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ABSTRACT OF THE DISSERTATION 

Novel Approaches to Studying the Effects 

of Cis-Regulatory Variants in the Central Nervous System 

by 

Susan Qi Shen 

Doctor of Philosophy in Biology and Biomedical Sciences 

Molecular Genetics and Genomics 

Washington University in St. Louis, 2018 

Professor Joseph C. Corbo, Chair 

 

 For decades, studies of the genetic basis of disease have focused on rare coding mutations 

that disrupt protein function, leading to the identification of hundreds of genes underlying 

Mendelian diseases. However, many complex diseases are non-Mendelian, and less than 2% of 

the genome is coding. It is now clear that non-coding variants contribute to disease susceptibility, 

but the precise underlying mechanisms are generally unknown. Cis-regulatory elements (CREs) 

are transcription factor (TF)-bound genomic regions that regulate gene expression, and variants 

within CREs can therefore modify gene expression. The putative locations of CREs in a variety 

of cell types have been identified through genome-wide assays of TF binding and epigenomic 

signatures, providing a starting point for probing the effects of cis-regulatory variants. Unlike 

coding mutations, which can be interpreted based on the genetic code, the functional 

consequence of any given cis-regulatory variant is difficult to predict even at the molecular level. 

Therefore, a major bottleneck lies in interpreting the functional significance of these variants.  
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 In the present work, I study the effects of cis-regulatory variants in the central nervous 

system (CNS), specifically in retina and brain. The retina is composed of well-characterized 

neuronal cell types and an extensively studied transcriptional network, while the brain is the 

center of human cognition and a target of devastating neuropsychiatric diseases. First, I take 

advantage of the genetic diversity between two distantly related mouse strains to describe the 

relationship between cis-regulatory variants and differences in retinal gene expression. I identify 

cis- and trans-regulatory effects, as well as parent-of-origin effects. Second, I develop a new 

technology based on an existing massively parallel reporter assay, CRE-seq, to enable the 

functional study of long CREs in the CNS in vivo for the first time. I demonstrate the ability of 

this approach to measure tissue-specific cis-regulatory activity in the brain and to pinpoint DNA 

bases critical for activity. Finally, I conduct a detailed mechanistic study of a non-coding region 

containing variants associated with both human cognitive performance and bipolar disorder. This 

last study illustrates the complexities and challenges of establishing the causal role of non-coding 

variants in disease. 
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CHAPTER 1: INTRODUCTION 

The following chapter has been adapted from my written qualifying examination, thesis proposal, 

and grant proposals. The contents of this chapter are unpublished. 
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“I love gene regulation. I love the process of transcription so much that I regard RNA as an 

unfortunate by-product of an otherwise elegant process!” 

 

-Michael S. Levine (Levine and Vicente 2015) 

 

 

“Mientras nuestro cerebro sea un arcano, el Universo, reflejo de su estructura, será también un 

misterio.” (As long as our brain is a mystery, the universe, a reflection of its structure, will also 

be one.) 

 

-Santiago Ramón y Cajal (Ramón y Cajal 1922)   
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1.1 The significance of cis-regulatory variants in biology and disease 

 A fundamental goal of genetics is to understand the phenotypic consequences of specific 

mutations. For coding mutations, the immediate biochemical consequence of a mutation can be 

deduced from the DNA sequence alone. From there, the impact on cellular function and 

organismal phenotype can be investigated. This type of approach has revealed hundreds of genes 

involved in Mendelian diseases (Hamosh et al. 2005). Often, the pathogenicity of a coding 

mutation can be predicted based on known structural properties and biological functions of the 

protein and/or the degree of phylogenetic conservation. However, for non-coding mutations, 

even the biochemical consequences are unclear, and phylogenetic conservation is an imperfect 

indicator of functionality (Ng and Henikoff 2006; Cooper and Shendure 2011). Given that over 

98% of the genome is non-coding, understanding the impact of non-coding variants is a major 

challenge. In particular, variants within cis-regulatory elements (CREs, e.g., enhancers and 

promoters) may alter the expression of genes relevant to disease. 

 CREs are short stretches of genomic DNA that regulate the timing, location, and levels of 

expression of the gene that they control. They are generally non-coding, although they can 

overlap coding exons (Mercer et al. 2013; Stergachis et al. 2013). CREs are typically hundreds of 

base pairs in length, and they are often located thousands of bases away from their target genes 

(Kulaeva et al. 2012). CREs are the primary determinants of gene expression during 

development, with cellular environment and epigenetic factors playing secondary roles (Levine 

and Davidson 2005). By recruiting TFs, CREs allow for fine-tuning of gene expression and serve 

as important substrates for phenotypic diversity between individuals and between species (Wray 

2007; Wittkopp and Kalay 2012; Heinz et al. 2015).  

The first detailed mechanism of gene regulation was elucidated for the lac operon in E. 
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coli in 1961 by Jacob and Monod (Jacob and Monod 1961). Ten years later, Britten and 

Davidson speculated that regulatory variants were crucial for phenotypic evolution in eukaryotes 

(Britten and Davidson 1971). Soon thereafter, King and Wilson suggested that chimpanzees and 

humans were too similar at the macromolecular level—nucleic acid and protein—to account for 

inter-species phenotypic differences (King and Wilson 1975). They postulated instead that 

regulatory variants might account for organismal-level differences, lamenting, “Biologists are 

still a long way from understanding gene regulation in mammals.” Although much progress has 

been made in the past decades, the cis-regulatory grammar of mammalian cells remains one of 

the greatest unsolved problems in biology. Furthermore, cis-regulatory variants are increasingly 

recognized as significant contributors to disease. 

 To illustrate the importance of regulatory variations for both evolution and human health, 

consider the following examples. Certain single nucleotide polymorphisms (SNPs) upstream of 

lactase (LCT) enhance transcription of the gene, allowing for the persistence of the lactase 

enzyme and the ability to digest milk as adults (Enattah et al. 2002; Olds and Sibley 2003). 

These SNPs have been under strong positive selection in populations that consume milk into 

adulthood. Cis-regulatory SNPs that decrease gene expression can also confer a selective 

advantage. The Duffy antigen chemokine receptor (DARC) is a protein required for erythrocyte 

invasion by certain malarial parasites. A single SNP disrupts binding of GATA1 to the DARC 

promoter, abolishing DARC expression in erythroid tissues and thereby conferring malarial 

resistance (Tournamille et al. 1995). 

 On the other hand, cis-regulatory mutations can also cause harm. One such instance is 

seen in a subset of patients with ɑ-thalassemia: a SNP upstream of the ɑ-globin gene cluster 

creates a novel promoter that competes with the endogenous promoter, thereby decreasing the 
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expression of the ɑ-globin gene (De Gobbi et al. 2006). In retinal biology, the importance of 

CREs became apparent in the study of cone opsins. On the human X chromosome, a locus 

control region (LCR, a type of CRE) lies upstream of the red and green opsin genes, which are 

arranged in a tandem array. The LCR is thought to randomly associate with one of the two opsin 

gene promoters, thereby generating the two alternative cell types (red or green cones) in the 

retina (Smallwood et al. 2003). Loss-of-function mutations in this LCR causes blue cone 

monochromacy, a rare condition in which expression of both red and green cone opsin is lost 

(Nathans et al. 1989). 

Distal-acting elements also have critical roles in brain development, as exemplified by 

cis-regulatory mutations that disrupt expression of SATB2, a TF important for skeletal 

development and neuronal specification in the cerebral cortex (Dobreva et al. 2006). For years, 

coding mutations in SATB2 were known to underlie a syndrome characterized by craniofacial 

abnormalities and intellectual disability. More recently, cis-regulatory mutations that disrupt 

SATB2 expression have also been found to cause this syndrome (Leoyklang et al. 2007; Docker 

et al. 2014; Rainger et al. 2014; Zarate et al. 2015). These and dozens of other examples 

highlight the role of CREs in both normal physiology and disease pathogenesis. 

 

1.2 Genomic insights into the properties of CREs 

 Although studies of individual loci have provided valuable insights into the roles of 

CREs, in order to fully understand the cis-regulatory logic of mammalian cell types, a 

comprehensive approach is needed. Recent advances in next-generation sequencing (NGS) have 

enabled large-scale efforts to study DNA in a systematic, genome-wide fashion (Mardis 2011). 

The ENCODE Project and the NIH Roadmap Epigenomics Consortium have generated an 
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unprecedented amount of data, ushering in a new era of data-driven biology (The ENCODE 

Project Consortium 2012; Roadmap Epigenomics et al. 2015). These projects have sought to 

annotate regulatory regions in a variety of mouse and human cell lines and primary tissues, using 

a combination of techniques, namely: (1) ChIP-seq for histone marks and TFs, (2) DNase-seq 

and FAIRE-seq for identifying regions of open chromatin, (3) chromosome conformation capture 

(3C)-based techniques to examine chromatin looping, and (4) methylation analysis (Appendix 1). 

These and related studies confirm earlier, smaller studies and also offer new insights, as 

highlighted below. 

 Promoters are perhaps the most widely studied type of CRE across all fields of biology. 

By definition, they are located directly upstream of their target gene. This ease of promoter-gene 

mapping likely contributes to the observation that promoter activity correlates well with target 

gene expression. Promoters come in two main varieties: (1) broad-type, CpG-rich promoters that 

are often associated with housekeeping genes, and (2) narrow-type, TATA box-containing 

promoters that tend to be associated with highly expressed, tissue-specific genes (Sandelin et al. 

2007). Recent studies indicate that promoters and enhancers share many architectural features 

and functional properties (Kim and Shiekhattar 2015). However, a detailed understanding of how 

promoter-enhancer compatibility is established is still lacking (van Arensbergen et al. 2014). 

 Regardless of the type of CRE, transcriptional potential is presumably encoded by the 

clusters of TF binding sites (TFBS’s) that recruit the binding of various TFs. Individual TFs 

preferentially bind to certain sequence ‘motifs,’ stretches of typically ~6-12 bp of DNA. Multiple 

motifs of different affinities, orientations, and relative spacing are thought to act in a 

combinatorial fashion. Interestingly, TFs are able to recognize and selectively bind certain motifs 

in the genome, while avoiding other similar motifs in the genome. This suggests the existence of 



7 

  

additional properties within the bound regions that confer added functionality; for instance, the 

GC content of the region (White et al. 2013; Kwasnieski et al. 2014). To dissect the grammatical 

rules that govern TF motifs, it is necessary to systematically study the relationship between CRE 

sequence and CRE activity. 

