, 1,256/3,537 (36%) of cis-effect genes, 300/850 (35%) of trans-effect genes,
and 242/717 (34%) of cis- and trans-effect genes. We then tabulated the Cast/EiJ variants (SNPs
and indels) within the central 1 kb centered on the CBRs associated with each gene (Supporting
Information S4). For all 10,212 CBRs, we found 86,389 variants, for a frequency of 8.46 variants
per kb. When we examined the cis-effect genes, we found 21,174 variants in the 2,185 associated
CBRs, for a frequency of 9.69 variants per kb. This was significantly higher than the variant
frequency in all CBRs (P < 10°*, hypergeometric distribution). In contrast, for the trans-effect
genes, we found 4,068 variants in 487 CBRs, corresponding to a frequency of 8.35 variants per
kb, which was not significantly different from the variant frequency in all CBRs (P = 0.2,
hypergeometric distribution). The tendency for CBRs associated with cis-effect genes to have a
higher frequency of variants than CBRs associated with trans-effect genes is also evident from
the distributions of variants across individual CBRs (Figure 2.5B). Collectively, we find that
CBRs associated with cis-effect genes are enriched for variants, whereas CBRs associated with

trans-effect genes are not. These results suggest that CBRs contain functional cis-regulatory
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variants that alter transcriptional activity, but future empirical testing is needed to demonstrate

the causality of specific variants.

2.4.5 The Cast/EiJ genome harbors both activating and silencing cis-regulatory variants
associated with retinal disease genes

Given that hundreds of genes can contribute to retinal disease, we asked whether any of
the cis-effect genes were associated with human retinopathies (Supporting Information S5). We
found 62 cis-effect genes with human orthologues that were listed in the RetNet database, an up-
to-date and comprehensive compendium of retinal disease genes . Of these, 30/62 (48%) showed
higher expression of the Cast/EiJ allele. Therefore, although Cast/EiJ mice have diminished rod
and cone ERG responses compared to C57BL/6J, they harbor both activating and silencing cis-
regulatory variants.

We further focused on the cis-effect genes associated with retinal disease that are CBR-
associated (Figure 2.6A). Consistent with previous observations that CBRs are enriched around
retinal disease genes (Corbo et al. 2010; Langmann et al. 2010; Ozgul et al. 2011), we found that
38/62 (61%) were CBR-associated. Of these CBR-associated genes, 20/38 (53%) showed higher
expression of the Cast/EiJ allele.

One of the CBR-associated cis-effect genes was Sag, which encodes S-arrestin, a protein
important for the recovery phase of the phototransduction cascade in rods (Xu et al. 1997; Song
et al. 2011). Loss-of-function coding mutations in Sag are associated with Oguchi disease, whose
clinical features include night blindness and delayed rod adaptation (Fuchs et al. 1995). We
found that the Cast/EiJ allele drives ~2-fold higher Sag expression than the C57BL/6J allele,

suggesting the presence of cis-regulatory variants conferring increased activity. Upon inspection
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of the Sag locus, we identified a CRX ChlP-seq peak located in the promoter/5” UTR region and
present in both CRX ChIP-seq biological replicates. This CBR corresponds to a DNasel-
hypersensitivity site (DHS) that is present at three developmental time points and is highly
specific to the retina (Figure 2.6B) (The ENCODE Project Consortium 2012).

We hypothesized that Sag promoter variants contributed to the differential gene
expression between C57BL/6J and Cast/EiJ. To test this hypothesis, we compared the activity of
a 0.7 kb promoter region cloned from C57BL/6J genomic DNA (‘B6 allele’) or from Cast/EiJ
genomic DNA (‘Cast allele’). This 0.7 kb region encompassed 5 known SNPs and 1 indel
(Figure 2.6B). We cloned the 0.7 kb fragment upstream of a reporter gene, DsRed, and
conducted a retinal explant electroporation assay to quantify CRE activity based on fluorescence
(see Methods) (Montana et al. 2011b).

Consistent with our hypothesis, we found that the Cast allele showed ~22% higher CRE
activity than the B6 allele (Figure 2.6C and 2.6D; P = 0.036, one-tailed Wilcoxon rank-sum test).
Since Sag had ~2-fold higher expression in Cast than B6, additional variants beyond this 0.7 kb
promoter region likely contribute to the differential gene expression. Three other CBRs besides
the promoter region were assigned to the Sag gene, containing 37 variants in the 1 kb windows
centered on these CBRs (Supporting Information S4). Therefore, the higher expression of Sag in

Cast compared to B6 likely results from variants in both the assayed region and other regions.

2.4.6 The majority of isolated cis effects and isolated trans effects are tissue-specific
To determine whether the isolated cis effects and isolated trans effects we identified were
confined to the retina, we compared our data from retina with previously published data from

liver (Goncalves et al. 2012) (Supporting Information S6). To ensure uniformity of analysis, we
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reprocessed the previously published liver data using our analytic pipeline, beginning with raw
reads. After filtering 571 possibly imprinted polymorphic autosomal genes (Bayes factor >3), we
were able to classify 9,865 polymorphic autosomal genes with high confidence (Figure 2.7A and
2.7B).

We found 5,494/9,865 (56%) were best modelled as conserved, 2,371/9,865 (24%) were
best modelled as divergent due to cis effects, 1,495/9,865 (15%) as divergent due to trans effects,
and 505/9,865 (5%) as divergent due to a combination of cis and trans effects. For genes in the
latter category, 145/505 (29%) were best modelled as CIS — trans, 278/505 (55%) as TRANS —
cis, 26/505 (5%) as CIS + trans, and 56/505 (11%) as TRANS + cis. Thus, as previously reported
for liver, and as we found for retina, when cis and trans effects act together, they more often act
to stabilize (423/505 or 84%) than to destabilize (82/505 or 16%) gene expression (Goncalves et
al. 2012).

We then compared the classification of genes between liver and retina. To avoid
misattributing tissue-specific gene expression as tissue-specific cis or trans effects, we restricted
our analysis to genes classifiable in both liver and retina. In particular, for comparison of cis-
effect genes, we required that genes be classified as cis-effect in one tissue and conserved in the
other tissue, or cis-effect in both tissues. Similarly, for the comparison of trans-effect genes, we
required that genes be classified as trans-effect in one tissue and conserved in the other tissue, or
trans-effect in both tissues. Using these criteria, we found that the vast majority of cis effects
(1,661/2,242 or 74%) were tissue-specific. Additionally, most trans effects (871/976 or 89%)
were tissue-specific (Figure 2.7C and 2.7D; Supporting Information S7). Thus, most of the

isolated cis and isolated trans effects identified were tissue-specific.
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Recent studies suggest that variants in a given CRE may modulate target gene expression
in a tissue-dependent manner; i.e., different tissues may show differential susceptibility to CRE
variants (Erceg et al. 2014). To test for tissue-specific variant effects in our system, we examined
the 581 genes classified as cis-effect in both liver and retina. We found a positive correlation
between the expression estimates for the FO liver and FO retina samples (Pearson r = 0.56, two-
tailed P < 107°), and between the expression estimates for the F1 liver and F1 retina samples
(Pearson r = 0.58, two-tailed P < 107°) (Figure 2.7E). This suggests that there exists differential
susceptibility between the liver and retina to CRE variants, but that there is also significant
shared susceptibility.

For the 105 genes classified as trans-effect in both tissues, we found a positive
correlation between the expression estimates for the FO liver and FO retina samples (Pearson r =
0.76, two-tailed P < 107®) (Figure 2.7F), suggesting that the same trans-acting factors regulate
many of these trans-effect genes in both tissues. In contrast, there was no correlation between the
F1 liver and F1 retina samples (Pearson r = 0.089, two-tailed P = 0.37) for these genes. This is
not surprising, since by definition, trans-effect genes do not show AEI in F1 hybrids, and hence
the log> (Cast allele/B6 allele) ratios are all close to 0. Collectively, these analyses underscore
the notion that cis effects and trans effects are largely tissue-specific, but when they are shared,

they tend to have similar effects on gene expression.
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2.5 DISCUSSION

Genomic techniques such as ChIP-seq and DNase-seq have greatly expanded our
knowledge of cis-regulatory regions in various tissues and cell types in recent years (The
ENCODE Project Consortium 2012). Concurrently, whole-genome sequencing of thousands of
individuals (Genomes Project et al. 2012) and genome-wide association studies (GWAS) have
catalogued thousands of disease-associated variants, many of which fall within regulatory
regions (Schaub et al. 2012). The next phase of genomic medicine will require mapping of
regulatory variants onto disease-relevant phenotypes. Here, we have taken a first step toward
understanding the role of regulatory variants in retinal disease by dissecting cis- and trans-
regulatory effects in the mouse retina, a tissue that models many key aspects of human retinal
biology (Dalke and Graw 2005).

In contrast to expression quantitative trait loci (eQTL) studies, which are feasible in the
human population and are largely powered to detect cis effects, the F1 hybrid study approach in
model organisms provides tremendous power to detect both cis effects and trans effects (Gaffney
2013). A major finding in our study is that cis effects predominate in the mouse retina. While
estimates of the relative contributions of cis effects and trans effects based on F1 hybrid studies
in Drosophila and yeast vary (Wittkopp et al. 2004; Tirosh et al. 2009; Emerson et al. 2010;
McManus et al. 2010), all studies acknowledge a substantial contribution of cis effects. The
variability of estimates is likely due at least in part to methodological differences in gene
expression estimates and statistical modelling. For instance, when we re-analyzed the raw data
from the previously published study of cis and trans effects in mouse liver (Goncalves et al.
2012), we assigned a greater fraction of gene regulatory divergence to isolated cis and isolated

trans effects than the original study, which assigned a greater fraction of gene regulatory
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divergence to combined cis and trans effects. These differences may be attributable to the fact
that in our analysis pipeline, we used an updated reference transcriptome and Bayesian statistical
models instead of maximum likelihood estimates (MLE).

Another key finding in our study is that the cis effects are largely tissue-specific, with
only 26% being shared between liver and retina. Importantly, for this comparison, we included
only genes with sufficient power for analysis in both tissues, and hence the observed tissue
specificity is not an artifact of tissue-specific expression. Our estimate agrees well with an eQTL
study of lymphoblastoid cell lines, skin, and adipose tissue in human twins, which found that 30%
of cis-eQTLs were shared by the three tissues (Nica et al. 2011).

Predicting the effect of any given regulatory variant is a challenge, even in the face of
complete genetic information, and even at the level of a molecular phenotype such as
transcription factor binding (Maurano et al. 2012b) or, as in our case, gene expression. Moreover,
regulatory variants act in combination, rather than in isolation, to modulate gene expression.
Furthermore, gene expression is not always a reliable surrogate for protein levels (Greenbaum et
al. 2003; McManus et al. 2014), and the path from protein to organismal phenotype is even more
convoluted. With these layers of complexity in mind, we have taken a step toward understanding
the links between cis-regulatory variants and retinal phenotypes by prioritizing variants within
photoreceptor CRES that are associated with cis-effect genes.

Our work reveals that cis-regulatory effects predominate in the murine retina and are
associated with functional cis-regulatory variants, with implications for retinal disease. In an
approach complementary to eQTL studies, we have demonstrated a strategy for mapping cis-
regulatory variants onto changes in gene expression by harnessing the power of inbred model

organisms. Future empirical testing of such variants in living tissue, e.g., using high-throughput
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massively parallel reporter assays (Kwasnieski et al. 2012; Shlyueva et al. 2014), will further

elucidate the precise causal effects of specific cis-regulatory variants on gene expression.
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2.6 METHODS
2.6.1 Ethics statement

All experiments were conducted in strict accordance with the Guide for the Care and Use
of Laboratory Animals of the National Institutes of Health (NIH), and were approved by the
Washington University in St. Louis Institutional Animal Care and Use Committee (IACUC)
(protocol #20110089). Animals were euthanized with CO, anesthesia followed by cervical

dislocation, and all efforts were made to minimize suffering.

2.6.2. Animals

C57BL/6J (stock #664) and Cast/EiJ (stock #928) mice were purchased from Jackson
Laboratory. Mice were maintained on a 12-hour light/dark cycle at ~20-22 °C with free access to
food and water. Mating cages were maintained on 5K54 diet (LabDiet) and supplemented with
autoclaved shepherd shacks (Shepherd Specialty Papers). Offspring were weaned at age 3 weeks
and maintained on 5053 diet (PicoLab) until age 8 weeks, at which point they were sacrificed.
Eyes were enucleated immediately after sacrifice. To minimize circadian effects (Storch et al.

2007), samples were collected at approximately the same time of day (late evening).

2.6.3 Sample collection and sequencing

Each biological replicate consisted of a pool of 6-8 retinas from 8 week old male mice.
Retinas were dissected in cold sterile HBSS with calcium and magnesium (Gibco) and stored at -
80 °C until use. Total RNA was extracted using TRIzol (Invitrogen) and purified using the
RNeasy Mini Kit (Qiagen) with on-column DNasel digestion (Qiagen). Integrity of total RNA

was verified on the Agilent 2100 Bioanalyzer. Polyadenylated mRNA was captured from total
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RNA using Dynabeads (Invitrogen). The mRNA was fragmented and reverse-transcribed to
double-stranded cDNA using random hexamers. The cDNA was blunt-ended and 3’-adenylated
before ligation to sequencing adapters. Ligated fragments were amplified for 12 cycles with
primers to incorporate unique sample barcodes. Libraries were subjected to paired-end 2x101 bp
sequencing on the Illumina HiSeq 2000 at the Genome Technology Access Center at
Washington University School of Medicine. One lane of sequencing was conducted for all FO

and F1 samples, and a second lane of sequencing was conducted for the F1 samples only.

2.6.4 Read alignment and quantification

Reads were filtered and trimmed with Trim Galore! v0.2.6 (Krueger) prior to alignment
with Bowtie v0.12.9 (Langmead et al. 2009) to a strain-specific reference transcriptome (for FO
data) or a hybrid reference transcriptome (for F1 data). Transcriptomes were constructed using
the mouse_strain_transcriptomes.sh script within the MMSEQ package (Turro et al. 2011). The
reference transcriptomes were based on the Ensembl Release 67 cDNA files and the Wellcome
Trust Mouse Genomes Project Release 2 VCF files (which use mm9/NCBI37 as the reference
genome) based on November 2012 HiSeq 2x100 bp sequencing with 39x coverage of the
Cast/EiJ genome (Keane et al. 2011). MMSEQ v1.0.0 beta was used to estimate gene expression
levels for the FO samples and allele-specific gene expression levels for the F1 samples (Turro et
al. 2011). Of the 37,991 Ensembl Release 67 mouse genes, 34,964 were autosomal, of which
29,160 had known exonic polymorphisms between Cast/EiJ and C57BL/6J. Gene-level
expression estimates in units roughly equivalent to FPKM (fragments per kb of transcripts per

million mapped read pairs) were derived from exponentiation of the log expression estimates.
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For differential expression analysis of FO samples with DESeq v1.10.1 (Anders and Huber 2010),

normalized count equivalents were used and a negative binomial test was performed.

2.6.5 Identification of imprinted genes

Using MMDIFF, a null model (no imprinting) was compared to an imprinting model, as
recently described (Turro et al. 2014). In brief, the null model assumes that allelic expression
differences are the same in F1 B6xCast and F1 CastxB6, while the imprinting model assumes
that allelic expression differences have equal magnitude but opposite signs in F1 B6xCast as in
F1 CastxB6. Only autosomal genes with known exonic polymorphisms between Cast/EiJ and

C57BL/6J were included in this analysis.

2.6.6 Mouse imprinting databases

We examined four online databases that are continually updated with known imprinted
mouse genes: WAMIDEX (atlas.genetics.kcl.ac.uk) (Schulz et al. 2008), MouseBook Imprinting
Catalog (www.mousebook.org) (Williamson CM 2014), Geneimprint (www.geneimprint.com)
(Jirtle 2012), and Catalogue of Parent of Origin Effects (igc.otago.ac.nz) (Morison et al. 2001).
For each database, we excluded genes whose imprinting status was listed as ambiguous or
disproven. To resolve nomenclature disparities between databases, we converted gene names to
Mouse Genome Informatics (MGI) gene names. We combined the gene lists from the four
databases into a master gene list of 189 genes, of which 143 had Ensembl Release 67 I1Ds and
137 were autosomal. After filtering out non-polymorphic genes, we were left with 120 autosomal

Ensembl ID’s, corresponding to 116 MGI genes. Each Ensembl 67 gene was then assigned a
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‘database score’ ranging from 0 to 4, indicating the number of databases that listed the gene as

being imprinted (see Supporting Information S1).

2.6.7 Categorization of genes according to cis and trans effects

A comparison of four models (conserved model, cis model, trans model, and cis and
trans model) was performed using MMDIFF, as recently described (Turro et al. 2014). In brief,
the conserved model assumes there is no differential expression (DE) between the FO’s and no
allelic expression imbalance (AEI) in the F1’s. The cis model assumes there is DE between the
FO’s that is equal to the AEI in the F1’s. The trans model assumes there is DE between the FO’s
but no AEI in the F1’s. The cis and trans model assumes that there is DE in the FO’s, but it is
unequal to the AEI in the F1°s.

Included in the analysis were the 29,160 autosomal genes polymorphic between
C57BL/6J and Cast/EiJ. In our retinal dataset, after excluding 306 possibly imprinted
polymorphic autosomal genes (imprinting Bayes factor > 3), we had sufficient statistical power
to classify 11,484 genes confidently as conserved, cis, trans, or cis and trans based on the
following criteria: the winning model must have a posterior probability > 0.5, and the posterior
probability of the winning model must be at least twice that of the second-best model, assuming
an equal prior probability of 0.25 for each of the four models. In the previously published liver
dataset (Goncalves et al. 2012), after excluding 571 possibly imprinted polymorphic autosomal
genes (imprinting Bayes factor > 3), we had sufficient statistical power to classify 9,865 genes
confidently using these criteria.

Genes best modelled by a combination of cis and trans effects were then subdivided into

the following categories, where x is the weighted log fold change between the strains within the
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F1’s, and y is the weighted log fold change between the strains within the FO’s (Goncalves et al.
2012):

(1) CIS —trans (opposite direction with cis stronger than trans): x*y >0 and |[x|>|y|

(2) TRANS - cis (opposite direction with trans stronger than cis): x*y <0

(3) CIS + trans (same direction with cis stronger than trans): x*y > 0 and [x|<|y|<|2X]|

(4) TRANS + cis (same direction with trans stronger than cis): x*y > 0 and |y|>|2x]|

2.6.8 Calculation of weighted log fold change

The weighted log fold change for each gene was calculated by weighting the allele-
specific posterior mean of the log expression parameter by the inverse of its posterior variance
across biological replicates for each strain and subtracting the results. Let B1, Bz, and B3 be the
log expression parameters for the FO C57BL/6J samples, and let C1, Cz, and Cs be the log
expression parameters for the FO Cast/EiJ samples. Then the weighted log fold change between
the FO C57BL/6J samples and the FO Cast/EiJ samples is given by

> Bi/var(B) > Cilvar(Ci)
Z?:lll var(Bi) Z;ll var(Ci)

. The same approach was used to compare the two sets of F1

samples.

2.6.9 Assignment of genes to CRX ChlIP-seq peaks

Previously published CRX ChIP-seq data conducted on 8 week old C57BL/6 retinas
(Corbo et al. 2010) were used to assign wild-type (WT) CRX-bound regions (CBRs) to genes.
CBRs were assigned to all autosomal and sex chromosomal Ensembl Release 67 gene transcripts

using custom Perl scripts following a proximity-based algorithm as previously described: if a
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CBR was located within a gene, it was assigned to that gene; otherwise, it was assigned to the

gene with the nearest transcriptional start site (TSS) (Corbo et al. 2010).

2.6.10 Batch identification of variants

Variant calls (SNPs and indels) were downloaded as Variant Call Format (VCF) files
from the Wellcome Trust Sanger Institute’s Mouse Genomes Project. These calls (December
2012 release) were based on the latest high-quality, high-coverage HiSeq sequencing data of the
strains. The Cast/EiJ variants relative to the reference genome (C57BL/6J NCBI Build 37) were
extracted at regions of interest using VCFtools v0.1.10 (Danecek et al. 2011) and BEDtools
v2.19.1 (Quinlan and Hall 2010). Only variant sites where the genotype was homozygous were
included. The genomic coordinates of CBRs based on NCBI Build 37 were used. Custom Perl

scripts were written to tabulate the variants for CBRs associated with Ensembl Release 67 genes.

2.6.11 ldentification of variants at individual regions
Individual loci of interest were manually inspected for variants by querying an online database,
the Wellcome Trust Sanger Institute’s Mouse Genomes Project Mouse SNP Viewer Release

1211 (NCBI Build 37), available at http://www.sanger.ac.uk/sanger/Mouse_SnpViewer/rel-1211.

2.6.12 RetNet genes
Genes associated with human retinal disease in the RetNet database were retrieved.
Human gene symbols were converted to Mouse Genome Informatics (MGI) symbols using the

MGI Batch Query (Blake et al. 2014).
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2.6.13 DNA constructs

Polymerase chain reaction (PCR) with Phusion High-Fidelity DNA Polymerase (New
England BioLabs) was used to amplify the 0.7 kb Sag promoter region at -558 to +105 (mm9
chr1:89,699,697-89,700,359) relative to the TSS. Genomic DNA purified from C57BL/6J and
Cast/EiJ liver tissue was used as the template for the B6 and Cast construct, respectively. The
forward primer 5’ -TGAGGCAATGACACTTGGTC-3> and reverse primer 5°-
GCAGGGAGCTGATTGGATTA-3” with Xhol and EcoRI restriction enzyme site overhangs,
respectively, were used. The fragments were subcloned upstream of DsRed in the no-basal
vector (described previously in (Hsiau et al. 2007)) using the Sall (compatible with Xhol) and
EcoRl sites. Constructs were confirmed with Sanger sequencing that encompassed the entire 0.7
kb region. We note that based on our high-quality Sanger sequencing of this region, the genomic
DNA of our Cast/EiJ mice differed from the reference Cast/EiJ sequence (Keane et al. 2011) by
two bases at chrl:89,700,191 (A->C) and chr1:89,700,187 (A->C), as confirmed by Sanger
sequencing three different Cast/EiJ mice (representing the three Cast/EiJ RNA-seq biological

replicates)

2.6.14 Retinal explant electroporation and quantification of promoter activity
Electroporation and explant culture of mouse retinas were performed as described
previously (Montana et al. 2011b). In brief, retinas were dissected from newborn (P0) CD-1
mouse pups and coelectroporated with one of the Sag promoter DsRed constructs and a control
green fluorescent protein (GFP) reporter that expresses in rod photoreceptors, Rho-CBR3-eGFP
(Corbo et al. 2010), each at a concentration of 0.5 pg/uL. Retinas were grown in explant culture

and harvested 8 days later, whereupon they were fixed and whole-mounted for quantitative
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imaging of DsRed fluorescence intensity normalized to GFP fluorescence intensity using a
monochromatic camera (Hamamatsu ORCA-AG), as described (Montana et al. 2011b). For each
Sag promoter construct, 10-11 retinas were quantified. Representative images using a color
camera (Olympus DP70) were also taken (see Figure 2.6C). For all retinal imaging, 40X
magnification was used, and the exposure times for the red and green channels were consistent

across retinas.

2.7 DATA ACCESS
RNA-seq, MMSEQ, and MMDIFF data have been deposited in Gene Expression Omnibus (GEO,

http://www.ncbi.nlm.nih.gov/geo/) (accession number GSE60545).

2.8 SUPPORTING INFORMATION
Supporting information is available at:

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0109382#s5
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Figure 2.1. Study design. (A) FO and F1 mice were generated via the depicted crosses. The
schematic diagram illustrates example expression patterns for a cis effect, trans effect, and
parent-of-origin effect. For a cis effect, in the F1 hybrids, the Cast/EiJ allelic expression relative
to the C57BL/6J allelic expression recapitulates the ratio of gene expression levels in the FO
homozygotes. For a trans effect, the F1 hybrids express the Cast/EiJ and C57BL/6J alleles
equally. For a parent-of-origin effect, there is preferential expression of the maternal allele (as
depicted) or the paternal allele, as seen by comparison of the reciprocal F1 hybrids. (B) An
overview of the workflow is shown.
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Figure 2.2. Characterization of parent-of-origin effects in the retina. Autosomal genes
polymorphic between C57BL/6J and Cast/EiJ were analyzed in retinas from reciprocal F1
hybrids. Higher Bayes factors indicate greater likelihood of imprinting. (A) Non-imprinted genes
with Bayes factor <0.1 (gray) and <0.001 (orange) are depicted. (B) Parent-of-origin effects with
preferential expression of the paternal (blue) or maternal (red) allele with Bayes factor >10 (light)
and >30 (dark) are depicted. (C) Top-ranked (low rank number) genes are enriched for known
imprinted genes. (D) Genes with strong evidence of imprinting in the retina (Bayes factor > 30)
that exhibit preferential expression of the paternal (blue) or maternal (red) allele are depicted.
Green, special cases—see text for discussion of Rtl1 and Grb10. Filled squares, genes previously
reported as imprinted in other tissues. Empty triangles, not previously reported as imprinted.
A230006K03Rik appears twice because it is associated with two Ensembl 1D’s, a protein-coding
gene and a lincRNA.
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Figure 2.3. Comparison of differentially expressed and cis-effect genes associated with
photoreceptor CREs. Genes were classified as being associated with CRX ChIP-seq peaks
(CBR-associated) or not. (A) Differentially expressed (DE) autosomal genes were identified
using DESeq at 5% FDR. The proportions of genes with higher expression in FO Cast/EiJ than
FO C57BL/6J at various fold changes are shown. (B) Cis-effect autosomal genes were identified
using MMDIFF. Proportions of genes with higher expression in F1 Cast/EiJ allele than F1
C57BL/6J allele at various fold changes are shown. P-values were calculated with two-tailed
Fisher’s exact test. N.S. = not significant, *< 0.05, **< 0.01, ***< 0.001, **** <(.0001.
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Figure 2.4. Classification of genes by mechanism of gene regulatory divergence. (A) Genes
were classified as conserved (yellow; largely obscured), cis (green), trans (red), or cis and trans
(purple). (B) Cis- and trans-effect genes were further subcategorized as to whether the cis and
trans effects acted in the same (plus sign; pink and brown) or opposite (minus sign; orange and
blue) directions, and whether the cis (CAPS; orange and pink) or trans (CAPS; blue and brown)
effect was stronger. Insets, magnified views.
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Figure 2.5. Analysis of variant density in photoreceptor CREs. (A) The number of Cast/EiJ
(top) or Spret/EiJ (bottom) SNPs and indels relative to C57BL/6J was determined in 50 bp
windows (sliding 25 bp at a time) across the 2 kb region centered on CBRs. Phylogenetic
conservation for CBRs is based on PhastCons scores as found in (Corbo et al. 2010). The
highlighted area corresponds to the central 300 bp region. (B) Histogram showing frequency of
variants (SNPs + indels) in the 1 kb region centered on all CBRs (black), CBRs associated with
cis-effect genes (green), and CBRs associated with trans-effect genes (red). Total bar height was
normalized to 1 for each category.
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Figure 2.6. Cis-effect genes associated with retinal disease and photoreceptor CREs. (A)
Cis-effect genes associated with CRX ChlIP-seq peaks were matched against the RetNet database
of retinal disease genes. The yellow circle highlights Sag. (B) Sag locus, mm9. Top: Screenshot
from UCSC Genome Browser (Kent et al. 2002). DNasel hypersensitivity site (DHS) signals are
from ENCODE data (The ENCODE Project Consortium 2012). Bottom: Enlargement of boxed
region. The 0.7 kb promoter region is depicted here. Locations of known Cast/EiJ variants
(Keane et al. 2011) are depicted as green tic marks (SNPs) or blue tic marks (indels). (C) Retinal
explant electroporation was used to assay the activity of the 0.7 kb Sag promoter region of B6
and Cast alleles. Representative images are shown here for the B6 (top) and Cast (bottom) 0.7 kb
Sag promoter constructs driving DsRed expression. Rho-CBR3-eGFP served as the loading
control. (D) Quantification of the cis-regulatory activity measured by the explant electroporation
assay. Error bar represents SEM. P-value was calculated with one-tailed Wilcoxon rank-sum test.
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Figure 2.7. Comparison of cis effects and trans effects between liver and retina. (A) Using
the same analytic pipeline as for retina, genes in the liver were classified as conserved (yellow;
largely obscured), cis (green), trans (red), or cis and trans (purple). (B) Cis- and trans- regulated
genes were further subcategorized as to whether the cis and trans effects acted in the same (plus
sign; pink and brown) or opposite (minus sign; orange and blue) directions, and whether the cis
(CAPS; orange and pink) or trans (CAPS; blue and brown) effect was stronger. (C) Number of
genes classified as cis in liver and conserved in retina, cis in both tissues, or cis in retina and
conserved in liver. (D) Number of genes classified as trans in liver and conserved in retina, trans
in both tissues, or trans in retina and conserved in liver. (E) Correlation between genes classified
as cis in both tissues. Pearson r values for FO samples (left) and F1 samples (right) are shown. (F)
Correlation between genes classified as trans in both tissues. Pearson r values for FO samples
(left) and F1 samples (right) are shown. Insets, magnified view.
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Table 2.1. Agreement between FO biological replicates.

FO C57BL/6J FO Cast/EiJ
R1 R2 R3 R1 R2 R3
FO C57BL/6J R1 1
R2 0.983 1
R3 0.992 0.982 1
FO Cast/EiJ R1 0.873 0.814 0.876 1
R2 0.912 0.893 0.919 0.956 1
R3 0.907 0.912 0.904 0.897 0.979 1

Pearson r values for FPKM (fragments per kb of transcripts per million mapped read pairs)
estimates across FO samples. Bold denotes comparison between biological replicates (R1, R2,
and R3) of the same genotype.
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Table 2.2. Agreement between F1 biological replicates.

F1 B6xCast, B6 allele F1 B6xCast, Cast allele | F1 CastxB6, B6 allele F1 CastxB6, Cast allele
R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3
F1 B6xCast, B6 allele R1 1
R2 | 0.929 1
R3 | 0.975 | 0.940 1
F1 B6xCast, Castallele | R1 | 0.949 | 0.911 | 0.953 1
R2 | 0.937 | 0.922 | 0.946 | 0.973 1
R3 | 0.923 | 0.918 | 0.941 | 0.977 | 0.960 1
F1 CastxB6, B6 allele R1 | 0.932 | 0971 | 0.960 | 0.914 | 0.924 | 0.926 1
R2 | 0.927 | 0.974 | 0.952 | 0.911 | 0.920 | 0.916 | 0.987 1
R3 | 0939 | 0.957 | 0.965 | 0.925 | 0.924 | 0.935 | 0.985 | 0.975 1
F1 CastxB6, Castallele | R1 | 0.885 | 0.947 | 0.923 | 0.926 | 0.943 | 0.939 | 0.951 | 0.958 | 0.950 1
R2 | 0.909 | 0.909 | 0.945 | 0.942 | 0.940 | 0.961 | 0.948 | 0.928 | 0.963 0.965 1
R3 | 0.906 | 0.917 | 0.947 | 0.946 | 0.938 | 0.959 | 0.951 | 0.947 | 0.948 0.971 0.979 1

Pearson r values for FPKM

Cast allele).

estimates across F1 samples. Bold denotes comparison between
biological replicates (R1, R2, and R3) of the same genotype and for the same allele (B6 allele or
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Table 2.3. Accuracy of X chromosomal read mapping in F1 samples.

F1 B6xCast F1 CastxB6
Maternal allele: Cast/EiJ | Maternal allele: C57BL/6J
R1 99.4% R1 99.5%

R2 99.5% R2 99.5%
R3 99.5% R3 99.5%

Percentages of X chromosomal unique hits (i.e., read pairs mapping uniquely to C57BL/6J or
Cast/EiJ) that mapped to the correct genome. Since only males were used, reads should derive
only from the maternal allele.
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CHAPTER 3:

Massively Parallel Cis-Regulatory Analysis in the Mammalian Central Nervous System
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3.1 AUTHOR CONTRIBUTIONS

This chapter is adapted from a published manuscript: Shen SQ!, Myers CA!, Hughes
AEQ!, Byrne LC?, Flannery JG?, and Corbo JC'". (2016) “Massively parallel cis-regulatory
analysis in the mammalian central nervous system.” Genome Res. 26:238-55. The experimental
work was done in collaboration with Connie Myers, and the bioinformatic analyses were done in
collaboration with Andrew Hughes. Joseph Corbo and I conceived the project and designed the
experiments. Leah Byrne and John Flannery contributed to the design and construction of the
adeno-associated virus (AAV). Joseph Corbo and | wrote the manuscript.

This work builds upon CRE-seq, which was developed by Jamie Kwasnieski, llaria
Mogno, and Connie Myers in collaboration between the laboratories of Joseph Corbo and Barak

Cohen (Kwasnieski et al. 2012).
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3.2 ABSTRACT

Cis-regulatory elements (CREs, e.g., promoters and enhancers) regulate gene expression,
and variants within CREs can modulate disease risk. Next-generation sequencing has enabled the
rapid generation of genomic data that predict the locations of CRESs, but a bottleneck lies in
functionally interpreting these data. To address this issue, massively parallel reporter assays
(MPRAS) have emerged, in which barcoded reporter libraries are introduced into cells and the
resulting barcoded transcripts are quantified by next-generation sequencing. Thus far, MPRAs
have been largely restricted to assaying short CREs in a limited repertoire of cultured cell types.
Here, we present two advances that extend the biological relevance and applicability of MPRAs.
First, we adapt exome capture technology to instead capture candidate CREs, thereby tiling
across the targeted regions and markedly increasing the length of CREs that can be readily
assayed. Second, we package the library into adeno-associated virus (AAV), thereby allowing
delivery to target organs in vivo. As a proof-of-concept, we introduce a capture library of
~46,000 constructs, corresponding to ~3,500 DNase | hypersensitive (DHS) sites, into the mouse
retina by ex vivo plasmid electroporation and into the mouse cerebral cortex by in vivo AAV
injection. We demonstrate tissue-specific cis-regulatory activity of DHSs and provide examples
of high-resolution truncation mutation analysis for multiplex parsing of CREs. Our approach
should enable massively parallel functional analysis of a wide range of CREs in any organ or
species that can be infected by AAV, such as non-human primates and human stem cell-derived

organoids.
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3.3 INTRODUCTION

Cis-regulatory elements (CREs, e.g., promoters and enhancers) are DNA regions that
regulate gene expression, and variants within CREs can contribute to phenotypic diversity,
including disease susceptibility (Wray 2007; Albert and Kruglyak 2015). In the past several
years, vast amounts of genomic data have been generated that predict the locations of hundreds
of thousands of CREs in cell lines and primary tissues (Shen et al. 2012; The ENCODE Project
Consortium 2012; Romanoski et al. 2015). As an avenue for the experimental validation of these
predictions, massively parallel reporter assays (MPRAS, e.g., CRE-seq) have been developed, in
which barcoded plasmid reporters are introduced into cells. Next-generation sequencing of the
resulting barcoded transcripts provides a quantitative measure of CRE activity (Kwasnieski et al.
2012; Melnikov et al. 2012; Patwardhan et al. 2012; Arnold et al. 2013; White et al. 2013; Levo
and Segal 2014; Shlyueva et al. 2014). Thus far, MPRASs have been largely restricted to assaying
short CRE fragments (<150 bp) synthesized as oligonucleotide libraries on microarrays
(Patwardhan et al. 2009; Baker 2011; White et al. 2013) and delivered into select mammalian
cells accessible by transfection or electroporation. However, CREs are often hundreds of base
pairs in length, and CRE activity depends crucially on the assayed cell type and its particular
complement of transcription factors (TFs) (Davidson 2001). Therefore, we sought to expand the
biological relevance and applicability of MPRASs by increasing the length of assayed CREs and
by widening the repertoire of assayable cell types.

The retina and cerebral cortex are two parts of the central nervous system (CNS) with a
shared forebrain origin, whose gene regulatory networks are topics of intense research interest
(Swaroop et al. 2010; Wright et al. 2010; Bae et al. 2015; Nord et al. 2015). The genome-wide

locations of putative CREs have been mapped in both tissues, using methods such as ChiP-seq
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and DNase-seq (Visel et al. 2009; Corbo et al. 2010; The ENCODE Project Consortium 2012;
Wilken 2015). Compared to the cortex, the retina is more experimentally amenable to cis-
regulatory analysis, in part because its cellular composition is more completely understood
(Livesey and Cepko 2001; London et al. 2013). Electroporation can be used to efficiently deliver
plasmid DNA into rod photoreceptors, which constitute the majority (~80%) of the cells in the
retina (Jeon et al. 1998). We previously conducted CRE-seq by electroporating thousands of
short CREs into the neonatal mouse retina ex vivo (Kwasnieski et al. 2012; White et al. 2013).
Although hundreds of putative developmental forebrain enhancers have been assayed with one-
at-a-time transgenic mouse reporter assays (Nord et al. 2013; Visel et al. 2013), never before has
massively parallel cis-regulatory analysis been conducted in the mammalian CNS in vivo.

Here, we sought to overcome current technological hurdles by developing a ‘capture-and-
clone’ approach for synthesizing CRE-seq libraries with a selectable range of fragment sizes for
targeted cis-regulome analysis. As a built-in feature, our approach allows for truncation mutation
analyses, which can identify regions within CREs that are critical for activity. We furthermore
demonstrate the feasibility of conducting in vivo CRE-seq in the adult cerebral cortex by AAV-
mediated delivery. Our approach provides a framework for the massively parallel functional

analysis of CREs in a broad repertoire of organs and species in vivo.
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3.4 RESULTS
3.4.1 Ildentification and characterization of candidate CRE regions

The genomic locations of CREs can be predicted by the patterns of phylogenetic
conservation, the occurrence of transcription factor binding sites, and the presence of various
chromatin features (Levo and Segal 2014; Shlyueva et al. 2014). DNase | hypersensitive (DHS)
sites, which demarcate regions of open chromatin, are one of the most informative predictive
features of active CREs (Arvey et al. 2012; Natarajan et al. 2012; Kwasnieski et al. 2014).
Moreover, DNase-seq data for a variety of primary mouse tissues are available as part of the
Mouse ENCODE Project (Yue et al. 2014). To facilitate the direct comparison of a given CRE-
seq library in retina and cerebral cortex, we generated a list of tissue-specific candidate CRES
based on mouse DNase-seq data, corresponding to 1,000 DHS regions from adult retina and
1,000 DHS regions from adult whole brain. Additionally, we included DHSs from two adult
mouse non-neural tissues (1,000 DHSs from heart and 1,000 DHSs from liver) as controls
(Supplemental Table S1). Together, this yielded 4,000 target DHS regions.

We first examined the genome-wide distributions of the 4,000 target DHS regions using
GREAT and HOMER, two computational tools for annotating coding and non-coding regions
(Heinz et al. 2010; McLean et al. 2010). The majority (75%) of the DHS regions were distal
elements located more than 10 kb away from the nearest transcriptional start site (TSS) (Figure
3.S1A). Almost all of the DHS regions fell within introns (46%) or intergenic regions (45%)
(Figure 3.51B), similar to the genome-wide distribution of DHS regions in other cell types (Shu
et al. 2011). A small number of DHSs (156/4,000 or 4%) were ‘promoter-proximal’, i.e., falling

within -1 kb to +100 bp relative to the nearest TSS (Figure 3.S1A). Among these, 77/156 (49%)
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were retinal DHSs, consistent with the previous observation that photoreceptor CREs often
cluster around TSS’s (Corbo et al. 2010).

Tissue-specific CREs are often enriched for the binding of TFs important for cell identity
and function (Davidson 2001). Accordingly, we used HOMER (Heinz et al. 2010) to quantify
enrichment of TF motifs in the target regions (Supplemental Table S2). For each set of tissue-
specific target DHSs, we found strong enrichment of putative binding sites for TFs known to be
important in that tissue. For example, among the top statistically significant enrichments for the
retina, brain, heart, and liver DHSs were putative motifs for CRX (Chen et al. 1997; Freund et al.
1997), ASCL1 (Kim et al. 2008b), MEF2C (Edmondson et al. 1994), and ONECUT1 (also
known as HNF6) (Clotman et al. 2005), respectively.

Since tissue-specific CREs are often associated with genes specifically expressed in the
corresponding tissue (Natarajan et al. 2012; Heinz et al. 2015), we also examined the genes
associated with the target DHSs based on the nearest TSS (Supplemental Table S1). Gene
Ontology (GO) analysis (Carbon et al. 2009) revealed an enrichment for tissue-specific functions
that corresponded to the tissue of DHS origin. For instance, among the top significant hits for the
retina, brain, heart, and liver target DHSs were ‘sensory perception of light stimulus’, ‘nervous
system development’, ‘cardiovascular system development’, and ‘organic substance metabolic
process’, respectively (Supplemental Table S3). Thus, the 4,000 target DHS regions were likely

enriched for tissue-specific CREs.

3.4.2 ‘Capture-and-clone’ allows synthesis of targeted cis-regulome libraries
To overcome the length restrictions imposed by oligonucleotide array synthesis of CRE

fragments (Cleary et al. 2004), we took advantage of DNA capture, a technique routinely used
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for exome sequencing. For exome capture, biotinylated RNA baits are designed to selectively
hybridize with DNA fragments containing sequences of interest, i.e., exonic regions (Gnirke et al.
2009). Here, we adapted this technology to target our CREs of interest (a subset of the putative
‘cis-regulome’) instead of the exome. This approach offers important advantages. First, the input
DNA pool can derive from any genomic DNA source. Hence, the cis-regulome of any single
individual or groups of individuals can be assessed. Second, the input DNA pool can be size-
selected for a range of fragment lengths, enabling inclusion of long CREs.