 In addition to the complexities of TF binding within a single CRE, the interactions 

between CREs and target genes add another dimension of complexity. As revealed by a variety 

of 3C-based methodologies, the physical landscape of gene regulation is highly complex. Many 

physical looping interactions between a CRE and a target gene occur over a considerable 

distance (Sanyal et al. 2012). Furthermore, the notion that a CRE has a single target gene is 

overly simplistic: on average, each TSS interacts with multiple CREs, and a given CRE interacts 

with multiple TSS’s (Thurman et al. 2012). Moreover, even promoters can physically interact 

and serve as enhancers for each other (Li et al. 2012). Despite all of this seemingly chaotic 

crosstalk, there is structure and order: studies using Hi-C (another 3C-based approach) have 

found that topologically associating domains (TADs) are highly conserved not only across cell 

types but also between species, although subdomains are more specific, presumably due to the 

action of cell type-specific CREs (Dixon et al. 2016). TADs are thought to be established at least 

in part by CTCF, a ‘master weaver’ of 3D genome architecture (Phillips and Corces 2009), but 

how CTCF establishes the chromatin states of specific cell types is unclear (Appendix 2). 

The key question is which of the interactions between CREs and their target genes are 

physiologically relevant in the context of a particular human disease, and which cis-regulatory 

variants disrupt these interactions. The challenge lies in identifying the disease-relevant tissue 

and developmental stage. By intersecting genotypic, epigenomic, and transcriptomic 

information, and by applying powerful machine learning approaches (Libbrecht and Noble 
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2015), the emergent field of functional genomics has the potential to bioinformatically predict 

the effect of cis-regulatory variants on gene expression. Given its descriptive nature, however, 

functional genomics is a hypothesis-generating approach that requires alternate means to 

demonstrate causality.  

 

1.3 The retina as a model system for studying cis-regulation 

To decode the cis-regulatory logic of the mammalian genome, a physiologically relevant 

system is needed that is genetically tractable as well as amenable to functional testing, but that 

also harbors the complexities of mammalian gene regulation. Retinal photoreceptors meet these 

criteria and provide an excellent model system for studying cis-regulation. The neural retina is a 

part of the CNS and is composed of >60 cell types that fall into seven major classes: rod and 

cone photoreceptors, bipolar cells, amacrine cells, horizontal cells, ganglion cells, and Müller 

glia (Masland 2012). All of these cell classes have been extensively studied, both with regards to 

their normal roles in vision, as well as their roles in retinal disease. 

Among the retinal cell classes, photoreceptors are by far the most abundant, constituting 

~80% of retinal cells in the mouse (Jeon et al. 1998). Moreover, they are arguably the most 

disease-relevant. Photoreceptors are uniquely susceptible to both Mendelian diseases and 

complex diseases such as AMD, and nearly 300 retinal disease genes have been identified 

(RetNet, http://www.sph.uth.tmc.edu/RetNet/). Photoreceptor fate specification has been well-

studied at the level of gene regulatory networks (GRNs). Although the catalogue of relevant TFs 

is still incomplete, a hierarchy of TFs is known. 

Early in development, OTX2 (orthodenticle homeobox 2) triggers the formation of 

photoreceptor precursors and turns on another Otx gene family member, CRX (cone-rod 
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homeobox) (Nishida et al. 2003). As a master regulator of photoreceptor differentiation, CRX 

activates a large number of downstream photoreceptor genes (Chen et al. 1997; Furukawa et al. 

1997; Hsiau et al. 2007). For instance, in conjunction with OTX2 and the ROR (RAR-related 

orphan receptor ), CRX activates NRL (neural retina leucine zipper), a key rod TF that activates 

NR2E3 (Oh et al. 2008; Kautzmann et al. 2011; Montana et al. 2011a). Cone GRNs are not as 

well understood as rod GRNs, but it is known that TR2 (thyroid hormone receptor 2) regulates 

the fate decision between the two mouse cone types, blue cones and red/green cones (Roberts et 

al. 2006). 

The transcriptional regulation of photoreceptors has been studied in detail not only in the 

context of individual TFs, but also on the scale of genome-wide gene expression profiles. For 

instance, in the retina of the Nrl-/- mouse, rods are converted en masse into cones. Comparison of 

Nrl-/- retinas to wild-type retinas has enabled identification of cone-enriched and rod-enriched 

genes through microarray and RNA-seq studies (Corbo et al. 2007; Brooks et al. 2011). While 

gene expression studies have been valuable for identifying photoreceptor genes, they are 

particularly informative when combined with ChIP-seq, which profiles the genome-wide 

occupancy of a TF. Together, ChIP-seq and RNA-seq provide insights about direct and indirect 

connections within GRNs. 

ChIP-seq studies have been conducted in the mouse retina for several photoreceptor TFs, 

including CRX (Corbo et al. 2010), NRL (Hao et al. 2012), and MEF2D (Andzelm et al. 2015). 

Several principles emerge from these studies: first, a large fraction of the ChIP-seq peaks are 

shared among these TFs, reflecting the role of combinatorial inputs in gene regulation. In 

particular, CRX appears to recruit other TFs and may act as a ‘pioneer factor’ in this regard 

(Zaret and Carroll 2011). Second, many of the ChIP-seq peaks are bona fide CREs that drive 
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expression (as autonomous elements or as enhancers) in photoreceptors. Third, the binding 

preferences of TFs, as assessed by motif enrichments within ChIP-seq peaks, agree well with in 

vitro measurements of binding affinity. Fourth, the relationship between TF binding and gene 

expression is highly complex and can be influenced by interactions at many levels: multiple 

TFBS’s of different affinities, orientations, and relative spacing within a single CRE; multiple 

TFs cooperating or competing for a given CRE; multiple CREs regulating a given gene; and 

lastly, multiple negative and positive feedback loops at the GRN level. 

In addition to ChIP-seq of photoreceptor TFs, DNase-seq data on mouse retinas at 

multiple developmental time points (postnatal day 1, day 7, and week 8) have recently become 

available. By profiling regions of open chromatin, DNase-seq identifies essentially all putative 

regulatory regions (e.g., enhancers, silencers, promoters, insulators, and LCRs) regardless of the 

specific TFs bound. Thus, the mouse retina offers the advantage of having comprehensive CRE 

maps, with data about temporal dynamics (Wilken 2015). Moreover, a newer chromatin 

accessibility assay, ATAC-seq, provides similar data as DNase-seq but requires far fewer cells, 

opening the door for not only stage-specific but also cell type-specific profiling (Buenrostro et al. 

2013). 

 Even with a comprehensive CRE map, the mouse retina would not be a powerful system 

for studying cis-regulation if it were not experimentally tractable. Fortunately, the retina is highly 

amenable to functional testing (Matsuda and Cepko 2008): plasmids can be introduced into 

explanted retinas via ex vivo electroporations, and the explanted retinas can then be grown in 

culture (Montana et al. 2011b). Alternatively, plasmids can be injected into the eyes of mice and 

electroporated in vivo (de Melo and Blackshaw 2011). The electroporation efficiency of neonatal 

mouse retinas is high, especially for photoreceptors, rendering these cells particularly suitable for 
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cis-regulatory analysis. 

 With a relatively well-defined cis-regulatory landscape, and with experimental tools 

available for functional testing, the mouse retina is an ideal system for investigating the effects of 

cis-regulatory variation. In Chapter 2, I analyze the genome-wide effects of cis-regulatory 

variants on gene expression in the mouse retina. 

 

1.4 Massively parallel reporter assays for functional analysis of cis-regulatory variants 

The functional effects of cis-regulatory variants on transcriptional activity can be 

experimentally tested with reporter constructs. Plasmid reporters have the advantage of isolating 

the effects of DNA sequence on transcriptional activity, independent of genomic context. 

Typically, the CRE of interest is cloned upstream of a promoter and reporter gene (e.g., LacZ, 

fluorescent protein or luciferase) and then transfected into cultured cells, primary tissues, or even 

living organisms (Rosenthal 1987; Vesuna et al. 2005). The level of reporter activity serves as a 

quantitative measure of transcriptional activity. Although theoretically feasible on a genome-

wide scale, individually synthesizing and testing CRE plasmid constructs is laborious, costly, and 

time-consuming. 

Recent studies have shown that the challenges of one-at-a-time CRE-reporter analysis can 

be overcome by engineering massively parallel plasmid reporter assays (MPRAs), which enable 

efficient large-scale functional testing of cis-regulatory variants. The first MPRA was developed 

in 2009, in which a large library of DNA oligos containing promoter sequences and 3’ barcodes 

were synthesized on oligonucleotide arrays and then transcribed in vitro (Patwardhan et al. 

2009). The resulting barcoded RNA molecules (i.e., the output of the experiment) were reverse-

transcribed into cDNA and sequenced. At the same time, the original DNA oligos (i.e., the input 
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of the experiment) were also sequenced. The number of barcoded cDNA sequence reads, 

normalized to the number of barcoded DNA sequence reads, served as a quantitative measure of 

CRE activity. Using this method, the authors conducted synthetic saturation mutagenesis in three 

bacteriophage promoters and three mammalian core promoters as a proof-of-principle. They 

were able to quantify the effects of mutations in known TFBS’s, and perhaps more importantly, 

to identify sites outside of known TFBS’s that appeared important for CRE activity.  

In 2012, the same group used a similar approach to conduct saturation mutagenesis of 

three mammalian enhancers in vivo (Patwardhan et al. 2012). Instead of in vitro transcription of 

oligos, they constructed plasmids that were introduced into mouse liver via tail vein injection. 

Most mutations had little or modest effect, but among those with larger effects, many affected 

conserved binding motifs for known liver-specific tissue factors (Patwardhan et al. 2012). 

Another group independently developed an MPRA to test the effects of enhancer variants in 

human cell lines, and they also found mutations in known TFBS’s that caused decreased CRE 

activity (Melnikov et al. 2012). 

Around the same time, the Corbo lab and the lab of Barak Cohen collaborated to develop 

CRE-seq, an MPRA in which barcoded plasmid reporter constructs are introduced into living 

tissue by electroporation. CRE-seq was used to conduct saturation mutagenesis on a portion of 

the promoter of Rhodopsin (Rho), a highly expressed gene in rod photoreceptors. This study 

analyzed ~1000 variants of the Rho promoter, including all SNPs within a central 52 bp region, 

as well as a large number of double-mutant constructs. Unexpectedly, 86% of all single 

mutations caused a change in CRE activity, even at positions without any known TFBS’s. These 

bases may lie within novel TFBS’s, or they may correspond to regions of DNA that do not 

directly bind to TFs but nonetheless affect CRE activity. Surprisingly, double mutants often 
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showed unpredictable, non-additive effects on CRE activity (Kwasnieski et al. 2012). Eventually, 

with a sufficiently deep understanding of cis-regulatory grammar, the effect of any given cis-

regulatory variant on CRE activity should be predictable. 

In the past few years, numerous MPRAs have been developed by independent groups 

(reviewed in (Levo and Segal 2014; Shlyueva et al. 2014; White 2015)). These are summarized 

in Table 1.1. Some notable variations are as follows: in STARR-seq, the CRE serves as its own 

reporter, such that transcripts of the CRE itself are quantified (Arnold et al. 2013). While most 

MPRAs use non-integrating plasmids, several use targeted (site-specific) integration or random 

integration. Some MPRAs use the fluorescence intensity of individual cells (measured by FACS) 

instead of transcript levels as the readout. As evidenced by their diversity, MPRAs have quickly 

gained popularity as a potential means for assaying cis-regulatory variants. 

Thus far, most MPRAs have been implemented in cell culture, but it should be possible to 

implement MPRAs in a wide array of disease-relevant tissues. Such methods would be 

invaluable for understanding the cis-regulatory logic of mammalian cells, and for interpreting the 

significance of the thousands of non-coding variants found in human patients. A number of 

technical issues remain, such as delivery of MPRA libraries into cell types that are not amenable 

to transfection, and the difficulty of assaying CREs longer than the ~200 bp limit of 

oligonucleotide array-synthesized fragments. These issues are addressed in Chapter 3.  

 

1.5 Identification of disease-associated variants in the GWAS era 

Even prior to the emergence of high-throughput sequencing technologies, efforts were 

underway to systemically identify associations between genotype and phenotype through 

genome-wide association studies (GWAS’s). Early GWAS’s typically included a few hundred 
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cases (i.e., individuals with the phenotype of interest) and controls (Visscher et al. 2012). The 

genotypes of the individuals were determined by SNP arrays, which probed for thousands of 

known, common (>1% MAF) human SNPs across the genome. Statistical tests were then 

implemented to identify significant associations between allele frequency and phenotype. The 

phenotype of interest is typically presence or absence of a disease, but it can also be a 

continuous, quantitative trait such as height or blood pressure. 

SNP arrays serve as a cheaper alternative to whole-genome sequencing (WGS), but 

because they provide incomplete genotypic information, genotypes are inferred based on 

knowledge of linkage disequilibrium (LD). LD refers to the tendency for sequence variants to be 

inherited together and is influenced by recombination rates and other factors (Ardlie et al. 2002; 

Slatkin 2008). For instance, SNPs in close proximity tend to be in high LD, as measured by an r2 

value near 1. Nowadays, GWAS’s often include thousands or even tens of thousands of cases and 

controls. SNP arrays are still used for genotyping, although this may change in the near future as 

the cost of WGS continues to decline (Hayden 2014). With improved knowledge of LD 

architecture, more sophisticated statistical tools, fine-mapping and conditional analysis 

strategies, and larger sample sizes, GWAS’s are increasingly able to detect even weak signals at 

loci of small effect (Visscher et al. 2012; Yang et al. 2012; Spain and Barrett 2015).  

A fundamental assumption underlying GWAS’s is that common variants (detectable by 

SNP arrays) underlie complex traits. At one extreme, a rare variant with a large effect size would 

cause complete penetrance, resulting in a Mendelian inheritance pattern with the genotype fully 

predicting the phenotype (Schork et al. 2009). Even for Mendelian traits, however, genetic 

background and environmental factors modify the phenotype (Dipple and McCabe 2000). At the 

other extreme, a common variant with a vanishingly small effect size would contribute to disease 
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susceptibility, albeit almost imperceptibly (Visscher et al. 2012; Loh et al. 2015). Evidence is 

accumulating that both classes of variants are important (Gibson 2011; Auer and Lettre 2015). 

To date, GWAS’s have identified thousands of loci associated with hundreds of complex 

traits, ranging from autoimmune disorders to psychiatric disease (Welter et al. 2014). The vast 

majority of observed effect sizes are small, with odds ratios rarely above 1.5. One of the few 

exceptions is age-related macular degeneration (AMD), a common cause of blindness that had 

previously been assumed to originate in the retina or RPE. In 2005, a landmark GWAS of 96 

AMD patients and 50 controls, using ~100,000 SNP markers (paltry numbers by today’s 

standards), identified a risk allele in an intron of CFH, a gene encoding a component of the 

complement cascade (Klein et al. 2005). This allele was associated with ~5-fold higher risk for 

AMD. Follow-up studies not only confirmed this GWAS result, but also confirmed the central 

role of the immune system in AMD pathogenesis (Black and Clark 2016). 

The success of GWAS for AMD illustrates the potential for GWAS’s to reveal novel 

disease pathways. The number of GWAS’s is now so large that meta-analysis of GWAS’s has 

become possible (Evangelou and Ioannidis 2013). For instance, GWAS’s of neuropsychiatric 

disorders have revealed both shared and distinct genetic contributions among bipolar disorder 

(BPD), major depressive disorder (MDD), and schizophrenia (SCZ), with neuronal pathways and 

immune pathways playing prominent roles (Cross-Disorder Group of the Psychiatric Genomics 

et al. 2013; Network and Pathway Analysis Subgroup of Psychiatric Genomics 2015). Another 

study of GWAS’s for 42 traits not only identified genetic associations between seemingly 

unrelated traits, such as SCZ and inflammatory bowel disease (IBD), but also inferred the causal 

relationship between associated traits using statistical approaches (Pickrell et al. 2016). However, 

GWAS’s are ultimately descriptive in nature: the lead GWAS SNP at a locus (that is, the most 
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statistically significant SNP) is not necessarily the ‘causal variant’ that contributes directly to 

disease pathogenesis. Instead, the lead SNP may serve simply as a tag for the underlying causal 

variant, which may not have been directly genotyped. 

 

1.6 The post-GWAS era: convergence of GWAS and functional genomics 

In recent years, human statistical geneticists and functional genomicists have converged 

upon the realization that the vast majority of GWAS hits are non-coding, suggesting etiologic 

roles for underlying causal cis-regulatory variants (Maurano et al. 2012a; Schaub et al. 2012). In 

particular, disease-associated variants are often enriched within DHSs, and the tissue specificity 

of the DHSs may reflect disease pathogenesis. For instance, variants associated with attention 

deficit hyperactivity disorder (ADHD) are enriched within fetal brain DHSs (Maurano et al. 

2012a). In light of the realization that many GWAS signals are likely due to cis-regulatory 

mechanisms, efforts are now routinely made to intersect GWAS hits with functional genomic 

annotations and eQTL data (Ward and Kellis 2012b; Edwards et al. 2013).  

Thus far, however, there are relatively few examples in which the likely causal cis-

regulatory variant underlying a non-coding GWAS signal has been identified and experimentally 

tested. These are summarized in Table 1.2. One particularly interesting example is the FTO 

locus, where intronic variants have been reproducibly associated with body mass index (BMI) 

and obesity. Two groups have independently demonstrated that this intronic region contains 

multiple enhancers (or possibly a single superenhancer) that regulate IRX3 and perhaps other 

genes (Smemo et al. 2014; Claussnitzer et al. 2015). However, whereas one group argues that 

adipocytes are the relevant cell type based on experiments in primary human adipocytes 

(Claussnitzer et al. 2015), the other group argues that the relevant tissue is the hypothalamus 
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based on a mouse model (Smemo et al. 2014). The FTO story illustrates the challenges of 

demonstrating causality for cis-regulatory variants in disease, even when the target gene is 

known. In Chapter 4, I seek to identify the causal variant underlying a GWAS locus associated 

with neuropsychiatric phenotypes, specifically human cognition and bipolar disorder. 

 

1.7 The brain as a frontier for cis-regulatory biology 

 The same changes that endowed human with expanded intellectual abilities may also 

render them susceptible to neuropsychiatric diseases (Somel et al. 2013). Many devastating 

neuropsychiatric disorders are multifactorial in etiology but are thought to have 

neurodevelopmental origins. Cis-regulatory variants likely contribute substantially to 

susceptibility for these disorders, via mechanisms that are not well understood. 

 Compared to the retina, the brain is many orders of magnitude more complex; for 

instance, there are ~108 vs. ~1011 neurons in the respective tissues, giving rise to many orders of 

magnitude more synapses in the brain (Herculano-Houzel 2012; Masland 2012). The brain 

possesses tremendous cellular diversity of both neuronal and non-neuronal (e.g., glial) cell types. 

Large-scale efforts to understand the complexities of the brain at the level of gene expression, 

anatomy, and functional connectivity are now underway (Sunkin et al. 2013; Van Essen et al. 

2013). Many of these efforts rely on approaches that were first developed in the retina, reflecting 

the utility of the retina as a model system for understanding the brain (London et al. 2013). 

 Numerous studies have sought to map the epigenomic landscape of the brain (Roadmap 

Epigenomics et al. 2015). In particular, the GRNs of the developing cerebral cortex have been 

extensively studied (Molyneaux et al. 2007; Nord et al. 2015). One-at-a-time transgenic LacZ 

reporter assays have also been used to functionally test a subset of candidate CREs in the 
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developing CNS (Nord et al. 2013; Visel et al. 2013). The cellular complexity of the brain arises 

from a series of highly overlapping but coordinated developmental programs involving a host of 

TFs, including TFs such as Pax6 that regulate neurogenesis in both the retina and the brain 

(Osumi et al. 2008). 

 Given its anatomical complexity and developmental dynamics, the study of CREs in the 

brain requires special consideration of the relevant cell types and developmental stage. Methods 

have been developed for in vivo and ex vivo electroporation of plasmid reporters into developing 

mouse brains (Langevin et al. 2007; Nichols et al. 2013). However, due to spatiotemporal 

gradients during brain development, even small differences in electroporation timing and 

positioning can dramatically affect what cellular populations are transfected. 

 Although fundamental developmental programs are conserved between mouse and 

human brains, there are important differences. For example, the mouse brain is lissencephalic 

instead of gyrencephalic and lacks the expanded outer subventricular zone of the human brain 

(Lui et al. 2011). As an alternative to mouse models, human iPSCs can be differentiated into 

neurons in vitro (Denham and Dottori 2011), or fibroblasts can be directly converted into 

neurons in vitro (Yoo et al. 2011). Furthermore, protocols for growing iPSC-derived cerebral 

organoids have recently been developed (e.g., (Lancaster et al. 2013)). However, the robustness 

of iPSC-based protocols and the precise properties of the derived cells remain to be fully 

characterized. Thus, mouse models and iPSC-based systems both have advantages and 

disadvantages. 

 With the biological complexities and technical challenges of assaying the brain, the study 

of cis-regulatory variants in the context of CNS disease remains a major frontier. In the 
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subsequent chapters, I describe my forays into this frontier, with the aid of the retina as a 

‘window’ into the brain.  
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Table 1.1. Summary of massively parallel reporter assay approaches. 

Reference Method Distinguishing features Assayed system Plasmid or 

integrated 

(Patwardhan et al. 

2009) 

MPRA First MPRA proof-of-concept Uses in vitro transcription N/A 

(Nam et al. 2010; 

Nam and Davidson 

2012) 

NanoString Delivery of library via injection 

into fertilized egg 

Sea urchin embryos Integrated 

(random) 

(Melnikov et al. 