Using mouse (C57BL/6J) genomic DNA that was sheared by sonication and then size-
selected to be ~400-500 bp (excluding adapter sequence), we captured with RNA baits tiling the
central 300 bp (which is the median size of DHSs (Natarajan et al. 2012)) of the 4,000 target
DHS regions. We amplified the captured fragments with primers containing restriction sites for
cloning into a barcoded vector library (Figure 3.1A). Since the cloning was non-directional, both
orientations were roughly equally represented, as expected (49% and 51% of fragments mapped
to the plus and minus strands of the mm9 reference genome, respectively). Paired-end
sequencing revealed a distribution of CRE fragment sizes with a median length of 464 bp (SD =
72 bp) (Figure 3.1B). Using two successive rounds of capture, we achieved a very high ‘on-
target’ rate: 98.5% of the captured fragments overlapped a target region. The median overlap for
on-target fragments was 282 bp out of the 300 bp target, i.e., 94% of the target region length
(Figure 3.S2). Overall, 3,483 of the 4,000 (87%) targeted regions were represented, with a
median coverage of 8 barcodes per represented region, for a total of 45,670 uniquely barcoded
constructs (Figure 3.1C).

The distribution of captured fragments across a representative chromosome is shown in

Figure 3.2A. Notably, many loci exhibited a multiplicity of captured fragments corresponding to
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a single target region, resulting in a tiling of the DHS peak, as exemplified in Figure 3.2B-E.
Hence, the ability to conduct CRE truncation mutation analysis at a given locus is a key built-in

feature of our capture-and-clone approach.

3.4.3 AAV packaging and delivery preserves CRE-seq library composition

We next considered how to expand the repertoire of cell types accessible by CRE-seq.
Whereas efficient plasmid delivery is limited to mitotic cells amenable to chemical transfection
or electroporation (Mortimer et al. 1999; Karra and Dahm 2010), the ideal CRE-seq delivery
vehicle would permit access to a variety of tissues, including post-mitotic tissues, and in a range
of species. We reasoned that adeno-associated virus (AAV), a non-pathogenic virus commonly
used for gene therapy studies, would be suitable for this purpose. AAV causes long-lasting
infection in rodents and primates, and its tissue tropism ranges by serotype from promiscuous to
cell-type selective (Mingozzi and High 2011). Moreover, unlike DNA delivered by lentivirus,
the AAV-delivered DNA remains almost exclusively episomal, thereby permitting cis-regulatory
analysis without the insertion site effects associated with integration into the host genome
(MccCarty et al. 2004).

After cloning in a TATA box-containing minimal promoter-green fluorescent protein
(GFP) cassette (Figure 3.1A), we transferred the library into a vector with inverted terminal
repeats (ITRs), which are necessary for AAV packaging (Yan et al. 2005)). This yielded the final
plasmid library (Figure 3.3A). To deliver the library into the retina, we conducted ex vivo
electroporation of the plasmid library into the neonatal mouse retina, as in our past CRE-seq
studies (Kwasnieski et al. 2012; White et al. 2013). We generated three biological replicates,

each consisting of multiple electroporated retinas.
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To deliver the library into the cerebral cortex, we packaged the plasmid library into
AAV9I(2YF) and conducted in vivo stereotactic injections to infect adult primary motor cortex.
AAV9 is a serotype that exhibits broad tissue tropism, and its tyrosine-mutated derivative
AAVI(2YF) transduces neurons of the CNS with high efficiency and minimal host-mediated
degradation of viral particles (Zhong et al. 2008; Zincarelli et al. 2008; Dalkara et al. 2012;
Aschauer et al. 2013). We generated three biological replicates, each consisting of cerebral
cortex tissue from a single injected mouse.

As evidence that AAV packaging and stereotactic injection did not adversely affect the
composition of the library, we observed a strong correlation (Pearson r = 0.95) between the
relative abundance of individual barcoded constructs in the retina after delivery of the plasmid
CRE-seq library and in the cerebral cortex after infection with the AAV-packaged CRE-seq
library (Figure 3.3B). Furthermore, 76% (34,824/45,670) of the on-target barcodes were ‘well-
represented’ (i.e., had at least 10 raw DNA reads) in all six biological replicates (three replicates
each for retina and cerebral cortex). These 34,824 barcodes covered 97% (3,375/3,483) of the
targeted DHS regions that were represented in the initial post-capture library. These results
indicated good preservation of barcode abundance and diversity throughout the procedure, from
the initial post-capture cloning to the delivery of the library.

We then examined the tissues histologically for evidence of library expression, as
visualized by fluorescence microscopy. Upon examination of the electroporated retinas, we
observed GFP-positive cells in the outer nuclear layer (ONL) of the retina, where the rod
photoreceptor cell bodies reside (Figure 3.3C). Moreover, the GFP-positive cells co-expressed

the rod-specific Rho-CBR3-DsRed reporter (Corbo et al. 2010) (Figure 3.S3A). These findings
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indicated that the GFP-positive cells were rod photoreceptors, which are the predominant cell
type assayed by neonatal retinal electroporation.

Upon histological examination of the AAV-injected brains, we observed bilateral GFP-
positive regions throughout all layers of the cerebral cortex (Figure 3.3D), corresponding to
GFP-expressing cells seen under higher magnification (Figure 3.3E). Many of the GFP-positive
cells were morphologically consistent with pyramidal neurons, with an apically oriented primary
dendrite and an axon. Furthermore, GFP expression co-localized with RBFOX3 (also known as
NeuN) (Mullen et al. 1992), a widely expressed marker of mature neurons (Figure 3.S3B).
Interestingly, there were bundles of GFP-positive axons crossing the midline in the corpus
callosum (red arrow in Figure 3.3D), indicating that interhemispheric projection neurons were

among the cells that expressed the CRE-seq library.

3.4.4 AAV-mediated CRE-seq demonstrates tissue-specific CRE activity of DHSs in vivo

Given the histological evidence for expression of the library in both tissues, we next
quantified the cis-regulatory activity of individual constructs by next-generation sequencing. As
quality control measures, we verified that the samples overall clustered by the assayed tissue
type (retina vs. cerebral cortex). We also observed that the RNA read counts for individual
barcodes were correlated among the three biological replicates for each tissue, although greater
variability was observed among the cerebral cortex samples than the retinal samples (Figure 3.54
and Supplemental Table S4).

Since tissue-specific DHSs are believed to mediate tissue-specific cis-regulatory activity
(Natarajan et al. 2012; Heinz et al. 2015), we first asked whether this was the case. For this

analysis, we assigned the ‘overall’ cis-regulatory activity of a given DHS by averaging across
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corresponding barcoded constructs (as well as across biological replicates). Here, we included
the ~3,000 DHSs with at least two barcoded constructs. When we examined the relationship
between the DHS type (i.e., the tissue origin of the DHS) and CRE activity as assayed in the
retina, we observed strong enrichment of retinal DHSs among highly expressed DHSs, especially
among the top ~20% most highly expressed DHSs in the retina (Figure 3.4A). Since averaging
across barcoded constructs may not necessarily be the best metric of cis-regulatory activity for a
given DHS, we also examined the expression of individual barcoded constructs. This again
revealed the strong preference of the retina for expressing retinal DHSs (Figure 3.4B).

Similarly, in the cerebral cortex, there was an enrichment of brain DHSs among highly
expressed DHSs, especially among the top ~15% most highly expressed DHSs in the cortex
(Figure 3.4A). However, this enrichment was less pronounced than for retina: among the top 15%
most highly expressed DHSs in the retina, 79% were retinal DHSs, while among the top 15%
most highly expressed DHSs in the cerebral cortex, 42% were brain DHSs (p < 0.0001, Fisher’s
exact test). As seen from the individual barcoded constructs (Figure 3.4B), there was a clear
preference for brain DHSs among the most active constructs, but there was overall more
promiscuous (less selective) activity of constructs in the cortex. The activity profile of non-brain
DHSs in the cortex was right-shifted (increased) and overlapped to a greater extent with the
activity profile of brain DHSs in the cortex, compared to the activity profile of non-retinal vs.
retinal DHSs in the retina. Overall, these findings indicated that there was tissue-specific cis-
regulatory activity of DHSs in the retina and the cortex, with the retina exhibiting a stronger

preference for retinal DHSs than the cortex exhibited for brain DHSs.
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3.4.5 Parameters that predict cis-regulatory activity

We next asked whether certain parameters previously found to be associated with cis-
regulatory activity were predictive of high activity in our assay. For each parameter examined in
Figure 3.5A-D, we considered the top 100 and top 200 most highly expressed DHSs for the
tissue-appropriate DHS type (i.e., for the retina, we restricted our analysis to retinal DHSs, and
for the cerebral cortex, we restricted our analysis to brain DHSs). Corresponding data for the
liver and heart DHSs are provided in Figure 3.S5. We first surveyed expression as a function of
position relative to the center of the DHS target region, within a 1 kb window (Figure 3.5A).
While DNase-seq signals had a relatively narrow peak (~300 bp width) (Figure 3.5B), cis-
regulatory activity in both the retina and cortex had a much broader peak, plateauing in the
central ~500 bp. The breadth of the cis-regulatory activity peaks likely reflects the longer length
of the captured fragments (median length of 464 bp) and the large extent of overlap with the
central 300 bp of the DHS regions (median overlap of 94%). Notably, we did not find a
substantial relationship between the length of individual CRE fragments and CRE activity
(Figure 3.S6), or between distance from the nearest TSS and CRE activity (Figure 3.S7).

Interestingly, higher DNase-seq scores were significantly associated with higher cis-
regulatory activity in the retina but not in the cortex (Figure 3.5B). A possible explanation is that
the retinal DNase-seq data primarily reflect the chromatin state of rods, since they constitute the
vast majority of cells in the retina (Jeon et al. 1998), and that the most strongly expressed DHSs
are rod CREs. By comparison, the brain DNase-seq data reflect the chromatin state of a
heterogeneous cell population, and the most strongly expressed DHSs in the cortex may be cell

type-specific CREs highly active in only a subset of cells.
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Next, we investigated GC content, which has been reported to be elevated within CREs.
This elevation in GC content is thought to favor nucleosome occupancy in tissues where the
CRE is not active, thereby repressing cis-regulatory activity in those tissues (Tillo and Hughes
2009; Tillo et al. 2010; Fenouil et al. 2012; Wang et al. 2012; Hughes and Rando 2014). We
previously published an enhancer study, in which short (84 bp) synthetic CREs were cloned
upstream of a photoreceptor-specific proximal promoter. This study revealed a positive
correlation between GC content and enhancer activity in the retina (White et al. 2013). Thus, we
were surprised to find that here, the most active retinal DHSs in the retina had significantly lower
GC content (Figure 3.5C). However, a recent CRE-seq study using a minimal promoter also
found lower GC content in highly active enhancers (Kwasnieski et al. 2014). Therefore, GC
content appears to have distinct roles when the CRE acts as an autonomous element with a
minimal promoter or as an enhancer with an active proximal promoter. Brain DHSs had a
different pattern, with markedly elevated GC content centrally, and further increased GC content
was seen among the most active brain DHSs in the cortex (Figure 3.5C). The different effects of
GC content in the two tissues may reflect AT-rich vs. GC-rich motifs of tissue-specific TFs,
and/or the distinct preferences of tissue-specific TFs for AT-rich vs. GC-rich ‘environments’
surrounding the TF motif (Dror et al. 2015).

An ongoing debate in the field of genomics is the degree to which phylogenetic
conservation at the DNA sequence level is an accurate predictor of functional CREs, given that
there is rapid turnover of individual TF binding sites in the course of evolution (Dermitzakis and
Clark 2002; Vierstra et al. 2014). We observed significantly higher vertebrate conservation (as
measured by PhastCons scores (Siepel et al. 2005)) for the most strongly expressed retinal and

brain DHSs in the retina and cortex, respectively. This elevated phylogenetic conservation
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occurred primarily within the central ~100 bp of DHSs (Figure 3.5D). This distribution of
phylogenetic conservation is consistent with the previous observation that highly local (<100 bp)
sequences confer substantial CRE activity (White et al. 2013).

We then considered TF motif content, which has been found to be predictive of cis-
regulatory activity (Kwasnieski et al. 2014; Blatti et al. 2015). Here, we examined the
enrichment of TF motifs among the DHSs with the highest or lowest activity in the retina and
cortex, regardless of the type of DHS (Figure 3.5E and Supplemental Table S5). In the retina,
highly active DHSs were enriched for homeobox, E-box, nuclear receptor (NR), MADS-box, and
CCAAT motifs, while in the cerebral cortex, highly active DHSs were enriched for MADS-box,
zinc finger (ZF), and helix-turn-helix (HTH) motifs.

To assess the predictive power of these features (DNase-seq scores, GC content,
PhastCons scores, and TF motifs), we created logistic regression models and visualized their
performance with receiver operating characteristic (ROC) curves, with five-fold cross-validation
to control for over-fitting (Figure 3.5F and Supplemental Table S6). All constructs assayed in
each tissue were classified as ‘high’ (top ~5% of ~36,000 constructs in retina, or top ~1% of
~39,000 constructs in cerebral cortex) vs. ‘not high’. In the retina, DNase-seq was the single
most predictive feature (AUC = 0.921), reflecting the strong tendency for highly active
constructs to be retinal DHSs. Retinal CRX ChlP-seq peaks (Corbo et al. 2010) performed nearly
as well (AUC = 0.892), likely reflecting the fact that CRX ChlP-seq peaks are essentially a
subset of retinal DHSs (Wilken 2015). Interestingly, a model based on 15 TF motifs also
performed reasonably well (AUC = 0.785). By comparison, in a prior CRE-seq study conducted
in cell lines, a model using 50 TF motifs attained an AUC of 0.80 (Kwasnieski et al. 2014). The

predictive values of GC content (AUC = 0.521) and PhastCons (AUC = 0.537) were weak. In the
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cerebral cortex, DNase-seq was likewise the single most predictive feature (AUC = 0.778). A
model based on 13 TF motifs performed reasonably well (AUC = 0.734), while GC content
(AUC = 0.608) and PhastCons (AUC = 0.659) had modest predictive power in the cortex.
Notably, in both tissues, the combined model performed only slightly better than DNase-seq
alone. Overall, these results reflect the degree of preference of the retina and cerebral cortex for
expressing retinal DHSs and brain DHSs, respectively, while underscoring the importance of TF
motifs in specifying CRE activity. Furthermore, these results underscore the power of open

chromatin mapping techniques such as DNase-seq for identifying functional CREs.

3.4.6 Tiling of captured fragments allows for truncation mutation analysis

The potential for conducting truncation mutation analysis is an attractive and potentially
powerful feature of the capture approach. We therefore sought to determine whether the results
were comparable to those of a previously published ‘traditional’ one-at-a-time promoter analysis.
NRL is a master regulator of rod photoreceptor development, required both for rod fate
determination and maintenance (Mears et al. 2001; Swaroop et al. 2010). Past studies of the Nrl
promoter region identified a 30 bp ‘critical region’ that is absolutely required for promoter
activity. This critical region contains TF binding sites for CRX and RORB, both of which are
required for Nrl expression (Kautzmann et al. 2011; Montana et al. 2011a). Since the Nrl
promoter contained a retinal DHS that was targeted in our library, we compared the results of
CRE-seq and a traditional promoter analysis that used fluorescence as a read-out of cis-
regulatory activity (Montana et al. 2011a). Since promoters act directionally (Andersson et al.
2014; Duttke et al. 2015), we compared CRE-seq constructs that were oriented in the same

direction as the traditional promoter constructs. We found good agreement between the two
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assays overall (Figure 3.6A), despite differences in construct design (e.g., the CRE-seq
constructs contained a minimal promoter, and the 3’ ends of fragments varied). Importantly, both
identified the same critical region within a block of phylogenetic conservation (Montana et al.
2011a). Thus, CRE-seq truncation analysis recapitulated the results of a traditional truncation
mutation analysis.

Besides the Nrl promoter, we found additional instances of novel truncation mutation
analyses afforded by the capture approach. As seen in Figure 3.6B, a retinal DHS in the intron of
Rbm20 showed strong activity in the retina and weak activity in the cortex. Intriguingly, our
assay revealed a 12 bp critical region containing a predicted binding motif for CRX. This motif,
‘CTAATCCT’ (on the negative strand) is a near-perfect match to the consensus motif,
‘CTAATCCC’ (Lee et al. 2010).

Figure 3.6C depicts another truncation mutation analysis, this time for two brain DHSs
(labeled “1° and 2’) located <0.5 kb apart within an intron of Bsn (Bassoon). Bassoon is a
presynaptic protein that is important for neurotransmitter release from glutamatergic (excitatory)
neurons (Altrock et al. 2003). Both of these brain DHSs contained phylogenetically conserved
regions, as observed by PhastCons (Siepel et al. 2005). Interestingly, while both had low cis-
regulatory activity in the retina, DHS #1 had low activity in the cerebral cortex, whereas DHS #2
had high activity in the cortex. Furthermore, given the extensive tiling of the region, the
boundaries of activity could be determined at both the 5’ and 3’ ends of DHS #2.

Next, we present a brain DHS region with high cis-regulatory activity in the cerebral
cortex (Figure 3.6D). A critical region of ~150 bp in length was identified that overlapped a
block of phylogenetic conservation. Incremental loss of bases in this region resulted in

progressive decreases in cis-regulatory activity. Within this critical region, two TF motifs were
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identified: a consensus E-box motif (recognized by bHLH TFs) (Massari and Murre 2000),
immediately next to a motif recognized by basic region leucine zipper (bZIP) proteins of the AP-
1 family (Heinz et al. 2010). Like neural bHLH proteins, AP-1 family proteins are known to
have important roles in regulating gene expression in the cerebral cortex (Raivich and Behrens
2006; Mongrain et al. 2011).

Additional examples of truncation mutation analysis are presented in Figure 3.S8. Overall,
we identified 46 retinal DHSs and 13 brain DHSs with examples of truncation mutation analysis,
thus representing 4.6% and 1.3% of the 1000 retinal DHSs and 1000 brain DHSs initially
targeted in the library, respectively. We observed that for the loci with truncation mutation
analyses, at least 8 barcoded constructs tiled across the DHS. For DHSs with at least 8 assayed
barcodes, the fraction of loci with truncation mutation analyses was about 3-fold higher: 46/363
(12.7%) of retinal DHSs and 13/345 (3.8%) of brain DHSs.

Truncation mutation analyses rely on assaying long CRE fragments that tile across CRE
regions. Previously, we conducted a CRE-seq enhancer study (White et al. 2013) in which short
(84 bp) CREs (synthesized by oligonucleotide array) were assayed upstream of a rod
photoreceptor-specific proximal promoter. These short CREs corresponded to retinal CRX ChlP-
seq peaks, which are essentially a subset of retinal DHSs (Wilken 2015). Thus, we wondered
whether, for a given CRE, our capture-and-clone approach identified active cis-regulatory
sequences beyond the central region tested by the short CRE. Overall, there were 176 CRE
regions in the White et al. library that overlapped with assayed regions in the current library, all
of which corresponded to retinal DHSs. Most (141/176 or 80%) regions were more active as
short enhancers than as long autonomous elements (Figure 3.S9A). This is not surprising, as it is

known that some photoreceptor CREs exhibit strong activity as enhancers but minimal activity
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as autonomous elements (Corbo et al. 2010). Interestingly, in a minority (13/176 or 7%) of cases,
the long autonomous elements exhibited substantially more activity, likely because they
encompassed functional regions (e.g., critical regions and/or phylogenetically conserved regions)
that were not found within the short CREs, as illustrated in Figure 3.S9B and 3.S9C. Although
the comparison of these two studies is limited by the differences in assay platforms and the small
number of shared CREs, these results indicate that the capture-and-clone approach can provide
additional cis-regulatory information beyond that of short CREs.

Together, these examples illustrate that CRE-seq multiplex truncation mutation analysis
can identify both known and novel critical regions. In some cases, the spatial resolution is high
enough to pinpoint candidate TF motifs required for activity. Thus, our assay has the ability not
only to measure the overall activity of a candidate CRE, but also to demarcate the spatial

boundaries of cis-regulatory activity.

3.4.7 Traditional reporter assays confirm that critical bases identified by CRE-seq
truncation mutation analysis are required for activity

To validate the ability of CRE-seq truncation mutation analysis to identify critical regions
de novo, we utilized traditional reporter assays. We previously developed a quantitative
fluorescence reporter assay in retinal explants that accurately measures CRE activity (Montana et
al. 2011b; Kwasnieski et al. 2012). Thus, we selected three retinal DHS loci (including R64,
which is the locus depicted in Figure 3.6B) with critical regions identified by CRE-seq truncation
mutation analysis to test with the traditional approach (Figure 3.7A). These critical regions
contained bioinformatically predicted CRX sites, thus allowing us to test whether these CRX

sites were required for cis-regulatory activity.
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For each locus, we created a ‘long’ construct, a ‘short’ construct missing the critical
region, and a ‘mutant’ construct identical to the ‘long’ construct except that a single point
mutation was introduced in the predicted CRX site (Figure 3.7A). The point mutation was an
adenine-to-cytosine substitution at the fourth position of the CRX motif (thymine-to-guanine in
the reverse orientation), which is predicted to inactivate the CRX site (Supplemental Table S7)
(Lee et al. 2010; White et al. 2013). The constructs were directionally cloned upstream of the
minimal promoter-GFP cassette in a non-AAV vector without barcodes in the 3> UTR, thus
controlling for any effects of orientation, AAV vector sequence, or barcode sequence.

Each construct was individually electroporated into multiple retinas and quantified
relative to a loading control, Rho-CBR3-DsRed (Figure 3.7B). We observed that in each case,
the long construct showed high activity, while the short construct showed extremely low activity.
Notably, the mutant construct exhibited a low level of activity comparable to the activity of the
short construct (Figure 3.7C). Thus, for all three loci, we not only verified that the critical
regions are required for activity, but also that these specific CRX sites are required. These
experiments demonstrate that our approach identifies bona fide TF binding sites required for

activity.
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3.5 DISCUSSION

Here, we described an innovative ‘capture-and-clone’ approach for synthesizing CRE-seq
libraries. We furthermore demonstrated the feasibility of using AAV-mediated CRE-seq to
conduct massively parallel cis-regulatory analysis in the cerebral cortex in vivo. By comparing
retina and cerebral cortex, we showed tissue-specific cis-regulatory activity of DHSs. By taking
advantage of the truncation mutation analysis afforded by the tiling of captured fragments across
targeted loci, we illustrated high-resolution, multiplex functional parsing of CREs.

Previously, high-throughput functional assays of CRE activity had been technologically
limited with regards to the length of CREs that could be readily assayed (Levo and Segal 2014;
Shlyueva et al. 2014). Our capture-and-clone approach provides a strategy for assaying candidate
CREs with lengths of a desired range. Moreover, the capture approach can be used in
conjunction with any existing MPRA-like approach, including those that already rely on DNA
fragmentation (Dickel et al. 2014; Murtha et al. 2014). For example, STARR-seq (Arnold et al.
2013) has been used to assess long DNA fragments obtained by whole-genome shotgun cloning
of the Drosophila genome. However, the mouse and human genomes are ~25 times larger than
the fly genome. Moreover, only ~5-10% of the mammalian genome is thought to be functionally
constrained (Graur et al. 2013; Kellis et al. 2014; Rands et al. 2014). Therefore, whole-genome
shotgun cloning of mammalian genomes for cis-regulatory analysis is impractical. Instead,
capture-and-clone permits targeted cis-regulome analysis.

We note that another group has recently coupled capture technology to STARR-seq (i.e.,
CapSTARR-seq) (Vanhille et al. 2015). Our approach differs from CapSTARR-seq in two key
ways (Supplemental Table S8). First, we achieved higher on-target rates of capture (98.5% vs.

14%) due to a rigorous capture protocol to avoid non-specific pull-down of off-target DNA
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(Gnirke et al. 2009; Lee et al. 2009). Second, we conducted paired-end sequencing of the input
library, whereas CapSTARR-seq mapped only one end of the fragments. Thus, we were able to
harness the potential of capture-and-clone for truncation mutation analysis.

Capture-and-clone allows the testing of longer CRESs, which presumably harbor more cis-
regulatory information. However, there was essentially no correlation between fragment length
and CRE activity. What accounts for this observation? One consideration is that the size range of
assayed CRE fragments was relatively narrow. Another explanation, based on the truncation
mutation analyses, is that some long fragments exhibited low activity due to the omission of
critical regions. A third possibility is that some long CRE fragments included repressive
sequences that decreased activity (Reynolds et al. 2013).

The capture-and-clone approach is particularly well suited for screening thousands of
candidate CREs and identifying the most active CREs in a particular tissue of interest, thereby
narrowing the list of CREs that may be relevant to a particular phenotype. For instance, genome-
wide association studies (GWAS) and whole-genome sequencing studies have generated lists of
thousands of disease-associated non-coding variants (Ward and Kellis 2012b; Albert and
Kruglyak 2015). To prioritize these lists and thereby accelerate the identification of causal
variants, the locations of the candidate variants can be intersected with the locations of putative
CREs. The cis-regulomes of unaffected and affected individuals can then be screened by capture-
and-clone CRE-seq to identify CREs that exhibit the greatest differential activity between the
unaffected and affected groups. Capture-and-clone is thus complementary to CRE-by-synthesis,
which is better suited to precisely measuring the effects of specific variants (Levo and Segal
2014). Capture-and-clone can be used to assess a broad range of regions in any organism whose

DNA and reference genome are available, although certain types of sequences are not amenable
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to targeted capture, namely repetitive regions (due to non-specific pull-down) and sequences
with very high (>65%) or low (<25%) GC content (Mertes et al. 2011).

Prior to our study, the implementation of MPRASs in mammalian cells had been almost
exclusively restricted to immortalized cell lines and cultured tissues (Shlyueva et al. 2014). The
only mammalian tissue that had been assayed in vivo was the mouse liver, due to its ability to
take up limited amounts of plasmid DNA via a hydrodynamic tail vein assay (Herweijer and
Wolff 2007; Patwardhan et al. 2012). Here, we take a step forward by using AAV to conduct
CRE-seq in vivo in the mammalian CNS.

One potential drawback of AAV is that packing constraints limit the size of the insert to
less than 4.7 kb (Wu et al. 2010). Lentiviruses have greater carrying capacity (Kumar et al. 2001),
but their integration into the host genome poses the risk of integration site cis-regulatory effects
(Clark et al. 1994). By contrast, AAV-mediated CRE-seq measures the cis-regulatory potential
of elements independent of chromosomal context, thereby interrogating the function of the DNA
sequences themselves. Interestingly, there is evidence that despite being episomal, the AAV
vector is organized into nucleosomes (Penaud-Budloo et al. 2008). Another limitation of AAV is
that the onset of expression is relatively slow, with maximal expression requiring up to several
weeks (Day et al. 2014). This delay is due to the required conversion of the genome from single-
stranded into double-stranded DNA. Recently, self-complementary AAV (scAAV) serotypes
have been developed that exhibit more rapid transgene expression (McCarty 2008). As novel
AAV serotypes for gene therapy continue to emerge (Wu et al. 2006; Daya and Berns 2008),
AAV-mediated CRE-seq will become increasingly powerful.

Why are some tissue-specific DHSs active and others inactive, even when assayed in the

appropriate tissue? One reason is that DHSs demarcate not only active enhancers but also other
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types of regulatory elements (e.g., silencers and insulators) (Gross and Garrard 1988; Thurman et
al. 2012). Here, we used a TATA-box containing minimal promoter to assay the autonomous cis-
regulatory activity of the tested elements, rather than a tissue-specific proximal promoter to assay
for enhancer/silencer activity (Butler and Kadonaga 2002). Only a minority (~10-20%) of
mammalian promoters contain TATA boxes (Sandelin et al. 2007). Future use of tissue-specific
proximal promoters may allow for more sensitive assays, especially as enhancer-promoter
compatibility and TATA-box vs. DPE-containing promoters become better understood (Sandelin
et al. 2007; van Arensbergen et al. 2014; Zabidi et al. 2015). Additionally, since some enhancers
become active only in response to particular stimuli (Ostuni et al. 2013; Shlyueva et al. 2014),
environmental perturbations may be necessary to unmask their cis-regulatory potential.
Furthermore, the cis-regulatory landscape of a given tissue is dynamic across development, as
illustrated by DNase-seq in the developing mouse retina and brain (Wilken 2015). Future CRE-
seq experiments at multiple developmental stages will help elucidate the temporal dynamics of
CREs. Nonetheless, even with the TATA-box containing minimal promoter assayed in steady-
state conditions, we demonstrated tissue-specific CRE activity.

Assaying autonomous activity and assaying enhancer activity are complementary
approaches, as they appear to reflect different biological activities and properties of a given CRE.
In the current study, we observed that GC content was associated with decreased autonomous
CRE activity in the retina. Given the differences in the assays, this finding does not contradict
our earlier retinal CRE-seq study (White et al. 2013), in which we observed a positive
association between GC content and enhancer activity. In fact, the current result is consistent
with a recent CRE-seq study in which GC content was associated with decreased autonomous

activity of predicted enhancers in cell culture (Kwasnieski et al. 2014)..
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In our study, the retina exhibited a stronger preference for retinal DHSs than the cerebral
cortex exhibited for brain DHSs. Several explanations are possible. First, the cellular complexity
of the brain is likely a major factor (Wurmbach et al. 2002). A recent DNase-seq study in the
mouse brain observed that DHSs could be found around genes expressed in only a small
percentage of neurons, such as cortical laminar-specific genes (Wilken 2015). Thus, a given
‘brain DHS’ may actually be a cell type-specific DHS that is active in a small population of cells.
When averaged over the entire population of assayed cells, the cell type-specific activity of the
DHS may be obscured. For tissues with highly heterogeneous cell populations such as the
cerebral cortex, it should be possible to target specific subpopulations by combining AAV-
mediated CRE-seq with fluorescence-activated cell sorting (FACS) of defined cell types (Okaty
et al. 2011; Gisselbrecht et al. 2013; Dickel et al. 2014). Second, the minimal promoter used in
this study contains a possible weak CRX site, whose affinity is predicted to be ~10% that of the
CRX consensus motif (Chen and Zack 1996; Lee et al. 2010). Lastly, although DNA barcode
representation was similar in the retina and cerebral cortex, the difference in delivery methods
for the two tissues may have been a contributing factor.

In summary, we have developed a powerful and efficient strategy for constructing CRE-
seq libraries that extends the size range of the CREs that can readily be assayed, using targeted
cis-regulome capture. At the same time, we have demonstrated the feasibility of conducting
CRE-seq in vivo in a mammalian tissue using AAV. As new assays for rapidly identifying the
locations of putative cell type-specific CREs are developed, e.g., ATAC-seq (Buenrostro et al.
2013), our study sets the stage for the high-throughput functional screening of thousands of

candidate CREs in a range of cell types and in a variety of model systems, including non-human
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primates and human induced pluripotent stem cell (iPSC)-derived organoids (Lancaster et al.

2013).
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3.6 METHODS
3.6.1 Animals

Mice were maintained on a 12-hour light/dark cycle at ~20-22 °C with free access to food
and water. Neonatal mice were euthanized by decapitation, and adult animals were euthanized
with CO; anesthesia followed by cervical dislocation, unless otherwise stated. All experiments
were conducted in accordance with the Guide for the Care and Use of Laboratory Animals of the
National Institutes of Health, and were approved by the Washington University in St. Louis

Institutional Animal Care and Use Committee.

3.6.2 Reference genome

The mouse reference genome used throughout was mm®.

3.6.3 Identification of target tissue-specific DHS peaks

We downloaded DHS data in narrowPeak format from the Mouse ENCODE Project (Yue
et al. 2014) for the following tissues (GEO sample accessions are listed): whole brain age E14.5
(GSM1014197, replicate 1), whole brain age E18.5 (GSM1014184, replicate 1), whole brain age
8 weeks (GSM1014151, replicate 1), retina age Pl (GSM1014188), retina age P7
(GSM1014198), retina age 8 weeks (GSM1014175), liver age E14.5 (GSM1014183, replicate 1),
liver age 8 weeks (GSM1014195, replicate 1), lung age 8 weeks (GSM1014194, replicate 1),
kidney age 8 weeks (GSM1014193, replicate 1), thymus age 8 weeks (GSM1014185, replicate 1),
and heart age 8 weeks (GSM1014166, replicate 1). We parsed these data using custom Perl
scripts, tallying the number of reads per 150 bp block across the mouse genome to give a DHS

‘score’. We then examined the top ~4,000 tissue-specific peaks each for brain age 8 weeks,
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retina age 8 weeks, heart age 8 weeks, and liver age 8 weeks. For a peak to be identified as
‘tissue-specific’, it was required to have a DHS score of >25 in the 8 week tissue of interest and
<25 in samples derived from other tissues (but the peak score for samples deriving from different
developmental stages of the same tissue type were not required to be <25). For instance, if the
score for a retina age 8 weeks peak was >25 and the score for the corresponding retina age P7
peak was >25, but all non-retinal peaks were <25, then that peak was called ‘retina-specific’.
After removing any tissue-specific peaks that overlapped repetitive genomic sequences (~10% of
peaks), we selected the 1,000 peaks with the highest tissue-specific peak scores from each of

adult brain, retina, heart, and liver for inclusion as capture targets.

3.6.4 Capture bait library design and synthesis

Baits were synthesized by MY croarray. For each of the 4,000 target regions, seven 80 bp
baits were designed to tile across the 300 bp region (sliding 37 bp at a time), for a total of 1.2 Mb
and 28,000 baits. To check for potential off-target bait hybridization, bait candidates were
blasted against the mm9 genome, which was masked for the regions from which baits were
designed. By definition, Tm is the temperature at which 50% of the molecules are hybridized.
Bait candidates were accepted only if no BLAST hits (Altschul et al. 1990) with a predicted Tm >

40.0 °C were found.

3.6.5 GREAT analysis and Gene Ontology

GREAT v2.0.2 analysis with mm9 as the reference genome was implemented, using the
‘single nearest gene’ within 1000 kb as the algorithm for associating genomic regions to genes,
and using the whole genome as background and excluding the ‘include curated regulatory
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domains’ option (McLean et al. 2010). The input to the GREAT analysis was the list of 4,000
target DHS regions. Gene Ontology (GO) (Ashburner et al. 2000) enrichment analysis for
‘biological process’ in Mus musculus was implemented using PANTHER (Mi et al. 2005) with
AmiGO 2 v2.1.4 (Carbon et al. 2009). The input to the GO analysis was the GREAT-generated

list of genes associated with target DHSs (‘region-to-gene’ associations).

3.6.6 Restriction enzymes and PCR reagents
Unless otherwise indicated, restriction enzymes were from New England Biolabs, and
Phusion Hot Start Flex 2X Master Mix (New England Biolabs) was used for PCR. Primer

sequences are listed in Supplemental Table S9.

3.6.7 Preparation of gDNA for capture

Genomic DNA was purified from liver tissue of C57BL/6J mice and sonicated with
Covaris E210 (duty 10%, intensity 4, cycles/burst 200, time 100 s). The freshly sonicated DNA
was end repaired, 3’ adenylated, ligated to commercial adapters, and enriched by PCR, using the
TruSeq LT or TruSeq Nano Kit (Illumina) according to manufacturer’s instructions (1 ug or 200
ng input gDNA, and 10 or 8 cycles of PCR, respectively). For final size selection and
purification prior to capture, the samples were gel electrophoresed on 2% low melting point
agarose and gel extracted with MinElute (Qiagen). To concentrate the samples in preparation for

capture, the samples were speed vacuumed in LoBind tubes (Eppendorf).
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3.6.8 Cis-regulome capture and preparation for cloning

Capture was conducted in a similar manner as previously described (Gnirke et al. 2009).
Two rounds of sequential capture were conducted to achieve high on-target rates (Lee et al.
2009). Briefly, for the first round of capture, a 9 uL library mix was prepared, consisting of ~300
ng input (TruSeq LT or TruSeq Nano gDNA library), 2.5 pg human Cot-1 DNA, 2.5 ug salmon
sperm DNA, and 0.6 uL adapter blocking agent (MY croarray). This solution was denatured at 95
°C for 5 min. Meanwhile, a 36.8 uL hybridization mix was prepared, consisting of 5 pL 20X
SSPE (instead of the standard 20 uL), 0.8 uL. 0.5 M EDTA, 8 puL 50X Denhardt's, 8 uL 1% SDS,
and 15 pLL RNase-free water. This solution was prewarmed at 65 °C for 3 min. A 6 pL capture
bait mix was prepared, consisting of 50 ng (instead of the standard 500 ng) biotinylated baits and
1 uL of SUPERase-In (Ambion). This solution was prewarmed at 65 °C for 2 min. Finally, 7 pL
of the library mix, 13 pL of the hybridization mix, and all 6 pL of the capture bait mix were
incubated at 65 °C for ~24 hr. The reaction was then applied to Dynabeads MyOne Streptavidin
C1 (Invitrogen) with washing and elution as described (Gnirke et al. 2009). Each capture
reaction was purified with MinElute (Qiagen), with an elution volume of 30 uL. Each eluate was
speed vacuumed in a LoBind tube (Eppendorf) down to a volume of 3-4 uL and used as the
library ‘input’ for a single reaction in the second round of capture. The second round of capture
was otherwise identical to the first. No PCR was conducted between the first and second rounds
of capture. After the second round of capture, PCR was conducted using Ill_Notl_1XL and
IIl_Notl_2XL primers (98 °C for 1 min, 14-16 cycles: 98 °C for 10 sec, 58 °C for 30 sec, 72 °C
for 1 min, followed by 72 °C for 5 min). The samples were PCR purified with MinElute

(Qiagen), digested with Notl-high fidelity (HF) , and gel extracted with MinElute (Qiagen). Two
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independent pools of capture products were generated, with each pool deriving from multiple

capture reactions.

3.6.9 CRE-seq library construction

To minimize the likelihood of cleaving captured fragments, the 8-bp cutters Notl, Fsel,
and Ascl were employed. To create the barcoded vector library for insertion of Notl-ended
captured fragments, the Rho basal-DsRed construct (Hsiau et al. 2007) was modified with linkers
on the 3° end of DsRed to replace a former Notl site with an Eagl site and to add Nsil, Fsel and
Ascl sites, and on the 5° end of the Rho basal promoter to add a Notl site between Xbal and Kpnl
sites.

To add 15-mer barcodes, two pools of 30 nmol oligos were synthesized with random 15
bp sequences (Integrated DNA Technologies) as BC_F and BC_R. The two pools were annealed
and ligated into the Ascl and Nsil sites of the vector. After transformation of 5-alpha chemically
competent E. coli (New England Biolabs) and overnight growth in liquid culture, a total of ~9.5
x 108 colonies were harvested (as estimated from plating a small aliquot) and purified with the
PureLink HiPure Plasmid Maxiprep Kit (Invitrogen). The barcoded vector library was then
digested with Eagl-HF and dephosphorylated with alkaline phosphatase (Roche). The captured
fragments were digested with Notl-HF and cloned into the Eagl site of the vector library with 5-
alpha chemically competent E. coli (New England Biolabs). A total of ~80,000 colonies were
scraped from LB/ampicillin agar plates, grown for ~2 hours in liquid LB/ampicillin culture, and

purified with the PureLink HiPure Plasmid Maxiprep Kit (Invitrogen).
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After paired-end sequencing to determine the CRE-barcode correspondence (described
below), the minimal promoter-eGFP cassette was cloned into the Fsel and Ascl sites®. The
minimal promoter is the previously described ‘Rho basal’ minimal promoter, which contains a
TATA box (‘CATAA’), and which by itself does not have detectable activity in electroporated
retina (Hsiau et al. 2007). The minimal promoter-eGFP cassette was created by replacing DsRed
with eGFP (Zhang et al. 1996) in the Rho basal-DsRed construct (Hsiau et al. 2007). After
transformation with 5-alpha chemically competent E. coli (New England Biolabs) and overnight
growth in liquid culture, a total of ~2.7 x 10° colonies were harvested (as estimated by plating a
small aliquot) and purified with the PureLink HiPure Plasmid Maxiprep Kit (Invitrogen).

The AAV-ITR vector was prepared by digesting the pAAV2.1-RHO-eGFP vector
(Allocca et al. 2007) with Nhel and Xhol, and replacing the RHO-eGFP cassette with a linker
containing an Eagl site. To transfer the library into the AAV-ITR vector, the entire CRE-minimal
promoter-eGFP-polyA cassette was subjected to PCR using 5’ Tak and Notl_polyA RI1 primers
(98 °C for 1 min, 10 cycles: 98 °C for 10 sec, 64 °C for 30 sec, 72 °C for 1 min 30 sec, followed
by 72 °C for 5 min). The PCR product was digested with Notl-HF (New England Biolabs) and
cloned into the Eagl site of the AAV-ITR vector. After transformation of 5-alpha chemically
competent E. coli (New England Biolabs) and overnight growth in liquid culture, a total of ~2.5
x 10° colonies (as estimated by plating a small aliquot) were harvested and purified with the
PureLink HiPure Plasmid Maxiprep Kit (Invitrogen). ITR integrity was verified by restriction
digest. Note that the final Notl digestion removes any captured fragments initially cloned in as

Notl multimers, leaving only the 3’-most captured fragment.