2012) 

MPRA One of the first MPRAs Human cell line Plasmid 

(Patwardhan et al. 

2012) 

MPRA One of the first MPRAs Mouse liver (hydrodynamic 

tail vein assay) 

Plasmid 

(Sharon et al. 2012) MPRA One of the first MPRAs; uses 

fluorescent readout (FACS) 

Yeast Plasmid 

(Kwasnieski et al. 

2012) 

CRE-seq 

 

One of the first MPRAs 

 

Mouse retina (explant 

electroporation) 

Plasmid 

(Mogno et al. 2013) Yeast Integrated 

(site-specific) 

(Akhtar et al. 2013) TRIP Transposase-mediated 

integration 

Mouse ESCs Integrated 

(random) 

(Arnold et al. 2013) STARR-seq CRE serves as its own reporter Drosophila cell lines, human 

cell lines 

Plasmid 

(Gisselbrecht et al. 

2013) 

enhancer-

FACS-seq 

Uses phiC31 integrase; 

fluorescent readout (FACS) 

Drosophila embryos Integrated 

(site-specific) 

(Dickel et al. 2014) SIF-seq Targeted integration via 

homologous recombination; 

fluorescent readout (FACS) 

Human and mouse ESCs Integrated 

(site-specific) 

(Murtha et al. 2014) FIREWACh Uses lentivirus Mouse ESCs Integrated 

(random) 

(Vanhille et al. 

2015) 

CapSTARR-

seq 

Uses capture-and-clone and 

STARR-seq 

Mouse cell lines Plasmid 

(Shen et al. 2016)* Capture-and-

clone AAV 

CRE-seq 

Uses capture-and-clone for 

truncation mutation analysis; 

uses AAV for the first time 

Mouse brain (stereotactic 

injection of AAV) 

Non-integrated 

(Nguyen et al. 

2016) 

AAV MPRA Uses AAV Primary cultured neurons Non-integrated 

(Verfaillie et al. 

2016) 

CHEQ-seq Uses capture-and-clone Human cell line Plasmid 

(Inoue et al. 2017) lentiMPRA Uses lentivirus Human cell line Non-integrated 

(mutant 

integrase) vs. 

integrated 

(random) 

 

*See Chapter 3.  
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Table 1.2. Summary of functional studies that have identified the likely causal cis-

regulatory variant underlying a GWAS signal. 

 
Reference Causal 

variant(s) 

Phenotype(s) Relevant cell 

type(s) 

Target 

gene(s) 

Disrupted 

TF motifs 

Types of evidence 

(Harismendy 

et al. 2011) 

rs10811656, 

rs10757278 

Coronary artery 

disease, type 2 

diabetes 

Vascular 

endothelial cells 

Multiple 

genes STAT1 Looping, TF binding  

(Bauer et al. 

2013) rs1427407 

HbF level 

(sickle cell 

disease) Erythroblasts BCL11A 

GATA1, 

TAL1 

Looping, TF binding, 

gene expression, 

transgenic reporter 

mice 

(Sakurai et al. 

2013) rs3122605 

SLE, IBD, type 

1 diabetes 

B cells, T cells, 

monocytes IL-10 ELK-1 

TF binding, gene 

expression, protein 

expression 

(Zeron-

Medina et al. 

2013) rs4590952 

Testicular 

cancer Various KITLG p53 

TF binding, enhancer 

activity,  allele-

specific expression 

(Guenther et 

al. 2014) rs12821256 

Blond hair 

color Hair follicles KITLG LEF1 

TF binding, enhancer 

activity, transgenic 

reporter mice, knock-

in mice 

(Fogarty et al. 

2014) rs11257655 Type 2 diabetes 

Liver/pancreatic 

islets? Unknown 

FOXA1, 

FOXA2 

TF binding, enhancer 

activity  

(Kulzer et al. 

2014) rs11603334 Type 2 diabetes 

Pancreatic beta 

cells ARAP1 

PAX6, 

PAX4 

TF binding, enhancer 

activity, gene 

expression 

(Spieler et al. 

2014) rs12469063 

Restless legs 

syndrome 

Neuronal 

progenitors in 

ganglionic 

eminence Meis1 CREB1  

TF binding, 

transgenic reporter 

zebrafish, transgenic 

reporter mice 

(Visser et al. 

2014) rs12350739 

Skin 

pigmentation Melanocytes BNC2 Unknown 

Chromatin 

accessibility, 

enhancer activity, 

gene expression 

(Claussnitzer 

et al. 2015) 

(see also 

(Smemo et al. 

2014)) rs1421085 BMI 

Adipocyte 

precursors 

(hypothalamus 

according to 

(Smemo et al. 

2014)) 

IRX3, 

IRX5 ARID5B 

Looping, TF binding, 

enhancer activity, 

gene expression, 

CRISPR-Cas 

modification of cells 

(Gaulton et al. 

2015) rs10830963  Type 2 diabetes 

Liver/pancreatic 

islets? Unknown NEUROD1 

TF binding, enhancer 

activity  

(Oldridge et 

al. 2015) rs2168101 Neuroblastoma 

Neuroblastoma 

tumor LMO1 GATA3 

TF binding, enhancer 

activity, allele-

specific expression 

(Soldner et al. 

2016) rs356168 

Parkinson's 

disease 

Neural 

precursors, 

neurons SCNA 

EMX2, 

NKX6-1 

TF binding, allele-

specific expression, 

CRISPR-Cas 

modification of cells 
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CHAPTER 2: 

Hybrid Mice Reveal Parent-of-Origin and Cis- and Trans-Regulatory Effects in the Retina 

 

  



23 
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map cis-regulatory variants onto gene expression changes. I also identify parent-of-origin effects 

(i.e., evidence of imprinting) in the retina for the first time. 
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2.2 ABSTRACT 

 A fundamental challenge in genomics is to map DNA sequence variants onto changes in 

gene expression. Gene expression is regulated by cis-regulatory elements (CREs, i.e., enhancers, 

promoters, and silencers) and the trans factors (e.g., transcription factors) that act upon them. A 

powerful approach to dissecting cis and trans effects is to compare F1 hybrids with F0 

homozygotes. Using this approach and taking advantage of the high frequency of polymorphisms 

in wild-derived inbred Cast/EiJ mice relative to the reference strain C57BL/6J, we conducted 

allele-specific mRNA-seq analysis in the adult mouse retina, a disease-relevant neural tissue. We 

found that cis effects account for the bulk of gene regulatory divergence in the retina. Many 

CREs contained functional (i.e., activating or silencing) cis-regulatory variants mapping onto 

altered expression of genes, including genes associated with retinal disease. By comparing our 

retinal data with previously published liver data, we found that most of the cis effects identified 

were tissue-specific. Lastly, by comparing reciprocal F1 hybrids, we identified evidence of 

imprinting in the retina for the first time. Our study provides a framework and resource for 

mapping cis-regulatory variants onto changes in gene expression, and underscores the 

importance of studying cis-regulatory variants in the context of retinal disease. 
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2.3 INTRODUCTION 

Photoreceptors mediate vision by converting light into an electrical signal, which is then 

processed by the inner retina and sent to the brain as visual information. Photoreceptors 

constitute the vast majority (>70%) of cells in the mouse retina (Young 1985), and they are 

prominent targets for disease: the majority of more than 200 genetic forms of retinal 

degeneration affect photoreceptors (SP Daiger 1998). Many of the key transcriptional regulators 

in photoreceptor development are known, and the transcriptomes of these cells have been 

profiled over normal development as well as in disease states (Corbo et al. 2007; Hsiau et al. 

2007; Swaroop et al. 2010). Furthermore, the regulatory regions of mature photoreceptors in 

adult mouse retinas have been mapped genome-wide, based on the binding patterns of two key 

photoreceptor transcription factors, CRX (cone-rod homeobox) (Corbo et al. 2010) and NRL 

(neural retina leucine zipper) (Hao et al. 2012), as well as the patterns of ENCODE DNaseI 

hypersensitivity sequencing (DNase-seq) data (The ENCODE Project Consortium 2012). 

Photoreceptors therefore represent a disease-relevant cell type well-suited for studying the 

mechanisms of mammalian gene regulation. 

Changes in gene expression give rise to cell-type identity, intraspecies variation, and 

interspecies diversity, thereby acting as the molecular underpinnings for development, disease, 

and evolution, respectively (Wray 2007; Wittkopp and Kalay 2012). Alterations in gene 

expression can arise from changes in cis-regulatory elements (CREs, i.e., enhancers, promoters, 

and silencers), or from changes in the trans factors (e.g., transcription factors) that interact with 

CREs. To distinguish between cis and trans effects, a powerful approach is to compare F1 

heterozygous hybrids with F0 homozygotes. In F1 hybrids, both alleles of a gene are contained 

within the same nucleus and are exposed to the same set of trans factors. A trans-regulatory 
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difference (‘trans effect’) manifests as conserved expression between the two alleles in the F1 

hybrids, despite differential expression of the gene in the F0 homozygotes. In contrast, a cis-

regulatory difference (‘cis effect’) manifests as an allelic expression imbalance (AEI)—i.e., 

differential expression between the two alleles of a gene in the F1 hybrids, with an allelic ratio 

that recapitulates the ratio of gene expression levels in the F0 homozygotes. By measuring allele-

specific gene expression, the relative contributions of cis and trans effects can be dissected 

genome-wide. AEI can also arise from parent-of-origin effects (e.g., imprinting). Importantly, by 

conducting reciprocal crosses, parent-of-origin effects can be identified and filtered to avoid 

confounding the analysis of cis and trans effects. 

Prior studies utilizing the F1 hybrid study design in yeast and Drosophila have yielded a 

range of results: earlier pyrosequencing and microarray-based studies found that cis effects 

predominate (Wittkopp et al. 2004; Tirosh et al. 2009), while more recent RNA-seq studies 

indicate a greater role for trans effects (Emerson et al. 2010; McManus et al. 2010). Regardless, 

all studies acknowledge a high prevalence of cis effects. The F1 hybrid study design has been 

used to investigate gene regulation in one mammalian tissue thus far, the mouse liver (Goncalves 

et al. 2012). In that study, the authors found that cis and trans effects often act together in 

opposite directions, with the net effect of stabilizing gene expression.  