3paired-end sequencing was conducted prior to insertion of the promoter-reporter cassette so that the barcode and
both ends of each CRE fragment would be sequenced with 2x250 bp sequencing.
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3.6.10 Paired-end sequencing for CRE-barcode correspondence

Prior to insertion of the promoter-reporter cassette, the library was prepared for paired-
end sequencing as follows. PCR amplification was conducted using primers LibPCR_F and
LibPCR_R (98 °C for 1 min, 8 cycles: 98 °C for 10 sec, 64 °C for 30 sec, 72 °C for 1 min,
followed by 72 °C for 5 min). The product was digested with Notl-HF and Sacll, gel purified
with MinElute (Qiagen), and ligated to P1_Notl and PE2_Sacll adapters with T4 DNA ligase
(New England Biolabs), using an equimolar mix of P1_Notl indexed adapters to facilitate
nucleotide balance. The ligation products were PCR amplified to enrich for molecules that had
both P1 and PE2 adapters, using primers JKP4F and JKP4R (98 °C for 1 min, 14 cycles: 98 °C
for 10 sec, 65 °C for 30 sec, 72 °C for 1 min, followed by 72 °C for 5 min). The final product
was gel-extracted on 2% low melting point agarose and verified on an Agilent Bioanalyzer. Two
lanes of MiSeq 2x250 bp sequencing were run at a loading concentration of 1.6-2 pM and 12-15%

spiked-in Phi-X DNA (Illumina).

3.6.11 Analysis of paired-end sequencing for CRE-barcode correspondence

Barcodes and captured fragment sequences were extracted based on flanking bases.
Captured fragment sequences were aligned as paired reads to mm9 using Bowtie 2 v2.1.0
(Langmead and Salzberg 2012) with an allowed maximum insert size of 1000 bp (‘-X 1000’
setting). SAM files were converted to BAM files using SAMtools v0.1.19 (Li et al. 2009) and
then to BED files using BEDTools v2.22.1 (Quinlan and Hall 2010). Only paired reads that
mapped concordantly were used. Fragments were examined for overlap with the 4,000 target
DHS regions (which were each 300 bp). If a fragment overlapped two adjacent target regions, it

was assigned to the target region with the most bases of overlap. Barcodes were required to be
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14-16 bp in length. Barcodes with multiple CRE fragment associations, and PCR-duplicate CRE
fragments associated with multiple barcodes (~1.6% of fragments), were discarded. A list of ‘on-
target’ CRE correspondences for 45,670 barcoded constructs (minimum 10 reads) resulted. To
determine the ‘off-target’ rate, the number of barcoded constructs that did not overlap a target

DHS was found to be 712. Hence, ~98.5% of fragments were on-target.

3.6.12 Retinal explant electroporation and culture for CRE-seq

Electroporation and explant culture of mouse retinas were performed as described
previously (Montana et al. 2011b). In brief, retinas were dissected from newborn (P0) CD-1
mouse pups and coelectroporated with 0.5 ug/ul AAV-ITR plasmid CRE-seq library and
0.5 ng/uL Rho-CBR3-DsRed, a rod-specific construct for visualizing electroporation efficiency
(Corbo et al. 2010). Retinas were grown in explant culture and harvested 8 days later. Five

retinas were pooled for each CRE-seq biological replicate.

3.6.13 Viral production

Recombinant AAV9(2YF) was produced and purified as previously described (Grieger et
al. 2006). To summarize, HEK293 cells at ~80% confluency were cotransfected with the AAV-
ITR plasmid CRE-seq library, p-Helper plasmid, and AAV9(2YF) rep/cap plasmid (Dalkara et al.
2012). Cells were harvested 72 hours after transfection, and the virus was purified by lodixanol
gradient ultracentrifugation, followed by buffer exchange. The viral titer, as determined by dot
blot or quantitative PCR, ranged from 5 x 102 to 1 x 10 vg/mL (Zolotukhin et al. 2002;

Aurnhammer et al. 2012).
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3.6.14 Stereotactic cortical injection

Stereotactic cortical injections were performed by the Hope Center Animal Surgery Core
at Washington University in a manner similar to that described (Cetin et al. 2006). Briefly,
female CD-1 mice (age 4-6 weeks) were anesthesized with isoflurane. Each mouse received
bilateral injections. For each injection, a small craniotomy was performed and 1 pL of
AAVI9(2YF) CRE-seq library was delivered into the primary motor cortex (stereotactic
coordinates: dorsal/ventral axis 0.52 mm, anterior/posterior axis 1 mm, medial/lateral axis 1.5
mm). Animals were harvested 4-5 weeks after injection. The brain was sliced coronally and a
fluorescent dissecting scope (Leica MZ16 F) was used to visualize GFP-positive regions, which
were isolated by microdissection. Each CRE-seq biological replicate consisted of GFP-positive

cortical tissue from a single animal.

3.6.15 Isolation of RNA and DNA and preparation for sequencing

Tissues were rapidly harvested and rinsed in cold sterile HBSS with calcium and
magnesium (Gibco) and stored at -80 °C in TRIzol (Invitrogen). Samples were homogenized in
TRIzol, and RNA and DNA were isolated according to the manufacturer’s instructions. RNA
samples were treated with TURBO DNase (Ambion) to remove potential DNA contamination.
RNA and DNA were prepared for sequencing essentially as previously described (Kwasnieski et
al. 2012). RNA was reverse-transcribed with SuperScript Il (Invitrogen) using oligo-dT primers.
The resulting first-strand cDNA was treated with RNaseH. Both the cDNA and DNA samples
were subjected to PCR to amplify the barcode sequence in the 3’ UTR of GFP using the forward

primer SSP1F and the reverse primer JKP3R (98 °C for 1 min, 22 cycles for DNA or 26 cycles

for cDNA: 98 °C for 10 s, 60 °C for 30 s, 72 °C for 30 s, followed by 72 °C for 5 min). This
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resulted in PCR products flanked by Eagl and EcoRI restriction enzyme sites. The products were
purified with PureLink PCR Purification Kit (Invitrogen) and digested with Eagl-HF and EcoRl.
After digestion, the samples were gel purified with Qiagen Gel Extraction Kit and ligated to
P1 Eagl and PE2_EcoRI adapters using T4 DNA ligase (New England Biolabs). To enrich for
molecules that had both P1 and PE2 adapters, the ligation products were PCR amplified with
primers JKP4F and JKP4R (98 °C for 1 min, 20 cycles: 98 °C for 30 sec, 65 °C for 30 sec, 72 °C
for 30 sec, followed by 72 °C for 5 min). The final product was gel purified from 2% low

melting point agarose and verified on an Agilent Bioanalyzer.

3.6.16 lllumina sequencing for CRE-seq barcode abundance
For each tissue, the three cDNA samples and three corresponding DNA samples were
multiplexed and run on a single lane of Illumina HiSeq 2000 (1x50 bp) at a loading

concentration of 8 pM with 10% spiked-in Phi-X DNA.

3.6.17 CRE-seq data analysis

Samples were demultiplexed and the barcode was extracted based on flanking sequences.
Reads were tabulated to obtain the raw RNA and DNA counts for each barcode. Only barcodes
with at least 10 raw DNA reads in all 3 biological replicates of a tissue were included (36,005
barcodes for retina and 38,826 barcodes for cerebral cortex). For each barcode, the RNA count
was normalized to the total RNA counts in the sample, and the DNA count was normalized to the
total DNA counts in the sample. The normalized expression was the ratio of the normalized RNA

count to the normalized DNA count. A pseudocount of 0.001 was added to the normalized
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expression, and the log> was taken. The average of the log. values across biological replicates

was the ‘mean expression (logz units)’.

3.6.18 Histology

Retinal explants were rinsed twice with PBS and fixed in 4% paraformaldehyde/PBS for
30-60 min at room temperature, equilibrated in 30% sucrose/PBS, and embedded in Tissue-Tek
O.C.T. (Sakura). Retinal cryosections (12-14 um) were prepared and stored at -20 °C until
imaging. For stereotactically injected brains, animals were deeply anesthesized with
ketamine/xylazine and then transcardially perfused with heparin/PBS followed by 4%
paraformaldehyde/PBS. Animals were decapitated and the brains were dissected in PBS and
post-fixed in 4% paraformaldehyde/PBS at 4 °C for at least a day. Vibratome sections (200 um)
were prepared from agarose-embedded brain slices and then optically cleared with glycerol/PBS
(Selever et al. 2011). Brain slices were treated with sodium borohydride to minimize
autofluorescence (Clancy and Cauller 1998). For anti-RBFOX3 (also known as anti-NeuN)
staining of free-floating vibratome sections, the sections were blocked with 4% normal donkey
serum (NDS)/0.25% Triton X-100/PBS for at least 1 hr at room temperature with gentle agitation,
incubated with rabbit anti-RBFOX3 antibody (ABN78; EMD Millipore) (1:50, diluted in 4%
NDS/0.1% Triton X-100/PBS) overnight at 4 °C with gentle agitation, washed with 0.1% Triton
X-100/PBS, incubated with Alexa Fluor 555 donkey anti-rabbit (A-31572; Molecular Probes)
(1:800, diluted in 4% NDS/0.1% Triton X-100/PBS) for 1 hr at room temperature with gentle
agitation, and washed with 0.1% Triton X-100/PBS. All brain slices were stored in PBS at 4 °C
until imaging. For imaging, tissue was mounted with Vectashield (Vectorlabs) and coverslipped.

Confocal imaging was conducted with a laser confocal microscope (Zeiss LSM 700) and ZEN
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2009 software (Zeiss). Flat-mount imaging of an untreated brain slice (Figure 3.3D) was
conducted with an inverted fluorescent microscope (Nikon Eclipse TE300) and MetaMorph

software (Molecular Devices). Images were processed with Adobe Photoshop.

3.6.19 Cluster analysis of biological replicates

Hierarchical clustering and principal component analysis (PCA) were used to assess the
underlying structure of CRE expression across retina and brain replicates. For hierarchical
clustering, the sample distance was defined as one minus the Pearson correlation coefficient
(calculated across the normalized expression of the ~35,000 barcodes with at least 10 DNA reads
in all six samples), and clustering was implemented using average linkage. PCA was performed
via singular value decomposition on scaled, centered expression data (i.e., zero-centered values

with unit variance).

3.6.20 Analysis of TF motif enrichment in low vs. high-expressing DHSs

To compare the motif content of low- and high-expressing constructs (Figure 3.5E), a list
of brain and retina TF motifs were obtained as follows. DNase-seq reads for adult brain
(GSM1014151, replicate 1) and adult retina (GSM1014175) were downloaded and aligned to
mm9 with Bowtie 2 v2.2.3 (Langmead and Salzberg 2012). DNase-seq peaks were then called
using MACS2 v2.1.0 (Zhang et al. 2008). For de novo motif discovery, peaks were first
partitioned by HOMER v4.7 annotations (‘promoter,” ‘intronic,” and ‘intergenic’) (Heinz et al.
2010). De novo motif discovery was then performed independently for each of these classes of
peaks from brain and retina, with the final motif list consisting of all motifs identified at a

threshold of p < 1 x 10%°. To compare similar numbers of DHSs in the ‘high’ and ‘low’
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categories, individual barcoded constructs were ranked by average expression in each tissue. The
highest-expressing constructs that constituted 100 distinct DHS target regions (regardless of
DHS tissue origin) were classified as ‘high’ in that tissue, and the lowest-expressing constructs
that constituted 100 distinct DHS target regions (regardless of DHS tissue origin) were classified
as ‘low’ in that tissue (DNA read count was used to break ties). Finally, overlapping intervals
were merged, and the resulting regions were scored for motif enrichment (binomial test, via
HOMER) relative to a background of ~50,000 random mm9 sequences matched for size and

dinucleotide content.

3.6.21 Receiver operating characteristic (ROC) curves

To quantify the extent to which sequence features and epigenomic data could predict
expression (Figure 3.5F), we implemented multiple logistic regression as a means of classifying
whether or not individual constructs were among those with the highest expression (similar to the
approach described by (Kwasnieski et al. 2014)). Briefly, all assayed constructs (~36,000
constructs for retina and ~39,000 constructs for cerebral cortex) were partitioned by expression
into ‘high’ and ‘not high’ expression groups. ‘High’ was defined here as mean expression across
replicates (logz units) of >-2 for constructs assayed in the retina (~95" percentile), and >2 for
constructs assayed in the cerebral cortex (~99™ percentile) (see Figure 3.4B). Our model
included terms for GC content (averaged across the CRE fragment), phylogenetic conservation
(30-way vertebrate PhastCons, averaged across the CRE fragment) (Siepel et al. 2005), brain or
retina DNase-seq data (logz((read depth+1)/CRE size)), retina CRX ChlP-seq data
(log2((1/2)*(read depth of two WT CRX ChlIP-seq replicates + 1)/CRE size))) (Corbo et al.

2010), and individual TF motifs (the number of each motif in each CRE fragment, as identified
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by HOMER). CRX ChlP-seq data were only included in the retina model, and distinct TFs were
considered for retina and cerebral cortex models. TF motifs for each tissue were identified as
described above (17 motifs for retina, and 13 motifs for cerebral cortex; see Supplemental Table
S5). Two retinal motifs (YY1 and ZBTB33) were omitted from the model, as they were observed
fewer than 100 times across the ~36,000 constructs, and hence 15 motifs were in the retina TF
motif model. The performance (AUC) of models was quantified using the ROCR package in R

(Sing et al. 2005). Five-fold cross-validation was used to control for over-fitting.

3.6.22 Expression scores for browser screenshots

For Figure 3.6A, the scales for the heat maps are indicated. Elsewhere, heat maps were
generated according to the default grayscale on the UCSC Genome Browser (Karolchik et al.
2014), using custom bed tracks that were generated as follows. For each biological replicate, a
bed track was created using the useScore=1 attribute for intensity shading of individual barcoded
constructs using a ‘bed score’. The ‘bed score’ was obtained by adding 10 to the logz expression
and multiplying by 75. For each tissue, an ‘average signal’ bedGraph track was created by
segmenting the tiled regions and averaging the bed scores across replicates and barcodes. A
segment was required to be encompassed by at least 2 barcoded constructs to be included in the
‘average signal’ track. The windowing function was set to ‘mean’. A smoothing window function
(10 pixels) was applied to the average signal tracks, which were displayed on the following

scales: 0 to 1400 for retina, and 300 to 1200 for cortex.
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3.6.23 Synthesis of individual constructs for validation

The R28 constructs were cloned as ECoORV/Kpnl fragments. To create the long and short
R28 constructs, the R28 L/R28 R and R28 S/R28 R primer pairs were used, respectively. To
create the mutant R28 construct, R28 MT was ordered as a double-stranded gene block
(Integrated DNA Technologies). The R62 constructs were cloned as EcoRI/Xbal fragments. To
create the long and short R62 constructs, the R62_L/R62_R and R62_S/R62_R primer pairs were
used, respectively. To create the mutant R62 construct, R62_MT was ordered as a double-
stranded gene block (Integrated DNA Technologies). The R64 constructs were cloned as
EcoRV/Kpnl fragments. To create the long, short, and mutant R64 constructs, the R64_L/R64 R,
R64 S/R64 R, and R64_MT/R64_R primer pairs were used, respectively. For the PCR reactions,
C57BL/6J gDNA was the template. The CREs were digested and cloned upstream of the
minimal promoter-eGFP cassette in the Rho basal-eGFP vector, which was created from Rho
basal-DsRed (Hsiau et al. 2007) by replacing DsRed with eGFP at Xmal and Notl sites. Test

constructs were confirmed with Sanger sequencing that encompassed the entire CRE.

3.6.24 Validation of individual constructs by fluorescent reporter assays

Electroporation, explant culture, and quantification of fluorescence were performed
essentially as previously described (Montana et al. 2011b). In brief, as for CRE-seq, retinas were
dissected from newborn (PO) CD-1 mouse pups. Here, they were coelectroporated with 0.5
ng/ul of the test construct and 0.5 pg/ul. Rho-CBR3-DsRed (Corbo et al. 2010). Retinas were
cultured for 8 days, fixed, and then whole mounted for quantitative imaging of fluorescent
intensity (GFP intensity normalized to DsRed intensity), using a monochromatic camera

(Hamamatsu ORCA-AG) and MetaMorph software (Molecular Devices). For each retina, five
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regions were quantified in ImageJ and averaged. SEM was calculated based on normalized
fluorescence measurements across retinas (n = 10-12 retinas per test construct). Representative

whole mount images using a color camera (Olympus DP70) were also taken.

3.6.25 Comparison with CapSTARR-seq

The raw sequence data for the CapSTARR-seq (Vanbhille et al. 2015) input library (GEO
accession number GSM1463994) were downloaded and mapped to mm9 with Bowtie 2 v2.1.0

(Langmead and Salzberg 2012).

3.7 DATA ACCESS
The sequence data from this study have been submitted to the NCBI Gene Expression Omnibus

(GEO; http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE68247. Custom tracks

for the UCSC Genome Browser (Karolchik et al. 2014) are provided in Supplemental Table S10.

3.8 SUPPLEMENTAL TABLES
Supplemental tables are available at:

http://genome.cshlp.org/content/suppl/2015/11/17/gr.193789.115.DC1.html
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Figure 3.1. ‘Capture-and-clone’ allows synthesis of CRE-seq libraries with long CREs. (A)
Schematic of the capture-and-clone approach. Size-selected, adapter-ligated genomic DNA was
hybridized to biotinylated RNA baits that tiled across candidate CRE regions of interest.
Captured fragments were cloned into a barcoded vector library with unique 15-mer barcodes.
Paired-end sequencing revealed the CRE-barcode correspondence. A minimal promoter-GFP
reporter cassette was subsequently cloned into the library. (B) Histogram showing the
distribution of the lengths of captured fragments that were cloned into the barcoded vector
library, based on paired-end sequencing. The median length was 464 bp. (C) Histogram showing
the distribution of target coverage, i.e., the number of captured fragments that overlapped a 300
bp target region. Of the 4,000 targeted regions, 3,483 regions were represented by at least one
construct. The median coverage among represented regions was 8. Not shown in graph: 517 non-
represented regions and 114 target regions with a coverage of >50.
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Figure 3.2. Tiling of captured fragments across target regions. Capture baits were designed
based on adult (8 week old C57BL/6J) DNase-seq data from Mouse ENCODE (Yue et al. 2014).
Paired-end sequencing revealed the locations of individual barcoded, captured-and-cloned
fragments. The UCSC Genome Browser (mm9) (Karolchik et al. 2014) screenshots depict: (A)
Captured fragments for an entire representative chromosome (chr7). ‘Off-target’ fragments, i.e.,
those that did not overlap a 300 bp target bait region, are also shown. Examples of captured
fragments: (B) around a retina-specific locus, Rho (rhodopsin), (C) in an intron of a brain-
specific locus, Grin2a (glutamate receptor, ionotropic, NMDA2a [epsilon 1]), (D) in the 5’
UTR/promoter region of a heart-specific locus, Tnni3 (troponin I, cardiac 3), and (E)
downstream of a liver-specific locus, Alb (albumin). Note that some DNase-seq peaks visible in
the screenshots were not included as targets for capture. PhastCons depict 30-way vertebrate
phylogenetic conservation (Siepel et al. 2005).
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Figure 3.3. Delivery of capture CRE-seq library into mouse retina ex vivo and cerebral
cortex in vivo. (A) Schematic of the CRE-seq library delivery approach. The plasmid library can
be directly electroporated into the retina ex vivo. Alternatively, the library can be packaged into
AAYV and delivered via stereotactic injection into the cerebral cortex in vivo. (B) Scatterplot
comparing the relative abundance of ~45,000 individual barcoded constructs in the plasmid
library delivered into the retina, and in the AAV-packaged library delivered into cortex, as
measured by barcode DNA reads summed across the three biological replicates for each tissue
and then normalized to the total number of barcode DNA reads. Each data point represents a
unique barcoded construct. DNA reads were well-correlated (Pearson r = 0.95), indicating
fidelity of barcode representation after AAV packaging and delivery. Off-target constructs and
constructs with O reads in all samples were excluded. Not shown: 4 points falling outside the
depicted plot range (included in the calculation of Pearson r). Red line, linear regression. (C)
Confocal image of a retina that was electroporated with the plasmid library and cryosectioned
after 8 days in culture. ONL, outer nuclear layer. INL, inner nuclear layer. (D) Flat-mount image
of a coronal slice from a brain injected with the AAV-packaged library bilaterally into the
primary motor cortex and harvested ~4 weeks later. (D’) Schematic corresponding to the flat-
mount image. Note the bilateral GFP-positive regions in the cortex, as well as bundles of GFP-
positive axons in the corpus callosum (red arrow). (E) Confocal image of a cortical region
infected with the AAV-packaged library.
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Figure 3.4. Tissue-specific cis-regulatory activity of DHSs. (A) Frequency distribution of
DHSs ranked by cis-regulatory activity (bin size: 5 percentiles) as measured in the retina (top) or
cerebral cortex (bottom). In the retina, ~15% DHSs had undetectable activity and hence were
binned together. Averages were taken across biological replicates and barcodes for a given target
DHS. Only DHSs with at least 2 barcoded constructs were included in this analysis (~3,000
DHSs). Frequencies were normalized to the total number of DHSs in each category. To test for
enrichment, chi-squared test was performed (one-tailed): ***p<10*, **p<0.01, *p<0.05. (B)
Scatterplot showing the expression of individual barcoded constructs as assayed in the cerebral
cortex (x-axis) vs. retina (y-axis). Each dot represents an individual construct. For each construct,
the average measurement across the three biological replicates for each tissue was taken. The
~35,000 barcodes that were well-represented (at least 10 DNA reads) in all six samples were
included in the analysis. Gray, blue, red, and orange dots denote constructs with CRE fragments
that overlap retina, brain, heart, and liver DHSs, respectively. The dotted gray box encompasses
constructs that are strongly active in the retina, and the dotted blue box encompasses constructs
that are strongly active in the cortex.
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Figure 3.5. Parameters that predict CRE activity. (A) to (D) Retinal DHSs as assayed in the
retina (left) and brain DHSs as assayed in the cerebral cortex (right). Each panel shows a 1 kb
centered window. Only DHSs with at least 2 barcodes were included in this analysis, i.e., 710
retinal DHSs in retina (black lines, left) and 696 brain DHSs in cortex (black lines, right). The
top 100 (red lines, left) and top 200 (orange lines, left) retinal DHSs expressed in the retina and
the top 100 (red lines, right) and top 200 (orange lines, right) brain DHSs expressed in the cortex
are shown. To compare the top 100 DHSs vs. the rest of the DHSs in each group, two-tailed
student’s t-test was calculated for the means within the 1 kb window, except for PhastCons
scores, which was calculated within the central 100 bp. ***p<0.001, **p<0.01, N.S., not
significant. (A) Cis-regulatory activity, as measured by mean expression in log> units. For each
assayed DHS, at each base position across the 1 kb window, the expression values of the
individual barcoded constructs whose CREs overlapped the position were averaged across
biological replicates. (B) DNase-seq score (Yue et al. 2014). (C) GC content, calculated in 50 bp
windows, sliding 25 bp at a time. The fractions denote the proportion of DHSs that were
promoter-proximal (i.e., located within -1 kb to +100 bp relative to the nearest TSS) based on
GREAT annotations (McLean et al. 2010). (D) Phylogenetic conservation as measured by 30-
way vertebrate PhastCons (Siepel et al. 2005)). (E) Enrichment for TF motifs among low vs.
high-expressing DHSs in each tissue, without restriction on the type of DHS (see Methods). Only
significant motifs are shown (p < 0.05 in at least one category). For motifs enriched in both
tissues, the logo from the tissue with the more significant enrichment is shown. Abbreviations:
HD, homeodomain; NR, nuclear receptor; ZF, zinc finger; HTH, helix-turn-helix. (F) Receiver
operator characteristic (ROC) curves show the performance of logistic regression models for GC
content, PhastCons, TF motifs, retina or brain DNase-seq, or a combined model. A model based
on CRX ChlIP-seq (Corbo et al. 2010) was included for the retina only. The area under the curve
(AUC) for each model is indicated. For cross-validation results, see Supplemental Table S6.
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Figure 3.6. Truncation mutation analysis by CRE-seq. (A) Example of a truncation mutation
analysis at the Nrl promoter via a traditional one-at-a-time reporter assay (Montana et al. 2011b)
vs. capture-and-clone CRE-seq. For the traditional reporter constructs, the 3” end extends beyond
the window depicted in the figure. For the CRE-seq data, only barcoded constructs in the same
orientation as the Nrl promoter are shown. The yellow highlighted region corresponds to a
known critical region with CRX and RORB motifs (Andre et al. 1998; Montana et al. 2011b).
The minus strand of DNA is displayed. In (A) and (B), the CRX motif (from HOMER (Heinz et
al. 2010)) is based on CRX ChlP-seq data (Corbo et al. 2010). The reverse orientation of the
CRX motif is displayed. Additional examples of CRE-seq truncation mutation analysis: (B)
Retinal DHS with retina-specific expression. The critical region identified by CRE-seq (pink)
contains a putative CRX motif. (C) Two adjacent brain DHSs in the same intron of Bsn exhibit
low (DHS #1, green) vs. high (DHS #2, pink) activity in the cortex. (D) Truncation mutation
analysis of a brain DHS. A gradual decrease in activity was observed within the ~150 bp critical
region (pink), corresponding to a phylogenetically conserved peak. Within this critical region, a
smaller region (vertical blue stripe) was identified that contained an E-box consensus motif
(‘CANNTG’) and a motif for a bZIP protein, based on AP-1 ChlIP-seq data (Heinz et al. 2010).
All browser images are from the UCSC Genome Browser (mm9) (Karolchik et al. 2014). DNase-
seq data are from Mouse ENCODE (Yue et al. 2014). PhastCons depict 30-way vertebrate
phylogenetic conservation (Siepel et al. 2005). The heat map scale shown in (B) is the same as
that used in (C) and (D).
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Figure 3.7. Validation of individual loci by fluorescence reporter assays. (A) Critical regions
(pink areas) identified by CRE-seq truncation mutation analysis at three retinal DHSs (R64, R28,
and R62) were validated by testing of individual constructs with fluorescence reporter assays.
Depicted CRE-seq data are based on expression scores averaged across retinal replicates. Note
that R64 is the same locus as in Figure 6B. For each locus, a ‘long’ construct containing the
critical region (CR), a ‘short’ construct without the critical region, and a ‘mutant’ construct with
point mutations (red font) in predicted CRX sites (blue font) were synthesized. Sequences are
shown for the plus strand of DNA in all cases. For R62, one CRX site fell within the critical
region, and a second CRX site was immediately adjacent (yellow area). Individual test constructs
were directionally cloned upstream of the minimal promoter-GFP cassette in a non-AAV vector.
The test constructs were coelectroporated into explant retinas with Rho-CBR3-DsRed (Corbo et
al. 2010) as a loading control. (B) Representative whole mount images of electroporated retinas
are shown (exposure times are the same for all images). (C) Quantification of the GFP levels
normalized to DsRed levels. Error bar represents SEM (n = 10-12 retinas per test construct).
***P_yalue < 10 (two-tailed student's t test).
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Figure 3.S1. Distribution of 4,000 target DHS regions. (A) Histogram showing the locations
of the target regions (up- or downstream) relative to the nearest transcriptional start site (TSS,
indicated by arrow) based on GREAT analysis (McLean et al. 2010). The number of ‘promoter-
proximal’ DHSs for each group is shown, as defined by DHSs that fell within -1 kb to +100 bp
relative to the nearest TSS. (B) Histogram showing the basic annotations for the target regions,
based on HOMER (Heinz et al. 2010). Abbreviations: UTR, untranslated region; TTS,
transcription termination site; NcCRNA, non-coding RNA.
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Figure 3.S2. Distribution of overlap of captured fragments with target DHS regions. Each
target DHS was 300 bp. (A) Histogram showing the distribution of the overlap between targets
and captured fragments for all 45,670 uniquely barcoded constructs. The median number of
bases of overlap was 282 bp. (B) Histogram showing the distribution of the overall overlap
between all 3,483 represented target regions and the captured fragments, based on the union of
the captured fragments. Fragments collectively tiled at least 200 bp out of the 300 bp target for
3,402/3,483 (98%) target regions, and the entire 300 bp target for 3,146/3,483 (90%) target
regions.
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Figure 3.S3. Co-expression of the library and cellular markers. (A) Same retina as in Figure
3C, but a wider field and additional channels are shown. The library contains a GFP reporter.
Rho-CBR3-DsRed is a rod-specific reporter (Corbo et al. 2010) that was coelectroporated with
the library. Colocalization of DsRed and GFP indicates expression of the library in rods. Blue
channel in merged image is DAPI, a nuclear counterstain. (B) Antibody staining of the neuronal
marker RBFOX3 (also known as NeuN) (red channel) (Mullen et al. 1992) in a region of
cerebral cortex that has been infected with the AAV-packaged library. Colocalization of
RBFOX3 and GFP indicates expression of the library in neurons.
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Figure 3.54. Comparison of biological replicates. (A) Dendrogram showing distance between
retinal and cerebral cortex biological replicates. (B) Principal component analysis (PCA) plot
showing that PC1, which separates retina vs. cerebral cortex, accounts for the largest fraction of
the variance.
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Figure 3.S5. CRE activity, DNase-seq signal, GC content, and phylogenetic conservation of
assayed DHSs in a 1 kb centered window. Retina, brain, heart, and liver DHSs were assayed in
the retina (left) and cerebral cortex (right). Each panel shows a 1 kb centered window. Only
DHSs with at least 2 barcodes were included in this analysis, i.e., in the retina, 710 retinal DHSs,
671 brain DHSs, 706 heart DHSs, and 829 liver DHSs, and in the cerebral cortex, 719 retinal
DHSs, 696 brain DHSs, 724 heart DHSs, and 846 liver DHSs. (A) Cis-regulatory activity, as
measured by mean expression in logz units. For each assayed DHS, at each base position across
the 1 kb window, the expression values of the individual barcoded constructs whose CREs
overlapped the position were averaged across biological replicates. (B) DNase-seq score,
normalized to the peak height. (C) GC content, calculated in 50 bp windows, sliding 25 bp at a
time. The fractions denote the proportion of DHSs that were promoter-proximal (i.e., located
within -1 kb to +100 bp relative to the nearest TSS) based on GREAT annotations (McLean et al.
2010). (D) Phylogenetic conservation as measured by 30-way vertebrate PhastCons (Siepel et al.
2005).
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Figure 3.S6. Length of CRE fragments vs. expression. Each dot in the scatterplot represents
an individual barcoded construct whose activity was assayed in (A) retina (~36,000 constructs)
or (B) cerebral cortex (~39,000 constructs). Expression values were averaged across biological
replicates. Pearson correlation values are shown.
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Figure 3.S7. Distance to nearest TSS vs. expression. Each dot in the scatterplot represents a
DHS whose activity was assayed in (A) retina (~3,000 DHSs) or (B) cerebral cortex (~3,000
DHSs). Expression values were averaged across barcodes and biological replicates, and only
DHSs with at least 2 well-represented barcoded constructs were included. Locations of target
regions (up- or downstream) relative to the nearest TSS (indicated by arrow) are based on
GREAT analysis (McLean et al. 2010). Gray, blue, red, and orange dots denote retina, brain,
heart, and liver DHSs, respectively. Dotted lines denote the thresholds for the top 100 and top
200 most active retinal DHSs assayed in the retina, and the top 100 and top 200 most active brain
DHSs assayed in the cerebral cortex.
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Figure 3.S8. Additional examples of truncation mutation analysis by CRE-seq. Additional
examples of CRE-seq truncation mutation analysis for (A) retinal DHSs, based on retinal CRE-
seq data, and (B) brain DHSs, based on cerebral cortex CRE-seq data. Individual barcoded
constructs are colored by intensity (darker indicates higher expression; the heat map shown at
bottom of panel A was used throughout). Critical regions are highlighted in pink. All browser
images are from UCSC Genome Browser (mm9) (Karolchik et al. 2014). DNase-seq data are
from Mouse ENCODE (Yue et al. 2014). PhastCons depict 30-way vertebrate phylogenetic
conservation (Siepel et al. 2005).
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Figure 3.S9. Comparison between enhancer activity of short synthesized CREs and
autonomous activity of corresponding captured CRE fragments in the retina. The enhancer
activity of short CREs (84 bp in length, synthesized on oligonucleotide arrays), representing the
middle of CRX ChiIP-seq peaks, was previously assayed in electroporated retinas by CRE-seq
using a tissue-specific proximal promoter (White et al. 2013). The current study measured the
autonomous activity of captured fragments using a minimal promoter. There were 176 regions
(all retinal DHSs) assayed in both studies. (A) Scatterplot comparing the enhancer activity of
short CREs (x-axis) with the autonomous activity of corresponding long CREs (y-axis). Each dot
represents a DHS region (expression values were averaged across barcoded constructs and retinal
replicates). Dots are color-coded based on whether expression was higher by four-fold or more in
the current study (red dots) or lower by four-fold or more in the current study (blue dots). Note
that R642 and R227 (yellow circles) are examples of constructs with higher activity in the
current study. (B) R642 contains a phylogenetically conserved peak that contains a critical region,
as identified by truncation mutation analysis in the current study. The short CRE that was tested
in the enhancer assay excludes a portion of the phylogenetically conserved peak (purple) (White
et al. 2013). The minus strand of DNA is shown. (C) R227 contains two phylogenetically
conserved peaks, one of which is encompassed by the short CRE tested in the enhancer assay
(White et al. 2013). The other peak (purple) contains a predicted CRX site. The CRX motif
(from HOMER (Heinz et al. 2010)) is based on CRX ChIP-seq data (Corbo et al. 2010).
Phylogenetic conservation is depicted by 30-way vertebrate PhastCons (Siepel et al. 2005). The
heat map scales shown in (A) were consistent between the two studies and also used for (B) and

().
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CHAPTER 4:

A Candidate Causal Variant Underlying Both Higher Cognitive Performance and
Increased Risk for Bipolar Disorder
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4.1 AUTHOR CONTRIBUTIONS

This project was initially conceived by Joseph Corbo, shortly after the first educational
attainment GWAS identifying 6g16.1 was published (Rietveld et al. 2013), as a proof-of-concept
for demonstrating the power of CRE-seq for cis-regulatory analysis in the brain (Appendix 3).
As evidence accumulated for involvement of this locus in human cognition and bipolar disorder
(Muhleisen et al. 2014; Davies et al. 2015; Trampush et al. 2015; Hou et al. 2016), Joe and |
became more focused on understanding the underlying biological mechanism.

This work was conducted in collaboration with Jeongsook Kim-Han (cortical
electroporations), Cheng Lin (EMSA), Omer Gokcumen (phylogenetic analyses), Andrew
Hughes (motif analyses), and Connie Myers (cerebral organoid culture). | designed experiments
and conducted bioinformatic analyses, EMSAs, CRE-seq, allele-specific experiments, and
experiments involving the transgenic, knockout, and knock-in mice. This project is a work in

progress, and the contents of this chapter have not yet been published.
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42  ABSTRACT

Genome-wide association studies (GWAS’s) have identified thousands of non-coding
regions associated with complex diseases, but few underlying causal variants are known.
Multiple GWAS’s have identified an intergenic region associated with both cognition and risk
for bipolar disorder. This region contains dozens of fetal brain-specific open chromatin peaks
and is located ~1 Mb upstream of the neuronal transcription factor POU3F2. Using
computational approaches, we identified a candidate causal variant that falls within a highly
conserved putative enhancer, LC1. This variant, rs77910749, is a single-base deletion that is
predicted to be highly deleterious. We hypothesized that rs77910749 alters the enhancer activity
of LC1 and thereby alters POU3F2 expression. First, we created transgenic reporter mice and
found evidence of LC1 activity in the developing cerebral cortex and amygdala. To test whether
rs77910749 alters LC1 enhancer activity, we implemented CRE-seq in embryonic mouse brain
and human iPSC-derived cerebral organoids for the first time, which revealed subtle gain-of-
function in enhancer activity. To probe the in vivo function of LC1, we deleted the orthologous
mouse region and examined resulting allele-specific Pou3f2 expression, which showed region-
specific effects. Lastly, to study the effects of rs77910749 in vivo, we knocked the variant into
the mouse genome. Overall, modest but significant changes were observed, suggesting that
rs77910749 is a variant of small effect and/or exerts a large effect in a small population of cells.
Our study provides a framework for establishing the causality of non-coding variants, with

particular relevance to neuropsychiatric diseases.
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4.3 INTRODUCTION

Genome-wide association studies (GWAS’s) have identified thousands of non-coding
regions associated with complex diseases, but pinpointing the underlying ‘causal variant’
contributing to disease pathogenesis is a challenge (Zhang and Lupski 2015). Identifying causal
variants and dissecting their molecular effects would not only provide insight into disease
pathways but also facilitate the clinical interpretation of non-coding variants. For
neuropsychiatric diseases, the functional study of disease-associated variants is particularly
challenging, as the etiologically relevant cell type and appropriate experimental model system in
which to assay the effects of candidate variants are often unclear.

Bipolar disorder (BPD) is a neuropsychiatric disease characterized by alterations in mood,
classically with episodes of both mania and depression (Craddock and Sklar 2013). It affects ~1%
of the world population and is associated with high morbidity and mortality (Merikangas et al.
2011; Whiteford et al. 2013). While the disease is highly heritable (~80% heritability), the
underlying genes are largely unknown (Craddock and Sklar 2013; Harrison 2016). Furthermore,
the etiology of the disease is poorly understood at the level of molecular pathways,
neuroanatomy, and neural circuitry, although the amygdala and prefrontal cortex have been
strongly implicated (Maletic and Raison 2014). In addition to altered mood, BPD is strongly
associated with heightened creativity, substantiating the link between ‘madness’ and ‘genius’
that has been speculated for centuries (Srivastava and Ketter 2010).

Recently, several large GWAS’s of educational attainment and cognitive performance
have reproducibly implicated an intergenic region located at the MIR2113/POU3F2 locus in
chromosome region 6916.1 (Rietveld et al. 2013; Davies et al. 2015; Trampush et al. 2015). At

the same time, two large GWAS’s of BPD identified this same region (Muhleisen et al. 2014;
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Hou et al. 2016). The lead SNPs in all of these studies are in strong linkage disequilibrium (LD)
with each other, suggesting a common underlying causal variant(s). Given that the nearest
protein-coding gene, POU3F2, is located ~0.7 Mb away, we hypothesized that the underlying
‘causal variant’ affects the activity of a non-coding cis-regulatory element (CRE, e.g.,
enhancer/silencer). Since CREs can act at long distances, cis-regulatory variants have the
potential to disrupt the expression of distal genes (Kleinjan and van Heyningen 2005).

POU3F2 (also called BRN-2) is a transcription factor (TF) known to be important for the
development of the hypothalamus and the cerebral cortex. In the cerebral cortex, POU3F2 acts
with POU3F3 (also called BRN-1) to regulate the neurogenesis, maturation, and migration of
upper-layer neurons (Nakai et al. 1995; Schonemann et al. 1995; McEvilly et al. 2002; Sugitani
et al. 2002; Dominguez et al. 2013). Furthermore, overexpression of POU3F2 facilitates the
direct reprogramming of fibroblasts into neurons (Vierbuchen et al. 2010; Wapinski et al. 2013).
In mice, both increased and decreased levels of Pou3f2 are associated with alterations in
neuronal fate (Dominguez et al. 2013; Belinson et al. 2016). In humans, deletions encompassing
POU3F2 have been associated with intellectual disability (Kasher et al. 2016). Thus, cis-
regulatory changes that alter POU3F2 dosage levels may perturb brain development.

Here, we used computational and experimental approaches to identify a candidate causal
variant, rs77910749, which falls within a putative brain enhancer. To assay for enhancer activity,
we generated transgenic reporter mice. We also implemented a massively parallel reporter assay
(MPRA), CRE-seq, in the developing mouse brain and human iPSC-derived cerebral organoids
for the first time. Finally, to characterize the role of LC1 and the effects of rs77910749 in vivo,
we used CRISPR-Cas to generate an allelic series of LC1 mutants. We found that rs77910749

had modest but significant effects on transcription factor binding, enhancer activity, and sensory

138



gating-related behavior. Additionally, we observed region-specific effects, suggesting that

rs77910749 may exert a larger effect in a small population of disease-relevant cells.
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4.4 RESULTS
4.4.1 The MIR2113/POU3F2 locus harbors non-coding variants associated with both
increased cognitive performance and increased risk for BPD

A GWAS of educational attainment in ~100,000 Caucasian individuals identified a
genome-wide significant signal on chromosome 6, in an intergenic region between MIR2113 and
POU3F2 (Rietveld et al. 2013). This finding was replicated in a subsequent expansion study
(Okbay et al. 2016). Further analysis revealed that in this study, educational attainment served as
a proxy phenotype for cognitive performance (Rietveld et al. 2014). The lead SNP, rs9320913,
was associated with higher verbal and math standardized test scores in children in the ALSPAC
study (Ward et al. 2014). Additionally, meta-analysis of GWAS’s in the COGENT consortium
showed that, while rs9320913 was not directly genotyped, a proxy variant (rs1906252, r?> = 0.96
with rs9320913) was significantly associated with increased general cognitive ability (Trampush
et al. 2015). Meta-analysis of GWAS’s in the CHARGE consortium also showed a positive
association between a proxy variant (rs10457441, r? = 0.91 with rs9320913) and general
cognitive ability (Davies et al. 2015). An earlier GWAS in healthy older adults found an
association between rs1906252 and faster information processing as measured by a symbol
search task (P = 2.08 x 10°) (Luciano et al. 2011). Thus, multiple studies have demonstrated a
reproducible association between variants at this locus and cognitive performance.

A recent GWAS of BPD in ~10,000 patients and ~14,000 controls identified a novel risk
locus in the same region of chromosome 6 between MIR2113 and POU3F2 (Muhleisen et al.
2014). The lead SNP, rs12202969, was associated with ~10-20% increased risk for BPD (OR =
~1.1-1.2), which is a typical effect size for GWAS studies (Price et al. 2015). Another

independent GWAS of BPD in ~10,000 patients and ~30,000 controls replicated the signal at the
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chromosome 6 locus, identifying a genome-wide significant signal at the proxy variant
rs1487441 (r*> = 0.98 with rs12202969) with an OR of 1.12 (Hou et al. 2016). We observed that
these two BPD GWAS lead SNPs (rs12202969 and rs1487441) are in extremely high LD with
the lead SNPs in the GWAS’s of educational attainment and cognitive performance (rs9320913,
rs1906252, and rs104757441) (pairwise r> = 0.92-0.99), suggesting a shared genetic basis for
cognitive ability and BPD (Supplemental Table 1). In particular, the variants associated with
higher cognitive performance were also associated with increased BPD risk. In agreement with
an earlier study (Koenen et al. 2009), children in the ALSPAC study with higher 1Q scores were
more likely to develop manic features of BPD later in life (Smith et al. 2015), further

underscoring the potential link between cognition and BPD.

4.4.2 ldentification of the candidate causal variant rs77910749, a human-specific non-
coding variant that falls within a fetal brain-specific open chromatin region

Since the GWAS’s for educational attainment, cognitive performance, and BPD appear to
have a shared underlying signal at the MIR2113/POU3F2 locus, we sought to find candidate
causal variants. We first surveyed the epigenomic landscape of the ~0.5 Mb region (Chr6:98.3-
98.8 Mb in hg19) identified by the GWAS’s (Figure 4.1A, yellow box). This LD block contains
dozens of human fetal brain-specific DNase-seq peaks, which are regions of open chromatin that
demarcate putative CREs (Bernstein et al. 2010; Roadmap Epigenomics et al. 2015). The lead
SNPs (rs9320913, rs1906252, rs10457441, rs12202969, and rs1487441) are located ~0.1 Mb
away from MIR2113 and ~0.7 Mb away from the nearest protein-coding gene, POU3F2. This

suggested that the underlying causal variant exerts a cis-regulatory effect.
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We then focused on the ~60 kb region of highest LD, which contains all five of the lead
SNPs (Figure 4.1A, purple box). Within this region, we identified six fetal brain-specific DNase
I hypersensitive sites (DHSs), termed LCO and LC5 (henceforth referred to as the ‘local cluster’)
(Figure 4.1B). While none of the lead SNPs fall within fetal brain DHSs, four variants in LD
with rs9320913 (r? > 0.2) fell within fetal brain DHSs in the local cluster (Figure 4.1C top panel,
blue font): rs77910749 in LC1, rs13208578 in LC2, rs12204181 in LC4, and rs17814604 in LC5.

We next examined these four variants more closely. Since phylogenetic conservation is
often a marker of functionality, we hypothesized that the underlying causal variant would fall
within a phylogenetically conserved region. LC4 exhibits low conservation, and hence we
deemed rs12204181 a less likely candidate. LC2 is highly conserved, but rs13208578 is present
in multiple vertebrate species, including primates, suggesting that it is well-tolerated (Figure
4.S1A). Furthermore, LC2 did not exhibit enhancer activity in a transgenic mouse assay (element
hs1106 tested at E11.5 in the pHsp68-LacZ vector) (Visel et al. 2007). Thus, rs13208578 also
appeared less likely to be the causal variant, leaving rs77910749 and rs17814604 as the top
candidates. Analysis of variants using CADD, a machine learning-based tool that predicts
pathogenicity based on phylogenetic conservation and epigenomic annotations (Kircher et al.
2014), corroborated this result (Figure 4.1C, bottom panel). The scaled CADD scores of
rs77910749 and rs17814604 were 27.3 and 34, respectively, placing them in the top 0.2% and
0.04% of all variants (including coding variants) for predicted pathogenicity.

We noticed that the LD of rs17814604 (r?> = 0.43 with rs9320913) was relatively low
despite a high D’ (0.99), and that rs17814604 was less common than rs9320913. This suggested
that individuals with rs17814604 represented a subset of those with rs9320913. Indeed, upon

construction of a phylogenetic tree (Figure 4.S2), it became apparent that a ‘derived haplotype’
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emerged containing rs77910749, as well as rs13208578 in LC2, rs12204181 in LC4, and the lead
SNPs rs10457441 (cognition), rs12202969 (BPD), and rs9320913 (education). This derived
haplotype likely arose at least ~60,000-70,000 years ago, after the split of modern humans from
Neanderthals and Denisovans. Subsequently, ~30,000 years ago, rs17814604 arose from the
derived haplotype block, and thus it is very rare in certain populations, as seen in Figure 4.S3A.
In particular, the allele frequency of rs17814604 in East Asians is 0.2% (1000 Genomes Phase 3
(Genomes Project et al. 2015)). A study of 342 Han Chinese individuals found a significant
association between rs12202969 (r?> = 0.96 with rs9320913 in Han Chinese) and math ability.
Since rs17814604 is nearly absent among Chinese individuals, it is extremely unlikely that the
signal at rs12202969 is due to rs17814604 (Zhu et al. 2015). Therefore, rs17814604 is unlikely
to be the causal variant.

By contrast, rs77910749 is relatively common across the globe (Figure 4.S3B), with an
allele frequency of 51% in Europeans (1000 Genomes Phase 3 (Genomes Project et al. 2015)). It
is in strong LD with both rs9320913 (r?> = 0.97) and rs12202969 (r?> = 0.98). Inspection of
1577910749 revealed that it is a single base pair deletion of a ‘T’ in a stretch of ~100 bases that
are nearly perfectly conserved among vertebrates down to coelacanth fish (Figure 4.S1B). Based
on the phylogenetic conservation of the affected nucleotide and its location within a fetal brain
DNase-seq peak, another group also suggested rs77910749 as a candidate causal variant
(Trampush et al. 2015). Despite its high frequency among humans, we did not find evidence for
a selective sweep, suggesting that this variant does not alter dramatically alter fitness. This is
consistent with other studies showing that conserved non-coding regions have undergone relaxed
selective constraint in humans, likely due to the small effective population size (Kryukov et al.

2005).
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Interestingly, rs77910749 appears to be human-specific, as it is absent from other
vertebrate genomes, including all 79 non-human primate individuals (representing five species)
that were sequenced in the Great Ape Genome Project (Prado-Martinez et al. 2013) (Figure 4.54).
Therefore, rs77910749 is a common human-specific non-coding variant that is a good candidate

causal variant for cognitive performance and BPD.

4.4.3 Mouse epigenomic data suggest that LCL1 is an enhancer in the developing brain and
reveal that rs77910749 falls within a binding site for Pax6

Since LC1 is highly conserved, we examined the orthologous region in the mouse
genome. We observed that LC1 is located between Mir2113 and Pou3f2 (~0.1 Mb and 1 Mb
away, respectively) in the mouse genome, as well as in other vertebrate genomes, suggesting that
LC1 is part of genomic regulatory block (GRB) whose conserved synteny has functional
importance (Kikuta et al. 2007). Within a topologically associating domain (TAD), there is a
higher frequency of interactions (e.g., enhancer looping) between chromosomal regions. A
survey of published Hi-C data (Dixon et al. 2012; Rao et al. 2014; Dixon et al. 2015; Leung et al.
2015) revealed that LC1 falls within a TAD in multiple mouse and human cell types, suggesting
that this is an evolutionarily conserved and cell-type invariant TAD (Dixon et al. 2016) (Figure
4.S5). Notably, this TAD encompasses both Mir2113 and Pou3f2.

Next, we examined the epigenomic landscape of LC1 in detail. A time course of DNase-
seq across various mouse tissues (The ENCODE Project Consortium 2012) demonstrated that
LC1 corresponds to a region of open chromatin specific to the developing mouse brain, with a
strong signal at E14.5 and diminished signal by E18.5 (Figure 4.2). ChIP-seq signals in the

developing mouse brain for two enhancer marks, the coactivator p300 (Visel et al. 2009; Wenger
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et al. 2013) and histone mark H3K27ac (Nord et al. 2013), support the notion that LC1 is a
developmentally active brain enhancer at E14.5. Moreover, DNase-seq of mouse retina showed
that LC1 is open in early postnatal period but subsequently closes (Figure 4.2), suggesting that
LC1 may have a role in neurogenesis in both retina and brain (Wilken 2015). Notably, LC1 does
not show a DNase-seq or H3K27ac peak in the adult brain, indicating that LC1 is closed in the
majority of cells in the adult brain.

Since cis-regulatory variants can alter enhancer activity via disruption of TF binding, we
hypothesized that rs77910749 alters TF binding. When we searched for bioinformatically
predicted TF motifs using FIMO, we found that rs77910749 falls within a predicted binding site
for the paired domain (PD) of Pax6 (Grant et al. 2011) (Figure 4.3A). Pax6 is a TF with
numerous critical roles in brain development (reviewed in (Manuel et al. 2015; Ypsilanti and
Rubenstein 2016)). In addition, it is likely to be a direct transcriptional regulator of Pou3f2
(Coutinho et al. 2011; Dominguez et al. 2013; Ninkovic et al. 2013). To determine whether Pax6
binds LC1, we examined published Pax6 ChIP-seq data from E12.5 wild-type mouse forebrain,
which revealed that LC1 is strongly bound by Pax6 in vivo (80" ranked peak out of 3,536 peaks).
Moreover, the predicted Pax6 motif falls in the middle of this peak, suggesting that it is
recognized by Pax6 in vivo (Sun et al. 2015) (Figure 4.2B and Figure 4.3A). Notably, LC1 was

the only prominent ChlP-seq peak in the region.

4.4.4 In silico and in vitro analysis demonstrate modest effects of rs77910749 on Pax6
binding
Based on in vitro binding preferences as determined by SELEX (Jolma et al. 2013),

rs77910749 is predicted to cause only a slight (~3%) decrease in Pax6 binding affinity (Figure
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4.3A). By comparison, based on in vivo Pax6 binding preferences as determined by ChlIP-seq in
the E12.5 mouse forebrain (Sun et al. 2015), rs77910749 is predicted to decrease binding affinity
by ~50%. To directly test the effect of rs77910749 on the binding affinity of the site, we
expressed the PD of Pax6 and conducted quantitative electrophoretic mobility shift assays
(EMSASs) using fluorescently labeled DNA probes (Man and Stormo 2001) (Figure 4.3B).

We found that PD binds to both the wild-type sequence and the sequence with
rs77910749. This binding was specific, as demonstrated by abrogation of the gel shift by cold
competition with unlabeled probes. When we quantified the relative affinities of the ‘Ref” and
“Var’ probes, we found that rs77910749 confers ~30% decreased binding affinity (Figure 4.3B).

We also examined the binding of PD5a, a splice isoform of Pax6 that is expressed in the
brain and contains a 14 amino acid insertion in the PAI domain of PD. The PD5a isoform has a
very different DNA binding preference than the canonical PD isoform (Epstein et al. 1994;
Kozmik et al. 1997). Neither PD5a nor PD5a-HD bound to either the reference or variant
sequence. Together, these results indicate that the canonical but not 5a isoform of Pax6 PD binds

to the Pax®6 site, and rs77910749 causes a modest decrease in the affinity of Pax6 binding.

4.4.5 Transgenic reporter mice show evidence of LC1 enhancer activity in the developing
central nervous system (CNS)

To test whether LC1 is a bona fide enhancer and to investigate its spatiotemporal activity
pattern, we created transgenic reporter mice, in which human LC1 (~1 kb fragment) was cloned
upstream of the minimal Hsp68 promoter and LacZ (Pennacchio et al. 2006) (Figure 4.4A).
Since the DNase-seq signal for the orthologous mouse LC1 appeared strongest at E14.5, we

screened ‘transient’ transgenic embryos at age E14.5 (i.e., embryos were FO’s and represented
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independent transgenesis events). Among the seven embryos that were genotypically positive for
LacZ, five showed LacZ expression (Figure 4.4B). The observed patterns of LacZ staining were
consistent with expression in the cerebral cortex (lines #1, 4, 5), amygdala (lines #1, 2, and 3), as
well as the skin (line #5).

We also created three independent stable lines (i.e., allowing FO’s to produce F1 progeny).
Two stable lines showed essentially no enhancer activity in multiple E14.5 embryos that were
genotypically positive. The third stable line showed LacZ expression in the developing amygdala
(Figure 4.4C). Thus, overall, 6/10 transgenic lines showed LacZ expression in the developing
CNS. Among these, 4/6 showed expression in the developing amygdala and 3/6 showed
expression in the developing cortex. Additionally, in accordance with DNase-seq data suggesting
that LC1 is active in the developing mouse retina (Figure 4.2), 5/6 (all but transient transgenic
embryo #5) also expressed LacZ in the retina (Figure 4.4).

Together, our data suggest that LC1 is transcriptionally active in the developing CNS.
There was a high degree of variability from line to line, likely reflecting that LC1 is a relatively
weak enhancer prone to insertion site effects (Wilson et al. 1990). Nonetheless, in the brain, LC1

is most likely active in the developing amygdala and/or cerebral cortex.

446 CRE-seq ‘Nano’ measures subtle gain-of-function enhancer activity of rs77910749
To quantitatively assess whether rs77910749 alters the enhancer activity of LC1, we
utilized a multiplexed plasmid reporter assay, CRE-seq (Kwasnieski et al. 2012). In CRE-seq, a
library of uniquely barcoded reporter constructs is introduced into cells, and the resulting
barcoded transcripts are quantified by RNA-seq. We previously used CRE-seq to measure the

activity of thousands of CREs in the early postnatal mouse retina and in the adult cerebral cortex

147



(Kwasnieski et al. 2012; White et al. 2013; Shen et al. 2016). Here, we adapted CRE-seq to assay
a small pool of constructs with high coverage and depth, i.e., ‘CRE-seq Nano.” We created three
types of constructs: wild-type LC1 (‘Ref”), LC1 with rs77910749 (‘Var’), and a promoter-only
(no enhancer) control. To increase the sensitivity of our assay, the enhancers were synthesized as
multimers (Figure 4.5A). For each of these three construct types, twenty barcoded members were
created, for a total of sixty barcoded constructs in the library.

We introduced this library into developing mouse cerebral cortex by ex vivo
electroporation at E12.5, followed by two days of explant culture (Nichols et al. 2013).
Histological sectioning revealed reporter GFP expression in the deeper layers of the cortex
(Figure 45B). By contrast, pDcx-DsRed (a co-electroporated control construct) expressed in the
upper layers of the cerebral cortex as expected (Wang et al. 2007). Dcx encodes doublecortin, a
microtubule-binding protein that is expressed in the developing cerebral cortex, specifically in
post-mitotic neurons undergoing migration (Gleeson et al. 1999). Notably, there was little
colocalization of DsRed and GFP, suggesting that in the reporter constructs were active either in
progenitors and/or a subset of developing neurons in the cerebral cortex.

As an orthogonal assay system, we also introduced the library into human induced
pluripotent stem cell (iPSC)-derived cerebral organoids (Lancaster et al. 2013; Pasca et al. 2015).
These organoids expressed Pax6 and Pou3f2, as detected by antibody staining (Figure 4.S6).
Seven days after electroporation, live imaging showed electroporated cells expressing a
ubiquitous loading control, pCAG-DsRed (Figure 4.5B). A subset of DsRed-expressing cells also
expressed GFP, indicating activity of the reporter constructs.

We then quantified the cis-regulatory activity of the constructs by sequencing (Figure

4.5C). For both mouse cerebral cortex and human cerebral organoids, we observed enhancer
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activity of LC1 multimers (both ‘Ref” and ‘Var’) compared to the promoter-only control,
although the promoter had relatively stronger activity in the human cerebral organoids than in
mouse brains. In the mouse cerebral cortex, the LC1 ‘Var’ multimer had ~11% higher activity
than ‘Ref’, while in the human cerebral organoids, the LC1 ‘Var’ multimer had ~32% higher
activity than ‘Ref’. Thus, rs77910749 confers higher LC1 enhancer activity in these assay
systems. Interestingly, this effect is greater in human cerebral organoids than in the mouse

cerebral cortex.

4.4.7 Invivo deletion of LC1 confers region-specific changes in Pou3f2 expression

To directly address whether LC1 regulates Pou3f2 expression and whether rs77910749
affects Pou3f2 expression, we used CRISPR-Cas to knock out the orthologous mouse LC1
region (~1 kb) (‘LC1 KO’ mice), as well as to knock in the human-specific variant rs77910749
(‘KI’ mice) (Figure 4.6A). We also generated mice with a small deletion (4 bp) in the 3’ UTR of
Pou3f2, which serves as a molecular barcode for allele-specific expression (ASE) analysis.

To examine the effect of LC1 deletion on Pou3f2 expression, mice heterozygous for the
LC1 deletion (‘LC1 het’) were mated to mice with the 3° UTR variant (Figure 4.6B). We
analyzed the brains of E14.5 mouse embryos that were ‘trans-het’, that is, heterozygous for both
the LC1 deletion and the 3° UTR variant. Importantly, the haplotype phase of trans-het animals
is known (i.e., the LC1 KO allele is in cis with the wild-type Pou3f2 3 UTR). To control for any
effects of the 3> UTR variant itself, control animals wild-type for LC1 and heterozygous for the 3’
UTR variant were also analyzed. By measuring Pou3f2 RNA transcripts with or without the 3’
UTR variant, we quantified changes in expression due to the LC1 KO allele relative to the wild-

type LC1 allele.
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We first examined the whole brain, which revealed no difference in allele-specific
Pou3f2 expression as a result of LC1 KO (Figure 4.6C). Since the LacZ transgenic reporter
assays suggested that LC1 is active in the amygdala and cortex (Figure 4.4), we analyzed these
two regions separately. No difference was observed in the anterior cortex. Surprisingly, however,
in the microdissected amygdala region, the LC1 KO allele was associated with ~8% higher
Pou3f2 expression. This suggests that LC1 normally acts as a silencer in the amygdala, contrary
to the expectation that it acts as an enhancer there. Together, these data indicate that LC1 has
region-specific effects on Pou3f2 expression.

We conducted an analogous series of ASE experiments by crossing humanized KI mice
to Pou3f2 3’ UTR variant animals. However, we did not observe any allele-specific changes in
Pou3f2 expression associated with rs77910749 in the whole brain, microdissected amygdala, or
microdissected cortex. These data suggest that rs77910749 does not affect Pou3f2 transcript

levels to an extent that is quantifiable by these assays (Figure 4.6C).

4.4.8 The novel CpG site created by rs77910749 is methylated at a low frequency in the
developing mouse brain

DNA methylation of enhancers is associated with a decrease in chromatin accessibility
and a loss of enhancer activity (Thurman et al. 2012; Plank and Dean 2014), and methylation of
a CpG site within a Pax6 binding motif has been associated with decreased cis-regulatory
activity in one specific instance (Wang et al. 2011). We observed that rs77910749 creates a
novel CpG site (Figure 4.3A), raising the possibility that this new CpG is methylated and/or that
the methylation status of neighboring CpG’s is altered, with possible implications for the activity

of this CRE.

150



First, we surveyed available methylation data from human primary tissues and cell lines
(Figure 4.S7). In concordance with chromatin accessibility and other epigenomic data (Figure
4.1), LC1 is essentially unmethylated in the early developing brain and neural progenitors, but
methylated in non-neuronal tissues and the adult brain.

To probe for whether rs77910749 affects LC1 methylation in the developing brain, we
conducted allele-specific bisulfite sequencing analysis of LC1 in the E14.5 brains of rs77910749
knock-in heterozygous mice. We also examined mice with a small (14 bp) deletion within LC1
(‘LC1 Small Indel’) (Figure 4.7A). In particular, we analyzed a ~400 bp region that contains
endogenous CpG sites (sites #1-5 and site #7), plus the novel CpG site created by rs77910749
(site #6).

Overall, LC1 exhibited very low levels of methylation in the E14.5 brain for all alleles, as
expected (Figure 4.7B). In rs77910749 heterozygous animals, site #6 was methylated at a low
frequency (2/40 clones) (Figure 4.7B, pink arrows). Thus, the novel CpG site created by
rs77910749 is methylated at low frequency and/or in a small population of cells in vivo.
Additionally, while no dramatic allele-specific differences in methylation were seen across the
region, there was lower methylation in the Kl allele, particularly at CpG sites #4 and #5, which
are physically closest to rs77910749 (Figure 4.8C).

Together, these data show that rs77910749 creates a site that is methylated in vivo at low
levels, and there may be lower methylation of neighboring CpG sites. However, overall, the
methylation status of LC1 is relatively unchanged by the presence of rs77910749. In fact, even
with the Pax6 binding motif deleted in the LC1 Small Indel, LC1 methylation is unchanged,

suggesting that LC1 methylation is relatively robust to elimination of a key TF binding site.
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4.4.9 The effect of rs77910749 on chromatin accessibility in human fetal brain

We wondered whether rs77910749 affects the epigenomic status of LC1 in the
developing human brain. To address this question, we conducted allele-specific analysis of
chromatin accessibility in fetal human brains using DNase-seq data (Roadmap Epigenomics et al.
2015). We first inferred the genotype of donors (see Methods) and identified six donors
heterozygous for rs77910749. Intriguingly, the brains from earlier time points (day 56 and 58)
showed a read bias in favor of rs77910749, whereas the brains from later time points (day 96 and
later) showed a read bias in favor of the wild-type allele (Figure 4.8 and Table 4.3). This raises
the possibility that rs77910749 has stage-specific effects on chromatin accessibility, whereby it
promotes chromatin openness early in fetal development and chromatin closure later in fetal
brain development. Additional samples are needed to follow-up on these preliminary results, and

ideally the samples would be directly genotyped for rs77910749.

4.4.10 LC1 knockout animals have essentially normal behavior

Next, we asked whether deletion of LC1 alters behavior. We subjected adult homozygous
LC1 KO mice and wild-type siblings to a locomotion assay and sensorimotor battery, which
established that the LC1 KO mice did not have gross abnormalities. We then assayed the animals
for the following: spatial learning and memory (Morris water maze), conditioned fear,
sensorimotor reactivity and sensory gating (acoustic startle and prepulse inhibition), and anxiety
(elevated plus maze and open field test). The LC1 KO animals did not show reproducible
deficiencies in any of these domains. Thus, we conclude that mice with deletion of LC1 are

essentially normal as measured by standard behavioral assays.
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4.4.11 Humanized rs77910749 knock-in mice have defective sensory gating

Lastly, we asked whether rs77910749 alters mouse behavior. In homozygous KI mice
and wild-type siblings, no abnormalities in locomotion, sensorimotor battery, Morris water maze,
conditioned fear, or elevated plus maze were seen. However, when we subjected the animals to
acoustic startle/prepulse inhibition (PPI) testing, we found that the homozygous KI mice had a
significant defect in PPI (Figure 4.9). PPl is a measure of sensory gating, and defective PPI is
associated with BPD, especially mania (Perry et al. 2001). Thus, the rs77910749 knock-in mice

have a specific defect in sensory gating, a psychiatric endophenotype.

4.5 DISCUSSION

In this study, we sought to identify the ‘causal variant’ underlying GWAS signals at the
MIR2113/POU3F2 locus associated with both higher cognitive performance and higher risk for
BPD. We computationally identified and then experimentally tested the candidate causal variant
rs77910749. We used multiple orthogonal approaches to elucidate the links between rs77910749,
enhancer activity, gene expression, and organismal behavior. First, we probed the effect of
rs77910749 on TF binding. Second, we assayed the enhancer activity of LC1 with transgenic
reporter mice as well as with CRE-seq, implementing the latter assay in developing mouse
cerebral cortex and human iPSC-derived cerebral organoids for the first time. Third, we studied
the effects of LC1 deletion and rs77910749 knock-in in vivo.

Overall, we detected subtle but significant effects of rs77910749 on Pax6 binding and
LC1 enhancer activity. This suggests that at the molecular level, rs77910749 exerts a small effect,
or a large effect in a small population of cells. Notably, the GWAS signals at this locus had small

effect sizes, accounting for several weeks of additional schooling and ~10-20% increased risk for
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BPD (Rietveld et al. 2013; Muhleisen et al. 2014; Trampush et al. 2015; Hou et al. 2016; Okbay
et al. 2016). These effect sizes are typical for GWAS’s of complex diseases, including
neuropsychiatric diseases. The relationship between the magnitude of the molecular effect of a
causal variant and the magnitude of its phenotypic effect will depend on a range of factors,
including gene-environment interaction, genetic modifiers, and the dose sensitivity of the
relevant genes. Other non-coding GWAS loci of small effect (which represent the majority of
GWAS signals) may reveal underlying causal variants with similarly small effect sizes.

Surprisingly, our transgenic reporter mice suggest activity of LC1 in not only the
developing cerebral cortex and retina, but also in the amygdala. Interestingly, Pax6 has known
roles in the development of the cerebral cortex, retina, and amygdala (Warren et al. 1999;
Marquardt et al. 2001; Tole et al. 2005). Pou3f2 has known roles in the cerebral cortex and retina,
and a suggested role in the amygdala (McEvilly et al. 2002; Sugitani et al. 2002; Kim et al.
2008a; Garcia-Moreno et al. 2010). The amygdala is one of the most strongly implicated brain
regions in BPD, but its development is relatively poorly understood, in part because it is
composed of many nuclei of diverse origins (Pabba 2013; Maletic and Raison 2014). Our study
underscores the need to better understand amygdala development at the molecular level.

Notably, the regions of LC1 enhancer activity represent only a subset of the spatial
pattern of Pou3f2 expression. Given that the MIR2113/POU3F2 intergenic region contains many
dozens of fetal brain-specific DHSs (and might even be considered a ‘superenhancer’), we
hypothesize that the full range of Pou3f2 expression is attained via the action of multiple CREs
in this region, possibly in combination, with some degree of functional redundancy among the
CREs (i.e., ‘shadow enhancers’) (Hong et al. 2008; Hnisz et al. 2013). In addition to potential

functional redundancy among CREs, Pou3f2 is functionally redundant with Pou3f3 in the mouse
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cerebral cortex, which may provide additional buffering against the effects of mutations in LC1
(McEvilly et al. 2002; Sugitani et al. 2002).

Besides rs77910749, what other candidate variants ought to be considered? Since the
cognition and BPD GWAS’s identified common variants of small effect at 6q16.1, we assumed
that the causal variant is also a common variant. Given the reproducibility of the 6q16.1 signal in
independent GWAS cohorts, this is the most likely scenario. However, we cannot rule out the
possibility that the GWAS signals are attributable to very rare variants with large effects. Indeed,
ultra-rare variants in highly constrained genes have been associated with decreased cognition and
educational attainment in the general population (Ganna et al. 2016). Interestingly, a rare coding
mutation in RIMS1 is associated with genetic enhancement of cognition (Sisodiya et al. 2007).
This raises the possibility that other rare variants, including non-coding variants, confer
increased cognitive ability.

In prioritizing candidate causal variants, we assumed that the relevant tissue was the
developing brain. However, it is possible that the causal variant exerts its effect in another tissue,
such as the immune system, which is increasingly recognized as a major player in complex
neuropsychiatric diseases such as schizophrenia and Alzheimer’s disease (Muller et al. 2015; Da
Mesquita et al. 2016). Additionally, we used phylogenetic conservation as a marker for
functionality, but it is possible that the causal variant falls within a functional CRE that has
undergone evolutionary modeling, or even within a human-specific CRE (Vierstra et al. 2014).
Of course, it is also possible that the causal variant falls outside of a CRE and acts via an
altogether different mechanism. Finally, we recognize that multiple variants in a haplotype block
may be acting together in non-additive combinations to confer disease risk, such that there may

not be a single dominant ‘causal variant.’
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For neuropsychiatric diseases such as BPD whose etiologies are poorly understood,
detection of biologically meaningful effects should provide novel insights into disease pathways,
but there are two major bottlenecks. First, the clinical phenotypes of neuropsychiatric diseases
are often highly complex and heterogeneous, and the underlying genetics is likely to be as well.
Second, while experimental models for neuropsychiatric diseases (including mouse models, non-
human primates, iPSCs-derived neurons and organoids) have greatly improved over the past
decade, they still have serious limitations. The choice of the experimental assay system is critical:
it is possible that certain physiologically relevant deficits will manifest only in certain cell types
or species and under certain environmental conditions. For cis-regulatory variants, this is a
particularly acute issue, given the functional redundancy and buffering that occurs at the level of
TF binding, combinatorial action of CREs, and gene regulatory network feedback loops. In some
cases, sensitized genetic backgrounds and environmental perturbations may be necessary to
unmask disease-relevant effects. As multiplex CRE reporter assays and CRISPR-Cas
technologies continue to evolve in parallel with the development of neurobiological experimental
models, the functional study of cis-regulatory variants relevant to neuropsychiatric disease will

continue to accelerate.
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4.6 METHODS
4.6.1 Animals

Mice were kept on a 12 hour light/dark cycle at ~20-22 °C with free access to food and
water. Pregnant dams were euthanized with CO> anesthesia and subsequent cervical dislocation.
For timed pregnancies, mating occurred overnight and the next day was considered embryonic
day EO.5. All experiments were conducted in accordance with the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health and approved by the Washington

University in St. Louis Institutional Animal Care and Use Committee (protocol #20140072).

4.6.2 DNase-seq data

The following human fetal DNase-seq data from Roadmap Epigenomics were visualized
in the UCSC Genome Browser (Karolchik et al. 2014; Roadmap Epigenomics et al. 2015).
Donor name, age, sex, and GEO accession are listed: fBrain #1 (donor H-23284, 96 day female,
GSM595928), fBrain #2 (donor H-22911, 117 day female, GSM595920), fBrain #3 (donor H-
22510, 122 day male, GSM530651), fHeart: (donor H-23604, 110 day female, GSM665830),
fKidney (donor H-22676, 122 day sex unknown, GSM530655), fLung (donor H-22727, 101 day
sex unknown, GSM530662), and fThymus (donor H-23964, 98 day female, GSM701537). The
following mouse (C57BL/6) DNase-seq data from ENCODE were visualized (The ENCODE
Project Consortium 2012). Mice were 8 weeks old unless otherwise indicated: E14.5 brain
(GSM1014197), E18.5 brain (GSM1014184), adult brain (GSM1014151), P1 retina
(GSM1014188), P7 retina (GSM1014198), adult retina (GSM1014175), adult heart
(GSM1014166), adult kidney (GSM1014193), adult lung (GSM1014194), E14.5 liver

(GSM1014183), adult liver (GSM1014195), and adult thymus (GSM1014185).
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4.6.3 Calculation of linkage disequilibrium (LD)
Unless otherwise indicated, linkage disequilibrium (r?> and D’) are based on EUR 1000G

Phase 1, as calculated by HaploReg V4.1 (Ward and Kellis 2012a).

4.6.4 Analysis of primate genomes
Variant calls (SNPs and indels) for primate genomes (Prado-Martinez et al. 2013) were

downloaded as VCF files in hgl8 from https://eichlerlab.gs.washington.edu/greatape/data/\VVCFs/.

VCFtools v0.1.10 (Prado-Martinez et al. 2013) was used to obtain variants in the interval
Chr6:98,673,000-98,674,000 in hgl8, which is equivalent to Chr6:98,566,279-98,567,279 in
hgl9. Variants in this 1 kb window were manually examined for rs77910749, which is at
chr6:98,673,228 in hgl8 or chr6:98,566,507 in hg 19. The LiftOver tool on the UCSC Genome

Browser was used to convert between hgl8 and hgl19 (Karolchik et al. 2014).

4.6.5 Motif analysis

For ‘SELEX PWM’ scores, FIMO in MEME v4.9.1 (Bailey et al. 2009; Grant et al. 2011)
was used with the default p-value threshold (0.0001) to scan for TF motif occurrences. TF motifs
used as input were from (Jolma et al. 2013). The Pax6 motif was the only one identified that
overlapped with rs77910749. For the endogenous sequence, the following Pax6 motif was found
(plus strand of hgl9): ‘TTGTCTGCTTGAATGGTCC". For the variant sequence, the following
Pax6 motif was found: ‘TTTGTCGCTTGAATGGTCC".

For ‘ChIP-seq PWM’ scores, a PWM was generated by aligning the raw Pax6 ChIP-seq
data (Sun et al. 2015) (GEO accession GSE66961), aligned to mm9 with Bowtie 2 (v2.2.5)

(Langmead and Salzberg 2012), sorted with Picard (v2.1.0) (http://picard.sourceforge.net/),
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filtered for alignment quality (-g 30) with SAMtools (v1.3) (Li et al. 2009), and PCR duplicates
were removed with Picard (v2.1.0). Peaks were called using MACS2 (v2.1.0) (FDR < 0.01)
(Zhang et al. 2008). Peak calls were partitioned into TSS-proximal (peak summit within -1kb to
+100 bp of an annotated TSS) and TSS-distal sets using HOMER (v4.8) (Heinz et al. 2010). De
novo motifs were identified using HOMER (200 bp regions centered on TSS-distal peak
summits), and the highest scoring de novo motif was used.

The logo for the SELEX motif was generated in enoLOGOS using default parameters
with M. musculus %GC (Workman et al. 2005). The logo for the ChIP-seq motif is from (Sun et

al. 2015).

4.6.6 Electrophoretic mobility shift assays (EMSAS)

PAXG6 is perfectly conserved at the amino acid level between mouse and human (Ton et
al. 1992). PD and PD5a were ordered as gene blocks from Integrated DNA Technologies with E.
coli codon optimization and cloned as Ndel/Notl fragments into the pET-28a(+) vector.
Constructs were confirmed by Sanger sequencing. For protein expression, BL21 cells were
transformed and induced with IPTG overnight at 16 °C. His-tagged proteins were purified with
HisPur Ni-NTA Resin (Thermo Scientific), dialyzed with PBS, and concentrated with Amicon
Ultra-4 10K MWCO (Millipore). Proteins were quantified with the Pierce BCA Assay Kit
(Thermo Scientific).

Quantitative EMSAs were conducted essentially as previously described (Man and
Stormo 2001; Lee et al. 2010). Plus strand DNA probes were ordered with FAM or ROX
fluorophores (Integrated DNA Technologies), and annealed to (unlabeled) minus strand probes.

Unlabeled plus and minus strand oligos were annealed and used for cold competition reactions.
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DNA binding reactions were conducted light-protected at 4 °C for 1 hr. The binding reaction was
conducted in 10 mM Tris pH 7.5, 100 mM KCI, 1 mM B-mercaptoethanol, 2.5 mg/mL BSA, 100
ug/mL poly(dl-dC), and 10% glycerol. Labeled probe concentration was 10 nM in binding
reactions (8 nM for cold competition, with 500-fold molar excess of the unlabeled probes), and
protein concentration was 1 uM.

Protein-DNA complexes were separated on 10% TBE gels (Invitrogen) at 100 V for 90
min, light-protected at room temperature. Gels were imaged on a Typhoon Trio Variable Mode
Imager with excitation laser at 532 nm, emission filter at 526 nm for FAM, and emission filter at

610 nm for ROX. Band intensities were quantified with ImageQuant.

4.6.7 Generation of transgenic reporter mice

The LC1-Hsp68-LacZ construct was synthesized by cloning a 951 bp fragment of LC1
(chr6:98,566,099-98,567,049 in hgl9, which was initially obtained by PCR of human gDNA)
into the Hindlll and Pstl sites of Hsp68-LacZ Gateway vector (Pennacchio et al. 2006). Sanger
sequencing confirmed that LC1 matched the hgl9 reference. The construct was linearized with
Hindlll and purified by gel extraction (Qiagen). The DNA was then microinjected into fertilized
eggs of C57BL/6 x CBA hybrid mice and implanted into pseudopregnant dams using standard

techniques (Hogan et al. 1994).

4.6.8 LacZ staining and histology

Embryos (age E14.5) were dissected in cold phosphate-buffered saline (PBS). The tail
(plus yolk sac for transient transgenics) was saved for PCR genotyping with LacZ primers (Table
4.2). Embryos were rinsed with PBS with 0.1% Tween-20 and then fixed on ice for 90 min with
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2% formaldehyde, 0.2% glutaraldehyde, 5 mM EGTA, and 2 mM MgCl in 0.1 M phosphate
buffer pH 7.3. After rinsing three times with wash buffer (0.1% sodium deoxycholate, 0.02%
NP-40, 2 mM MgCly, and 0.5 mg/mL BSA in 0.1 M phosphate buffer pH 7.3), embryos were
incubated with X-gal staining solution (5 mM potassium ferricyanide, 5 mM potassium
ferrocyanide, 0.1% sodium deoxycholate, 0.02% NP-40, and 2 mM MgCl: in 0.1 M phosphate
buffer pH 7.3. Incubation conducted at 37 °C overnight (up to several days, with fresh X-gal
staining solution added every ~12 hr). Embryos were post-fixed with 4% paraformaldehyde in
PBS and stored at 4 °C until whole-mount imaging. For cryosections, embryos were equilibrated
in 30% sucrose/PBS and decapitated. The head was embedded in Tissue-Tek OCT (Sakura) and
cryosectioned at 20 um. Sections were rinsed with PBS and counterstained with Nuclear Fast

Red (Sigma).

4.6.9 CRE-seq Nano library construction

To create the LC1 multimer constructs, individual 200 bp sequences (centered on the
position of rs77910749, which is a deletion of a ‘T’) were obtained by PCR using template DNA
with or without rs77910749, with primers to add restriction enzyme sites. These ‘monomers’
were ligated pairwise in two rounds to create the 4X multimer with or without the variant (Notl-
LC1-Xbal-LC1-Xhol-LC1-Xmal-LC1-Fsel). Note that the LC1 monomer with rs77910749
includes an additional ‘T’ base at the 3’ end, such that the length and base content is the same as
the LC1 monomer without rs77910749. Multimer sequences were confirmed by Sanger
sequencing. The multimer was then cloned into the Notl/Fsel sites of the previously described
CRE-seq vector, which has random 15 bp barcodes in the 3 UTR (Shen et al. 2016). The 3.6 kb

POU3F2 promoter encompassing chr6:99,279,024-99,282,671 (hgl19) was obtained by PCR of
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human gDNA. The basal rho promoter-GFP cassette of the CRE-seq vector was replaced with a
3.6 kb POU3F2 promoter-GFP cassette between the Fsel and Ascl sites. The LC1 multimer was
cloned into the Notl/Fsel site, and individual colonies were picked for Sanger sequencing with
Barcode _seq R to determine barcode sequences (Table 4.2). For the promoter-only control
constructs, there was no insert upstream the 3.6 kb POU3F2 promoter. Twenty barcoded
constructs were obtained for each of the LC1 REF multimer, the LC1 VAR multimer, and the
promoter-only control. Each pool of twenty constructs was maxiprepped (Invitrogen). For
electroporations, the maxipreps were pooled in a mass ratio of 1:1:2 of LC1 REF, LC1 VAR, and

promoter-only control.

4.6.10 Mouse cerebral cortex electroporations

Ex vivo cerebral cortex electroporation of E12.5 CD-1 mouse embryos (from timed
pregnant dams) was conducted essentially as previously described (Nichols et al. 2013). The
CRE-seq Nano library (2.5 pg/ul) was pooled with pDcx-DsRed (1 pg/uLl) for a total of 3.5
pg/uL DNA. To visualize the injection, ~0.02% Fast Green dye was added. DNA was injected
with a pulled glass pipette and Hamilton syringe. Electroporation was conducted with BTX
ECMB830 (Harvard Apparatus) with the following settings: 33 V, 50 ms pulse duration separated
by 950 ms intervals, for 5 pulses. After electroporation, the head was transected just superior to
the level of the eye and transferred on ice to explant media (50% DMEM (Gibco), 50% F12
(Gibco), 1X GlutaMAX (Gibco), 100 U/mL penicillin, and 100 pg/mL streptomycin). Up to
three heads were arranged on a 25 mm circular Whatman Nucleopore 0.2 um filter (with the cut
surface against the shiny side of the filter), which floated in one well of a 6-well dish containing

explant media with supplements (1X B27 (Gibco) and 1X G5 (Gibco)). Explants were incubated
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at 37 °C with 5% CO». After two days in culture, the electroporated regions were microdissected
under a fluorescent microscope (Leica MZ16 F) in cold HBSS with calcium and magnesium and
stored in TRIzol (Invitrogen) at -80 °C. Each biological replicate consisted of electroporated
tissue from multiple (5-8) cortices.

For histology, tissue was fixed in 4% paraformaldehyde/PBS, embedded in 4% agarose,
and vibratome sectioned at 100 um. Sections were mounted with Vectashield (Vectorlabs),
coverslipped, and subjected to laser confocal imaging (Zeiss LSM700) with ZEN 2009 software

(Zeiss).

4.6.11 Human cerebral organoid electroporations

Human iPS(IMR90)-4 (WiCell) were cultured in mTeSR1 (STEMCELL Technologies)
and passaged every 3-4 days at 1:10 with ReleSR (STEMCELL Technologies) on 6-well plates
with Matrigel (Corning). Cells were maintained at 37 °C with 5% CO.. Cells (passage 64) were
differentiated following a protocol similar to (Pasca et al. 2015). On the day of passage (Day 0),
cell aggregates were released with ReLeSRTM and allowed to float freely in a 100 mm low-bind
Petri dish in neural induction media: Neurobasal (Gibco) supplemented with 1% B27 without
vitamin A (Gibco), 1X GlutaMAX (Gibco), 3 uM IWR-1-endo (Wnt antagonist) (Calbiochem), 5
uM  SB431542 (TGFB inhibitor) (Calbiochem), 100 U/mL penicillin, and 100 pg/mL
streptomycin. This media was replaced every 3-4 days. On Day 18, media was changed to
cerebral growth media similar to that published in (Lancaster et al. 2013): 50% DMEM-F12
(Gibco) and 50% Neurobasal (Gibco) supplemented with 0.5% N2 (Gibco), 1% B27 (with

vitamin A) (Gibco), 2.5 pg/mL human insulin (Sigma), 1X GlutaMAX (Gibco), 0.5X MEM-
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NEAA (Corning), 25 uM B-mercaptoethanol, 100 U/mL penicillin, and 100 ug/mL streptomycin.
This media was replaced every 3-4 days.