Here, we conduct an F1 hybrid study using allele-specific mRNA-seq analysis to chart 

the regulatory landscape of a portion of the mature mammalian central nervous system, the adult 

mouse retina. We utilize two distantly related strains of mice, Cast/EiJ and C57BL/6J, whose 

retinas are known to exhibit phenotypic differences (Haider et al. 2008; Jelcick et al. 2011). The 

primary goal of our study is to dissect the contributions of cis and trans effects on gene 

regulation in photoreceptors. As part of our study, we identify parent-of-origin effects in the 
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retina, a tissue in which imprinting has not previously been studied. By re-analyzing available 

liver data (Goncalves et al. 2012) and comparing them to our data from the retina, we assess the 

degree of tissue specificity of the observed cis- and trans-regulatory effects. Furthermore, we 

integrate our gene expression data with knowledge about the location of CREs, thereby 

providing insights into the effects of cis-regulatory variants on gene expression. 
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2.4 RESULTS  

The ancestors of two inbred Mus musculus strains, the standard reference strain 

C57BL/6J and the wild-derived inbred strain Cast/EiJ, diverged ~1 million years ago (Wade et al. 

2002). Cast/EiJ harbors ~18 million single nucleotide polymorphisms (SNPs) and ~3 million 

insertions/deletions (indels) relative to C57BL/6J, involving nearly 1% of the accessible genome 

(Keane et al. 2011). In addition, Cast/EiJ retinas show substantial phenotypic differences, namely 

reduced photopic and scotopic electroretinogram amplitudes compared to C57BL/6J retinas 

(Haider et al. 2008; Jelcick et al. 2011). We reciprocally crossed these two strains to obtain four 

genotypic classes for analysis (Figure 2.1A): F0 C57BL/6J, F0 Cast/EiJ, F1 B6xCast (resulting 

from C57BL/6J male x Cast/EiJ female), and F1 CastxB6 (resulting from Cast/EiJ male x 

C57BL/6J female). For each class, we analyzed three biological replicates, each consisting of a 

pool of retinas.  

We collected retinas from adult mice at age 8 weeks, a time point at which mouse retinal 

CRX ChIP-seq (Corbo et al. 2010) and ENCODE DNase-seq (The ENCODE Project 

Consortium 2012) were previously conducted. To control for sex-linked effects and because the 

X chromosome of Cast/EiJ is preferentially expressed in F1 hybrid females (Chadwick et al. 

2006), we used retinas from male mice only and focused our analyses on autosomal genes. We 

conducted paired-end mRNA-seq and calculated gene expression for F0 samples and allele-

specific expression for F1 samples by mapping reads to the C57BL/6J and Cast/EiJ 

transcriptomes using MMSEQ (Figure 2.1B; see Methods) (Turro et al. 2011). 

We verified that biological replicates for each F0 or F1 class exhibited a high degree of 

agreement for gene expression or allele-specific expression estimates, respectively (Table 2.1 

and Table 2.2). We also verified the accuracy of our mapping strategy by examining the X 
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chromosomal reads in the F1 samples. Since samples derived solely from male retinas, the X 

chromosomal reads should map exclusively to the maternal genome. Accordingly, X 

chromosomal reads for F1 B6xCast should map to Cast/EiJ, while those for F1 CastxB6 should 

map to C57BL/6J. In validation of our mapping strategy, we found high accuracy (>99%) of X 

chromosomal reads for all F1 samples (Table 2.3). Importantly, the accuracy of mapping to the X 

chromosome of F1 B6xCast and F1 CastxB6 samples was similar, indicating that there was no 

substantial read-mapping bias toward the standard reference genome, C57BL/6J, a potential 

confounding factor in the allele-specific quantification (Degner et al. 2009). 

 

2.4.1 Strongly imprinted genes in other tissues show evidence of imprinting in the retina 

 To evaluate cis and trans effects on gene expression in the retina, we first needed to filter 

genes affected by parent-of-origin effects (e.g., imprinting). Genomic imprinting is an epigenetic 

phenomenon that causes an imbalance in allelic expression depending on whether the allele is 

maternally or paternally derived (Reik and Walter 2001). In the extreme case, one allele is 

completely silenced, rendering the locus functionally monoallelic; for this reason, many 

mutations in imprinted loci are associated with human disease (Falls et al. 1999). Differential 

methylation of alleles provides a molecular basis for imprinting, but because methylation can 

occur in a tissue-specific manner, a gene can be imprinted in one tissue but not another, despite 

being expressed in both (Prickett and Oakey 2012). Although imprinting has been extensively 

studied in a number of human and mouse tissues, including brain and placenta (Prickett and 

Oakey 2012; Xie et al. 2012; Court et al. 2014), it has not previously been studied in the retina. 

 By analyzing the reciprocal F1 hybrids, we identified autosomal genes that exhibited a 

significant maternal bias (maternally expressed, paternally silenced) or paternal bias (paternally 
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expressed, maternally silenced) (Figure 2.2A and 2.2B; Supporting Information S1). To 

determine whether these genes have been identified as imprinted in other tissues, we searched for 

known imprinted mouse genes in four databases (see Methods). Using a Bayesian model 

selection approach implemented in the MMDIFF program (Turro et al. 2014), we ranked genes 

in our dataset by the probability of imprinting and observed a clear enrichment of known 

imprinted genes among highly-ranked genes (Figure 2.2C). Among the top-ranked genes, the 

vast majority were well-characterized imprinted genes listed in multiple imprinting databases 

(see Methods) and displayed the same allelic bias as previously reported (Figure 2.2D).  

 We identified 75 genes as highly likely to be imprinted (Bayes factor ≥10). Among these, 

39 genes were extremely likely to be imprinted (Bayes factor ≥30), of which 29/39 (74%) were 

known imprinted genes. In 27 out of 29 cases, the direction of parental bias that we observed was 

consistent with that reported in the literature. For instance, Peg3 (paternally expressed 3) and 

Meg3 (maternally expressed 3) were our 2nd and 3rd ranked imprinting genes, respectively. Igf2 

and Igf2r were our 30th and 34th ranked imprinted genes, respectively. Igf2 and its receptor Igf2r 

were the first imprinted mouse genes discovered and remain among the best-characterized, with 

paternally expressed Igf2 promoting growth and maternally expressed Igf2r inhibiting growth 

(Moore and Haig 1991; Wilkins and Haig 2003). Consistent with an emerging view of 

imprinting occurring on a spectrum rather than being an all-or-none event (Goncalves et al. 2012; 

Xie et al. 2012), we found varying degrees of allelic bias even for well-characterized imprinted 

genes, ranging from subtle (e.g., <2-fold preference for the maternal over the paternal allele of 

Igf2r) to extreme (e.g., >1000-fold preference for the maternal over the paternal allele of Rian). 

Rtl1, also known as Peg11, is a gene in the Dlk1-Dio3 imprinted cluster (da Rocha et al. 

2008). In our dataset, reads mapped preferentially to the maternal allele at the Rtl1 locus. 
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Previous studies in other tissues found that Rtl1 is expressed from the paternal allele, while an 

antisense RNA, anti-Rtl1, is transcribed from the same locus on the maternal allele and gives rise 

to two maternally expressed microRNAs (Seitz et al. 2003; da Rocha et al. 2008). Since our 

RNA-seq was not strand-specific, we could not discern whether Rtl1 or anti-Rtl1 is maternally 

expressed in the adult mouse retina.  

 Grb10 is unique among imprinted genes in that it exhibits opposite patterns of imprinting 

depending on the tissue where it is expressed. In adult mice, Grb10 is maternally expressed in 

some tissues, such as muscle and adipose, where it plays a role in glucose metabolism (Smith et 

al. 2007). However, it is paternally expressed in the brain, where it affects social behavior 

(Garfield et al. 2011). This tissue-specific parent-of-origin effect is associated with usage of a 

paternal-specific Grb10 promoter during neural fate commitment (Sanz et al. 2008). Interestingly, 

in the retina, we found that Grb10 follows the pattern of muscle and adipose tissue, with 

preferential expression of the maternal allele. Thus, although the retina belongs to the central 

nervous system, it does not follow the imprinting pattern observed in the brain for this locus. 

 Together, these analyses indicate that imprinting occurs in the retina, and that the pattern 

of imprinting is largely, but not always, concordant between the retina and the brain. Notably, 

the developing retina expresses the DNA methyltransferase DNMT3A, which is required for the 

germline methylation of imprinted loci (Kaneda et al. 2004; Nasonkin et al. 2011). Methylation 

analysis (e.g., bisulfite sequencing) of the retina would confirm whether the parent-of-origin 

effects identified here correspond to differentially methylated regions (DMRs), as methylation-

independent parent-of-origin effects have also been reported (Court et al. 2014; Mott et al. 2014). 
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2.4.2 One-third of differentially expressed genes between Cast/EiJ and C57BL/6J retinas 

are associated with photoreceptor CREs 

Previous microarray studies have suggested substantial gene expression differences 

between C57BL/6J and Cast/EiJ retinas (Jelcick et al. 2011). Thus, we surveyed differentially 

expressed (DE) genes between the adult male F0 Cast/EiJ and F0 C57BL/6J retinas. We 

identified 3,799 autosomal DE genes between the F0 samples at a false discovery rate (FDR) of 

5% using DESeq (Anders and Huber 2010) (Supporting Information S2). Among these, 

1,701/3,799 (45%) showed higher expression in Cast/EiJ.  

 CRX is a key photoreceptor transcription factor required for the expression of many rod 

and cone genes (Chen et al. 1997; Furukawa et al. 1999). Previous CRX ChIP-seq studies 

conducted in adult C57BL/6 mouse retinas demonstrated that CRX-bound regions (CBRs) 

demarcate both known and putative photoreceptor CREs (Corbo et al. 2010). CBRs have a 

propensity to cluster around genes expressed in photoreceptors, and knowledge of CBR locations 

has helped pinpoint novel human retinal disease genes (Langmann et al. 2010; Ozgul et al. 2011).  

 We used available adult mouse retinal CRX ChIP-seq data to determine whether the 

differentially expressed genes were CBR-associated (Corbo et al. 2010). We found that among 

all 34,964 autosomal genes, 6,257 (18%) had at least one CBR assigned to them. However, 

among the 3,799 DE genes between the two strains, 1,275 (34%) were CBR-associated, 

representing a significant enrichment (P < 10-14, hypergeometric distribution). Thus, among all 

autosomal genes, those that were differentially expressed between Cast/EiJ and C57BL/6J were 

more likely to be CBR-associated.  

 Furthermore, differentially expressed CBR-associated genes more often had lower 

expression in Cast/EiJ than C57BL/6J when compared to differentially expressed non-CBR-



33 

  

associated genes (Figure 2.3A). This effect was especially pronounced for genes with greater 

fold change between the two strains. Together, these findings suggest that Cast/EiJ overall has 

lower expression of photoreceptor genes than C57BL/6J, consistent with a previous microarray 

analysis (Jelcick et al. 2011). The physiological function of rods, which constitute >97% of the 

photoreceptors in the mouse retina (Jeon et al. 1998), can be measured by the a-wave of the 

scotopic electroretinogram (ERG). Interestingly, the gene expression differences may be 

reflected in the rod photoreceptor physiology of Cast/EiJ, which has a scotopic a-wave amplitude 

~40-50% that of C57BL/6J, despite intact morphology (Jelcick et al. 2011; Grubb et al. 2014). 