The CRE-seq Nano library (1 pg/ul) was co-electroporated with the loading control
pCAG-DsRed (1 pg/ul) (Matsuda and Cepko 2004), for a total of 2 pg/ulL DNA in PBS, into
Day 88-109 organoids. The same equipment and similar protocol as for ex vivo retinal
electroporations was used (Montana et al. 2011b). Four organoids were loaded into an
electroporation chamber and allowed to float freely. Electroporation settings were as follows: 35
V, 50 ms pulse duration separated by 950 ms intervals, for five pulses. Organoids were placed
back into conditioned cerebral growth media and allowed to float freely. After 7 days in culture,
organoids were rinsed with HBSS with calcium and magnesium and stored in TRIzol (Invitrogen)
at -80 °C. Each biological replicate consisted of eight electroporated organoids.

Organoids were imaged as live whole mounts with an inverted fluorescent microscope
(Nikon Eclipse TE300). For antibody staining, organoids were fixed in 4%
paraformaldehyde/PBS for 45 min, equilibrated in 30% sucrose/PBS and embedded in Tissue-
Tek OCT (Sakura) for cryosections (12-14 um). The following antibodies were used: anti-Pax6
(PRB-278P at 1:300), anti-Pou3f2 (sc-6029 at 1:80), anti-Ki67 (BD Pharmigen 550609 at 1:100).
Note that the anti-Pou3f2 antibody recognizes both Pou3f2 and Pou3f3 (Yamanaka et al. 2010).
Confocal imaging was conducted on a BX61 WI microscope (Olympus) with a DSU spinning
disk and ORCA-ER CCD camera (Hamamatsu). Images were processed with MetaMorph

software (Molecular Devices).
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4.6.12 CRE-seq Nano tissue processing and data analysis

RNA and DNA were isolated with TRIzol (Invitrogen), treated with TURBO DNase
(Ambion), and purified with RNeasy Mini (Qiagen) as previously described (Shen et al. 2016).
RNA (~0.5-1 pg) was then reverse-transcribed with SuperScript IV (Invitrogen), and the
resulting cDNA was treated with RNaseH. The barcode region of the cDNA and DNA was
amplified by PCR with Nano_initial PCR primers (Table 4.2) using Phusion (New England
BioLabs) and as follows: 98 °C for 30 sec, 16-22 cycles of 98 °C for 10 sec, 64 °C for 30 sec, 72
°C for 30 sec, and finally 72 °C for 5 min. The number of PCR cycles was: 16 for DNA, 20 for
mouse cortex cDNA, and 22 for organoids cDNA. Samples were then prepared for amplicon-seq
(see below).

Data analysis was conducted similarly as in (Shen et al. 2016). Barcode sequences were
extracted, requiring a perfect match to one of the sixty known 15 bp barcodes plus 6 bp of
flanking sequence on either side (i.e., 27 total bp) in either the forward or reverse direction (since
sequencing adapters were ligated non-directionally). The RNA read count was normalized to the
DNA read count for each barcode and then averaged across the twenty barcodes to yield the

overall activity of a construct type (‘Ref’, “Var’, or promoter-only) in a given biological replicate.

4.6.13 CRISPR-Cas mice generation

CRISPR/Cas9 reagents were generated at the Genome Engineering and iPSC center at
Washington University School of Medicine (St. Louis, MO). For the ‘LC1 KO’, a pair of guides
flanking LC1 was to delete the intervening sequence. Multiple lines were generated with nearly
identical deletions, but the line with the deletion chr4:23,438,846-23,439,893 for all ‘LC1 KO’
experiments. For knock-in of rs77910749, a single-stranded donor oligo centered on the variant
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(with ~60 bp of homology on either side) was injected with a central LC1 guide for homologous
recombination (Wang et al. 2013). For the ‘Pou3f2 3’UTR variant’, a single guide in the 3> UTR
was used to generate a 4 bp deletion (chr4:22,412,587-22,412,590). For the ‘LC1 Small Indel’,
the central LC1 guide was used alongside a central LC5 guide, such that this strain carries a 14
bp deletion (chr4:23,439,327-23,439,340) plus an insertion of ‘C’ at the site of the deletion, as
well as a 103 bp deletion in LC5 (chr4:23,417,446-23,417,548).

All CRISPR-Cas lines were generated in a C57BL/6J background. For pronuclear
microinjections, hormone-primed females were mated to generate embryos (EQ.5), which were
subjected to pronuclear micro-injection of 2.5 ng/ul guide RNA and 5 ng/ul of Cas9 mRNA.
Embryos were transferred to the oviducts of pseudo-pregnant recipient females. CRISPR-Cas
guides, knock-in oligo sequence, as well as genotyping information (primer sequences and PCR
conditions) are provided in Table 4.2. Founders (FO’s) were outbred to C57BL/6J. After the F1
generation, LC1 KO animals were genotyped by PCR only. Otherwise, CRISPR-Cas alleles were

verified by Sanger sequencing of PCR products.

4.6.14 Allele-specific expression (ASE) analysis

E14.5 embryos were harvested in cold HBSS with calcium and magnesium, and brain
tissue was rapidly dissected and stored in TRIzol (Invitrogen) at -80 °C. For ‘whole brain’
dissection, the olfactory lobes were left intact, and the brain was transected coronally at the
posterior edge of the cortex (i.e., through the midbrain). For ‘amygdala region’ and ‘anterior
cortex’ microdissection, the brain was additionally transected coronally approximately at the
anterior-posterior level of the middle cerebral artery in the circle of Willis. The anterior tissue

(with olfactory lobes removed) was harvested as ‘anterior cortex’. The inferior and lateral
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portions of the posterior tissue from the same brain were harvested as ‘amygdala region’. For
rs77910749 knock-in ‘whole brain’, only the left half was used for ASE (the right half was
harvested for ChlP). Tail tissue was saved from each embryo for genotyping of the LC1 region
and Pou3f2 3’ UTR region (Table 4.2).

For sequencing, RNA was extracted with TRIzol (Invitrogen), treated with TURBO
DNase, and purified with RNeasy Mini (Qiagen). RNA (~1-2 pg) was then reverse-transcribed
with SuperScript IV (Invitrogen) and treated with RNase. The 3’ UTR of Pou3f2 was amplified
with Pou3f2_3UTR_F and Pou3f2_3UTR_R primers (Table 4.2) using Phusion (New England
BioLabs) as follows: 98 °C for 30 sec, 20-22 cycles of 98 °C for 10 sec, 64 °C for 30 sec, 72 °C
for 30 sec, and finally 72 °C for 5 min. The number of PCR cycles was: 20 for whole brain, 21
for half brain, and 22 for microdissected regions. Samples were then prepared for amplicon-seq
(see below). Sequence reads containing ‘CGTATATATATGGG’ (wild-type 3° UTR) or
‘TGCGTATATGGGAT"’ (variant 3° UTR) were tabulated, and the ratio of reads (i.e., allelic bias)
was calculated. The 3 UTR variant itself causes ~10% increased Pou3f2 mRNA levels
compared to the wild-type 3° UTR sequence, as determined from the animals that were

heterozygous for the 3’ UTR variant and wild-type for LC1.

4.6.15 Allele-specific methylation analysis

Sample preparation and analysis conducted following a protocol similar to that
previously described (Montana et al. 2013). DNA was extracted from brain tissue with DNeasy
(Qiagen). For each biological replicate, ‘whole brain’ was dissected as described above for ASE,
and the right half of the brain was used for bisulfite analysis. About 1 pg was bisulfite-converted
with EpiTect Bisulfite Kit (Qiagen) and subjected to PCR with LC1 bis F and LC1 bis R
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primers (Table 4.2). The resulting products were cloned into the pCR2.1 TOPO vector
(Invitrogen) and Sanger sequenced with universal M13 reverse primer. Sequence data were
analyzed and visualized with BISMA using default parameters with removal of PCR duplicates

(Rohde et al. 2010).

4.6.16 Amplicon-seq

Qubit dsDNA HS Assay (Invitrogen) was used to quantify samples. About 200 ng of
cDNA or DNA was end repaired, 3’ adenylated, and ligated to MiSeq adapters according to
standard protocols (Son and Taylor 2011) (Table 4.2). The product was then amplified with a
universal lllumina PCR primer and an indexed primer (Table 4.2) with Phusion as follows: 98 °C
for 30 sec, 18 cycles (for ASE) or 20 (for CRE-seq Nano) cycles of 98 °C for 10 sec, 57 °C for
30 sec, 72 °C for 30 sec, and finally 72 °C for 5 min. Products were gel-purified and verified on
an Agilent Bioanalyzer. For a given sequencing run, four or six indexed samples were pooled
(controls were always processed and sequenced in parallel to the corresponding experimental
samples). Samples were loaded at 7-8 pM concentration onto MiSeq for 2x250 bp sequencing as
spike-in samples, representing ~10% of reads on a full lane, yielding ~1-2 million reads total per

pool of samples. Reads were demultiplexed and checked with FastQC (Andrews 2010).

4.6.17 Allele-specific human fetal brain DNase-seq analysis

Publicly available human fetal brain DNase-seq data from Roadmap Epigenomics and
ENCODE were downloaded. Aligned bams were used when available; otherwise, reads were
mapped to hgl9 with Bowtie 2 to obtain aligned bams (Langmead and Salzberg 2012).

SAMtools (Li et al. 2009) was used for bam-to-sam conversion. Data were visualized on the
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Integrative Genomics Viewer (IGV) (Robinson et al. 2011). To infer donor genotype, reads that
overlapped the positions of the following variants in fetal brain DHSs were manually examined
(r? and D’ values are with respect to rs77910749): rs77910749 in LC1, rs13208578 in LC2 (1* =
0.9, D’ = 0.99), rs12204181 in LC4 (r*=0.9, D’ = 0.99), and rs17814604 in LC5 (12 = 0.42, D’ =
0.97). For donors inferred to be heterozygous for rs77910749, allele-specific read counts at LC1

were tabulated. Additional details are provided in Table 4.3.

4.6.18 Behavioral assays

A total of 10 homozygous LC1 knockout and 10 age-matched, sex-matched wild-type
siblings, and a total of 12 homozygous rs77910749 knock-in and 12 age-matched, sex-matched
wild-type siblings, were subjected to behavioral testing at the Washington University Animal
Behavior Core as previously described (Dougherty et al. 2013). Animals were allowed to
habituate in the testing facility for two weeks before testing was initiated at age 10-15 weeks.
The following tests were conducted: 1-hour locomotor activity, sensorimotor battery, Morris
water maze, conditioned fear, acoustic startle and PPI, elevated plus maze, and open field test.
For the acoustic startle and PPI assays in the rs77910749 knock-in animals vs. wild-type animals,
two independent cohorts were tested and data from these two cohorts were pooled for 24

homozygous rs77910749 knock-in and 24 wild-type control animals.

169



4.7 ACKNOWLEDGEMENTS

We would like to thank the Washington University Animal Behavior Core (David
Wozniak), Center for Genome Sciences and Systems Biology (Jessica Hoisington-Lopez),
Micro-injection Core (J. Michael White), Mouse Genetics Core (Mia Wallace), and Protein and
Nucleic Acid Chemistry Laboratory (Misty Veschak). We thank the Alvin J. Siteman Cancer
Center for the Genome Engineering and iPSC Center (GEiC), and Shondra Miller at GEIC. The
Siteman Cancer Center is supported in part by NCI Cancer Center Support Grant #P30
CA091842, Eberlein, Pl. We are grateful to the laboratory of Qiang Lu for the pDcx-DsRed
construct. We thank Matthew Toomey for guidance with protein expression and Allison Loynd

for assistance with methylation studies.

170



A

Chré (hg19): 98,400,000 98,600,000 98,800,000 99,000,000 99,200,000
| | | | |
Genes MIR2113| e ; POU3F2 '
LD () - Mmﬂ.-.---ﬂ"t""rﬂ-' St cp—

0

GWAS lead SNPs I

DNase-seq, fetal human

B Chr6 (hg19): 98,550,000 98,560,000 98,570,000 98,580,000 98,590,000
1 | I 1 1
rs1906252 (cognitive) rs10457441 (cognitive) rs9320913 (education)
GWAS lead SNPs | rs1487441 (BPD) | rs12202969 (BPD) |
| |
fBrain DHS’s LCO LC1 LC2 LC3 LC4 LC5
fBrain #1 (ae = ke ceecoad cwmes e = o __J_ - *_.L_. -l ......n.l.. e
fBrain #2 faw ecadbca: o cetme o = == - ........__I.__..._L_.l.. B R U,

DNase-seq, fetal human

PhastCons

CADD score

fBrain #1
fBrain #2
fBrain #3
fHeart
fKidney
fLiver

fThymus

fBrain #3 o eoeale e veeimee o e edaahesea A

fHEAr |« ae commem t —mcame =ee = = == somm = 88 e e il demas = am mmm el e S eae e mamem = e == & ss e wme s
fKidney fam . - am o woe woe v o —caves PR R RN R P PR ——
fLiverjfm « oo = cas we v - . e w e miS G % wmw v am s+ vs Smem s wans wem o

fThymuS plase &8 -. - bolde = Ga s e cites : = G celbdcmed oleedin g B we——

PhastCons l.l ‘Lh"ul sinn o Lol |"|.1|li ; |'| | Lllllu ot uil “|||| |“

e | § T TP P TP . |
Ll bl ol L LI

L i L ]
1 . -

PRI W | . J al _ﬂ
I e N P N I

AL 4._J.|.

rs1906252 rs10457441
rs1487441 rs77910749 rs12202969 rs9320913
1 -—J—J—.%—l-—'—‘—'—'—'—‘ o)
08 - ° ° 3 ! °°°%, ® e
rs13208578 rs12204181 L4
06 1 ° ° e © e % o .'\o ° :
04 ° 5]
02 ° rs17814604 ©
0 T T . T :
98,540,000 98,550,000 98,560,000 98,570,000 98,580,000 98,590,000 98,600,000
40
rs77910749
30 1 ‘o .\rs17814604
20 4 I‘S13225578 rs12204181
10 - b ¢ o o, o
o 2 & o o ® ¢ . ° o .” %% & .3 o e
98,540,000 98,550,000 98,560,000 98,570,000 98,580,000 98,590,000 98,600,000

Position on Chr6 (hg19)

171



Figure 4.1. Prioritization of candidate variants at 6q16.1 associated with higher educational
attainment, increased cognitive performance, and risk for bipolar disorder. (A) Genomic
context (hgl9, 1 Mb window) of the intergenic locus at 6g16.1 implicated in GWAS studies of
educational attainment, cognition, and BPD. The ~0.5 Mb region identified by these studies
(highlighted in yellow) contains a ~60 kb ‘local cluster’ region (highlighted in purple) with the
highest LD. All variants in LD with rs9320913 (r? > 0.2) are shown. Note that the nearest
protein-coding gene, POU3F2, is ~0.7 Mb away. DNase-seq data from three human fetal brains
and four other human fetal tissues are shown (Roadmap Epigenomics et al. 2015). PhastCons
depict 100-way vertebrate conservation (Siepel et al. 2005). The UCSC Genome Browser was
used for visualization (Karolchik et al. 2014). (B) Enlarged view the 60 kb ‘local cluster’. Note
the fetal brain (fBrain) DHSs (LCO to LC5, pink highlight). Lead SNPs (red font)—rs9320913
for educational attainment (Rietveld et al. 2013; Okbay et al. 2016), rs1906252 for cognitive
performance (Trampush et al. 2015), rs10457441 for cognitive performance (Davies et al. 2015),
rs12202969 for BPD (Muhleisen et al. 2014), and rs1487441 for BPD (Hou et al. 2016))—are
depicted. (C) Variants within the local cluster that are in LD with rs9320913 (as defined by r? >
0.2). Note the five lead SNPs (red font) and four variants that fall within LC1-5 (blue font). The
r? values are shown (green dots). Phred-scaled CADD scores (blue dots) are from (Kircher et al.
2014).
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Figure 4.2. Epigenomic landscape around the orthologous LC1 region in mouse. (A)
Genomic context (mm9, 1 Mb window) around mouse LC1 (pink highlight). Locations of
orthologous LC2 and LC5 are also indicated (gray highlight). Pou3f2 (gray font) is outside the
window at chr4:22,409,242-22,415,513, i.e., ~1 Mb away from LC1, and is transcribed from the
minus strand of DNA. Mir2113 is a non-RefSeq gene identified by homology to the human
sequence. DNase-seq data are from (The ENCODE Project Consortium 2012). P300 ChlP-seq
data (orange tracks) are from E11.5 forebrain (Visel et al. 2009) and E14.5 forebrain (Wenger et
al. 2013). H3K27ac ChlP-seq data (pink tracks) are from forebrain at the indicated ages; for ages
with multiple replicates, only the first replicate is shown (Nord et al. 2013). Pax6 ChlIP-seq data
(dark red tracks) are from E12.5 forebrain; two replicates are shown with y-axis autoscaling (Sun
et al. 2015). (B) Enlarged view of the 30 kb mouse ‘local cluster’. Note that LC1 overlaps with
E14.5 brain and P1 retina DNase-seq peaks, E14.5 forebrain p300 peak, E14.5 forebrain
H3K27ac peak, and E12.5 forebrain Pax6 ChIP-seq peak. The orthologous position of
rs77910749 (black vertical line in LC1) falls within the middle of the Pax6 ChlP-seq peak.
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Figure 4.3. In silico and in vitro analysis Pax6 binding. (A) Comparison of the reference
sequence (‘Ref”), sequence with rs77910749 (‘Var”), and Pax6 consensus motifs. The position of
rs77910749 is indicated (red highlighted ‘T’). Note that the reference sequence is perfectly
conserved between mouse and human, and the minus strand of mm9 is shown. Motifs were
scored using Pax6 SELEX and ChlP-seq position weight matrices (PWMs). For SELEX, a
protein with Pax6 PD and HD domains was used (Jolma et al. 2013). The logo was generated in
enoLOGOS (Workman et al. 2005). The E12.5 Pax6 ChlP-seq motif is based on (Sun et al.
2015), and only the PD PWM was used for FIMO analysis. (B) Quantitative EMSA assay.
Reference (FAM) and variant (ROX) probes were fluorescently labeled and incubated with Pax6
PD or PD5a. For the ‘cold competition’ (lane 4), 500-fold molar excess of cold (i.e., unlabeled)
probe was used. The bound and unbound fractions for the PD lanes were quantified and relative
binding affinity was calculated according to (Man and Stormo 2001). Error bar represents SD
across lanes.
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Figure 4.4. Transgenic reporter mice show evidence of LC1 activity in the developing CNS.
Mice were generated that carried a reporter construct for wild-type human LC1 (951 bp fragment)
on the Hsp68 promoter, driving the expression of LacZ, which stains blue with X-gal
(Pennacchio et al. 2006). (A) Schematic of the reporter construct (drawn to scale). (B) Transient
transgenic embryos. Of seven genotypically positive embryos, five (#1-5 shown here) exhibited
LacZ staining. Each mouse represents an independent integration event. Whole mount images of
side and frontal views; light blue asterisks in the frontal views denote the approximate location
of annotated regions in the brain coronal sections. For the brain coronal image of embryo #3, the
white oval encircles sparse LacZ-expressing cells. Note that the entire head of the embryo was
embedded. Close-up images of the eye are also shown. (C) Embryos from a stable transgenic line.
Of three genotypically positive transgenic lines, only this line exhibited LacZ staining. All
embryos look essentially identical, as expected for a given line. Side, frontal, and back views are
shown (note the staining in the spinal cord, which is part of the CNS). Coronal section of head
and corresponding enlarged images of the amygdala and eye are shown. Sections were
counterstained with Nuclear Fast Red.
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Figure 4.5. The variant rs77910749 causes a subtle increase in enhancer activity in
developing mouse brain and human cerebral organoids. (A) Schematic of the CRE-seq Nano
experimental design. Multimers (4X) of the central 200 bp of human LC1 were cloned upstream
of a 3.6 kb POU3F2 (human) promoter and GFP with unique 15 bp barcodes (BCs) in the 3’
UTR. ‘REF’ indicates wild-type sequence and ‘VAR’ indicates the presence of rs77910749 (red
asterisk), whose position is indicated by the black vertical line. Twenty barcoded constructs were
generated for each of LC1 REF, LC1 VAR, and promoter-only. (B) Delivery of the library. Left:
E12.5 mouse cerebral cortex was electroporated and harvested after 2 days ex vivo. A vibratome
section shows expression of the library (GFP) in the deeper layers of the cerebral cortex. The co-
electroporated control construct, pDcx-DsRed, is expressed in post-mitotic migrating neurons
(Wang et al. 2007). DAPI is a nuclear counterstain. Right: Human iPSC-derived cerebral
organoids were electroporated and harvested after 7 days in vitro. A whole mount image of a live
organoid shows expression of the library (GFP). The co-electroporated control construct, pCAG-
DsRed, marks electroporated cells. (C) Quantification of cis-regulatory activity by CRE-seq. P-
values were calculated with two-tailed Student’s t-test. Error bars indicate SEM between
biological replicates (n = 3 for mouse cerebral cortex, n = 4 for human cerebral organoids).
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Figure 4.6. The effect of LC1 deletion on Pou3f2 expression is region-specific. (A) An allelic
series of LC1 mutants generated by CRISPR-Cas. Sizes of deletions are indicated. Note that
rs77910749 ‘knock in’ is an introduction of a 1 bp deletion. (B) Schematic of ASE experimental
design (not to scale). Mice heterozygous for an LC1 mutation were mated (E14.5 timed
pregnancies) to mice with a variant in the 3> UTR of Pou3f2, which served as a molecular
barcode (light blue rectangle). Resulting trans-heterozygous mice (i.e., heterozygous for both the
LC1 mutation and the 3° UTR variant) were analyzed for allele-specific Pou3f2 expression. Note
the phasing, i.e., the LC1 mutation is in cis to the wild-type 3> UTR. To account for any effects
due to the 3° UTR variant alone, control animals wild-type for LC1 and heterozygous for the 3’
UTR variant were included. (C) E14.5 whole brain, microdissected amygdala region, and
microdissected anterior cortex were analyzed for allele-specific Pou3f2 expression in control and
trans-het LC1 KO animals (left panel), and in control and trans-het rs77910749 knock-in animals
(right panel). Gray denotes controls, and red denotes trans-het animals. P-values were calculated
with two-tailed Student’s t-test. Error bars indicate SEM between biological replicates. Sample
size per condition is indicated (trans-het animals and matched controls; amygdala and anterior
cortex samples were from the same embryos). Each biological replicate consists of tissue from
one brain (amygdala and anterior cortex were harvested from the same brain).
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Figure 4.7. Allele-specific methylation analysis of LC1. (A) Region within LC1 analyzed by
bisulfite sequencing. The variant rs77910749 is a single bp deletion of ‘T’ (on the minus strand
for mm9), creating a novel CpG site (site #6). (B) Bisulfite sequencing of E14.5 brain from mice
that were heterozygous for rs77910749 knock-in (KI) allele (n = 4, left panels), or the LC1 Small
Indel allele (n = 3, right panels). Each row represents a clone, and each column represents a CpG
site. Note the two clones (pink arrow) of the KI allele, in which site #6 is methylated.
Methylation was overall slightly higher in the LC1 Small Indel heterozygous animals than in
rs77910749 Kl heterozygous animals, suggesting a trans effect (the LC1 Small Indel allele also
has a 103 bp deletion within LC5—see Methods). Red = methylated, blue = unmethylated, white
= no data. CpG site #6 is not present in the wild-type allele or the small indel allele. (C)
Quantification of methylation at each CpG site. Top: rs77910749 knock-in heterozygotes.
Bottom: Small indel heterozygotes. Error bars indicate SEM. P-values were calculated with two-
tailed Fisher’s exact test (reads across replicates were combined). N.D., no data.
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Figure 4.8. Human fetal brain allele-specific DNase-seq analysis. Human fetal brain DNase-
seq data (Roadmap Epigenomics et al. 2015) from donors inferred to be heterozygous for
rs77910749 (see Methods) were analyzed. Raw read counts are shown in the bar graph (top).
Read proportions are shown in the pie charts, whose sizes roughly reflect total read number

(bottom).
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Figure 4.9. Prepulse inhibition (PPI) is defective in ‘humanized’ rs779710749 knock-in
mice. Adult mice homozygous for the rs77910749 knock-in allele and wild-type (WT) siblings
(age- and sex-matched) underwent acoustic startle testing with prepulse inhibition (PPI) assays.
The knock-in (K1) animals showed defective prepulse inhibition that was statistically significant
(p<0.05, ANOVA) for the highest decibel (db) tested. One WT animal did not have a startle
response at baseline and was excluded from the analysis. PPl measurements were normalized to
baseline startle responses. Of note, baseline startle response magnitudes were lower in KI than
WT animals (p=0.018).
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Hedgeéhog TGTTC, CATCTC, IGGGAGGTGT GIGA AGGAGGAAAAGA C
UewAAATCTTC y ¢ GCTGT T1GA ACGACGAAAAGA \GACTAC
Star-nosed_mole AAATGT T C, \GGTGT \A GTGA AGGAGGAAAAGA \GAC
leph: TGTTC [GGGAGGTGT GTGA AGGAGGAAAAGA GAC
Cape_elephant_shrew AAATGTTC, Cs  [GGAGGTGT \A GTGA, AGGAGGGAAAGA GAC
Ma TJGTTC C. GTGT \/ GTGC! AGGAGGAAAAGA®
Cape, golden moleh« IGTTC C GTGT A/ GAAGG/ AGA C.
AGATGCT Gy C. IGGGAGGTGT \ A SGTGAT GGAGG. AAAGA
Aal STGTTCAA C. \GGIGT CCATGA GGAGGAAAAGA
Armadlllo AAATG T C. IGGGAGGTGT AATAACTTGA GAAGGAAAAGA C!
Opos: 1G \T C. IGGGAGGTGT A/ TCGTGA GGAGGAAAA C.
Tasmanian_devil AMATGT TCCAT. Cs IGGGAGGTGT AATATCGTGA GGAGGAAAAGA! CTAC
Wall AAATGTTCCAT, C IGGGAGGTGT AATATCGTGA GGAGGAAAAGA! C.
lxgus TATTCAGL AGGAGGTGT TCGTG! G TAGGAAAGGA C
Saker_falcon AGATGTAC) T IGGAAGGTGT GCATGA TTAGGAAAAGA L
Pere jalionA' TGTAC T, IGGAAGGTGT GCATGA T TAGGAAAAGAC CTAC
ilﬂ‘wﬁu JGTITC T AGGTGT CCATGA® AGTAGGAAAAGACAGTGAGAGCCTAC
wluta m ted 16, T AGGTGT A\ATAGCATGA AGTAGGAAAAG)
Medium_ gmn{ﬁmh AAATGT T C, T IGGAAGGTGT GCATGA G TAGGAAAAGA ) CTAC
Zebra_finch AAATGT TC, T \GGAAGGTGT AATACCATGA' G TAGGAAAAG! C.
AAATGT TCAA’ T, AGGTGT AATACCATGA G TAGGAAAAG! C
AAATGC TCOA’ T IGGAAGGTGT AATAGCATGAC G T AGGAAAAG! C
AAATATTCA, T IGGAAGGTGT AATAGCATGAT G| GGGAAAAG!
e : e AT AR e
\GCh A §
Malaid u(k T G \ A 1 AgngT AATAGCATGAT AEM TATAC, CTAC
AATTGTTC Cs IGGAAGGTG AATAGCATGAC AGTACGAAAAGAGAGTGAGAGACTAC
1G] T AGGCA AATACCATGAL AGTACGA, AAG SAGTGAGAGA
Amencan -?- IGTTC T AAGGTGT \/ TCGTGA AGTAGGA, SAGTGAGAGAC
rtle TG T C. \GGAAGGTGT TCGTGA AGTAGGA. AAS CAGTGAGAGA(
ed (urtle AAATGT TC T C. AGAAGATGT AATATCGTGA' AGTAGGAAAAGACAGTGAGAGAC
Chgnfsk m':sr:" TGTTCAA T T IGGAAAGACT STATCGTGA AGTAGCAAAAGACAGTGAGAGACTAC
JGITCAAL GIGC AGAA T CCATAT C AAAG) JCATGA AGIAGCAAAAGACAGTGAGAGAC
n AAATG: AT, ATl L-GTGTAA TCT»\CAC GGAGTCATC ’; \T C. ACAV C AGAAGGTGT AATATCGOA AGTAGGAAA - -ACAGTGAGAGACTAC
X_tropicalis AAATCTTCAGT GTAAACGTAATAATGCTC GAATAATT : CCRGGAA- - - - - - - - ---.- - - AACCTOAGAATAC TG ATGAATACAGCACAGATACAGACTAC
Coelacanth CAATACTCITT, \ATATGTGCAAGC CTGCAAAAC) G!A'(ATCI'I (;CANTTTATL'ICMG(;'IAT(TC AGATCABAGGAGGTGTTTTATTAGCACAATCAAC AATACCT G (_‘AAGGGAA(_.AG GGGTGAGAGACTAC
B rs77910749
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Ref TCCCTGAGAGTGTCTGATGTGCAAAGCTGAGCTGGAACAAAGATACACTAATTATTCCCCATTAATTTGTC) TTGAATGGTCCTAAATACCAGAGTGATTAAT TAGCGCAAGGCAGCCGGGGTAGGATGT CACACCCTTCTCTGAGTT

aps 2 1
Human CTCCCTGAGAGTGTCTGATGTGCAAAGCTGAGCTGGAACAAAGATACAC c TCIGCTTGAATGGTCC CCCTTCTCTGAG
cmmgncccrmmm \CAAAGATACAC ¢ TCRCCTTON CACCCTTCTCTOAG
il CTCCCTGAGAGT CAAAGA ¢ TCRCCTTON CACCCTTCTCTOAG
Oran utan CTCCCTGAGAGT CAAAGA C C TC GA/ C TCTGAG
i CTCCCTGAGAGT CAAACA ¢ TCRCCTTCA” ¢ TGAG
MWsCT(C('GAGAG CAAAGA C 1C! ‘GA C CTGAG
Crab-eating _| MKMMCTCCCYGAGAG] CAAAGATACAC C TC| GA/ CACCCTTCTCTGAG,
CTCCCTGAGAGT CAAAGA C T1C GAA A/ C. CITCTCTGAG
Green_ bamioyC1CCCTRAGACT CAAAGAT ACAC TCRGCT TGAZ \ CACCCTTCTCTGAG
‘MarmosetCTCCCTGAGAGT! C TCEGCT TCA/ ¢
Squirrel monkeyCTCCCTOAGAGT C TCRGCTTON ¢
Gishbaby CTCCCTGAGAGT. C TCRCCTTON cAcce
Chinese_tree. shiew CTCCCTGAGAGT C AATTTGTC A ¢
Squirrel NNNNNNNNNNNNI N INN| INNI INNEINNNNNI | ! N
Lesser_Egyptian. erboaC T C C TCIGCT TGA CACCC
e v cL AGATAC! ¢ TCRGCTTCA ¢
(hmese_hamslefcf < ¢ TCRGCTTOA CACCC
hamste C C. C TC) ‘GAA L/ C
sec ¢ TCRCCTTCAS \ ¢
ol AGAGT! TCRCCTTGA ¢
Naked c(;cﬁme; ¢ TCRCCTTCA ¢
dinea
cmm..nrgEr,EErgAgﬁgr ¢ ¢ i TeAN Y EACEE
Brush-fallgd Tat CTCCC -~ (GACT: ¢ TCRCCTTCA \ cACce
RagbitC: ¢ TCEGCTTCA ¢
Pnce TCRGCTTOA ¢
PlgC CAC TCRCCTTON CACCC
Bactran AERAC 3 el Ton ¢
n_car C. C
baiphinG c ¢ TCRGCT 1A ¢
Killer CTCCTGTGC CARAGA ¢ TCRGCT TGN ¢ ¢
Tibetan. amelopec CCCCOAGAGTGTCTGLTGTGE CAAAGA ¢ ¢ TC GAA Y ¢ CACCC
Cow CTCCCTGAGAGTGTCTGG TGTGCH CAAAGA C T1C GAA \/ C. CACCC
SheepCTCCCC GAGAGT! AAAGCTGAGC TGGAACAAAGA TACAC TCRCCTTCA \ ¢ CACCC
Domestic. oAt CTCCCC GAGAGT CTCAGCTGGAACAAAGATACAC ¢ TCIGCT TGA/ \ ¢ ¢
se CTCCCTGAGAGT CTGAGCTGGAACAAAGA C C TC ‘GA, C/ C
White_thinoceros CTCCCC GAGAGT! CTGAGCTGGAACAAAGA TCRGCTTON ¢ TC
CatCTCCCC AAGAGTH CTGAGCTGGAACAAAGATACAC Ct STGTCREGCTTGA, C CACCCTTCCCTGC
CCCAGAGAGT! CTGAGCTGGAACARAGA TACAC TCRCCTTCA” \ ¢ 14
Ferret’ CTCCCCGAGAGT! GAGCTGGAACAAAGATACAC TCRGCTTCA ¢ CACCC
Panda CTCCCCGAGAGT! GAGCTG AGA ¢ TCRGCTTCA g ¢
Paaﬁc walrus CCCCGAGAGT! ‘GAGCTGGAACAAAGA C TC GA, C/ C
CCCLGAGAGT CTGAGCTGGAACAAAGA C TC) GAA \/ C. C
Black ngloxc CCCCGAGAQT! GAGCTGGAACAAAGATACAC TCRCCTTCAS \ ¢ ¢
bat CTCCCC GAGAGT! GAGCTGGAACAAAGATACAC ¢ TCRGCTTGAATGGTCC G, ¢
David's_myolis (bat) CTCCC AGAGAGT CAGCTGGAACAAAGA TCRCCTTCAATEGTCC CA. ¢
Microbat CTCCCAGAGAGT A/ ‘GAGCTGGAACAAAGA C TC) TGAATGGTCC A/ CA, CACCC
Big_| b'own DAt CTCCCAGAGACT GAGCTGGAACAAAGATACAC TCHGCTTGAATGGTCC Y ; ccc
hog C CTCAGCTCGAACAAAGATACAC TCEGCTTCAATGGTCC \ 4 ccc
CTCAGCTCGAACAAAGATACAC ¢ TCRGCTTGAATGGTCC C ¢
Star- CTCACCTGCAACAAAGATACAC ¢ TCRCCTTCAATCGTCC 9 ccc
ElephantC CTGAGCTGGAACARAGA ¢ TCRCCTTGAATGGTCCTAAAL, ¢
Cape_elephant shrew C CTGAGCTGGAACAAAGATACAC ¢ TCRGCTTGAATGGTCCTAAAC g CACCC
Manatee C \GCTGAGCTGGA AGA C. TC) GAATGGTCC C C
Cape_goldony el GCTGAGCTGOAACAAAGATACAC ¢ TC GAATGGTCCTARAC | CACCC
TenrecC’ CTGAGCTGGAACAAAGC C C TC ‘GAATGGTCC \C C cCC
Aardvark C ‘GAGCTGGAACAAAGA C C TC] ‘GAATGGTCC C. C
Armadillo C ‘GAGCTGGAACAAAGATACAC CCCC T1C ‘GAATGGTCC A/ C. CACCC
\AAGCTGAG [ CGGAACAAAGATACAC ¢ TCRCCTTGAATGGTCC Y ccc T80
Tasmanig, devil CTC GAGC TGGAACAAAGA ¢ TCEGCTTGAATGGTCC ¢
GAGCLGGAACAAAGA TC GAATGGTCC NNNNNNNNN
'X ‘GAGCTGGAACAAAGA C. TCEGCTTGAATGGTCC CCCTe STGC
soker ienc FAGCTCGAACAAAGAT ACAC TCRGCTTGAATGGTCC \ EACCETTETCTe
o Beregrine-faconc AAGCTCOAACAAAGAAAL ¢ TCEGCTTGAATGGTCC cACCC 16
ollared] fiycatcherC: CTGAGCTCGAACAAAGATACAC ¢ TCRGCTTCAATGGTCC GC cCCTTCTCTOr
Whllelhmalea sé)anow( < CTCAGCTGGAACAAAGATACAC ¢ TCRCCTTCAATECTCC AGC CACCCTTCTCTC
fir G’ GAGCTGGAACAAAGA CTCCH TC ‘GAATGGTCC AGC C CTGC
9 CCGAGCTGGAACARAGA TACAC TCRCCTTCAATCGTCC Y AGCC CTICTCTG
G ZAGCTCOAACAAAGA TCRCCTTGAATGGTCC AGC CTTCTCTG
G GAGCTGOA TCRGCTTGAATGGTCC AGC CTICTCTGC
G ‘GAGCTGGA. C C TC ‘GAATGGTCC A/ GCAGCC. CACCCTTCTCTGC
G GAGCT C T1C TGAATGGTCC A/ AGC CACCCTTCTCTGC
G GAGCTGGAACAAAGA C C T1C TGAATGGTCC A/ AGC CACCC CTGC
G GAGCTGGAACAAAGA ¢ TCEGCTTCAATGGTCC AGGC | GCCA ccc 16
G GAGCTGGAACAAAGATACAC ¢ TCIGCTTGAATGGTCC AGCC CTTCTCTG
Yt GAGCTGGAACAAAGA ¢ TCRGCTTGAATGGTCC CCAGECAGE cAcce 16
American almer G GAGC TGGAACAAAGATACAC TCRGCTTGAATGGTCC CCAGRCAGC CTTCTCTGE
R l? m: G ‘GAGCTGGAACAAAGATACAC TC) GA, C. AGGCATC C CITCTCTGO
turleC Yt CAGCTGOAACARAGA TCRCCTTCAATCG CAAGGCAGCCA CACCCTTCTCTG!
Chinese mﬁshel e C GT GAGCTGCAACAAAGATACAC ¢ TCRGC L TON CAAGGCAGC cCeTTeTcTor
Spiny_softshell” turtle C \GT. ‘GAGCTGGAACAAAGATACAC CTCC TC| CTGA/ AGGCAGCC. C. C CTG
Lizard C GT GAGETGGA CAAAGA C C TC] TTGAA A/ CAAGGCAGC CCCTTCCCTGE
Xt kalls( CAAGAGAGTGECTGOTGTGC CAGE TGGAACAAAGAT ACAC crec TCRGCTTCAZ \ CAAGGCAGC A CACCCTCC T1GT
CoeleanthCT 1CCT 11 TAGTGCCTGACGTGC CAG T TGGAACAAAGA ¢ TCRGCT TGA) AGCGCGAGGCAGCCGRGGCAGCATGTC, cTicTCTde




Figure 4.S1. Phylogenetic conservation of rs13208578 and rs77910749. Multiz alignments
(100 vertebrates) as viewed on the UCSC Genome Browser (Blanchette et al. 2004; Karolchik et
al. 2014). A 150 bp window is shown roughly centered on each variant (position of variant is
highlighted in red): (A) rs13208578 (a substitution of ‘C’ to ‘T’), and (B) rs77910749 (a 1 bp

deletion of a “T”).
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Figure 4.S2. ldentification of a derived haplotype through construction of a human
phylogenetic tree. (A) Human phylogenetic tree. Note that rs77910749 is part of the derived
haplotype (pink circle), and that rs17814604 arose secondarily (green circle). (B) Haplotype
analysis. The derived haplotype contains GWAS variants (red font) and linked variants (blue font)
that fall within LC1 to LC5. The analysis was anchored on rs10457441.
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Figure 4.S3. Global distribution of rs17814604 and rs77910749 frequencies. Allele
frequencies based on Phase 3 of the 1000 Genomes Project (Genomes Project et al. 2015) are
shown for the major populations (large pie charts) as well as for subpopulations (small pie
charts), with black indicating the reference allele: (A) rs17814604 (green allele) and (B)
rs77910749 (purple allele). Abbreviations: AFR, African; AMR, American; BEB, Bengali in
Bangladesh; CDX, Chinese Dai in Xishuangbanna, China; CHB, Han Chinese in Beijing, China;
CHS, Southern Han Chinese, China; CLM, Colombian in Medellin, Colombia; EAS, East Asian;
ESN, Esan in Nigeria; EUR, European; FIN, Finnish in Finland; GBR, British in England and
Scotland; IBS, Iberian populations in Spain; JPT, Japanese in Tokyo, Japan; KHV, Kinh in Ho
Chi Minh City, Vietnam; LWK, Luhya in Webuye, Kenya; MAG, Mandinka in The Gambia;
MSL, Mende in Sierra Leone; PEL, Peruvian in Lima, Peru; PJL, Punjabi in Lahore, Pakistan;
PUR, Puerto Rican in Puerto Rico; SAS, South Asian; TSI, Toscani in Italy; YRI, Yoruba in
Ibadan, Nigeria.
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Pongo pygmaeus
Sumatran orangutan (0/5)

Pongo abelii
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Figure 4.54. Absence of rs77910749 from non-human primate genomes. The genomes of 79
individuals from five non-human primate species were examined for rs77910749, and none were
found to contain this variant. Number of individuals for each species is indicated. Sequences and
estimates of divergence times (in millions of years ago, MYA) are from (Prado-Martinez et al.
2013). Minor allele frequency (MAF) in humans is based on aggregate 1000 Genomes Phase 3
data (Genomes Project et al. 2015).
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Figure 4.S5. LC1 falls within a conserved topologically associating domain (TAD).
Published Hi-C data were visualized with default heat map scaling on the 3D Genome Browser
(http://www.3dgenome.org). Darker red indicates higher frequency of interactions. Data are
shown at 40 kb resolution, except for CH12 (25 kb resolution). The TAD containing LC1 is
highlighted in yellow, and LC1 is highlighted in pink. Note the positions of Mir2113/MIR2113
and Pou3f2/POU3F2 (red font) within the TADs. In the mouse genome, the Pou3f2 is
transcribed from the minus strand of DNA. In the mouse genome, the region is inverted such that
the relative orientation (LC1 upstream of Pou3f2) is preserved. Mouse Mir2113 is a non-RefSeq
gene identified by homology with the human sequence. (A) Human Hi-C data for left ventricle of
heart, liver, and H1-derived neural progenitor cells (NPC) (Dixon et al. 2015; Leung et al. 2015).
(B) Mouse Hi-C data for CH12 (a B cell lymphoma cell line), embryonic stem cells (ESC), and
cerebral cortex (Dixon et al. 2012; Rao et al. 2014).
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Figure 4.S6. Antibody staining of cerebral organoids. Human iPSCs were differentiated into
cerebral organoids and grown in culture for 53 days (left panels) or 70-79 days (right panels)
prior to harvest for immunohistochemistry. Cryosections were labeled with anti-Pou3f antibody
(green, all panels) and anti-Pax6 antibody (red, top panels) or anti-Ki67 antibody (red, bottom
panels). The anti-Pou3f antibody recognizes both Pou3f2 and Pou3f3 (see Methods). Ki67 is a
marker of proliferation (Scholzen and Gerdes 2000). Blue, DAPI counterstain.
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Figure 4.S7. The methylation landscape of LC1 to LC5 in human primary tissues and
cultured cells. LC1 is highlighted (pink), and LC2 to LC5 are also shown (gray). LC1 is
unmethylated in fetal brain and neural progenitors, and methylated in adult brain and other
tissues. MRE enriches for unmethylated regions, while MeDIP enriches for methylated regions.
The height of MethylC-seq and bisulfite (BS)-seq signals reflects the degree of methylation at
single CpG resolution. The lack of data for LC3 and LC5 is due to the paucity of CpG sites. Data
are from (Roadmap Epigenomics et al. 2015) except for MethylC-seq (Lister et al. 2013; Schultz
et al. 2015), with the following GEO accessions: MRE (GSM669604 and GSM707015) and the
corresponding MeDIP (GSM669614 and GSM707019) of fetal brain (fBrain), MethylC-seq
(GSE47966) of fetal frontal cortex (fFC) and middle frontal gyrus (MFG, part of the cortex) at
the indicated ages (d = day, yo = years old), H1-derived neuronal progenitor cells (HDNP)
(GSM675546), brain germinal matrix (BGM) (GSM941747), NCD neurosphere culture (cortex-
derived) (GSM1127118), left ventricle (LV) of heart (GSM1010978), lung (GSM983647), liver
(GSM916049), fetal thymus (GSM1172595), thymus (GSM1010979), and fetal muscle (fMuscle)
from leg (GSM1172596).
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Table 4.1. Measures of LD among lead SNPs in GWAS studies of educational attainment,

cognitive ability, and BPD.

rs1906252 | rs10457441
rs1906252 - cognitive ability 1
0.88 1
0.96 0.92 1
0.98 0.9 0.98
(51906252 | rs10457441 | rs12202969 | rs1487441 |
rs1906252 - cognitive ability 1
rs10457441 - cognitive abili 1 0.98 1
1 0.98 1 1
0.99 0.99 0.99 0.99 1

The pairwise r? and D’ values among the following five lead GWAS are shown: rs9320913 for
educational attainment (Rietveld et al. 2013; Okbay et al. 2016), rs1906252 for cognitive ability
(Trampush et al. 2015), rs10457441 for cognitive ability (Davies et al. 2015), rs12202969 for
BPD (Muhleisen et al. 2014), and rs1487441 for BPD (Hou et al. 2016). Values were retrieved
from HaploReg V4.1 (Ward and Kellis 2012a) for European populations based on 1000
Genomes Phase 1 (Genomes Project et al. 2012).
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Table 4.2. Oligonucleotides used in this study.
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Data accession codes, donor information, alignment rates, and read counts at positions
overlapping SNPs are provided (rs77910749 is highlighted in yellow) (see Methods). Red font
indicates non-reference alleles. ‘NA’ indicates no reads at the position of the SNP. Individuals
inferred to be rs77910749 heterozygotes (blue column) were included in the allele-specific
analysis of LC1 (Figure 4.8). Note that donors H-23266, H-23284, and H-22510 were each
associated with two GEO accessions. For these samples, read counts from the same donor were
summed. Donors H-25606 and H-24297 had several reads that had an ‘A’, ‘C,” or ‘G’ base at
rs77910749; these reads were excluded from the analysis.
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CHAPTER 5: CONCLUSIONS AND FUTURE DIRECTIONS
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“Science is made by scientists, whose creations deeply affect each others’ progress.”