 

2.4.3 Cis-regulatory effects account for the bulk of gene regulatory divergence between 

Cast/EiJ and C57BL/6J retinas 

 Next, we determined whether gene expression divergence was attributable to cis effects, 

trans effects, or a combination of both. For this analysis, we examined allele-specific expression 

in the F1 hybrids in conjunction with gene expression in the F0 parents (Figure 2.4A; Supporting 

Information S3). After excluding 306 genes with an imprinting Bayes factor >3, we were able to 

classify 11,484 autosomal genes with high confidence (see Methods). Among these, 

6,380/11,484 (56%) were best modelled as conserved (i.e., no significant difference), 

3,537/11,484 (31%) as divergent due to cis effects, 850/11,484 (7%) as divergent due to trans 

effects, and 717/11,484 (6%) as divergent due to a combination of cis and trans effects. 

Therefore, cis-regulatory effects were the primary mechanism of gene regulatory divergence 

between Cast/EiJ and C57BL/6J retinas. 

 We then subcategorized the genes whose divergence was due to a combination of cis- and 

trans effects into the following classes: (1) CIS – trans (cis and trans effects acting in opposite 
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directions, with cis effects stronger) had 195/717 (27%) of the genes, (2) TRANS – cis (cis and 

trans effects acting in opposite directions, with trans effects stronger) had 327/717 (46%) of the 

genes, (3) CIS + trans (cis and trans effects acting in the same direction, with cis effects stronger) 

had 60/717 (8%) of the genes, and (4) TRANS + cis (cis and trans effects acting in the same 

direction, with trans effects stronger) had 135/717 (19%) of the genes (Figure 2.4B).  

 When cis and trans effects acted together in the retina, they acted in opposite directions 

to stabilize gene expression in the majority (522/717 or 73%) of cases, while they acted in the 

same direction to shift gene expression in a minority (195/717 or 27%) of cases. However, the 

primary mechanism of gene regulatory divergence was cis-regulatory effects acting with little or 

no contribution from trans-regulatory effects, accounting for 3,537/5,104 (69%) of gene 

regulatory divergence. This suggests that functional cis-acting sequence variants in the Cast/EiJ 

genome often drive altered gene expression. 

 We further examined the 3,537 cis-effect genes, of which 1,751/3,537 (50%) showed 

higher expression of the Cast/EiJ allele than the C57BL/6J allele, and of which 1,256/3,537 

(36%) were CBR-associated. We found that cis-effect genes that were CBR-associated more 

often had lower Cast/EiJ allele expression than cis-effect genes that were not CBR-associated, 

for genes with higher fold change between the two alleles (Figure 2.3B). These results are 

consistent with the notion that the Cast/EiJ genome overall harbors many cis-regulatory variants 

whose net effect is to diminish photoreceptor gene expression. 

 Trans effects could arise from differential activity of transcription factors. Therefore, we 

inspected the rod photoreceptor transcriptional network, whose members include the 

transcription factors CRX, ROR, NRL, and NR2E3 (Swaroop et al. 2010). We found that Crx 

and Nrl transcript levels were both conserved in the F0 and F1 retinas. Rorb was a solely trans-
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effect gene, with lower expression in Cast/EiJ, suggesting that the upstream regulators of ROR 

in the retina (whose identities are unknown) have altered activity in Cast/EiJ. Nr2e3 was also a 

solely trans-effect gene, with higher expression in Cast/EiJ. Since NR2E3 is known to be 

regulated by CRX and NRL (Oh et al. 2008), and the mRNA levels of Crx and Nrl were 

unaltered, we examined whether CRX or NRL harbored coding mutations that might alter their 

protein activity. However, we did not find any non-synonymous mutations in Nrl or in the best-

characterized isoform of Crx (Chen et al. 1997; Freund et al. 1997). Thus, we identified 

differential trans-regulation of Rorb and Nr2e3 in Cast/EiJ relative to C57BL/6J, but the reasons 

for these trans effects are unknown.  

 

2.4.4 Higher frequency of variants in photoreceptor CREs correlates with differential 

expression 

 Whereas trans-regulatory effects are due to the levels or activities of upstream signaling 

cascades and transcriptional regulators (e.g., transcription factors), cis-regulatory effects can 

arise from functional cis-acting variants within CREs. We undertook a survey of Cast/EiJ 

variants relative to C57BL/6J that fell within CBRs. First, we asked whether CBRs were 

depleted or enriched for Cast/EiJ variants by tabulating the number of SNPs and indels across the 

2 kb region centered on CBRs. We found that the frequency of variants decreased toward the 

center of CBRs (Figure 2.5A). The bulk of the depletion occurred within the central 300 bp, 

consistent with the previous finding that phylogenetic conservation, as measured by PhastCons 

scores (Siepel et al. 2005), is markedly elevated within the central region of CBRs (Corbo et al. 

2010). Also consistent with this result, a recent functional analysis of ~1,300 CBRs in the mouse 

retina demonstrated that short fragments corresponding to the central 84 bp of CBRs possess 
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substantial cis-regulatory activity (White et al. 2013). When we conducted the same analysis of 

variant depletion for Spret/EiJ, an inbred strain of Mus spretus that diverged from Mus musculus 

~2 million years ago (Dejager et al. 2009), we obtained similar results (Figure 2.5A). Thus, 

CBRs are functionally constrained and have likely undergone selection in the mouse lineage, 

particularly in the central-most portion of the CBR.  

 If cis effects are due to altered transcriptional activity driven by cis-regulatory variants, 

we would expect to find a higher frequency of functional variants in the CREs around cis-effect 

genes compared to the trans-effect genes. We first observed that the proportion of genes that 

were CBR-associated was approximately equal across categories: 2,149/6,380 (34%) of 

conserved genes, 1,256/3,537 (36%) of cis-effect genes, 300/850 (35%) of trans-effect genes, 

and 242/717 (34%) of cis- and trans-effect genes. We then tabulated the Cast/EiJ variants (SNPs 

and indels) within the central 1 kb centered on the CBRs associated with each gene (Supporting 

Information S4). For all 10,212 CBRs, we found 86,389 variants, for a frequency of 8.46 variants 

per kb. When we examined the cis-effect genes, we found 21,174 variants in the 2,185 associated 

CBRs, for a frequency of 9.69 variants per kb. This was significantly higher than the variant 

frequency in all CBRs (P < 10-14, hypergeometric distribution). In contrast, for the trans-effect 

genes, we found 4,068 variants in 487 CBRs, corresponding to a frequency of 8.35 variants per 

kb, which was not significantly different from the variant frequency in all CBRs (P = 0.2, 

hypergeometric distribution). The tendency for CBRs associated with cis-effect genes to have a 

higher frequency of variants than CBRs associated with trans-effect genes is also evident from 

the distributions of variants across individual CBRs (Figure 2.5B). Collectively, we find that 

CBRs associated with cis-effect genes are enriched for variants, whereas CBRs associated with 

trans-effect genes are not. These results suggest that CBRs contain functional cis-regulatory 
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variants that alter transcriptional activity, but future empirical testing is needed to demonstrate 

the causality of specific variants.  

  

2.4.5 The Cast/EiJ genome harbors both activating and silencing cis-regulatory variants 

associated with retinal disease genes 

 Given that hundreds of genes can contribute to retinal disease, we asked whether any of 

the cis-effect genes were associated with human retinopathies (Supporting Information S5). We 

found 62 cis-effect genes with human orthologues that were listed in the RetNet database, an up-

to-date and comprehensive compendium of retinal disease genes . Of these, 30/62 (48%) showed 

higher expression of the Cast/EiJ allele. Therefore, although Cast/EiJ mice have diminished rod 

and cone ERG responses compared to C57BL/6J, they harbor both activating and silencing cis-

regulatory variants. 

 We further focused on the cis-effect genes associated with retinal disease that are CBR-

associated (Figure 2.6A). Consistent with previous observations that CBRs are enriched around 

retinal disease genes (Corbo et al. 2010; Langmann et al. 2010; Ozgul et al. 2011), we found that 

38/62 (61%) were CBR-associated. Of these CBR-associated genes, 20/38 (53%) showed higher 

expression of the Cast/EiJ allele.  

 One of the CBR-associated cis-effect genes was Sag, which encodes S-arrestin, a protein 

important for the recovery phase of the phototransduction cascade in rods (Xu et al. 1997; Song 

et al. 2011). Loss-of-function coding mutations in Sag are associated with Oguchi disease, whose 

clinical features include night blindness and delayed rod adaptation (Fuchs et al. 1995). We 

found that the Cast/EiJ allele drives ~2-fold higher Sag expression than the C57BL/6J allele, 

suggesting the presence of cis-regulatory variants conferring increased activity. Upon inspection 
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of the Sag locus, we identified a CRX ChIP-seq peak located in the promoter/5’ UTR region and 

present in both CRX ChIP-seq biological replicates. This CBR corresponds to a DNaseI-

hypersensitivity site (DHS) that is present at three developmental time points and is highly 

specific to the retina (Figure 2.6B) (The ENCODE Project Consortium 2012). 

 We hypothesized that Sag promoter variants contributed to the differential gene 

expression between C57BL/6J and Cast/EiJ. To test this hypothesis, we compared the activity of 

a 0.7 kb promoter region cloned from C57BL/6J genomic DNA (‘B6 allele’) or from Cast/EiJ 

genomic DNA (‘Cast allele’). This 0.7 kb region encompassed 5 known SNPs and 1 indel 

(Figure 2.6B). We cloned the 0.7 kb fragment upstream of a reporter gene, DsRed, and 

conducted a retinal explant electroporation assay to quantify CRE activity based on fluorescence 

(see Methods) (Montana et al. 2011b). 

 Consistent with our hypothesis, we found that the Cast allele showed ~22% higher CRE 

activity than the B6 allele (Figure 2.6C and 2.6D; P = 0.036, one-tailed Wilcoxon rank-sum test). 

Since Sag had ~2-fold higher expression in Cast than B6, additional variants beyond this 0.7 kb 

promoter region likely contribute to the differential gene expression. Three other CBRs besides 

the promoter region were assigned to the Sag gene, containing 37 variants in the 1 kb windows 

centered on these CBRs (Supporting Information S4). Therefore, the higher expression of Sag in 

Cast compared to B6 likely results from variants in both the assayed region and other regions. 

 

2.4.6 The majority of isolated cis effects and isolated trans effects are tissue-specific 

 To determine whether the isolated cis effects and isolated trans effects we identified were 

confined to the retina, we compared our data from retina with previously published data from 

liver (Goncalves et al. 2012) (Supporting Information S6). To ensure uniformity of analysis, we 
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reprocessed the previously published liver data using our analytic pipeline, beginning with raw 

reads. After filtering 571 possibly imprinted polymorphic autosomal genes (Bayes factor >3), we 

were able to classify 9,865 polymorphic autosomal genes with high confidence (Figure 2.7A and 

2.7B).  