-Eric H. Davidson (Davidson 2006)

“As you know, in most areas of science, there are long periods of beginning before we really
make progress.”
-Eric Kandel (Kandel 2012)
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In this dissertation, I described: an approach for mapping the effects of cis-regulatory
variants onto changes in gene expression, which yielded insights into gene regulatory effects
(Chapter 2), a method for functionally dissecting large numbers of CREs, which holds promise
for studying cis-regulatory regulation in a broad repertoire of cell types (Chapter 3), and a
mechanistic study of a disease-associated cis-regulatory variant, which serves as a blueprint for
future studies assessing the causality of non-coding variants (Chapter 4). Below, I discuss recent

advances and prospects related to this work.

5.1  The utility of hybrid animals for studying cis-regulation and imprinting

In Chapter 2, | described a study in which we mapped the effects of cis-regulatory
variants onto changes in gene expression genome-wide in the retina by taking advantage of
hybrid animals, which serve as unique genetic tools (Shen et al. 2014). Although prior studies
also utilized hybrids to identify cis- and trans-regulatory effects, ours was unique in intersecting
knowledge of the locations of CRES, specific sequence variants, and changes in gene expression.
Our study is analogous to eQTL studies in human tissues, which probe for statistical associations
between variants and changes in gene expression, but with the advantages of complete genetic
information and extremely high nucleotide diversity between Cast/EiJ and C57BL/6J alleles.
With MPRAs, it will be feasible to comprehensively assay the effects of the specific cis-
regulatory variants identified by hybrid and eQTL studies.

As a byproduct our study, we identified parent-of-origin effects (e.g., imprinted genes) in
the retina for the first time. Shortly after the publication of our work, another group published a
study that examined cis- and trans-regulatory effects and parent-of-origin effects in brain, liver,

kidney, and lung, based on reciprocal crosses of Cast/EiJ, PWK/PhJ, and WSB/EiJ (Crowley et
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al. 2015). Two of the novel imprinted genes identified in our study (A230006K03Rik and
A330076HO08RIik) were replicated in their study, substantiating the validity and robustness of our
approach. Our study establishes the retina as a model system for investigating imprinting and

further underscores the value of the retina in studying mechanisms of gene regulation.

5.2 The future of high-throughput cis-regulatory analysis

Massively parallel reporter assays (MPRAs) have become the method of choice for
assaying cis-regulatory variants on a large scale. Our study in Chapter 3 is the first demonstration
of high-throughput truncation mutation analysis, the first AAV-mediated MPRA, and the first
MPRA in the mammalian brain (Shen et al. 2016). Since the publication of our study, other
groups have adopted capture-and-clone and AAV MPRA strategies (Nguyen et al. 2016;
Verfaillie et al. 2016). Additionally, others have used data from our study to gain insights into
gene regulation (Mo et al. 2016).

In the past, the study of CREs in the brain and most other tissues was limited to laborious
one-at-a-time experiments. Due to the difficulty of delivering MPRAS to tissues in vivo, most
systematic studies of large numbers of CREs were conducted in cell lines, with uncertain
relevance to mammalian tissues. Our demonstration of the feasibility of AAV-mediated MPRAS
overcomes technological barriers and brings the era of functional genomics to mammalian
systems in vivo. Virus-based strategies expand the repertoire of cells that could potentially be
assayed, and systemic delivery of viruses may allow simultaneous multi-tissue cis-regulatory
analysis (Inagaki et al. 2006; Zincarelli et al. 2008). Furthermore, since AAV can be designed to
target specific cell types (Smith et al. 2000; Michelfelder and Trepel 2009), our study paves the

way for refining the study of mammalian cis-regulation in vivo.
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In addition to AAV, lentivirus has also been used to deliver MPRAS, with the major
difference being that lentiviral constructs integrate into the host genome. It has been suggested
that chromosomally integrated reporter constructs recapitulate endogenous CRE activity more
faithfully than episomal reporters, but thus far it is unclear whether this is the case (Inoue et al.
2017). In yeast, delivery of 29 reporter constructs as plasmids or as integrated constructs in a
specific chromosomal location (i.e., controlling for the site of integration) yielded very similar
results (Sharon et al. 2012). However, lentivirus integrates randomly into the host genome, with
the potential for undesirable insertion site effects (Murtha et al. 2014; Inoue et al. 2017).
Furthermore, lentivirus is a pathogenic retrovirus that elicits a substantial host inflammatory
response, whereas AAV is non-pathogenic (Nayak and Herzog 2010). Lentivirus does offer the
advantage of a carrying capacity of 8 kb (compared to 4.7 kb for AAV), which would allow the
delivery of CRE-seq libraries containing longer promoter-reporter cassettes (Kumar et al. 2001).
Thus, AAV and lentivirus both have advantages and disadvantages, and both have utility in
future MPRAS depending on the experimental goal.

Ideally, one would like to assay CREs in their endogenous context, at their endogenous
sites within the genome. How could this be achieved? One possible approach would be to profile
enhancer RNAs (eRNASs), non-coding RNAs that are transcribed at active enhancers. While the
functional role of eRNAs is still debated (Lam et al. 2014; Kim et al. 2015), there is considerable
evidence that levels of eRNAs (specifically, ‘2D’ or bidirectional non-polyadenylated eRNAS)
reflect the activity of the corresponding enhancers. Thus, allele-specific eRNA profiling could be
a way to detect the effects of enhancer variants in situ.

An even more promising approach for studying cis-regulatory variants in situ is by

coupling MPRAs with CRISPR-Cas. In the few vyears since its first implementation in
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mammalian cells, CRISPR-Cas has revolutionized molecular biology as a rapid, efficient means
of editing DNA (Doudna and Charpentier 2014). CRISPR-Cas has already been utilized for
saturation mutagenesis of coding regions (Findlay et al. 2014). It should be possible to use
CRISPR-Cas for saturation mutagenesis of CREs, or even for combinations of coding and cis-

regulatory variants to study their interactions (e.g., epistasis) (Sackton and Hartl 2016).

5.3  Future directions for investigating the MIR2113/POU3F2 locus

Most GWAS signals fall in non-coding regions and have modest effect sizes, rendering
the identification of the underlying causal variant a challenge. The MIR2113/POU3F2 locus is
typical in these regards, but it is exceptionally interesting because it harbors variants associated
with both higher cognitive performance and increased risk for bipolar disorder. Unraveling the
mechanism underlying this link may not only provide insights into the etiology of BPD, but also
elucidate the molecular aspects of human brain development that confer both enhanced cognitive
capacities and susceptibility to mental illness.

With this goal in mind, we identified a candidate causal variant, rs77910749, which falls
within a highly conserved non-coding region, LC1. Our transgenic mouse lines suggest enhancer
activity of LC1 in the developing amygdala and cortex. However, we observed considerable line-
to-line variability in transgene expression, likely due to insertion site effects (Wilson et al. 1990).
To avoid insertion site effects, LC1 reporter constructs can be integrated into the mouse genome
at a specific locus (‘safe harbor’) with CRISPR-Cas (Lombardo et al. 2011). It would be
particularly valuable to generate a targeted transgenic reporter line with LC1 driving the
expression of a fluorescent protein (e.g., GFP), which would enable FACS-based isolation of

cells with LC1 activity. This may facilitate analysis of subpopulations within nuclei of the
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amygdala, potentially enabling the detection of a small population of disease-relevant cells.
Another way to isolate amygdala subregions would be with laser-capture microdissection (LCM),
although this would not provide single-cell resolution (Zirlinger and Anderson 2003).

In our study, we primarily used mice as the model system. Besides the anatomical
differences between mouse and human brains, there are also known species-specific and region-
specific differences in gene dosage requirements. For example, humans with mutations in Dcx
have abnormal neocortical and hippocampal development, whereas mice with mutant Dcx have
essentially normal neocortices but abnormal hippocampi (Corbo et al. 2002). Furthermore,
rs77910749 is a human-specific variant, and we observed differences in LC1 enhancer activity in
the developing mouse brain compared to human iPSC-derived cerebral organoids. Many of the
experiments that were implemented in mouse (e.g., allele-specific expression analysis,
methylation analysis, and allele-specific Pax6 binding) can also be conducted in iPSC-derived
neurons or cerebral organoids. In particular, CRISPR-Cas can be used to knock-in rs77910749
(or to revert rs77910749 to the reference allele) in otherwise isogenic cell lines. Furthermore,
since POU3F2 promotes the conversion of differentiated cells into neurons, it would be
interesting to measure the efficiency of cellular reprogramming (Vierbuchen et al. 2010;
Wapinski et al. 2013).

In order to investigate the effects of cis-regulatory variants on organismal phenotype,
however, animal models are needed. If LC1 is such a highly conserved region, why does deletion
of LC1 in mice produce such modest effects? Previously, other groups deleted several ‘ultra-
conserved’ genomic regions in mouse, and no organismal phenotype was found despite extensive
assays (Ahituv et al. 2007). To elicit the relevant phenotypes, it may be necessary to stimulate

the animals with environmental stressors and/or pharmacological treatments. Additionally,
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neuroimaging of mutant animals may provide more sensitive measures for detecting abnormal
brain structure and function (Nieman et al. 2007). Ultimately, the study of variants of small

effect will likely require highly sensitive assays and large sample sizes.

5.4  Cis-regulatory biology in the era of clinical whole-genome sequencing

Routine whole-genome sequencing (WGS) of patients will soon become a reality. Thus
far, most instances of clinical WGS have focused on the exome because of the difficulty of
interpreting non-coding regions. Hence, the clinical potential of WGS has not been fully realized.
Many issues related to medical ethics and healthcare policies remain to be addressed (van El et al.
2013; Howard et al. 2015), but scientifically, one of the biggest bottlenecks is deciphering the
functional consequences of the thousands of variants in non-coding regions, which represent 98%
of the genome. This need is particularly pressing for neurological and neurodevelopmental
disorders, which represent a large fraction of rare diseases with unknown causes (Gahl et al.
2012). Given the complexities of assigning causality to cis-regulatory variants in the CNS, this
challenge will likely persist for many years.

In the near future, physicians, scientists, and the public alike will grapple with the many
uncertainties that accompany modifiable genetic risk. The definition of ‘disease’ will also have
to be revisited, as evidence accumulates that disease-associated traits fall along a continuum and
manifest in a context-dependent manner (e.g., (Constantino 2011)). The beauty of cis-regulatory
biology is that it encapsulates many of the dualities pervasive across biology: nature vs. nurture,
stochasticity vs. determinism, and flexibility vs. tight control. Likewise, the study of cis-

regulatory variants should teach us to balance necessary caution with acceptable risk, scientific
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curiosity with clinical need, and subjectivity with objectivity. Eventually, though, science for the

sake of science is what will drive the next breakthrough in cis-regulatory biology.

207



REFERENCES

RetNet, http://www.sph.uth.tmc.edu/RetNet/.

Ahituv N, Zhu Y, Visel A, Holt A, Afzal V, Pennacchio LA, Rubin EM. 2007. Deletion of
ultraconserved elements yields viable mice. PLoS Biol 5: e234.

Akhtar W, de Jong J, Pindyurin AV, Pagie L, Meuleman W, de Ridder J, Berns A, Wessels LF,
van Lohuizen M, van Steensel B. 2013. Chromatin position effects assayed by thousands
of reporters integrated in parallel. Cell 154: 914-927.

Albert FW, Kruglyak L. 2015. The role of regulatory variation in complex traits and disease. Nat
Rev Genet 16: 197-212.

Allocca M, Mussolino C, Garcia-Hoyos M, Sanges D, lodice C, Petrillo M, Vandenberghe LH,
Wilson JM, Marigo V, Surace EM et al. 2007. Novel adeno-associated virus serotypes
efficiently transduce murine photoreceptors. J Virol 81: 11372-11380.

Altrock WD, tom Dieck S, Sokolov M, Meyer AC, Sigler A, Brakebusch C, Fassler R, Richter K,
Boeckers TM, Potschka H et al. 2003. Functional inactivation of a fraction of excitatory
synapses in mice deficient for the active zone protein bassoon. Neuron 37: 787-800.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool.
J Mol Biol 215: 403-410.

Anders S, Huber W. 2010. Differential expression analysis for sequence count data. Genome
biology 11: R106.

Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, Chen Y, Zhao X,
Schmidl C, Suzuki T et al. 2014. An atlas of active enhancers across human cell types
and tissues. Nature 507: 455-461.

Andre E, Gawlas K, Becker-Andre M. 1998. A novel isoform of the orphan nuclear receptor
RORDbeta is specifically expressed in pineal gland and retina. Gene 216: 277-283.

Andrews S. 2010. FastQC. p. A quality control tool for high throughput sequence data.

Andzelm MM, Cherry TJ, Harmin DA, Boeke AC, Lee C, Hemberg M, Pawlyk B, Malik AN,
Flavell SW, Sandberg MA et al. 2015. MEF2D drives photoreceptor development
through a genome-wide competition for tissue-specific enhancers. Neuron 86: 247-263.

Ardlie KG, Kruglyak L, Seielstad M. 2002. Patterns of linkage disequilibrium in the human
genome. Nat Rev Genet 3: 299-309.

Arnold CD, Gerlach D, Stelzer C, Boryn LM, Rath M, Stark A. 2013. Genome-wide quantitative
enhancer activity maps identified by STARR-seq. Science 339: 1074-1077.

Arvey A, Agius P, Noble WS, Leslie C. 2012. Sequence and chromatin determinants of cell-
type-specific transcription factor binding. Genome Res 22: 1723-1734.

Aschauer DF, Kreuz S, Rumpel S. 2013. Analysis of transduction efficiency, tropism and axonal
transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. PLoS One 8: e76310.

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K,
Dwight SS, Eppig JT et al. 2000. Gene ontology: tool for the unification of biology. The
Gene Ontology Consortium. Nat Genet 25: 25-29.

Auer PL, Lettre G. 2015. Rare variant association studies: considerations, challenges and
opportunities. Genome Med 7: 16.

Aurnhammer C, Haase M, Muether N, Hausl M, Rauschhuber C, Huber I, Nitschko H, Busch U,
Sing A, Ehrhardt A et al. 2012. Universal real-time PCR for the detection and
quantification of adeno-associated virus serotype 2-derived inverted terminal repeat
sequences. Hum Gene Ther Methods 23: 18-28.

208



http://www.sph.uth.tmc.edu/RetNet/

Bae BI, Jayaraman D, Walsh CA. 2015. Genetic Changes Shaping the Human Brain. Dev Cell 32:
423-434.

Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS.
2009. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:
W202-208.

Baker M. 2011. Microarrays, megasynthesis. Nat Meth 8: 457-460.

Bauer DE, Kamran SC, Lessard S, Xu J, Fujiwara Y, Lin C, Shao Z, Canver MC, Smith EC,
Pinello L et al. 2013. An erythroid enhancer of BCL11A subject to genetic variation
determines fetal hemoglobin level. Science 342: 253-257.

Belinson H, Nakatani J, Babineau BA, Birnbaum RY, Ellegood J, Bershteyn M, McEvilly RJ,
Long JM, Willert K, Klein OD et al. 2016. Prenatal beta-catenin/Brn2/Thr2
transcriptional cascade regulates adult social and stereotypic behaviors. Mol Psychiatry
d0i:10.1038/mp.2015.207.

Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A, Meissner A, Kellis
M, Marra MA, Beaudet AL, Ecker JR et al. 2010. The NIH Roadmap Epigenomics
Mapping Consortium. Nat Biotechnol 28: 1045-1048.

Black JR, Clark SJ. 2016. Age-related macular degeneration: genome-wide association studies to
translation. Genet Med 18: 283-289.

Blake JA, Bult CJ, Eppig JT, Kadin JA, Richardson JE, Mouse Genome Database G. 2014. The
Mouse Genome Database: integration of and access to knowledge about the laboratory
mouse. Nucleic Acids Res 42: D810-817.

Blanchette M, Kent WJ, Riemer C, Elnitski L, Smit AF, Roskin KM, Baertsch R, Rosenbloom K,
Clawson H, Green ED et al. 2004. Aligning multiple genomic sequences with the
threaded blockset aligner. Genome Res 14: 708-715.

Blatti C, Kazemian M, Wolfe S, Brodsky M, Sinha S. 2015. Integrating motif, DNA accessibility
and gene expression data to build regulatory maps in an organism. Nucleic Acids Res 43:
3998-4012.

Bock C. 2012. Analysing and interpreting DNA methylation data. Nat Rev Genet 13: 705-719.

Booth MJ, Branco MR, Ficz G, Oxley D, Krueger F, Reik W, Balasubramanian S. 2012.
Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base
resolution. Science 336: 934-937.

Britten RJ, Davidson EH. 1971. Repetitive and non-repetitive DNA sequences and a speculation
on the origins of evolutionary novelty. Q Rev Biol 46: 111-138.

Brooks MJ, Rajasimha HK, Roger JE, Swaroop A. 2011. Next-generation sequencing facilitates
quantitative analysis of wild-type and Nrl(-/-) retinal transcriptomes. Mol Vis 17: 3034-
3054.

Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. 2013. Transposition of native
chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding
proteins and nucleosome position. Nat Methods 10: 1213-1218.

Butler JE, Kadonaga JT. 2002. The RNA polymerase 1l core promoter: a key component in the
regulation of gene expression. Genes Dev 16: 2583-2592.

Canto-Soler MV, Huang H, Romero MS, Adler R. 2008. Transcription factors CTCF and Pax6
are segregated to different cell types during retinal cell differentiation. Dev Dyn 237: 758-
767.

209



Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, Lewis S, Ami GOH, Web Presence
Working G. 2009. AmiGO: online access to ontology and annotation data. Bioinformatics
25: 288-289.

Carter-Dawson LD, LaVail MM. 1979. Rods and cones in the mouse retina. I. Structural analysis
using light and electron microscopy. J Comp Neurol 188: 245-262.

Cetin A, Komai S, Eliava M, Seeburg PH, Osten P. 2006. Stereotaxic gene delivery in the rodent
brain. Nat Protoc 1: 3166-3173.

Chadwick LH, Pertz LM, Broman KW, Bartolomei MS, Willard HF. 2006. Genetic control of X
chromosome inactivation in mice: definition of the Xce candidate interval. Genetics 173:
2103-2110.

Chen S, Wang QL, Nie Z, Sun H, Lennon G, Copeland NG, Gilbert DJ, Jenkins NA, Zack DJ.
1997. Crx, a novel Otx-like paired-homeodomain protein, binds to and transactivates
photoreceptor cell-specific genes. Neuron 19: 1017-1030.

Chen S, Zack DJ. 1996. Ret 4, a positive acting rhodopsin regulatory element identified using a
bovine retina in vitro transcription system. J Biol Chem 271: 28549-28557.

Cheng CL, Djajadi H, Molday RS. 2013. Cell-specific markers for the identification of retinal
cells by immunofluorescence microscopy. Methods Mol Biol 935: 185-199.

Clancy B, Cauller LJ. 1998. Reduction of background autofluorescence in brain sections
following immersion in sodium borohydride. J Neurosci Methods 83: 97-102.

Clark AJ, Bissinger P, Bullock DW, Damak S, Wallace R, Whitelaw CB, Yull F. 1994.
Chromosomal position effects and the modulation of transgene expression. Reprod Fertil
Dev 6: 589-598.

Claussnitzer M, Dankel SN, Kim KH, Quon G, Meuleman W, Haugen C, Glunk V, Sousa IS,
Beaudry JL, Puviindran V et al. 2015. FTO Obesity Variant Circuitry and Adipocyte
Browning in Humans. N Engl J Med 373: 895-907.

Cleary MA, Kilian K, Wang Y, Bradshaw J, Cavet G, Ge W, Kulkarni A, Paddison PJ, Chang K,
Sheth N et al. 2004. Production of complex nucleic acid libraries using highly parallel in
situ oligonucleotide synthesis. Nat Methods 1: 241-248.

Clotman F, Jacquemin P, Plumb-Rudewiez N, Pierreux CE, Van der Smissen P, Dietz HC,
Courtoy PJ, Rousseau GG, Lemaigre FP. 2005. Control of liver cell fate decision by a
gradient of TGF beta signaling modulated by Onecut transcription factors. Genes Dev 19:
1849-1854.

Constantino JN. 2011. The quantitative nature of autistic social impairment. Pediatr Res 69:
55R-62R.

Cooper GM, Shendure J. 2011. Needles in stacks of needles: finding disease-causal variants in a
wealth of genomic data. Nat Rev Genet 12: 628-640.

Corbo JC, Deuel TA, Long JM, LaPorte P, Tsai E, Wynshaw-Boris A, Walsh CA. 2002.
Doublecortin is required in mice for lamination of the hippocampus but not the neocortex.
J Neurosci 22: 7548-7557.

Corbo JC, Lawrence KA, Karlstetter M, Myers CA, Abdelaziz M, Dirkes W, Weigelt K, Seifert
M, Benes V, Fritsche LG et al. 2010. CRX ChlIP-seq reveals the cis-regulatory
architecture of mouse photoreceptors. Genome Res 20: 1512-1525.

Corbo JC, Myers CA, Lawrence KA, Jadhav AP, Cepko CL. 2007. A typology of photoreceptor
gene expression patterns in the mouse. Proc Natl Acad Sci U S A 104: 12069-12074.

Court F, Tayama C, Romanelli V, Martin-Trujillo A, Iglesias-Platas I, Okamura K, Sugahara N,
Simon C, Moore H, Harness JV et al. 2014. Genome-wide parent-of-origin DNA

210



methylation analysis reveals the intricacies of human imprinting and suggests a germline
methylation-independent mechanism of establishment. Genome Res 24: 554-5609.

Coutinho P, Pavlou S, Bhatia S, Chalmers KJ, Kleinjan DA, van Heyningen V. 2011. Discovery
and assessment of conserved Pax6 target genes and enhancers. Genome Res 21: 1349-
1359.

Craddock N, Sklar P. 2013. Genetics of bipolar disorder. Lancet 381: 1654-1662.

Cross-Disorder Group of the Psychiatric Genomics C Lee SH Ripke S Neale BM Faraone SV
Purcell SM Perlis RH Mowry BJ Thapar A Goddard ME et al. 2013. Genetic relationship
between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet 45:
984-994.

Crowley JJ, Zhabotynsky V, Sun W, Huang S, Pakatci IK, Kim Y, Wang JR, Morgan AP,
Calaway JD, Aylor DL et al. 2015. Analyses of allele-specific gene expression in highly
divergent mouse crosses identifies pervasive allelic imbalance. Nat Genet 47: 353-360.

Da Mesquita S, Ferreira AC, Sousa JC, Correia-Neves M, Sousa N, Marques F. 2016. Insights on
the pathophysiology of Alzheimer's disease: The crosstalk between amyloid pathology,
neuroinflammation and the peripheral immune system. Neurosci Biobehav Rev 68: 547-
562.

da Rocha ST, Edwards CA, Ito M, Ogata T, Ferguson-Smith AC. 2008. Genomic imprinting at
the mammalian DIk1-Dio3 domain. Trends Genet 24: 306-316.

Dalkara D, Byrne LC, Lee T, Hoffmann NV, Schaffer DV, Flannery JG. 2012. Enhanced gene
delivery to the neonatal retina through systemic administration of tyrosine-mutated
AAV9. Gene Ther 19: 176-181.

Dalke C, Graw J. 2005. Mouse mutants as models for congenital retinal disorders. Exp Eye Res
81: 503-512.

Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G,
Marth GT, Sherry ST et al. 2011. The variant call format and VVCFtools. Bioinformatics
27: 2156-2158.

Davidson EH. 2001. Genomic regulatory systems : development and evolution. Academic Press,
San Diego.

Davidson EH. 2006. The regulatory genome : gene regulatory networks in development and
evolution. Elsevier/Academic Press, Amsterdam ; Boston.

Davies G Armstrong N Bis JC Bressler J Chouraki V Giddaluru S Hofer E Ibrahim-Verbaas CA
Kirin M Lahti J et al. 2015. Genetic contributions to variation in general cognitive
function: a meta-analysis of genome-wide association studies in the CHARGE
consortium (N=53949). Mol Psychiatry 20: 183-192.

Day TP, Byrne LC, Schaffer DV, Flannery JG. 2014. Advances in AAV vector development for
gene therapy in the retina. Adv Exp Med Biol 801: 687-693.

Daya S, Berns KI. 2008. Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev
21: 583-593.

De Gobbi M, Viprakasit V, Hughes JR, Fisher C, Buckle VJ, Ayyub H, Gibbons RJ, Vernimmen
D, Yoshinaga Y, de Jong P et al. 2006. A regulatory SNP causes a human genetic disease
by creating a new transcriptional promoter. Science 312: 1215-1217.

de Melo J, Blackshaw S. 2011. In vivo electroporation of developing mouse retina. J Vis Exp
doi:10.3791/2847.

211



Degner JF, Marioni JC, Pai AA, Pickrell JK, Nkadori E, Gilad Y, Pritchard JK. 2009. Effect of
read-mapping biases on detecting allele-specific expression from RNA-sequencing data.
Bioinformatics 25: 3207-3212.

Dejager L, Libert C, Montagutelli X. 2009. Thirty years of Mus spretus: a promising future.
Trends Genet 25: 234-241.

Denham M, Dottori M. 2011. Neural differentiation of induced pluripotent stem cells. Methods
Mol Biol 793: 99-110.

Dermitzakis ET, Clark AG. 2002. Evolution of transcription factor binding sites in Mammalian
gene regulatory regions: conservation and turnover. Mol Biol Evol 19: 1114-1121.

Dickel DE, Zhu Y, Nord AS, Wylie JN, Akiyama JA, Afzal V, Plajzer-Frick I, Kirkpatrick A,
Gottgens B, Bruneau BG et al. 2014. Function-based identification of mammalian
enhancers using site-specific integration. Nat Methods 11: 566-571.

Dipple KM, McCabe ER. 2000. Phenotypes of patients with "simple” Mendelian disorders are
complex traits: thresholds, modifiers, and systems dynamics. Am J Hum Genet 66: 1729-
1735.

Dixon JR, Gorkin DU, Ren B. 2016. Chromatin Domains: The Unit of Chromosome
Organization. Mol Cell 62: 668-680.

Dixon JR, Jung I, Selvaraj S, Shen Y, Antosiewicz-Bourget JE, Lee AY, Ye Z, Kim A,
Rajagopal N, Xie W et al. 2015. Chromatin architecture reorganization during stem cell
differentiation. Nature 518: 331-336.

Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B. 2012. Topological
domains in mammalian genomes identified by analysis of chromatin interactions. Nature
485: 376-380.

Dobreva G, Chahrour M, Dautzenberg M, Chirivella L, Kanzler B, Farinas I, Karsenty G,
Grosschedl R. 2006. SATB?2 is a multifunctional determinant of craniofacial patterning
and osteoblast differentiation. Cell 125: 971-986.

Docker D, Schubach M, Menzel M, Munz M, Spaich C, Biskup S, Bartholdi D. 2014. Further
delineation of the SATB2 phenotype. Eur J Hum Genet 22: 1034-1039.

Dominguez MH, Ayoub AE, Rakic P. 2013. POU-III transcription factors (Brnl, Brn2, and Oct6)
influence neurogenesis, molecular identity, and migratory destination of upper-layer cells
of the cerebral cortex. Cereb Cortex 23: 2632-2643.

Doudna JA, Charpentier E. 2014. Genome editing. The new frontier of genome engineering with
CRISPR-Cas9. Science 346: 1258096.

Dougherty JD, Maloney SE, Wozniak DF, Rieger MA, Sonnenblick L, Coppola G, Mahieu NG,
Zhang J, Cai J, Patti GJ et al. 2013. The disruption of Celf6, a gene identified by
translational profiling of serotonergic neurons, results in autism-related behaviors. J
Neurosci 33: 2732-2753.

Dror I, Golan T, Levy C, Rohs R, Mandel-Gutfreund Y. 2015. A widespread role of the motif
environment in transcription factor binding across diverse protein families. Genome Res
25: 1268-1280.

Duttke SH, Lacadie SA, Ibrahim MM, Glass CK, Corcoran DL, Benner C, Heinz S, Kadonaga
JT, Ohler U. 2015. Human promoters are intrinsically directional. Mol Cell 57: 674-684.

Edmondson DG, Lyons GE, Martin JF, Olson EN. 1994. Mef2 gene expression marks the
cardiac and skeletal muscle lineages during mouse embryogenesis. Development 120:
1251-1263.

212



Edwards SL, Beesley J, French JD, Dunning AM. 2013. Beyond GWASs: illuminating the dark
road from association to function. Am J Hum Genet 93: 779-797.

Emerson JJ, Hsieh LC, Sung HM, Wang TY, Huang CJ, Lu HH, Lu MY, Wu SH, Li WH. 2010.
Natural selection on cis and trans regulation in yeasts. Genome Res 20: 826-836.
Enattah NS, Sahi T, Savilahti E, Terwilliger JD, Peltonen L, Jarvela 1. 2002. Identification of a

variant associated with adult-type hypolactasia. Nat Genet 30: 233-237.

Epstein JA, Glaser T, Cai JX, Jepeal L, Walton DS, Maas RL. 1994. 2 Independent and
Interactive DNA-Binding Subdomains of the Pax6 Paired Domain Are Regulated by
Alternative Splicing. Genes & Development 8: 2022-2034.

Erceg J, Saunders TE, Girardot C, Devos DP, Hufnagel L, Furlong EE. 2014. Subtle changes in
motif positioning cause tissue-specific effects on robustness of an enhancer's activity.
PLoS Genet 10: €1004060.

Evangelou E, loannidis JP. 2013. Meta-analysis methods for genome-wide association studies
and beyond. Nat Rev Genet 14: 379-389.

Falls JG, Pulford DJ, Wylie AA, Jirtle RL. 1999. Genomic imprinting: implications for human
disease. Am J Pathol 154: 635-647.

Fenouil R, Cauchy P, Koch F, Descostes N, Cabeza JZ, Innocenti C, Ferrier P, Spicuglia S, Gut
M, Gut I et al. 2012. CpG islands and GC content dictate nucleosome depletion in a
transcription-independent manner at mammalian promoters. Genome Res 22: 2399-2408.

Ficz G, Gribben JG. 2014. Loss of 5-hydroxymethylcytosine in cancer: cause or consequence?
Genomics 104: 352-357.

Findlay GM, Boyle EA, Hause RJ, Klein JC, Shendure J. 2014. Saturation editing of genomic
regions by multiplex homology-directed repair. Nature 513: 120-123.

Fogarty MP, Cannon ME, Vadlamudi S, Gaulton KJ, Mohlke KL. 2014. Identification of a
regulatory variant that binds FOXA1 and FOXAZ2 at the CDC123/CAMKI1D type 2
diabetes GWAS locus. PLoS Genet 10: €1004633.

Fossat N, Le Greneur C, Beby F, Vincent S, Godement P, Chatelain G, Lamonerie T. 2007. A
new GFP-tagged line reveals unexpected Otx2 protein localization in retinal
photoreceptors. BMC Dev Biol 7: 122.

Freund CL, Gregory-Evans CY, Furukawa T, Papaioannou M, Looser J, Ploder L, Bellingham J,
Ng D, Herbrick JA, Duncan A et al. 1997. Cone-rod dystrophy due to mutations in a
novel photoreceptor-specific homeobox gene (CRX) essential for maintenance of the
photoreceptor. Cell 91: 543-553.

Fuchs S, Nakazawa M, Maw M, Tamai M, Oguchi Y, Gal A. 1995. A homozygous 1-base pair
deletion in the arrestin gene is a frequent cause of Oguchi disease in Japanese. Nat Genet
10: 360-362.

Furukawa T, Morrow EM, Cepko CL. 1997. Crx, a novel otx-like homeobox gene, shows
photoreceptor-specific expression and regulates photoreceptor differentiation. Cell 91:
531-541.

Furukawa T, Morrow EM, Li T, Davis FC, Cepko CL. 1999. Retinopathy and attenuated
circadian entrainment in Crx-deficient mice. Nat Genet 23: 466-470.

Gaffney DJ. 2013. Global properties and functional complexity of human gene regulatory
variation. PLoS Genet 9: e1003501.

Gahl WA, Markello TC, Toro C, Fajardo KF, Sincan M, Gill F, Carlson-Donohoe H, Gropman
A, Pierson TM, Golas G et al. 2012. The National Institutes of Health Undiagnosed
Diseases Program: insights into rare diseases. Genet Med 14: 51-59.

213



Ganna A, Genovese G, Howrigan DP, Byrnes A, Kurki M, Zekavat SM, Whelan CW, Kals M,
Nivard MG, Bloemendal A et al. 2016. Ultra-rare disruptive and damaging mutations
influence educational attainment in the general population. Nat Neurosci 19: 1563-1565.

Garcia-Moreno F, Pedraza M, Di Giovannantonio LG, Di Salvio M, Lopez-Mascaraque L,
Simeone A, De Carlos JA. 2010. A neuronal migratory pathway crossing from
diencephalon to telencephalon populates amygdala nuclei. Nat Neurosci 13: 680-689.

Garfield AS, Cowley M, Smith FM, Moorwood K, Stewart-Cox JE, Gilroy K, Baker S, Xia J,
Dalley JW, Hurst LD et al. 2011. Distinct physiological and behavioural functions for
parental alleles of imprinted Grb10. Nature 469: 534-538.

Gaulton KJ Ferreira T Lee Y Raimondo A Magi R Reschen ME Mahajan A Locke A Rayner
NW Robertson N et al. 2015. Genetic fine mapping and genomic annotation defines
causal mechanisms at type 2 diabetes susceptibility loci. Nat Genet 47: 1415-1425.

Genomes Project C, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker
RE, Kang HM, Marth GT, McVean GA. 2012. An integrated map of genetic variation
from 1,092 human genomes. Nature 491: 56-65.

Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO,
Marchini JL, McCarthy S, McVean GA et al. 2015. A global reference for human genetic
variation. Nature 526: 68-74.

Ghirlando R, Felsenfeld G. 2016. CTCF: making the right connections. Genes Dev 30: 881-891.

Gibson G. 2011. Rare and common variants: twenty arguments. Nat Rev Genet 13: 135-145.

Gisselbrecht SS, Barrera LA, Porsch M, Aboukhalil A, Estep PW, 3rd, Vedenko A, Palagi A,
Kim Y, Zhu X, Busser BW et al. 2013. Highly parallel assays of tissue-specific enhancers
in whole Drosophila embryos. Nat Methods 10: 774-780.

Gleeson JG, Lin PT, Flanagan LA, Walsh CA. 1999. Doublecortin is a microtubule-associated
protein and is expressed widely by migrating neurons. Neuron 23: 257-271.

Gnirke A, Melnikov A, Maguire J, Rogov P, LeProust EM, Brockman W, Fennell T,
Giannoukos G, Fisher S, Russ C et al. 2009. Solution hybrid selection with ultra-long
oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol 27: 182-189.

Goncalves A, Leigh-Brown S, Thybert D, Stefflova K, Turro E, Flicek P, Brazma A, Odom DT,
Marioni JC. 2012. Extensive compensatory cis-trans regulation in the evolution of mouse
gene expression. Genome Res 22: 2376-2384.

Grant CE, Bailey TL, Noble WS. 2011. FIMO: scanning for occurrences of a given motif.
Bioinformatics 27: 1017-1018.

Graur D, Zheng Y, Price N, Azevedo RB, Zufall RA, Elhaik E. 2013. On the immortality of
television sets: "function™ in the human genome according to the evolution-free gospel of
ENCODE. Genome Biol Evol 5: 578-590.

Greenbaum D, Colangelo C, Williams K, Gerstein M. 2003. Comparing protein abundance and
MRNA expression levels on a genomic scale. Genome Biol 4: 117.

Grieger JC, Choi VW, Samulski RJ. 2006. Production and characterization of adeno-associated
viral vectors. Nat Protoc 1: 1412-1428.

Gross DS, Garrard WT. 1988. Nuclease hypersensitive sites in chromatin. Annu Rev Biochem 57:
159-197.

Grubb SC, Bult CJ, Bogue MA. 2014. Mouse phenome database. Nucleic Acids Res 42: D825-
834.

Guenther CA, Tasic B, Luo L, Bedell MA, Kingsley DM. 2014. A molecular basis for classic
blond hair color in Europeans. Nat Genet 46: 748-752.

214



Guo Y, Xu Q, Canzio D, Shou J, Li J, Gorkin DU, Jung I, Wu H, Zhai Y, Tang Y et al. 2015.
CRISPR Inversion of CTCF Sites Alters Genome Topology and Enhancer/Promoter
Function. Cell 162: 900-910.

Haider NB, Zhang W, Hurd R, Ikeda A, Nystuen AM, Naggert JK, Nishina PM. 2008. Mapping
of genetic modifiers of Nr2e3 rd7/rd7 that suppress retinal degeneration and restore blue
cone cells to normal quantity. Mamm Genome 19: 145-154.

Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA. 2005. Online Mendelian
Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders.
Nucleic Acids Res 33: D514-517.

Hao H, Kim DS, Klocke B, Johnson KR, Cui K, Gotoh N, Zang C, Gregorski J, Gieser L, Peng
W et al. 2012. Transcriptional regulation of rod photoreceptor homeostasis revealed by in
vivo NRL targetome analysis. PLoS Genet 8: €1002649.

Harismendy O, Notani D, Song X, Rahim NG, Tanasa B, Heintzman N, Ren B, Fu XD, Topol EJ,
Rosenfeld MG et al. 2011. 9p21 DNA variants associated with coronary artery disease
impair interferon-gamma signalling response. Nature 470: 264-268.

Harrison PJ. 2016. Molecular neurobiological clues to the pathogenesis of bipolar disorder. Curr
Opin Neurobiol 36: 1-6.

Hayden EC. 2014. Technology: The $1,000 genome. Nature 507: 294-295.

Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass
CK. 2010. Simple combinations of lineage-determining transcription factors prime cis-
regulatory elements required for macrophage and B cell identities. Mol Cell 38: 576-589.

Heinz S, Romanoski CE, Benner C, Glass CK. 2015. The selection and function of cell type-
specific enhancers. Nat Rev Mol Cell Biol 16: 144-154.

Herculano-Houzel S. 2012. The remarkable, yet not extraordinary, human brain as a scaled-up
primate brain and its associated cost. Proc Natl Acad Sci U S A 109 Suppl 1: 10661-
10668.

Herweijer H, Wolff JA. 2007. Gene therapy progress and prospects: hydrodynamic gene delivery.
Gene Ther 14: 99-107.

Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-Andre V, Sigova AA, Hoke HA, Young RA. 2013.
Super-enhancers in the control of cell identity and disease. Cell 155: 934-947.

Hogan B, Beddington R, Costantini F, Lacy E. 1994. Manipulating the mouse embryo: a
laboratory manual. Plainview (NY): Cold Spring Harbor Laboratory Press Google
Scholar.

Hong JW, Hendrix DA, Levine MS. 2008. Shadow enhancers as a source of evolutionary novelty.
Science 321: 1314.

Hou L Bergen SE Akula N Song J Hultman CM Landen M Adli M Alda M Ardau R Arias B et
al. 2016. Genome-wide association study of 40,000 individuals identifies two novel loci
associated with bipolar disorder. Hum Mol Genet 25: 3383-3394.

Howard HC, Knoppers BM, Cornel MC, Wright Clayton E, Senecal K, Borry P, European
Society of Human G, Platform PGIP, Human Genome O, the PHGF. 2015. Whole-
genome sequencing in newborn screening? A statement on the continued importance of
targeted approaches in newborn screening programmes. Eur J Hum Genet 23: 1593-1600.

Hsiau TH, Diaconu C, Myers CA, Lee J, Cepko CL, Corbo JC. 2007. The cis-regulatory logic of
the mammalian photoreceptor transcriptional network. PLoS One 2: e643.

215



Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen AE, Melton DA. 2008.
Induction of pluripotent stem cells by defined factors is greatly improved by small-
molecule compounds. Nat Biotechnol 26: 795-797.

Hughes AL, Rando OJ. 2014. Mechanisms underlying nucleosome positioning in vivo. Annu Rev
Biophys 43: 41-63.

Inagaki K, Fuess S, Storm TA, Gibson GA, McTiernan CF, Kay MA, Nakai H. 2006. Robust
systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer
superior to that of AAVS8. Mol Ther 14: 45-53.

Inoue F, Kircher M, Martin B, Cooper GM, Witten DM, McManus MT, Ahituv N, Shendure J.
2017. A systematic comparison reveals substantial differences in chromosomal versus
episomal encoding of enhancer activity. Genome Res 27: 38-52.

Jacob F, Monod J. 1961. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol
3: 318-356.

Jelcick AS, Yuan Y, Leehy BD, Cox LC, Silveira AC, Qiu F, Schenk S, Sachs AJ, Morrison MA,
Nystuen AM et al. 2011. Genetic variations strongly influence phenotypic outcome in the
mouse retina. PLoS One 6: e21858.

Jeon CJ, Strettoi E, Masland RH. 1998. The major cell populations of the mouse retina. J
Neurosci 18: 8936-8946.

Jirtle RL. 2012. Geneimprint.

Jolma A, Yan J, Whitington T, Toivonen J, Nitta KR, Rastas P, Morgunova E, Enge M, Taipale
M, Wei G et al. 2013. DNA-binding specificities of human transcription factors. Cell 152:
327-339.

Joly S, Pernet V, Samardzija M, Grimm C. 2011. Pax6-positive Muller glia cells express cell
cycle markers but do not proliferate after photoreceptor injury in the mouse retina. Glia
59: 1033-1046.

Kandel E. 2012. Art, Mind And Brain Intersect In Kandel's Vienna. In Science Friday, (ed. |
Flatow).

Kaneda M, Okano M, Hata K, Sado T, Tsujimoto N, Li E, Sasaki H. 2004. Essential role for de
novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429:
900-903.

Karolchik D, Barber GP, Casper J, Clawson H, Cline MS, Diekhans M, Dreszer TR, Fujita PA,
Guruvadoo L, Haeussler M et al. 2014. The UCSC Genome Browser database: 2014
update. Nucleic Acids Res 42: D764-770.

Karra D, Dahm R. 2010. Transfection techniques for neuronal cells. J Neurosci 30: 6171-6177.

Kasher PR, Schertz KE, Thomas M, Jackson A, Annunziata S, Ballesta-Martinez MJ, Campeau
PM, Clayton PE, Eaton JL, Granata T et al. 2016. Small 6q16.1 Deletions Encompassing
POU3F2 Cause Susceptibility to Obesity and Variable Developmental Delay with
Intellectual Disability. Am J Hum Genet 98: 363-372.

Kautzmann MA, Kim DS, Felder-Schmittbuhl MP, Swaroop A. 2011. Combinatorial regulation
of photoreceptor differentiation factor, neural retina leucine zipper gene NRL, revealed
by in vivo promoter analysis. J Biol Chem 286: 28247-28255.

Keane TM, Goodstadt L, Danecek P, White MA, Wong K, Yalcin B, Heger A, Agam A, Slater
G, Goodson M et al. 2011. Mouse genomic variation and its effect on phenotypes and
gene regulation. Nature 477: 289-294.

216



Kellis M, Wold B, Snyder MP, Bernstein BE, Kundaje A, Marinov GK, Ward LD, Birney E,
Crawford GE, Dekker J et al. 2014. Defining functional DNA elements in the human
genome. Proc Natl Acad Sci U S A 111: 6131-6138.

Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D. 2002. The
human genome browser at UCSC. Genome Res 12: 996-1006.

Kikuta H, Laplante M, Navratilova P, Komisarczuk AZ, Engstrom PG, Fredman D, Akalin A,
Caccamo M, Sealy I, Howe K et al. 2007. Genomic regulatory blocks encompass
multiple neighboring genes and maintain conserved synteny in vertebrates. Genome Res
17: 545-555.

Kim DS, Matsuda T, Cepko CL. 2008a. A core paired-type and POU homeodomain-containing
transcription factor program drives retinal bipolar cell gene expression. J Neurosci 28:
7748-7764.

Kim EJ, Battiste J, Nakagawa Y, Johnson JE. 2008b. Ascl1 (Mash1l) lineage cells contribute to
discrete cell populations in CNS architecture. Mol Cell Neurosci 38: 595-606.

Kim TK, Hemberg M, Gray JM. 2015. Enhancer RNAs: a class of long noncoding RNAs
synthesized at enhancers. Cold Spring Harb Perspect Biol 7: a018622.

Kim TK, Shiekhattar R. 2015. Architectural and Functional Commonalities between Enhancers
and Promoters. Cell 162: 948-9509.

Kim YJ, Cecchini KR, Kim TH. 2011. Conserved, developmentally regulated mechanism
couples chromosomal looping and heterochromatin barrier activity at the homeobox gene
A locus. Proc Natl Acad Sci U S A 108: 7391-7396.

King MC, Wilson AC. 1975. Evolution at two levels in humans and chimpanzees. Science 188:
107-116.

Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J. 2014. A general framework
for estimating the relative pathogenicity of human genetic variants. Nat Genet 46: 310-
315.

Kizilyaprak C, Spehner D, Devys D, Schultz P. 2010. In vivo chromatin organization of mouse
rod photoreceptors correlates with histone modifications. PLoS One 5: e11039.

Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP,
Mane SM, Mayne ST et al. 2005. Complement factor H polymorphism in age-related
macular degeneration. Science 308: 385-389.

Kleinjan DA, van Heyningen V. 2005. Long-range control of gene expression: emerging
mechanisms and disruption in disease. Am J Hum Genet 76: 8-32.

Koenen KC, Moffitt TE, Roberts AL, Martin LT, Kubzansky L, Harrington H, Poulton R, Caspi
A. 2009. Childhood IQ and adult mental disorders: a test of the cognitive reserve
hypothesis. Am J Psychiatry 166: 50-57.

Kozmik Z, Czerny T, Busslinger M. 1997. Alternatively spliced insertions in the paired domain
restrict the DNA sequence specificity of Pax6 and Pax8. EMBO J 16: 6793-6803.

Kriaucionis S, Heintz N. 2009. The nuclear DNA base 5-hydroxymethylcytosine is present in
Purkinje neurons and the brain. Science 324: 929-930.

Krueger F. Trim Galore!

Kryukov GV, Schmidt S, Sunyaev S. 2005. Small fitness effect of mutations in highly conserved
non-coding regions. Hum Mol Genet 14: 2221-2229.

Kulaeva Ol, Nizovtseva EV, Polikanov YS, Ulianov SV, Studitsky VM. 2012. Distant activation
of transcription: mechanisms of enhancer action. Mol Cell Biol 32: 4892-4897.

217



Kulzer JR, Stitzel ML, Morken MA, Huyghe JR, Fuchsberger C, Kuusisto J, Laakso M, Boehnke
M, Collins FS, Mohlke KL. 2014. A common functional regulatory variant at a type 2
diabetes locus upregulates ARAP1 expression in the pancreatic beta cell. Am J Hum
Genet 94: 186-197.

Kumar M, Keller B, Makalou N, Sutton RE. 2001. Systematic determination of the packaging
limit of lentiviral vectors. Hum Gene Ther 12: 1893-1905.

Kwasnieski JC, Fiore C, Chaudhari HG, Cohen BA. 2014. High-throughput functional testing of
ENCODE segmentation predictions. Genome Res 24: 1595-1602.

Kwasnieski JC, Mogno I, Myers CA, Corbo JC, Cohen BA. 2012. Complex effects of nucleotide
variants in a mammalian cis-regulatory element. Proc Natl Acad Sci U S A 109: 19498-
19503.

Lam MT, Li W, Rosenfeld MG, Glass CK. 2014. Enhancer RNAs and regulated transcriptional
programs. Trends Biochem Sci 39: 170-182.

Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, Homfray T,
Penninger JM, Jackson AP, Knoblich JA. 2013. Cerebral organoids model human brain
development and microcephaly. Nature 501: 373-379.

Langevin LM, Mattar P, Scardigli R, Roussigne M, Logan C, Blader P, Schuurmans C. 2007.
Validating in utero electroporation for the rapid analysis of gene regulatory elements in
the murine telencephalon. Dev Dyn 236: 1273-1286.

Langmann T, Di Gioia SA, Rau I, Stohr H, Maksimovic NS, Corbo JC, Renner AB, Zrenner E,
Kumaramanickavel G, Karlstetter M et al. 2010. Nonsense mutations in FAM161A cause
RP28-associated recessive retinitis pigmentosa. Am J Hum Genet 87: 376-381.

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9:
357-359.

Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-efficient alignment
of short DNA sequences to the human genome. Genome Biol 10: R25.

Lee H, O'Connor BD, Merriman B, Funari VA, Homer N, Chen Z, Cohn DH, Nelson SF. 20009.
Improving the efficiency of genomic loci capture using oligonucleotide arrays for high
throughput resequencing. BMC Genomics 10: 646.

Lee J, Myers CA, Williams N, Abdelaziz M, Corbo JC. 2010. Quantitative fine-tuning of
photoreceptor cis-regulatory elements through affinity modulation of transcription factor
binding sites. Gene Ther 17: 1390-1399.

Leoyklang P, Suphapeetiporn K, Siriwan P, Desudchit T, Chaowanapanja P, Gahl WA,
Shotelersuk V. 2007. Heterozygous nonsense mutation SATB2 associated with cleft
palate, osteoporosis, and cognitive defects. Hum Mutat 28: 732-738.

Leung D, Jung I, Rajagopal N, Schmitt A, Selvaraj S, Lee AY, Yen CA, Lin S, Lin Y, Qiu Y et
al. 2015. Integrative analysis of haplotype-resolved epigenomes across human tissues.
Nature 518: 350-354.

Levine M, Davidson EH. 2005. Gene regulatory networks for development. Proc Natl Acad Sci
U S A 102: 4936-4942.

Levine M, Vicente C. 2015. An interview with Mike Levine. Development 142: 3453-3455.

Levo M, Segal E. 2014. In pursuit of design principles of regulatory sequences. Nat Rev Genet
15: 453-468.

Li G, Ruan X, Auerbach RK, Sandhu KS, Zheng M, Wang P, Poh HM, Goh Y, Lim J, Zhang J et
al. 2012. Extensive promoter-centered chromatin interactions provide a topological basis
for transcription regulation. Cell 148: 84-98.

218



Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R,
Genome Project Data Processing S. 2009. The Sequence Alignment/Map format and
SAMtools. Bioinformatics 25: 2078-2079.

Libbrecht MW, Noble WS. 2015. Machine learning applications in genetics and genomics. Nat
Rev Genet 16: 321-332.

Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, Lucero J, Huang Y,
Dwork AJ, Schultz MD et al. 2013. Global epigenomic reconfiguration during
mammalian brain development. Science 341: 1237905.

Livesey FJ, Cepko CL. 2001. Vertebrate neural cell-fate determination: lessons from the retina.
Nat Rev Neurosci 2: 109-118.

Loh PR, Bhatia G, Gusev A, Finucane HK, Bulik-Sullivan BK, Pollack SJ, Schizophrenia
Working Group of Psychiatric Genomics C, de Candia TR, Lee SH, Wray NR et al. 2015.
Contrasting genetic architectures of schizophrenia and other complex diseases using fast
variance-components analysis. Nat Genet 47: 1385-1392.

Lombardo A, Cesana D, Genovese P, Di Stefano B, Provasi E, Colombo DF, Neri M, Magnani Z,
Cantore A, Lo Riso P et al. 2011. Site-specific integration and tailoring of cassette design
for sustainable gene transfer. Nat Methods 8: 861-869.

London A, Benhar I, Schwartz M. 2013. The retina as a window to the brain-from eye research
to CNS disorders. Nat Rev Neurol 9: 44-53.

Luciano M, Hansell NK, Lahti J, Davies G, Medland SE, Raikkonen K, Tenesa A, Widen E,
McGhee KA, Palotie A et al. 2011. Whole genome association scan for genetic
polymorphisms influencing information processing speed. Biol Psychol 86: 193-202.

Lui JH, Hansen DV, Kriegstein AR. 2011. Development and evolution of the human neocortex.
Cell 146: 18-36.

Maletic V, Raison C. 2014. Integrated neurobiology of bipolar disorder. Front Psychiatry 5: 98.

Man TK, Stormo GD. 2001. Non-independence of Mnt repressor-operator interaction determined
by a new quantitative multiple fluorescence relative affinity (QUMFRA) assay. Nucleic
Acids Res 29: 2471-2478.

Manuel MN, Mi D, Mason JO, Price DJ. 2015. Regulation of cerebral cortical neurogenesis by
the Pax6 transcription factor. Front Cell Neurosci 9: 70.

Mardis ER. 2011. A decade's perspective on DNA sequencing technology. Nature 470: 198-203.

Marquardt T, Ashery-Padan R, Andrejewski N, Scardigli R, Guillemot F, Gruss P. 2001. Pax®6 is
required for the multipotent state of retinal progenitor cells. Cell 105: 43-55.

Masland RH. 2012. The neuronal organization of the retina. Neuron 76: 266-280.

Massari ME, Murre C. 2000. Helix-loop-helix proteins: regulators of transcription in eucaryotic
organisms. Mol Cell Biol 20: 429-440.

Matsuda T, Cepko CL. 2004. Electroporation and RNA interference in the rodent retina in vivo
and in vitro. Proc Natl Acad Sci U S A 101: 16-22.

Matsuda T, Cepko CL. 2008. Analysis of gene function in the retina. Methods Mol Biol 423:
259-278.

Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, Reynolds AP, Sandstrom
R, Qu H, Brody J et al. 2012a. Systematic localization of common disease-associated
variation in regulatory DNA. Science 337: 1190-1195.

Maurano MT, Wang H, Kutyavin T, Stamatoyannopoulos JA. 2012b. Widespread site-dependent
buffering of human regulatory polymorphism. PLoS Genet 8: €1002599.

219



McCarty DM. 2008. Self-complementary AAV vectors; advances and applications. Mol Ther 16:
1648-1656.

McCarty DM, Young SM, Jr., Samulski RJ. 2004. Integration of adeno-associated virus (AAV)
and recombinant AAV vectors. Annu Rev Genet 38: 819-845.

McEvilly RJ, de Diaz MO, Schonemann MD, Hooshmand F, Rosenfeld MG. 2002.
Transcriptional regulation of cortical neuron migration by POU domain factors. Science
295: 1528-1532.

McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, Wenger AM, Bejerano G.
2010. GREAT improves functional interpretation of cis-regulatory regions. Nat
Biotechnol 28: 495-501.

McManus CJ, Coolon JD, Duff MO, Eipper-Mains J, Graveley BR, Wittkopp PJ. 2010.
Regulatory divergence in Drosophila revealed by mRNA-seq. Genome Res 20: 816-825.

McManus CJ, May GE, Spealman P, Shteyman A. 2014. Ribosome profiling reveals post-
transcriptional buffering of divergent gene expression in yeast. Genome Res 24: 422-430.

Mears AJ, Kondo M, Swain PK, Takada Y, Bush RA, Saunders TL, Sieving PA, Swaroop A.
2001. Nrl is required for rod photoreceptor development. Nat Genet 29: 447-452.

Melnikov A, Murugan A, Zhang X, Tesileanu T, Wang L, Rogov P, Feizi S, Gnirke A, Callan
CG, Jr., Kinney JB et al. 2012. Systematic dissection and optimization of inducible
enhancers in human cells using a massively parallel reporter assay. Nat Biotechnol 30:
271-277.

Merbs SL, Khan MA, Hackler L, Jr., Oliver VF, Wan J, Qian J, Zack DJ. 2012. Cell-specific
DNA methylation patterns of retina-specific genes. PLoS One 7: e32602.

Mercer TR, Edwards SL, Clark MB, Neph SJ, Wang H, Stergachis AB, John S, Sandstrom R, Li
G, Sandhu KS et al. 2013. DNase I-hypersensitive exons colocalize with promoters and
distal regulatory elements. Nat Genet 45: 852-859.

Merikangas KR, Jin R, He JP, Kessler RC, Lee S, Sampson NA, Viana MC, Andrade LH, Hu C,
Karam EG et al. 2011. Prevalence and correlates of bipolar spectrum disorder in the
world mental health survey initiative. Arch Gen Psychiatry 68: 241-251.

Mertes F, Elsharawy A, Sauer S, van Helvoort JM, van der Zaag PJ, Franke A, Nilsson M,
Lehrach H, Brookes AJ. 2011. Targeted enrichment of genomic DNA regions for next-
generation sequencing. Brief Funct Genomics 10: 374-386.

Mi H, Lazareva-Ulitsky B, Loo R, Kejariwal A, Vandergriff J, Rabkin S, Guo N, Muruganujan
A, Doremieux O, Campbell MJ et al. 2005. The PANTHER database of protein families,
subfamilies, functions and pathways. Nucleic Acids Res 33: D284-288.

Michelfelder S, Trepel M. 2009. Adeno-associated viral vectors and their redirection to cell-type
specific receptors. Adv Genet 67: 29-60.

Milutinovic S, D'Alessio AC, Detich N, Szyf M. 2007. Valproate induces widespread epigenetic
reprogramming which involves demethylation of specific genes. Carcinogenesis 28: 560-
571.

Mingozzi F, High KA. 2011. Therapeutic in vivo gene transfer for genetic disease using AAV:
progress and challenges. Nat Rev Genet 12: 341-355.

Mo A, Luo C, Davis FP, Mukamel EA, Henry GL, Nery JR, Urich MA, Picard S, Lister R, Eddy
SR et al. 2016. Epigenomic landscapes of retinal rods and cones. Elife 5.

Mogno I, Kwasnieski JC, Cohen BA. 2013. Massively parallel synthetic promoter assays reveal
the in vivo effects of binding site variants. Genome Res 23: 1908-1915.

220



Molyneaux BJ, Arlotta P, Menezes JR, Macklis JD. 2007. Neuronal subtype specification in the
cerebral cortex. Nat Rev Neurosci 8: 427-437.

Mongrain V, La Spada F, Curie T, Franken P. 2011. Sleep loss reduces the DNA-binding of
BMAL1, CLOCK, and NPAS?2 to specific clock genes in the mouse cerebral cortex.
PLoS One 6: £26622.

Montana CL, Kolesnikov AV, Shen SQ, Myers CA, Kefalov VJ, Corbo JC. 2013.
Reprogramming of adult rod photoreceptors prevents retinal degeneration. Proc Natl
Acad Sci U S A 110: 1732-1737.

Montana CL, Lawrence KA, Williams NL, Tran NM, Peng GH, Chen S, Corbo JC. 2011a.
Transcriptional regulation of neural retina leucine zipper (Nrl), a photoreceptor cell fate
determinant. J Biol Chem 286: 36921-36931.

Montana CL, Myers CA, Corbo JC. 2011b. Quantifying the activity of cis-regulatory elements in
the mouse retina by explant electroporation. J Vis Exp doi:10.3791/2821.

Moore T, Haig D. 1991. Genomic imprinting in mammalian development: a parental tug-of-war.
Trends Genet 7: 45-49.

Morison IM, Paton CJ, Cleverley SD. 2001. The imprinted gene and parent-of-origin effect
database. Nucleic Acids Res 29: 275-276.

Mortimer I, Tam P, MacLachlan I, Graham RW, Saravolac EG, Joshi PB. 1999. Cationic lipid-
mediated transfection of cells in culture requires mitotic activity. Gene Ther 6: 403-411.

Mott R, Yuan W, Kaisaki P, Gan X, Cleak J, Edwards A, Baud A, Flint J. 2014. The architecture
of parent-of-origin effects in mice. Cell 156: 332-342.

Mubhleisen TW, Leber M, Schulze TG, Strohmaier J, Degenhardt F, Treutlein J, Mattheisen M,
Forstner AJ, Schumacher J, Breuer R et al. 2014. Genome-wide association study reveals
two new risk loci for bipolar disorder. Nat Commun 5: 3339.

Mullen RJ, Buck CR, Smith AM. 1992. NeuN, a neuronal specific nuclear protein in vertebrates.
Development 116: 201-211.

Muller N, Weidinger E, Leitner B, Schwarz MJ. 2015. The role of inflammation in schizophrenia.
Front Neurosci 9: 372,

Murtha M, Tokcaer-Keskin Z, Tang Z, Strino F, Chen X, Wang Y, Xi X, Basilico C, Brown S,
Bonneau R et al. 2014. FIREWACh: high-throughput functional detection of
transcriptional regulatory modules in mammalian cells. Nat Methods 11: 559-565.

Nakai S, Kawano H, Yudate T, Nishi M, Kuno J, Nagata A, Jishage K, Hamada H, Fujii H,
Kawamura K et al. 1995. The POU domain transcription factor Brn-2 is required for the
determination of specific neuronal lineages in the hypothalamus of the mouse. Genes Dev
9: 3109-3121.

Nam J, Davidson EH. 2012. Barcoded DNA-tag reporters for multiplex cis-regulatory analysis.
PLoS One 7: €35934.

Nam JM, Dong P, Tarpine R, Istrail S, Davidson EH. 2010. Functional cis-regulatory genomics
for systems biology. Proceedings of the National Academy of Sciences of the United
States of America 107: 3930-3935.

Nasonkin 10, Lazo K, Hambright D, Brooks M, Fariss R, Swaroop A. 2011. Distinct nuclear
localization patterns of DNA methyltransferases in developing and mature mammalian
retina. J Comp Neurol 519: 1914-1930.

Natarajan A, Yardimci GG, Sheffield NC, Crawford GE, Ohler U. 2012. Predicting cell-type-
specific gene expression from regions of open chromatin. Genome Res 22: 1711-1722.

221



Nathans J, Davenport CM, Maumenee IH, Lewis RA, Hejtmancik JF, Litt M, Lovrien E,
Weleber R, Bachynski B, Zwas F et al. 1989. Molecular genetics of human blue cone
monochromacy. Science 245: 831-838.

Nativio R, Wendt KS, Ito Y, Huddleston JE, Uribe-Lewis S, Woodfine K, Krueger C, Reik W,
Peters JM, Murrell A. 2009. Cohesin is required for higher-order chromatin conformation
at the imprinted IGF2-H19 locus. PL0oS Genet 5: e1000739.

Nayak S, Herzog RW. 2010. Progress and prospects: immune responses to viral vectors. Gene
Ther 17: 295-304.

Network, Pathway Analysis Subgroup of Psychiatric Genomics C. 2015. Psychiatric genome-
wide association study analyses implicate neuronal, immune and histone pathways. Nat
Neurosci 18: 199-209.

Ng PC, Henikoff S. 2006. Predicting the effects of amino acid substitutions on protein function.
Annu Rev Genomics Hum Genet 7: 61-80.

Nguyen TA, Jones RD, Snavely AR, Pfenning AR, Kirchner R, Hemberg M, Gray JM. 2016.
High-throughput functional comparison of promoter and enhancer activities. Genome Res
26: 1023-1033.

Nica AC, Parts L, Glass D, Nisbet J, Barrett A, Sekowska M, Travers M, Potter S, Grundberg E,
Small K et al. 2011. The architecture of gene regulatory variation across multiple human
tissues: the MUTHER study. PLoS Genet 7: €1002003.

Nichols AJ, O'Dell RS, Powrozek TA, Olson EC. 2013. Ex utero electroporation and whole
hemisphere explants: a simple experimental method for studies of early cortical
development. J Vis Exp doi:10.3791/50271.

Nieman BJ, Lerch JP, Bock NA, Chen XJ, Sled JG, Henkelman RM. 2007. Mouse behavioral
mutants have neuroimaging abnormalities. Hum Brain Mapp 28: 567-575.

Ninkovic J, Steiner-Mezzadri A, Jawerka M, Akinci U, Masserdotti G, Petricca S, Fischer J, von
Holst A, Beckers J, Lie CD et al. 2013. The BAF complex interacts with Pax6 in adult
neural progenitors to establish a neurogenic cross-regulatory transcriptional network. Cell
Stem Cell 13: 403-418.

Nishida A, Furukawa A, Koike C, Tano Y, Aizawa S, Matsuo |, Furukawa T. 2003. Otx2
homeobox gene controls retinal photoreceptor cell fate and pineal gland development.
Nat Neurosci 6: 1255-1263.

Nord AS, Blow MJ, Attanasio C, Akiyama JA, Holt A, Hosseini R, Phouanenavong S, Plajzer-
Frick I, Shoukry M, Afzal V et al. 2013. Rapid and pervasive changes in genome-wide
enhancer usage during mammalian development. Cell 155: 1521-1531.

Nord AS, Pattabiraman K, Visel A, Rubenstein JL. 2015. Genomic Perspectives of
Transcriptional Regulation in Forebrain Development. Neuron 85: 27-47.

Oh EC, Cheng H, Hao H, Jia L, Khan NW, Swaroop A. 2008. Rod differentiation factor NRL
activates the expression of nuclear receptor NR2E3 to suppress the development of cone
photoreceptors. Brain Res 1236: 16-29.

Okaty BW, Sugino K, Nelson SB. 2011. Cell type-specific transcriptomics in the brain. J
Neurosci 31: 6939-6943.

Okbay A Beauchamp JP Fontana MA Lee JJ Pers TH Rietveld CA Turley P Chen GB Emilsson
V Meddens SF et al. 2016. Genome-wide association study identifies 74 loci associated
with educational attainment. Nature 533: 539-542.

222



Oldridge DA, Wood AC, Weichert-Leahey N, Crimmins I, Sussman R, Winter C, McDaniel LD,
Diamond M, Hart LS, Zhu S et al. 2015. Genetic predisposition to neuroblastoma
mediated by a LMOL1 super-enhancer polymorphism. Nature 528: 418-421.

Olds LC, Sibley E. 2003. Lactase persistence DNA variant enhances lactase promoter activity in
vitro: functional role as a cis regulatory element. Hum Mol Genet 12: 2333-2340.

Oliver G, Mailhos A, Wehr R, Copeland NG, Jenkins NA, Gruss P. 1995. Six3, a murine
homologue of the sine oculis gene, demarcates the most anterior border of the developing
neural plate and is expressed during eye development. Development 121: 4045-4055.

Ostuni R, Piccolo V, Barozzi I, Polletti S, Termanini A, Bonifacio S, Curina A, Prosperini E,
Ghisletti S, Natoli G. 2013. Latent enhancers activated by stimulation in differentiated
cells. Cell 152: 157-171.

Osumi N, Shinohara H, Numayama-Tsuruta K, Maekawa M. 2008. Concise review: Pax6
transcription factor contributes to both embryonic and adult neurogenesis as a
multifunctional regulator. Stem Cells 26: 1663-1672.

Ozgul RK, Siemiatkowska AM, Yucel D, Myers CA, Collin RW, Zonneveld MN, Beryozkin A,
Banin E, Hoyng CB, van den Born LI et al. 2011. Exome sequencing and cis-regulatory
mapping identify mutations in MAK, a gene encoding a regulator of ciliary length, as a
cause of retinitis pigmentosa. Am J Hum Genet 89: 253-264.

Pabba M. 2013. Evolutionary development of the amygdaloid complex. Front Neuroanat 7: 27.

Pasca AM, Sloan SA, Clarke LE, Tian Y, Makinson CD, Huber N, Kim CH, Park JY, O'Rourke
NA, Nguyen KD et al. 2015. Functional cortical neurons and astrocytes from human
pluripotent stem cells in 3D culture. Nat Methods 12: 671-678.

Patwardhan RP, Hiatt JB, Witten DM, Kim MJ, Smith RP, May D, Lee C, Andrie JM, Lee SI,
Cooper GM et al. 2012. Massively parallel functional dissection of mammalian enhancers
in vivo. Nat Biotechnol 30: 265-270.

Patwardhan RP, Lee C, Litvin O, Young DL, Pe'er D, Shendure J. 2009. High-resolution analysis
of DNA regulatory elements by synthetic saturation mutagenesis. Nat Biotechnol 27:
1173-1175.

Penaud-Budloo M, Le Guiner C, Nowrouzi A, Toromanoff A, Cherel Y, Chenuaud P, Schmidt
M, von Kalle C, Rolling F, Moullier P et al. 2008. Adeno-associated virus vector
genomes persist as episomal chromatin in primate muscle. J Virol 82: 7875-7885.

Pennacchio LA, Ahituv N, Moses AM, Prabhakar S, Nobrega MA, Shoukry M, Minovitsky S,
Dubchak I, Holt A, Lewis KD et al. 2006. In vivo enhancer analysis of human conserved
non-coding sequences. Nature 444: 499-502.

Perry W, Minassian A, Feifel D, Braff DL. 2001. Sensorimotor gating deficits in bipolar disorder
patients with acute psychotic mania. Biol Psychiatry 50: 418-424.

Pfeifer GP, Szabo PE. 2009. 5-hydroxymethylcytosine, a modified mammalian DNA base with a
potential regulatory role. Epigenomics 1: 21-22.

Phillips JE, Corces VG. 2009. CTCF: master weaver of the genome. Cell 137: 1194-1211.

Pickrell JK, Berisa T, Liu JZ, Segurel L, Tung JY, Hinds DA. 2016. Detection and interpretation
of shared genetic influences on 42 human traits. Nat Genet 48: 709-717.

Plank JL, Dean A. 2014. Enhancer function: mechanistic and genome-wide insights come
together. Mol Cell 55: 5-14.

Prado-Martinez J, Sudmant PH, Kidd JM, Li H, Kelley JL, Lorente-Galdos B, Veeramah KR,
Woerner AE, O'Connor TD, Santpere G et al. 2013. Great ape genetic diversity and
population history. Nature 499: 471-475.

223



Price AL, Spencer CC, Donnelly P. 2015. Progress and promise in understanding the genetic
basis of common diseases. Proc Biol Sci 282: 20151684.

Prickett AR, Oakey RJ. 2012. A survey of tissue-specific genomic imprinting in mammals. Mol
Genet Genomics 287: 621-630.

Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic
features. Bioinformatics 26: 841-842.

Rainger JK, Bhatia S, Bengani H, Gautier P, Rainger J, Pearson M, Ansari M, Crow J,
Mehendale F, Palinkasova B et al. 2014. Disruption of SATB2 or its long-range cis-
regulation by SOX9 causes a syndromic form of Pierre Robin sequence. Hum Mol Genet
23: 2569-2579.

Raivich G, Behrens A. 2006. Role of the AP-1 transcription factor c-Jun in developing, adult and
injured brain. Prog Neurobiol 78: 347-363.

Ramon y Cajal S. 1922. Charlas de café: Pensamientos, anécdotas y confidencias. Imprenta de
Juan Pueyo, Madrid.

Rands CM, Meader S, Ponting CP, Lunter G. 2014. 8.2% of the Human genome is constrained:
variation in rates of turnover across functional element classes in the human lineage.
PLoS Genet 10: e1004525.

Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov 1D, Robinson JT, Sanborn AL,
Machol I, Omer AD, Lander ES et al. 2014. A 3D map of the human genome at kilobase
resolution reveals principles of chromatin looping. Cell 159: 1665-1680.

Reik W, Walter J. 2001. Genomic imprinting: parental influence on the genome. Nat Rev Genet
2: 21-32.

Reynolds N, O'Shaughnessy A, Hendrich B. 2013. Transcriptional repressors: multifaceted
regulators of gene expression. Development 140: 505-512.

Rietveld CA, Esko T, Davies G, Pers TH, Turley P, Benyamin B, Chabris CF, Emilsson V,
Johnson AD, Lee JJ et al. 2014. Common genetic variants associated with cognitive
performance identified using the proxy-phenotype method. Proc Natl Acad Sci U S A 111:
13790-13794.

Rietveld CA Medland SE Derringer J Yang J Esko T Martin NW Westra HJ Shakhbazov K
Abdellaoui A Agrawal A et al. 2013. GWAS of 126,559 individuals identifies genetic
variants associated with educational attainment. Science 340: 1467-1471.

Roadmap Epigenomics C, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-
Moussavi A, Kheradpour P, Zhang Z, Wang J et al. 2015. Integrative analysis of 111
reference human epigenomes. Nature 518: 317-330.

Roberts MR, Srinivas M, Forrest D, Morreale de Escobar G, Reh TA. 2006. Making the gradient:
thyroid hormone regulates cone opsin expression in the developing mouse retina. Proc
Natl Acad Sci U S A 103: 6218-6223.

Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. 2011.
Integrative genomics viewer. Nat Biotechnol 29: 24-26.

Roesch K, Jadhav AP, Trimarchi JM, Stadler MB, Roska B, Sun BB, Cepko CL. 2008. The
transcriptome of retinal Muller glial cells. J Comp Neurol 509: 225-238.

Rohde C, Zhang Y, Reinhardt R, Jeltsch A. 2010. BISMA--fast and accurate bisulfite sequencing
data analysis of individual clones from unique and repetitive sequences. BMC
Bioinformatics 11: 230.

Romanoski CE, Glass CK, Stunnenberg HG, Wilson L, Almouzni G. 2015. Epigenomics:
Roadmap for regulation. Nature 518: 314-316.

224



Rosenthal N. 1987. Identification of regulatory elements of cloned genes with functional assays.
Methods Enzymol 152: 704-720.

Rubio ED, Reiss DJ, Welcsh PL, Disteche CM, Filippova GN, Baliga NS, Aebersold R, Ranish
JA, Krumm A. 2008. CTCF physically links cohesin to chromatin. Proc Natl Acad Sci U
S A 105: 8309-8314.

Sackton TB, Hartl DL. 2016. Genotypic Context and Epistasis in Individuals and Populations.
Cell 166: 279-287.

Sakurai D, Zhao J, Deng Y, Kelly JA, Brown EE, Harley JB, Bae SC, Alarcomicronn-Riquelme
ME, Biolupus, networks G et al. 2013. Preferential binding to Elk-1 by SLE-associated
IL10 risk allele upregulates 1L10 expression. PLoS Genet 9: e1003870.

Sandelin A, Carninci P, Lenhard B, Ponjavic J, Hayashizaki Y, Hume DA. 2007. Mammalian
RNA polymerase Il core promoters: insights from genome-wide studies. Nat Rev Genet 8:
424-436.

Sanyal A, Lajoie BR, Jain G, Dekker J. 2012. The long-range interaction landscape of gene
promoters. Nature 489: 109-113.

Sanz LA, Chamberlain S, Sabourin JC, Henckel A, Magnuson T, Hugnot JP, Feil R, Arnaud P.
2008. A mono-allelic bivalent chromatin domain controls tissue-specific imprinting at
Grb10. EMBO J 27: 2523-2532.

Schaub MA, Boyle AP, Kundaje A, Batzoglou S, Snyder M. 2012. Linking disease associations
with regulatory information in the human genome. Genome Res 22: 1748-17509.

Scholzen T, Gerdes J. 2000. The Ki-67 protein: from the known and the unknown. J Cell Physiol
182: 311-322.

Schonemann MD, Ryan AK, McEvilly RJ, O'Connell SM, Arias CA, Kalla KA, Li P,
Sawchenko PE, Rosenfeld MG. 1995. Development and survival of the endocrine
hypothalamus and posterior pituitary gland requires the neuronal POU domain factor
Brn-2. Genes Dev 9: 3122-3135.

Schork NJ, Murray SS, Frazer KA, Topol EJ. 2009. Common vs. rare allele hypotheses for
complex diseases. Curr Opin Genet Dev 19: 212-219.

Schultz MD, He Y, Whitaker JW, Hariharan M, Mukamel EA, Leung D, Rajagopal N, Nery JR,
Urich MA, Chen H et al. 2015. Human body epigenome maps reveal noncanonical DNA
methylation variation. Nature 523: 212-216.

Schulz R, Woodfine K, Menheniott TR, Bourc'his D, Bestor T, Oakey RJ. 2008. WAMIDEX: a
web atlas of murine genomic imprinting and differential expression. Epigenetics 3: 89-96.

Seitz H, Youngson N, Lin SP, Dalbert S, Paulsen M, Bachellerie JP, Ferguson-Smith AC,
Cavaille J. 2003. Imprinted microRNA genes transcribed antisense to a reciprocally
imprinted retrotransposon-like gene. Nat Genet 34: 261-262.

Selever J, Kong JQ, Arenkiel BR. 2011. A rapid approach to high-resolution fluorescence
imaging in semi-thick brain slices. J Vis Exp doi:10.3791/2807.

Sharon E, Kalma Y, Sharp A, Raveh-Sadka T, Levo M, Zeevi D, Keren L, Yakhini Z,
Weinberger A, Segal E. 2012. Inferring gene regulatory logic from high-throughput
measurements of thousands of systematically designed promoters. Nat Biotechnol 30:
521-530.

Shen SQ, Myers CA, Hughes AE, Byrne LC, Flannery JG, Corbo JC. 2016. Massively parallel
cis-regulatory analysis in the mammalian central nervous system. Genome Res 26: 238-
255.

225



Shen SQ, Turro E, Corbo JC. 2014. Hybrid Mice Reveal Parent-of-Origin and Cis- and Trans-
Regulatory Effects in the Retina. PLoS One 9: e109382.

Shen Y, Yue F, McCleary DF, Ye Z, Edsall L, Kuan S, Wagner U, Dixon J, Lee L, Lobanenkov
VV et al. 2012. A map of the cis-regulatory sequences in the mouse genome. Nature 488:
116-120.

Shlyueva D, Stampfel G, Stark A. 2014. Transcriptional enhancers: from properties to genome-
wide predictions. Nat Rev Genet 15: 272-286.

Shu W, Chen H, Bo X, Wang S. 2011. Genome-wide analysis of the relationships between
DNasel HS, histone modifications and gene expression reveals distinct modes of
chromatin domains. Nucleic Acids Res 39: 7428-7443.

Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, Clawson H, Spieth J,
Hillier LW, Richards S et al. 2005. Evolutionarily conserved elements in vertebrate,
insect, worm, and yeast genomes. Genome Res 15: 1034-1050.

Sing T, Sander O, Beerenwinkel N, Lengauer T. 2005. ROCR: visualizing classifier performance
in R. Bioinformatics 21: 3940-3941.

Sisodiya SM, Thompson PJ, Need A, Harris SE, Weale ME, Wilkie SE, Michaelides M, Free SL,
Walley N, Gumbs C et al. 2007. Genetic enhancement of cognition in a kindred with
cone-rod dystrophy due to RIMS1 mutation. J Med Genet 44: 373-380.

Slatkin M. 2008. Linkage disequilibrium--understanding the evolutionary past and mapping the
medical future. Nat Rev Genet 9: 477-485.

Smallwood PM, Olveczky BP, Williams GL, Jacobs GH, Reese BE, Meister M, Nathans J. 2003.
Genetically engineered mice with an additional class of cone photoreceptors: implications
for the evolution of color vision. Proc Natl Acad Sci U S A 100: 11706-11711.