 We found 5,494/9,865 (56%) were best modelled as conserved, 2,371/9,865 (24%) were 

best modelled as divergent due to cis effects, 1,495/9,865 (15%) as divergent due to trans effects, 

and 505/9,865 (5%) as divergent due to a combination of cis and trans effects. For genes in the 

latter category, 145/505 (29%) were best modelled as CIS – trans, 278/505 (55%) as TRANS – 

cis, 26/505 (5%) as CIS + trans, and 56/505 (11%) as TRANS + cis. Thus, as previously reported 

for liver, and as we found for retina, when cis and trans effects act together, they more often act 

to stabilize (423/505 or 84%) than to destabilize (82/505 or 16%) gene expression (Goncalves et 

al. 2012). 

 We then compared the classification of genes between liver and retina. To avoid 

misattributing tissue-specific gene expression as tissue-specific cis or trans effects, we restricted 

our analysis to genes classifiable in both liver and retina. In particular, for comparison of cis-

effect genes, we required that genes be classified as cis-effect in one tissue and conserved in the 

other tissue, or cis-effect in both tissues. Similarly, for the comparison of trans-effect genes, we 

required that genes be classified as trans-effect in one tissue and conserved in the other tissue, or 

trans-effect in both tissues. Using these criteria, we found that the vast majority of cis effects 

(1,661/2,242 or 74%) were tissue-specific. Additionally, most trans effects (871/976 or 89%) 

were tissue-specific (Figure 2.7C and 2.7D; Supporting Information S7). Thus, most of the 

isolated cis and isolated trans effects identified were tissue-specific.  
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 Recent studies suggest that variants in a given CRE may modulate target gene expression 

in a tissue-dependent manner; i.e., different tissues may show differential susceptibility to CRE 

variants (Erceg et al. 2014). To test for tissue-specific variant effects in our system, we examined 

the 581 genes classified as cis-effect in both liver and retina. We found a positive correlation 

between the expression estimates for the F0 liver and F0 retina samples (Pearson r = 0.56, two-

tailed P < 10-5), and between the expression estimates for the F1 liver and F1 retina samples 

(Pearson r = 0.58, two-tailed P < 10-5) (Figure 2.7E). This suggests that there exists differential 

susceptibility between the liver and retina to CRE variants, but that there is also significant 

shared susceptibility. 

 For the 105 genes classified as trans-effect in both tissues, we found a positive 

correlation between the expression estimates for the F0 liver and F0 retina samples (Pearson r = 

0.76, two-tailed P < 10-5) (Figure 2.7F), suggesting that the same trans-acting factors regulate 

many of these trans-effect genes in both tissues. In contrast, there was no correlation between the 

F1 liver and F1 retina samples (Pearson r = 0.089, two-tailed P = 0.37) for these genes. This is 

not surprising, since by definition, trans-effect genes do not show AEI in F1 hybrids, and hence 

the log2 (Cast allele/B6 allele) ratios are all close to 0. Collectively, these analyses underscore 

the notion that cis effects and trans effects are largely tissue-specific, but when they are shared, 

they tend to have similar effects on gene expression. 
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2.5 DISCUSSION 

 Genomic techniques such as ChIP-seq and DNase-seq have greatly expanded our 

knowledge of cis-regulatory regions in various tissues and cell types in recent years (The 

ENCODE Project Consortium 2012). Concurrently, whole-genome sequencing of thousands of 

individuals (Genomes Project et al. 2012) and genome-wide association studies (GWAS) have 

catalogued thousands of disease-associated variants, many of which fall within regulatory 

regions (Schaub et al. 2012). The next phase of genomic medicine will require mapping of 

regulatory variants onto disease-relevant phenotypes. Here, we have taken a first step toward 

understanding the role of regulatory variants in retinal disease by dissecting cis- and trans-

regulatory effects in the mouse retina, a tissue that models many key aspects of human retinal 

biology (Dalke and Graw 2005).  

 In contrast to expression quantitative trait loci (eQTL) studies, which are feasible in the 

human population and are largely powered to detect cis effects, the F1 hybrid study approach in 

model organisms provides tremendous power to detect both cis effects and trans effects (Gaffney 

2013). A major finding in our study is that cis effects predominate in the mouse retina. While 

estimates of the relative contributions of cis effects and trans effects based on F1 hybrid studies 

in Drosophila and yeast vary (Wittkopp et al. 2004; Tirosh et al. 2009; Emerson et al. 2010; 

McManus et al. 2010), all studies acknowledge a substantial contribution of cis effects. The 

variability of estimates is likely due at least in part to methodological differences in gene 

expression estimates and statistical modelling. For instance, when we re-analyzed the raw data 

from the previously published study of cis and trans effects in mouse liver (Goncalves et al. 

2012), we assigned a greater fraction of gene regulatory divergence to isolated cis and isolated 

trans effects than the original study, which assigned a greater fraction of gene regulatory 
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divergence to combined cis and trans effects. These differences may be attributable to the fact 

that in our analysis pipeline, we used an updated reference transcriptome and Bayesian statistical 

models instead of maximum likelihood estimates (MLE). 

 Another key finding in our study is that the cis effects are largely tissue-specific, with 

only 26% being shared between liver and retina. Importantly, for this comparison, we included 

only genes with sufficient power for analysis in both tissues, and hence the observed tissue 

specificity is not an artifact of tissue-specific expression. Our estimate agrees well with an eQTL 

study of lymphoblastoid cell lines, skin, and adipose tissue in human twins, which found that 30% 

of cis-eQTLs were shared by the three tissues (Nica et al. 2011).  

 Predicting the effect of any given regulatory variant is a challenge, even in the face of 

complete genetic information, and even at the level of a molecular phenotype such as 

transcription factor binding (Maurano et al. 2012b) or, as in our case, gene expression. Moreover, 

regulatory variants act in combination, rather than in isolation, to modulate gene expression. 

Furthermore, gene expression is not always a reliable surrogate for protein levels (Greenbaum et 

al. 2003; McManus et al. 2014), and the path from protein to organismal phenotype is even more 

convoluted. With these layers of complexity in mind, we have taken a step toward understanding 

the links between cis-regulatory variants and retinal phenotypes by prioritizing variants within 

photoreceptor CREs that are associated with cis-effect genes. 

 Our work reveals that cis-regulatory effects predominate in the murine retina and are 

associated with functional cis-regulatory variants, with implications for retinal disease. In an 

approach complementary to eQTL studies, we have demonstrated a strategy for mapping cis-

regulatory variants onto changes in gene expression by harnessing the power of inbred model 

organisms. Future empirical testing of such variants in living tissue, e.g., using high-throughput 



43 

  

massively parallel reporter assays (Kwasnieski et al. 2012; Shlyueva et al. 2014), will further 

elucidate the precise causal effects of specific cis-regulatory variants on gene expression. 
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2.6 METHODS 

2.6.1 Ethics statement 

 All experiments were conducted in strict accordance with the Guide for the Care and Use 

of Laboratory Animals of the National Institutes of Health (NIH), and were approved by the 

Washington University in St. Louis Institutional Animal Care and Use Committee (IACUC) 

(protocol #20110089). Animals were euthanized with CO2 anesthesia followed by cervical 

dislocation, and all efforts were made to minimize suffering. 

 

2.6.2. Animals 

 C57BL/6J (stock #664) and Cast/EiJ (stock #928) mice were purchased from Jackson 

Laboratory. Mice were maintained on a 12-hour light/dark cycle at ~20-22 °C with free access to 

food and water. Mating cages were maintained on 5K54 diet (LabDiet) and supplemented with 

autoclaved shepherd shacks (Shepherd Specialty Papers). Offspring were weaned at age 3 weeks 

and maintained on 5053 diet (PicoLab) until age 8 weeks, at which point they were sacrificed. 

Eyes were enucleated immediately after sacrifice. To minimize circadian effects (Storch et al. 

2007), samples were collected at approximately the same time of day (late evening). 

 

2.6.3 Sample collection and sequencing 

 Each biological replicate consisted of a pool of 6-8 retinas from 8 week old male mice. 

Retinas were dissected in cold sterile HBSS with calcium and magnesium (Gibco) and stored at -

80 °C until use. Total RNA was extracted using TRIzol (Invitrogen) and purified using the 

RNeasy Mini Kit (Qiagen) with on-column DNaseI digestion (Qiagen). Integrity of total RNA 

was verified on the Agilent 2100 Bioanalyzer. Polyadenylated mRNA was captured from total 
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RNA using Dynabeads (Invitrogen). The mRNA was fragmented and reverse-transcribed to 

double-stranded cDNA using random hexamers. The cDNA was blunt-ended and 3’-adenylated 

before ligation to sequencing adapters. Ligated fragments were amplified for 12 cycles with 

primers to incorporate unique sample barcodes. Libraries were subjected to paired-end 2x101 bp 

sequencing on the Illumina HiSeq 2000 at the Genome Technology Access Center at 

Washington University School of Medicine. One lane of sequencing was conducted for all F0 

and F1 samples, and a second lane of sequencing was conducted for the F1 samples only. 

 

2.6.4 Read alignment and quantification 

 Reads were filtered and trimmed with Trim Galore! v0.2.6 (Krueger) prior to alignment 

with Bowtie v0.12.9 (Langmead et al. 2009) to a strain-specific reference transcriptome (for F0 

data) or a hybrid reference transcriptome (for F1 data). Transcriptomes were constructed using 

the mouse_strain_transcriptomes.sh script within the MMSEQ package (Turro et al. 2011). The 

reference transcriptomes were based on the Ensembl Release 67 cDNA files and the Wellcome 

Trust Mouse Genomes Project Release 2 VCF files (which use mm9/NCBI37 as the reference 

genome) based on November 2012 HiSeq 2x100 bp sequencing with 39x coverage of the 

Cast/EiJ genome (Keane et al. 2011). MMSEQ v1.0.0 beta was used to estimate gene expression 

levels for the F0 samples and allele-specific gene expression levels for the F1 samples (Turro et 

al. 2011). Of the 37,991 Ensembl Release 67 mouse genes, 34,964 were autosomal, of which 

29,160 had known exonic polymorphisms between Cast/EiJ and C57BL/6J. Gene-level 

expression estimates in units roughly equivalent to FPKM (fragments per kb of transcripts per 

million mapped read pairs) were derived from exponentiation of the log expression estimates. 
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For differential expression analysis of F0 samples with DESeq v1.10.1 (Anders and Huber 2010), 

normalized count equivalents were used and a negative binomial test was performed.  