Smemo S, Tena JJ, Kim KH, Gamazon ER, Sakabe NJ, Gomez-Marin C, Aneas I, Credidio FL,
Sobreira DR, Wasserman NF et al. 2014. Obesity-associated variants within FTO form
long-range functional connections with IRX3. Nature 507: 371-375.

Smith DJ, Anderson J, Zammit S, Meyer TD, Pell JP, Mackay D. 2015. Childhood 1Q and risk of
bipolar disorder in adulthood: prospective birth cohort study. British Journal of
Psychiatry Open 1: 74-80.

Smith FM, Holt LJ, Garfield AS, Charalambous M, Koumanov F, Perry M, Bazzani R,
Sheardown SA, Hegarty BD, Lyons RJ et al. 2007. Mice with a disruption of the
imprinted Grb10 gene exhibit altered body composition, glucose homeostasis, and insulin
signaling during postnatal life. Mol Cell Biol 27: 5871-5886.

Smith RL, Traul DL, Schaack J, Clayton GH, Staley KJ, Wilcox CL. 2000. Characterization of
promoter function and cell-type-specific expression from viral vectors in the nervous
system. J Virol 74: 11254-11261.

Smith ZD, Meissner A. 2013. DNA methylation: roles in mammalian development. Nat Rev
Genet 14: 204-220.

Soldner F, Stelzer Y, Shivalila CS, Abraham BJ, Latourelle JC, Barrasa M1, Goldmann J, Myers
RH, Young RA, Jaenisch R. 2016. Parkinson-associated risk variant in distal enhancer of
alpha-synuclein modulates target gene expression. Nature 533: 95-99.

Solovei I, Kreysing M, Lanctot C, Kosem S, Peichl L, Cremer T, Guck J, Joffe B. 2009. Nuclear
architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell 137:
356-368.

226



Solovei I, Wang AS, Thanisch K, Schmidt CS, Krebs S, Zwerger M, Cohen TV, Devys D,
Foisner R, Peichl L et al. 2013. LBR and lamin A/C sequentially tether peripheral
heterochromatin and inversely regulate differentiation. Cell 152: 584-598.

Somel M, Liu X, Khaitovich P. 2013. Human brain evolution: transcripts, metabolites and their
regulators. Nat Rev Neurosci 14: 112-127.

Son MS, Taylor RK. 2011. Preparing DNA libraries for multiplexed paired-end deep sequencing
for lllumina GA sequencers. Curr Protoc Microbiol Chapter 1: Unit 1E 4.

Song X, Vishnivetskiy SA, Seo J, Chen J, Gurevich EV, Gurevich VV. 2011. Arrestin-1
expression level in rods: balancing functional performance and photoreceptor health.
Neuroscience 174: 37-49.

SP Daiger BR, J Greenberg, A Christoffels, W Hide. 1998. Data services and software for
identifying genes and mutations causing retinal degeneration. Investigative
Ophthalmology and Visual Science 39: S295.

Spain SL, Barrett JC. 2015. Strategies for fine-mapping complex traits. Hum Mol Genet 24:
R111-1109.

Spieler D, Kaffe M, Knauf F, Bessa J, Tena JJ, Giesert F, Schormair B, Tilch E, Lee H, Horsch
M et al. 2014. Restless legs syndrome-associated intronic common variant in Meisl alters
enhancer function in the developing telencephalon. Genome Res 24: 592-603.

Srivastava S, Ketter TA. 2010. The link between bipolar disorders and creativity: evidence from
personality and temperament studies. Curr Psychiatry Rep 12: 522-530.

Stergachis AB, Neph S, Reynolds A, Humbert R, Miller B, Paige SL, Vernot B, Cheng JB,
Thurman RE, Sandstrom R et al. 2013. Developmental fate and cellular maturity encoded
in human regulatory DNA landscapes. Cell 154: 888-903.

Storch KF, Paz C, Signorovitch J, Raviola E, Pawlyk B, Li T, Weitz CJ. 2007. Intrinsic circadian
clock of the mammalian retina: importance for retinal processing of visual information.
Cell 130: 730-741.

Sugitani Y, Nakai S, Minowa O, Nishi M, Jishage K, Kawano H, Mori K, Ogawa M, Noda T.
2002. Brn-1 and Brn-2 share crucial roles in the production and positioning of mouse
neocortical neurons. Genes Dev 16: 1760-1765.

Sun J, Rockowitz S, Xie Q, Ashery-Padan R, Zheng D, Cvekl A. 2015. Identification of in vivo
DNA-binding mechanisms of Pax6 and reconstruction of Pax6-dependent gene
regulatory networks during forebrain and lens development. Nucleic Acids Res 43: 6827-
6846.

Sun W, Zang L, Shu Q, Li X. 2014. From development to diseases: the role of 5hmC in brain.
Genomics 104: 347-351.

Sunkin SM, Ng L, Lau C, Dolbeare T, Gilbert TL, Thompson CL, Hawrylycz M, Dang C. 2013.
Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous
system. Nucleic Acids Res 41: D996-D1008.

Swaroop A, Kim D, Forrest D. 2010. Transcriptional regulation of photoreceptor development
and homeostasis in the mammalian retina. Nat Rev Neurosci 11: 563-576.

Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, lyer LM, Liu
DR, Aravind L et al. 2009. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine
in mammalian DNA by MLL partner TET1. Science 324: 930-935.

The ENCODE Project Consortium. 2012. An integrated encyclopedia of DNA elements in the
human genome. Nature 489: 57-74.

227



Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, Sheffield NC,
Stergachis AB, Wang H, Vernot B et al. 2012. The accessible chromatin landscape of the
human genome. Nature 489: 75-82.

Tillo D, Hughes TR. 2009. G+C content dominates intrinsic nucleosome occupancy. BMC
Bioinformatics 10: 442.

Tillo D, Kaplan N, Moore IK, Fondufe-Mittendorf Y, Gossett AJ, Field Y, Lieb JD, Widom J,
Segal E, Hughes TR. 2010. High nucleosome occupancy is encoded at human regulatory
sequences. PLoS One 5: e9129.

Tirosh I, Reikhav S, Levy AA, Barkai N. 2009. A yeast hybrid provides insight into the
evolution of gene expression regulation. Science 324: 659-662.

Tole S, Remedios R, Saha B, Stoykova A. 2005. Selective requirement of Pax6, but not Emx2, in
the specification and development of several nuclei of the amygdaloid complex. J
Neurosci 25: 2753-2760.

Ton CC, Miwa H, Saunders GF. 1992. Small eye (Sey): cloning and characterization of the
murine homolog of the human aniridia gene. Genomics 13: 251-256.

Tournamille C, Colin Y, Cartron JP, Le Van Kim C. 1995. Disruption of a GATA motif in the
Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals.
Nat Genet 10: 224-228.

Trampush JW, Lencz T, Knowles E, Davies G, Guha S, Pe'er I, Liewald DC, Starr JM, Djurovic
S, Melle I et al. 2015. Independent evidence for an association between general cognitive
ability and a genetic locus for educational attainment. Am J Med Genet B Neuropsychiatr
Genet 168B: 363-373.

Turro E, Astle WJ, Tavare S. 2014. Flexible analysis of RNA-seq data using mixed effects
models. Bioinformatics 30: 180-188.

Turro E, Su SY, Goncalves A, Coin LJ, Richardson S, Lewin A. 2011. Haplotype and isoform
specific expression estimation using multi-mapping RNA-seq reads. Genome Biol 12:
R13.

van Arensbergen J, van Steensel B, Bussemaker HJ. 2014. In search of the determinants of
enhancer-promoter interaction specificity. Trends Cell Biol 24: 695-702.

van El CG, Cornel MC, Borry P, Hastings RJ, Fellmann F, Hodgson SV, Howard HC, Cambon-
Thomsen A, Knoppers BM, Meijers-Heijboer H et al. 2013. Whole-genome sequencing
in health care. Recommendations of the European Society of Human Genetics. Eur J
Hum Genet 21 Suppl 1: S1-5.

Van Essen DC, Smith SM, Barch DM, Behrens TE, Yacoub E, Ugurbil K, Consortium WU-MH.
2013. The WU-Minn Human Connectome Project: an overview. Neuroimage 80: 62-79.

Vanhille L, Griffon A, Magbool MA, Zacarias-Cabeza J, Dao LT, Fernandez N, Ballester B,
Andrau JC, Spicuglia S. 2015. High-throughput and quantitative assessment of enhancer
activity in mammals by CapStarr-seq. Nat Commun 6: 6905.

Verfaillie A, Svetlichnyy D, Imrichova H, Davie K, Fiers M, Kalender Atak Z, Hulselmans G,
Christiaens V, Aerts S. 2016. Multiplex enhancer-reporter assays uncover unsophisticated
TP53 enhancer logic. Genome Res 26: 882-895.

Vesuna F, Winnard P, Jr., Raman V. 2005. Enhanced green fluorescent protein as an alternative
control reporter to Renilla luciferase. Anal Biochem 342: 345-347.

Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M. 2010. Direct
conversion of fibroblasts to functional neurons by defined factors. Nature 463: 1035-
1041.

228



Vierstra J, Rynes E, Sandstrom R, Zhang M, Canfield T, Hansen RS, Stehling-Sun S, Sabo PJ,
Byron R, Humbert R et al. 2014. Mouse regulatory DNA landscapes reveal global
principles of cis-regulatory evolution. Science 346: 1007-1012.

Visel A, Blow MJ, Li Z, Zhang T, Akiyama JA, Holt A, Plajzer-Frick I, Shoukry M, Wright C,
Chen F et al. 2009. ChIP-seq accurately predicts tissue-specific activity of enhancers.
Nature 457: 854-858.

Visel A, Minovitsky S, Dubchak I, Pennacchio LA. 2007. VISTA Enhancer Browser--a database
of tissue-specific human enhancers. Nucleic Acids Res 35: D88-92.

Visel A, Taher L, Girgis H, May D, Golonzhka O, Hoch RV, McKinsey GL, Pattabiraman K,
Silberberg SN, Blow MJ et al. 2013. A high-resolution enhancer atlas of the developing
telencephalon. Cell 152: 895-908.

Visscher PM, Brown MA, McCarthy M1, Yang J. 2012. Five years of GWAS discovery. Am J
Hum Genet 90: 7-24.

Visser M, Palstra RJ, Kayser M. 2014. Human skin color is influenced by an intergenic DNA
polymorphism regulating transcription of the nearby BNC2 pigmentation gene. Hum Mol
Genet 23: 5750-5762.

Wade CM, Kulbokas EJ, 3rd, Kirby AW, Zody MC, Mullikin JC, Lander ES, Lindblad-Toh K,
Daly MJ. 2002. The mosaic structure of variation in the laboratory mouse genome.
Nature 420: 574-578.

Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R. 2013. One-step
generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated
genome engineering. Cell 153: 910-918.

Wang J, Zhuang J, lyer S, Lin X, Whitfield TW, Greven MC, Pierce BG, Dong X, Kundaje A,
Cheng Y et al. 2012. Sequence features and chromatin structure around the genomic
regions bound by 119 human transcription factors. Genome Res 22: 1798-1812.

Wang T, Chen M, Liu L, Cheng H, Yan YE, Feng YH, Wang H. 2011. Nicotine induced CpG
methylation of Pax6 binding motif in StAR promoter reduces the gene expression and
cortisol production. Toxicol Appl Pharmacol 257: 328-337.

Wang X, Qiu R, Tsark W, Lu Q. 2007. Rapid promoter analysis in developing mouse brain and
genetic labeling of young neurons by doublecortin-DsRed-express. J Neurosci Res 85:
3567-3573.

Wapinski OL, Vierbuchen T, Qu K, Lee QY, Chanda S, Fuentes DR, Giresi PG, Ng YH, Marro
S, Neff NF et al. 2013. Hierarchical mechanisms for direct reprogramming of fibroblasts
to neurons. Cell 155: 621-635.

Ward LD, Kellis M. 2012a. HaploReg: a resource for exploring chromatin states, conservation,
and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids
Res 40: D930-934.

Ward LD, Kellis M. 2012b. Interpreting noncoding genetic variation in complex traits and
human disease. Nat Biotechnol 30: 1095-1106.

Ward ME, McMahon G, St Pourcain B, Evans DM, Rietveld CA, Benjamin DJ, Koellinger PD,
Cesarini D, Social Science Genetic Association C, Davey Smith G et al. 2014. Genetic
variation associated with differential educational attainment in adults has anticipated
associations with school performance in children. PLoS One 9: e100248.

Warren N, Caric D, Pratt T, Clausen JA, Asavaritikrai P, Mason JO, Hill RE, Price DJ. 1999.
The transcription factor, Pax6, is required for cell proliferation and differentiation in the
developing cerebral cortex. Cereb Cortex 9: 627-635.

229



Waterhouse PM, Wang MB, Lough T. 2001. Gene silencing as an adaptive defence against
viruses. Nature 411: 834-842.

Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, Klemm A, Flicek P, Manolio T,
Hindorff L et al. 2014. The NHGRI GWAS Catalog, a curated resource of SNP-trait
associations. Nucleic Acids Res 42: D1001-1006.

Wendt KS, Yoshida K, Itoh T, Bando M, Koch B, Schirghuber E, Tsutsumi S, Nagae G, Ishihara
K, Mishiro T et al. 2008. Cohesin mediates transcriptional insulation by CCCTC-binding
factor. Nature 451: 796-801.

Wenger AM, Clarke SL, Notwell JH, Chung T, Tuteja G, Guturu H, Schaar BT, Bejerano G.
2013. The enhancer landscape during early neocortical development reveals patterns of
dense regulation and co-option. PLoS Genet 9: e1003728.

White MA. 2015. Understanding how cis-regulatory function is encoded in DNA sequence using
massively parallel reporter assays and designed sequences. Genomics 106: 165-170.

White MA, Myers CA, Corbo JC, Cohen BA. 2013. Massively parallel in vivo enhancer assay
reveals that highly local features determine the cis-regulatory function of ChlP-seq peaks.
Proc Natl Acad Sci U S A 110: 11952-11957.

Whiteford HA, Degenhardt L, Rehm J, Baxter AJ, Ferrari AJ, Erskine HE, Charlson FJ, Norman
RE, Flaxman AD, Johns N et al. 2013. Global burden of disease attributable to mental
and substance use disorders: findings from the Global Burden of Disease Study 2010.
Lancet 382: 1575-1586.

Wilken MSB, J.A.; La Torre, A.; Siebenthall, K.; Thurman R.; Sabo, P.; Sandstrom, R.S.;
Vierstra, J.; Canfield, T.K.; Hansen, R.S.; Bender, M.A.; Stamatoyannopoulos, J.; Reh,
T.A. 2015. DNase | hypersensitivity analysis of the mouse brain and retina identifies
region-specific regulatory elements. Epigenetics & Chromatin 8.

Wilkins JF, Haig D. 2003. What good is genomic imprinting: the function of parent-specific
gene expression. Nat Rev Genet 4: 359-368.

Williamson CM BA, Thomas S, Beechey CV, Hancock J, Cattanach BM, Peters J. 2014.
MouseBook Imprinting Catalog.

Wilson C, Bellen HJ, Gehring WJ. 1990. Position effects on eukaryotic gene expression. Annu
Rev Cell Biol 6: 679-714.

Wittkopp PJ, Haerum BK, Clark AG. 2004. Evolutionary changes in cis and trans gene
regulation. Nature 430: 85-88.

Wittkopp PJ, Kalay G. 2012. Cis-regulatory elements: molecular mechanisms and evolutionary
processes underlying divergence. Nat Rev Genet 13: 59-69.

Workman CT, Yin Y, Corcoran DL, Ideker T, Stormo GD, Benos PV. 2005. enoLOGOS: a
versatile web tool for energy normalized sequence logos. Nucleic Acids Res 33: W389-
392.

Wray GA. 2007. The evolutionary significance of cis-regulatory mutations. Nat Rev Genet 8:
206-216.

Wright AF, Chakarova CF, Abd EI-Aziz MM, Bhattacharya SS. 2010. Photoreceptor
degeneration: genetic and mechanistic dissection of a complex trait. Nat Rev Genet 11:
273-284.

Wu H, Zhang Y. 2011. Mechanisms and functions of Tet protein-mediated 5-methylcytosine
oxidation. Genes Dev 25: 2436-2452.

Wu Z, Asokan A, Samulski RJ. 2006. Adeno-associated virus serotypes: vector toolkit for
human gene therapy. Mol Ther 14: 316-327.

230



Wu Z, Yang H, Colosi P. 2010. Effect of genome size on AAV vector packaging. Mol Ther 18:
80-86.

Wurmbach E, Gonzalez-Maeso J, Yuen T, Ebersole BJ, Mastaitis JW, Mobbs CV, Sealfon SC.
2002. Validated genomic approach to study differentially expressed genes in complex
tissues. Neurochem Res 27: 1027-1033.

Xie W, Barr CL, Kim A, Yue F, Lee AY, Eubanks J, Dempster EL, Ren B. 2012. Base-
resolution analyses of sequence and parent-of-origin dependent DNA methylation in the
mouse genome. Cell 148: 816-831.

Xu J, Dodd RL, Makino CL, Simon MI, Baylor DA, Chen J. 1997. Prolonged photoresponses in
transgenic mouse rods lacking arrestin. Nature 389: 505-509.

Yamanaka T, Tosaki A, Miyazaki H, Kurosawa M, Furukawa Y, Yamada M, Nukina N. 2010.
Mutant huntingtin fragment selectively suppresses Brn-2 POU domain transcription
factor to mediate hypothalamic cell dysfunction. Hum Mol Genet 19: 2099-2112.

Yan Z, Zak R, Zhang Y, Engelhardt JF. 2005. Inverted terminal repeat sequences are important
for intermolecular recombination and circularization of adeno-associated virus genomes.
J Virol 79: 364-379.

Yang J, Ferreira T, Morris AP, Medland SE, Genetic Investigation of ATC, Replication DIG,
Meta-analysis C, Madden PA, Heath AC, Martin NG et al. 2012. Conditional and joint
multiple-SNP analysis of GWAS summary statistics identifies additional variants
influencing complex traits. Nat Genet 44: 369-375, S361-363.

Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y, Lee-Messer C, Dolmetsch RE,
Tsien RW, Crabtree GR. 2011. MicroRNA-mediated conversion of human fibroblasts to
neurons. Nature 476: 228-231.

Young RW. 1985. Cell differentiation in the retina of the mouse. Anat Rec 212: 199-205.

Ypsilanti AR, Rubenstein JL. 2016. Transcriptional and epigenetic mechanisms of early cortical
development: An examination of how Pax6 coordinates cortical development. J Comp
Neurol 524: 609-629.

Yue F Cheng Y Breschi A VierstraJ Wu W Ryba T Sandstrom R Ma Z Davis C Pope BD et al.
2014. A comparative encyclopedia of DNA elements in the mouse genome. Nature 515:
355-364.

Zabidi MA, Arnold CD, Schernhuber K, Pagani M, Rath M, Frank O, Stark A. 2015. Enhancer-
core-promoter specificity separates developmental and housekeeping gene regulation.
Nature 518: 556-559.

Zarate YA, Perry H, Ben-Omran T, Sellars EA, Stein Q, Almureikhi M, Simmons K, Klein O,
Fish J, Feingold M et al. 2015. Further supporting evidence for the SATB2-associated
syndrome found through whole exome sequencing. Am J Med Genet A 167A: 1026-1032.

Zaret KS, Carroll JS. 2011. Pioneer transcription factors: establishing competence for gene
expression. Genes Dev 25: 2227-2241.

Zeron-Medina J, Wang X, Repapi E, Campbell MR, Su D, Castro-Giner F, Davies B, Peterse EF,
Sacilotto N, Walker GJ et al. 2013. A polymorphic p53 response element in KIT ligand
influences cancer risk and has undergone natural selection. Cell 155: 410-422.

Zhang F, Lupski JR. 2015. Non-coding genetic variants in human disease. Hum Mol Genet 24:
R102-110.

Zhang G, Gurtu V, Kain SR. 1996. An enhanced green fluorescent protein allows sensitive
detection of gene transfer in mammalian cells. Biochem Biophys Res Commun 227: 707-
711.

231



Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM,
Brown M, Li W et al. 2008. Model-based analysis of ChIP-Seq (MACS). Genome Biol 9:
R137.

Zhong L, Li B, Mah CS, Govindasamy L, Agbandje-McKenna M, Cooper M, Herzog RW,
Zolotukhin I, Warrington KH, Jr., Weigel-Van Aken KA et al. 2008. Next generation of
adeno-associated virus 2 vectors: point mutations in tyrosines lead to high-efficiency
transduction at lower doses. Proc Natl Acad Sci U S A 105: 7827-7832.

Zhu B, Chen C, Moyzis RK, Dong Q, Lin C. 2015. Educational attainment-related loci identified
by GWAS are associated with select personality traits and mathematics and language
abilities. Personality and Individual Differences 72: 96-100.

Zincarelli C, Soltys S, Rengo G, Rabinowitz JE. 2008. Analysis of AAV serotypes 1-9 mediated
gene expression and tropism in mice after systemic injection. Mol Ther 16: 1073-1080.

Zirlinger M, Anderson D. 2003. Molecular dissection of the amygdala and its relevance to
autism. Genes Brain Behav 2: 282-294.

Zolotukhin S, Potter M, Zolotukhin I, Sakai Y, Loiler S, Fraites TJ, Jr., Chiodo VA, Phillipsberg
T, Muzyczka N, Hauswirth WW et al. 2002. Production and purification of serotype 1, 2,
and 5 recombinant adeno-associated viral vectors. Methods 28: 158-167.

Zuin J, Dixon JR, van der Reijden M, Ye Z, Kolovos P, Brouwer RW, van de Corput MP, van
de Werken HJ, Knoch TA, van IWF et al. 2014. Cohesin and CTCF differentially affect
chromatin architecture and gene expression in human cells. Proc Natl Acad Sci U S A 111:
996-1001.

232



APPENDIX 1:

DNA Methylation in Photoreceptors During Development
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Methylation is a type of DNA modification most often observed at CpG dinucleotides, in
which a methyl group is added at the fifth carbon of cytosine (5mC). This modification is
generally associated with gene silencing and is thought to have evolved as a host defense
mechanism against viral DNA (Waterhouse et al. 2001). In development, methylation and
demethylation are dynamic processes mediated by specific enzymes (Smith and Meissner 2013).
Since methylation can block the binding of TFs, methylation can alter CRE activity, and
methylated DNA is often associated with repressive histone marks and compacted chromatin.
Methylation can be assayed with a variety of methods, but bisulfite sequencing provides single
base resolution and is the gold standard (Bock 2012). One caveat of associated with this
technique is that both 5mC and 5hmC (discussed below) are protected from bisulfite conversion,
so they both appear ‘methylated’ in the assay. Newer techniques have been developed to
overcome this issue (e.g., (Booth et al. 2012)).

It was recently discovered that in addition to SmC (the ‘fifth’ DNA base), there is also
5hmC (the ‘sixth” DNA base), in which the fifth position of cytosine harbors a hydroxymethyl
group (Kriaucionis and Heintz 2009; Pfeifer and Szabo 2009; Tahiliani et al. 2009). The
conversion of 5mC to 5hmC occurs via the action of TET enzymes, and 5hmC is thought to be
an intermediate leading to demethylation of a CpG (Wu and Zhang 2011). Since its discovery,
5hmC has been widely studied in the brain, where it was first discovered (Sun et al. 2014), as
well as in cancers (Ficz and Gribben 2014). The retina expresses several DNA
methyltransferases (DNMTSs) early in development. Later, rods and cones exhibit differential
expression of Dnmtl (Nasonkin et al. 2011). Therefore, | sought to investigate the potential roles

of 5mC and 5hmC in retinal development, with a focus on photoreceptors.
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Whereas nearly all mammalian cells exhibit a ‘conventional’ nuclear architecture, with
peripheral heterochromatin and central euchromatin, the rods (but not cones) of nocturnal
mammalians have an ‘inverted’ nuclear architecture. In particular, there is a thin layer of
peripheral euchromatin and a single large, central clump of heterochromatin in the rod nucleus of
nocturnal mammals, which is thought to act as a lens to concentrate light onto the photosensitive
outer segment (Carter-Dawson and LaVail 1979; Solovei et al. 2009). Based on mouse studies,
the formation of the central clump of heterochromatin occurs slowly over development,
beginning with small spheres that coalesce over the first postnatal month (Solovei et al. 2009).
The chromatin structure of the rod nucleus is also reflected by histone marks: from central to
peripheral, there is an increasing density of activating histone marks and a decreasing density of
repressing histone marks (Kizilyaprak et al. 2010). Recent studies suggest that lamin A/C and
lamin B receptor play key roles in the establishment of this rod nuclear architecture, and that
methylation may also be involved (Solovei et al. 2013; Mo et al. 2016).

| examined the relationship between 5mC, 5hmC, and nuclear architecture in the
developing retina by using antibodies that recognize 5mC-rich or 5ShmC-rich DNA (Figure Al.1).
At PO (peak of rod birth), 5mC and 5hmC staining exhibit considerable overlap in cells of the
NBL, where presumptive rods reside. As development progresses (P5-P8), 5mC becomes more
localized to discrete foci within each nucleus in the ONL (which are nearly all rod nuclei),
whereas 5hmC is distributed through the nucleus. By P22, most ONL nuclei have only one or
two 5mC foci, and by P35, essentially all ONL cells have a single, central 5mC focus. In contrast,
cells of the INL and GCL have similar 5mC and 5hmC staining patterns throughout development,
namely one or few 5mC foci located in the nuclear periphery. Thus, it appears that the overall

distribution of 5mC and 5hmC reflect heterochromatin and euchromatin, respectively, and mirror
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the development of rod nuclear architecture (Figure A1.1C). Interestingly, the rod nuclear
architecture is not fully established until ~4-5 weeks after birth, whereas by most other measures
(including gene expression and electrophysiology), rods are mature by 3 weeks.

Cones are a relatively rare population in the wild-type mouse retina (~2% of cells) but
abundant in the Nrl”" retina, where rods have been developmentally transfated to cones (Mears et
al. 2001). These transfated photoreceptors have been shown to be largely indistinguishable from
native cones at the molecular, morphological, and functional levels. Compared to rods, native
cones and Nrl”~ cones have a more conventional nuclear architecture, with a lesser degree of
central clumping of heterochromatin and an increased amount of peripheral euchromatin
(Solovei et al. 2013). In the Nrl”" retina at age P63, the 5mC and 5hmC staining patterns are not
qualitatively different from those of the wild-type retina (Figure Al1.2). A conditional knockout
of Nrl, in which mature rods have been partially converted to cones, also appeared normal
(Figure A1.2). Additional studies are needed to confirm and clarify these findings.

The promoters of a handful of genes known to be expressed in the retina have been
reported to exhibit retina-specific methylation patterns (Merbs et al. 2012). To examine the
dynamics of methylation in the retina at the DNA level, | conducted bisulfite sequencing of
retinas at multiple ages, focusing on the promoters of two genes: Rho (rhodopsin), a canonical
rod photoreceptor gene, and Opnlsw (S-opsin), a canonical blue cone gene.

These analyses revealed that there is a progressive decrease in methylation over
development at the Rho promoter in the WT retina but not in the Nrl” retina (Figure A1.3A).
Similarly, there is a progressive decrease in methylation at the Opnlsw promoter in the Nrl”
retina but not the WT retina (Figure A1.3B). This suggests that there are waves of demethylation

that occur in rods and cones at the Rho and Opnlsw loci, respectively. Notably, these waves of
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demethylation occur somewhat later than the known increase in expression of Rho and Opnlsw
in rods and cones, respectively, although here | did not directly measure expression of these
genes.

To confirm the cell type specificity of the effect, | also conducted bisulfite analysis of the
Rho promoter for FACS-sorted photoreceptors (nearly all of which are rods) and bipolar cells
from adult Otx2-GFP mice (Fossat et al. 2007). As expected, the Rho promoter was essentially
unmethylated in FACS-sorted adult photoreceptors, but heavily methylated in bipolar cells
(Figure A1.4).

In summary, methylation in rod photoreceptors is highly dynamic over development, as
assessed by 5mC and 5hmC antibody staining as well as by bisulfite sequencing. Changes in
methylation are temporally delayed compared to changes in gene expression, suggesting a
maintenance rather than causal role. Recent studies in our lab have attempted to directly
reprogram rods into cones for therapeutic purposes, but thus far, these efforts have achieved only
partial reprogramming, presumably due to epigenetic barriers to transdifferentiation (Montana et
al. 2013). It is possible that introducing demethylases or histone deacetylase (HDAC) inhibitors
such as valproic acid (Milutinovic et al. 2007; Huangfu et al. 2008) may help overcome
epigenetic barriers to transdifferentiation, thereby permitting more efficient conversion of rods

into cones.
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Figure Al.1. The distribution of 5mC and 5hmC in mouse rod photoreceptors during
development reflects nuclear architecture. (A) Frozen sections of retinas at the indicated
postnatal days were analyzed by immunohistochemistry. Retinas were from controls in CTCF
experiments (Appendix 2). CTCF mutant retinas were also analyzed and showed no difference in
antibody staining patterns compared to controls (data not shown). Rod nuclei reside in the ONL
and constitute most of the cells there. The following antibodies were used: anti-5mC, Eurogentec
BI-MECY-9199 (with red secondary); anti-5hmC, ActiveMotif 39769 (with green secondary).
Images were taken at 400X magnification. Blue, DAPI stain. NBL, neuroblast layer; ONL, outer
nuclear layer; INL, inner nuclear layer; GCL; ganglion cell layer. (B) Enlarged images with
DAPI channel removed for clarity. P35 image was taken at 1000X. (C) Model of mouse rod
nuclear architecture development, at ages corresponding to those in the images above, based on
(Solovei et al. 2009).
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Figure Al1.2. 5mC and 5hmC distributions in models of rod-to-cone transdifferentiation.
Antibody staining for 5mC and 5hmC were conducted as for Figure A1.1. All mice were age P63.
Left panel: Nrl”- retina, which contains cones only (no rods) for photoreceptors. Note the rosettes
typical for this mutant. Middle panel: Control retina (CAG-Cre-ERT;Nrl"™*) treated with
tamoxifen daily at P42-P44. Right panel: Conditional Nrl knockout retina (CAG-Cre-ERT;Nrl™
treated with tamoxifen daily at P42-P44. Slides were a gift from Cynthia Montana—see
(Montana et al. 2013) for information. All images were taken at 400X magnification. ONL, outer
nuclear layer; INL, inner nuclear layer; GCL; ganglion cell layer.
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Figure A1.3. Bisulfite analysis of Rho and Opnlsw promoters in wild-type and Nrl”- retinas
over development. Bisulfite treatment, PCR, cloning, and analysis were conducted described in
(Rohde et al. 2010; Montana et al. 2013) for these two loci. Two replicates (each consisting of
multiple retinas) for each time point were harvested. Top: Data for individual CpG sites are
shown. Each row represents an analyzed cell. Red = methylated, blue = unmethylated, white =
no data. Bottom: Quantification of methylation levels (averaged over the analyzed region). Error
bars indicate SEM between the two replicates. (A) Rho promoter. (B) Opnlsw promoter.
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Figure Al.4. FACS-sorted photoreceptors and bipolar cells reveal cell type-specific
methylation patterns at the Rho promoter. (A) FACS plot depicting sorting of bipolar cells
and photoreceptor cells (most of which are rods). The retinas of mice (age 3 months)
heterozygous for the Otx2-GFP transgene were dissociated. Cells with high GFP levels (bipolar
cells) and cells with low GFP levels (photoreceptors) were collected. As a control, retinas from
wild-type littermates were dissociated and sorted to establish baseline levels of fluorescence.
Two independent sorts were conducted, resulting in two biological replicates each of bipolar
cells and photoreceptors. X-axis (FSC-A), forward scatter. Y-axis (FITC-A), GFP levels. (B)
Bisulfite analysis of the Rho promoter. Data for individual CpG sites are shown. Each row
represents an analyzed cell. Red = methylated, blue = unmethylated, white = no data. The
difference in methylation levels between the two bipolar replicates may be due to contamination
of first bipolar replicate with rod photoreceptors.
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APPENDIX 2:

The role of CTCF in the retina
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CTCF (CCCTC-binding factor) is a ubiquitously expressed transcription factor (TF) that
facilitates the establishment of 3D genome architecture by forming topologically associating
domains (TADs). TADs are separated by DNA elements called insulators, which contain motifs
bound by CTCF (Ghirlando and Felsenfeld 2016). For many years, CTCF was widely touted as
the ‘master weaver’ of the genome (Phillips and Corces 2009). This was most convincingly
demonstrated by CRISPR-Cas mediated mutation of CTCF sites, which caused changes in gene
expression and chromatin looping (Guo et al. 2015). In its role as a mediator of chromatin
looping, CTCF is thought to act in concert with cohesin (Rubio et al. 2008; Wendt et al. 2008;
Nativio et al. 2009). However, cohesin-independent effects of CTCF have been reported (Kim et
al. 2011; Zuin et al. 2014). Additionally, it is unclear how CTCF establishes cell type-specific
chromatin architecture.

In the avian retina, CTCF and Pax6 are initially coexpressed in early development but
then segregate, such that photoreceptors are CTCF+, Pax6- and amacrine cells are Pax6+, CTCF-
(Canto-Soler et al. 2008). In that study, it was suggested the CTCF represses Pax6 expression
and thereby indirectly promotes photoreceptor fate. To clarify the role of CTCF in the
mammalian retina, | histologically characterized CTCF knockout mouse retinas in collaboration
with Connie Myers.

To knock out CTCF in the developing retina, we recombined a floxed allele of CTCF
using a Cre recombinase driven by the Six3 promoter. Since Six3 is widely expressed in retinal
progenitors (as well as in other parts of the CNS) by E11.5, Six3Cre*;CTCF" retinas should be
essentially CTCF-deficient (Oliver et al. 1995). We found morphological evidence of retinal
degeneration in the CTCF mutants, with rapidly progressive thinning of all retinal layers (Figure

A2.1). Despite this degeneration, multiple cell types could still be identified in the CTCF
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mutants by antibody staining against M-opsin (M-cones), S-opsin (S-cones), PKCa (bipolar
cells), anti-Pax6 (amacrine cells), and glutamine synthetase (Muller glia) (Figure A2.2). These
findings suggest that while CTCF may be important for the maintenance of these retinal cell
types, it is not required for their formation. It is possible that CTCF has subtle effects on specific
cell subpopulations or on the relative proportions of cell types. Also, rods and horizontal cells
were not analyzed, although well-characterized markers for these cells, and additional markers
for the other cell types, are available and should be used in future studies (Cheng et al. 2013).
Notably, in the mutants but not in the controls, there appeared to be a greater degree of
co-localization of Pax6 and glutamine synthetase (GS) expression in the cells of the INL, both at
P28 (Figure A2.2C, white arrowheads) and at P10 (data not shown). This suggests that either
amacrine cells (typically Pax6+ and GS-) have gained GS expression, or Muller glia (generally
assumed to be GS+ and Pax6-) have gained Pax6 expression. It is now known that Miller glia
can express Pax6 and their nuclei can migrate in response to injury (Roesch et al. 2008; Joly et al.
2011). It is also possible that, since CTCF normally represses Pax6 expression, the deletion of
CTCF may directly lead to the derepression of Pax6 in Muller glia. Further experiments are
needed to verify the initial observation and to distinguish these scenarios. Also, the distribution
of CTCF expression in the wild-type retina, and the extent of CTCF knockout in the mutant,

should be assessed in the future.

246



Figure A2.1. Deletion of CTCF in the mouse neural retina results in retinal degeneration.
Control and mutant eyes were examined by H&E staining of paraffin sections. Ages and
genotypes are indicated. For P8 mutant, rosettes were observed in some regions. Images were
taken at 400X magnification. ONL, outer nuclear layer; INL, inner nuclear layer; GCL, ganglion

cell layer.
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Figure A2.2. Expression of cellular markers in CTCF knockout retinas. Frozen sections of
control (Six3Cre*;CTCF*™) and mutant (Six3Cre*;CTCF"™) P28 retinas were analyzed with
antibodies. (A) anti-M-opsin (red/green cones), Millipore AB5405; anti-Chx10 (bipolar cells),
Exalpha Biologicals X1180; (B) anti-S-opsin (blue cones), Millipore AB5407; anti-PKCa
(bipolars), Millipore 05-154; (C) anti-Pax6 (amacrine cells), Developmental Studies Hybridoma
Bank; anti-glutamine synthetase (Muller glia), BD 610517. White arrowheads are described in
the text. Images were taken at 200X magnification. Blue, DAPI stain. GS, glutamine synthetase;
ONL, outer nuclear layer; INL, inner nuclear layer; GCL, ganglion cell layer.
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APPENDIX 3

High-coverage CRE-seq libraries tiling the MIR2113/POU3F2 locus
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In our study of the MIR2113/POU3F2 locus, we pursued a candidate causal variant
(rs77910749) that fell within a fetal brain DHS (LC1). However, the locus contains many dozens
of fetal brain-specific DHS peaks, suggesting that multiple CREs within this region act in
combination to regulate POU3F2 and/or other target genes. To systematically and
comprehensively assay these fetal brain-specific DHSs for cis-regulatory activity, | synthesized
two types of CRE-seq libraries: (1) a PCR-based library of candidate CREs within a 1.5 Mb
window, and (2) a bacterial artificial chromosome (BAC)-based library of elements that tiled
across 440 kb. These two libraries are targeted and unbiased strategies, respectively, that
complement each other.

For the PCR library, | selected 100 fetal brain-specific DHSs in a 1.5 Mb window
(Chr6:97.8-99.3 Mb in hgl9), designed primers, and conducted individual PCR reactions, using
commercially available human gDNA as the template (Figure A3.1). Next, | cloned each PCR
product (~0.5-2 kb in length, with an average of ~1 kb) as a Notl fragment into a barcoded CRE-
seq vector (described in Chapter 3) and picked individual colonies for Sanger sequencing to
determine the barcode sequence. A total of 799 barcoded constructs representing 97 (out of the
targeted 100) DHS’s were obtained (Figure A3.2). Notably, since the template DNA for PCR
came from a pool of individuals, variants were represented in this library.

I made two versions of the PCR library: one with Rho basal-GFP (described in Chapter 3),
and another with the 3.6 kb POU3F2 promoter (described in Chapter 4) driving DsRed. The
promoter-reporter cassette was cloned into the Fsel/Ascl sites of the vector. These libraries are
ready for CRE-seq by transfection or electroporation. Alternatively, the libraries can be
transferred into the AAV vector for packaging and delivery as AAV libraries (described in

Chapter 3). Preliminary studies (using the 3.6 kb POU3F2-DsRed version of the library) showed
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minimal DsRed expression in ex vivo electroporated developing mouse cerebral cortex, as seen
under a dissecting fluorescent microscope. This suggests that most elements in this library are
inactive and/or incompatible with this promoter.

To generate a library that would tile the locus in a relatively unbiased manner, | created a
CRE-seq library with three BAC constructs (RP11-640D17, RP11-13H22, RP11-71E9) that
encompass a region of ~440 kb (Chr6:98,378,700-98,821,999 in hgl9). After purifying the
BACs with the Qiagen Large-Construct Kit, | sonicated the DNA to a target fragment size of
~600-700 bp. After end repair, | cloned the fragments into the Notl site of the barcoded CRE-seq
vector. | determined the correspondence between the BAC fragments and barcode sequences
using paired-end sequencing (described in Chapter 3). Overall, | obtained 20,867 barcodes with a
median BAC fragment size of ~630 bp and 40X median coverage (Figure A3.3 and Figure A3.4).
The Rho basal-GFP cassette has been cloned into this library.

Together, the PCR library and BAC library should be valuable tools for screening the
cis-regulatory potential of regions within the MIR2113/POU3F2 intergenic locus. In each case,
an alternate promoter-reporter cassette can be cloned into the Fsel/Ascl sites. The choice of the
promoter is an important consideration, because detection of enhancer activity may require a
compatible proximal promoter with some level of basal activity. The choice of the assayed cell
type is another important consideration. Given that both of these libraries are composed of
human DNA elements, it may be valuable to test them in both developing mouse cerebral cortex

and iPSC-derived cerebral organoids (as in Chapter 4).
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Figure A3.1. The 100 target regions in the MIR2113/POU3F2 locus for the PCR CRE-seq
library. One hundred human fetal brain-specific DHSs within a 1.5 Mb window (roughly
centered on the ‘local cluster’, highlighted in pink) were selected for PCR and cloning (purple
regions). Note the locations of MIR2113 and POU3F2 (red font).
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Figure A3.2. Distribution of product lengths in the PCR library and coverage of target
DHSs in the MIR2113/POU3F2 locus. (A) Distribution of the lengths of the PCR products. (B)
Coverage of target DHS’s. Of the 100 targeted DHSs, 97 were successfully cloned with a total of
799 barcoded constructs. The median coverage was 8X.
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Figure A3.3. A BAC library tiling 440 kb of the MIR2113/POU3F2 locus at 40X coverage.
A total of 20,867 barcoded constructs were obtained, with the individual BAC fragments shown
in red. The vertical scale for 40X coverage is indicated. Note the overlap of the three original
BACs where there is higher coverage in the library as expected (yellow highlighted regions).
Also note the location of LC1 (red font) within the ‘local cluster’ (pink highlighted region) (see
Chapter 4).
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Figure A3.4. Distribution of fragment lengths in the BAC library and coverage of the
MIR2113/POU3F2 locus. Three BACs covering a ~440 kb region (Chr6:98,378,700-98,821,999
in hgl9) were sonicated, cloned into a barcoded CRE-seq vector, and subjected to paired-end
sequencing. (A) Distribution of the lengths of BAC fragments cloned into the library. The
average length was 629 bp (SD = 87 bp). (B) Coverage of the region (split into 1 kb windows,
i.e., 440 regions). The median coverage was 40X.
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