 

2.6.5 Identification of imprinted genes 

 Using MMDIFF, a null model (no imprinting) was compared to an imprinting model, as 

recently described (Turro et al. 2014). In brief, the null model assumes that allelic expression 

differences are the same in F1 B6xCast and F1 CastxB6, while the imprinting model assumes 

that allelic expression differences have equal magnitude but opposite signs in F1 B6xCast as in 

F1 CastxB6. Only autosomal genes with known exonic polymorphisms between Cast/EiJ and 

C57BL/6J were included in this analysis.  

 

2.6.6 Mouse imprinting databases 

 We examined four online databases that are continually updated with known imprinted 

mouse genes: WAMIDEX (atlas.genetics.kcl.ac.uk) (Schulz et al. 2008), MouseBook Imprinting 

Catalog (www.mousebook.org) (Williamson CM 2014), Geneimprint (www.geneimprint.com) 

(Jirtle 2012), and Catalogue of Parent of Origin Effects (igc.otago.ac.nz) (Morison et al. 2001). 

For each database, we excluded genes whose imprinting status was listed as ambiguous or 

disproven. To resolve nomenclature disparities between databases, we converted gene names to 

Mouse Genome Informatics (MGI) gene names. We combined the gene lists from the four 

databases into a master gene list of 189 genes, of which 143 had Ensembl Release 67 IDs and 

137 were autosomal. After filtering out non-polymorphic genes, we were left with 120 autosomal 

Ensembl ID’s, corresponding to 116 MGI genes. Each Ensembl 67 gene was then assigned a 
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‘database score’ ranging from 0 to 4, indicating the number of databases that listed the gene as 

being imprinted (see Supporting Information S1). 

 

2.6.7 Categorization of genes according to cis and trans effects 

 A comparison of four models (conserved model, cis model, trans model, and cis and 

trans model) was performed using MMDIFF, as recently described (Turro et al. 2014). In brief, 

the conserved model assumes there is no differential expression (DE) between the F0’s and no 

allelic expression imbalance (AEI) in the F1’s. The cis model assumes there is DE between the 

F0’s that is equal to the AEI in the F1’s. The trans model assumes there is DE between the F0’s 

but no AEI in the F1’s. The cis and trans model assumes that there is DE in the F0’s, but it is 

unequal to the AEI in the F1’s. 

 Included in the analysis were the 29,160 autosomal genes polymorphic between 

C57BL/6J and Cast/EiJ. In our retinal dataset, after excluding 306 possibly imprinted 

polymorphic autosomal genes (imprinting Bayes factor > 3), we had sufficient statistical power 

to classify 11,484 genes confidently as conserved, cis, trans, or cis and trans based on the 

following criteria: the winning model must have a posterior probability > 0.5, and the posterior 

probability of the winning model must be at least twice that of the second-best model, assuming 

an equal prior probability of 0.25 for each of the four models. In the previously published liver 

dataset (Goncalves et al. 2012), after excluding 571 possibly imprinted polymorphic autosomal 

genes (imprinting Bayes factor > 3), we had sufficient statistical power to classify 9,865 genes 

confidently using these criteria.  

 Genes best modelled by a combination of cis and trans effects were then subdivided into 

the following categories, where x is the weighted log fold change between the strains within the 
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F1’s, and y is the weighted log fold change between the strains within the F0’s (Goncalves et al. 

2012): 

(1) CIS – trans (opposite direction with cis stronger than trans): x*y > 0 and |x|>|y| 

(2) TRANS – cis (opposite direction with trans stronger than cis): x*y < 0 

(3) CIS + trans (same direction with cis stronger than trans): x*y > 0 and |x|<|y|<|2x| 

(4) TRANS + cis (same direction with trans stronger than cis): x*y > 0 and |y|>|2x| 

 

2.6.8 Calculation of weighted log fold change 

 The weighted log fold change for each gene was calculated by weighting the allele-

specific posterior mean of the log expression parameter by the inverse of its posterior variance 

across biological replicates for each strain and subtracting the results. Let B1, B2, and B3 be the 

log expression parameters for the F0 C57BL/6J samples, and let C1, C2, and C3 be the log 

expression parameters for the F0 Cast/EiJ samples. Then the weighted log fold change between 

the F0 C57BL/6J samples and the F0 Cast/EiJ samples is given by

3 3

1 1
3 3

1 1
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. The same approach was used to compare the two sets of F1 

samples. 

 

2.6.9 Assignment of genes to CRX ChIP-seq peaks 

 Previously published CRX ChIP-seq data conducted on 8 week old C57BL/6 retinas 

(Corbo et al. 2010) were used to assign wild-type (WT) CRX-bound regions (CBRs) to genes. 

CBRs were assigned to all autosomal and sex chromosomal Ensembl Release 67 gene transcripts 

using custom Perl scripts following a proximity-based algorithm as previously described: if a 
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CBR was located within a gene, it was assigned to that gene; otherwise, it was assigned to the 

gene with the nearest transcriptional start site (TSS) (Corbo et al. 2010). 

 

2.6.10 Batch identification of variants 

 Variant calls (SNPs and indels) were downloaded as Variant Call Format (VCF) files 

from the Wellcome Trust Sanger Institute’s Mouse Genomes Project. These calls (December 

2012 release) were based on the latest high-quality, high-coverage HiSeq sequencing data of the 

strains. The Cast/EiJ variants relative to the reference genome (C57BL/6J NCBI Build 37) were 

extracted at regions of interest using VCFtools v0.1.10 (Danecek et al. 2011) and BEDtools 

v2.19.1 (Quinlan and Hall 2010). Only variant sites where the genotype was homozygous were 

included. The genomic coordinates of CBRs based on NCBI Build 37 were used. Custom Perl 

scripts were written to tabulate the variants for CBRs associated with Ensembl Release 67 genes. 

 

2.6.11 Identification of variants at individual regions 

Individual loci of interest were manually inspected for variants by querying an online database, 

the Wellcome Trust Sanger Institute’s Mouse Genomes Project Mouse SNP Viewer Release 

1211 (NCBI Build 37), available at http://www.sanger.ac.uk/sanger/Mouse_SnpViewer/rel-1211.  

 

2.6.12 RetNet genes 

 Genes associated with human retinal disease in the RetNet database  were retrieved. 

Human gene symbols were converted to Mouse Genome Informatics (MGI) symbols using the 

MGI Batch Query (Blake et al. 2014). 
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2.6.13 DNA constructs 

 Polymerase chain reaction (PCR) with Phusion High-Fidelity DNA Polymerase (New 

England BioLabs) was used to amplify the 0.7 kb Sag promoter region at –558 to +105 (mm9 

chr1:89,699,697-89,700,359) relative to the TSS. Genomic DNA purified from C57BL/6J and 

Cast/EiJ liver tissue was used as the template for the B6 and Cast construct, respectively. The 

forward primer 5’-TGAGGCAATGACACTTGGTC-3’ and reverse primer 5’-

GCAGGGAGCTGATTGGATTA-3’ with XhoI and EcoRI restriction enzyme site overhangs, 

respectively, were used. The fragments were subcloned upstream of DsRed in the no-basal 

vector (described previously in (Hsiau et al. 2007)) using the SalI (compatible with XhoI) and 

EcoRI sites. Constructs were confirmed with Sanger sequencing that encompassed the entire 0.7 

kb region. We note that based on our high-quality Sanger sequencing of this region, the genomic 

DNA of our Cast/EiJ mice differed from the reference Cast/EiJ sequence (Keane et al. 2011) by 

two bases at chr1:89,700,191 (AC) and chr1:89,700,187 (AC), as confirmed by Sanger 

sequencing three different Cast/EiJ mice (representing the three Cast/EiJ RNA-seq biological 

replicates) 

 

2.6.14 Retinal explant electroporation and quantification of promoter activity  

 Electroporation and explant culture of mouse retinas were performed as described 

previously (Montana et al. 2011b). In brief, retinas were dissected from newborn (P0) CD-1 

mouse pups and coelectroporated with one of the Sag promoter DsRed constructs and a control 

green fluorescent protein (GFP) reporter that expresses in rod photoreceptors, Rho-CBR3-eGFP 

(Corbo et al. 2010), each at a concentration of 0.5 μg/μL. Retinas were grown in explant culture 

and harvested 8 days later, whereupon they were fixed and whole-mounted for quantitative 
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imaging of DsRed fluorescence intensity normalized to GFP fluorescence intensity using a 

monochromatic camera (Hamamatsu ORCA-AG), as described (Montana et al. 2011b). For each 

Sag promoter construct, 10-11 retinas were quantified. Representative images using a color 

camera (Olympus DP70) were also taken (see Figure 2.6C). For all retinal imaging, 40X 

magnification was used, and the exposure times for the red and green channels were consistent 

across retinas. 

 

2.7 DATA ACCESS 

RNA-seq, MMSEQ, and MMDIFF data have been deposited in Gene Expression Omnibus (GEO, 

http://www.ncbi.nlm.nih.gov/geo/) (accession number GSE60545). 

 

2.8 SUPPORTING INFORMATION 

Supporting information is available at: 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0109382#s5 
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Figure 2.1. Study design. (A) F0 and F1 mice were generated via the depicted crosses. The 

schematic diagram illustrates example expression patterns for a cis effect, trans effect, and 

parent-of-origin effect. For a cis effect, in the F1 hybrids, the Cast/EiJ allelic expression relative 

to the C57BL/6J allelic expression recapitulates the ratio of gene expression levels in the F0 

homozygotes. For a trans effect, the F1 hybrids express the Cast/EiJ and C57BL/6J alleles 

equally. For a parent-of-origin effect, there is preferential expression of the maternal allele (as 

depicted) or the paternal allele, as seen by comparison of the reciprocal F1 hybrids.  (B) An 

overview of the workflow is shown. 
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Figure 2.2. Characterization of parent-of-origin effects in the retina. Autosomal genes 

polymorphic between C57BL/6J and Cast/EiJ were analyzed in retinas from reciprocal F1 

hybrids. Higher Bayes factors indicate greater likelihood of imprinting. (A) Non-imprinted genes 

with Bayes factor <0.1 (gray) and <0.001 (orange) are depicted. (B) Parent-of-origin effects with 

preferential expression of the paternal (blue) or maternal (red) allele with Bayes factor ≥10 (light) 

and ≥30 (dark) are depicted. (C) Top-ranked (low rank number) genes are enriched for known 

imprinted genes. (D) Genes with strong evidence of imprinting in the retina (Bayes factor ≥ 30) 

that exhibit preferential expression of the paternal (blue) or maternal (red) allele are depicted. 

Green, special cases—see text for discussion of Rtl1 and Grb10. Filled squares, genes previously 

reported as imprinted in other tissues. Empty triangles, not previously reported as imprinted. 

A230006K03Rik appears twice because it is associated with two Ensembl ID’s, a protein-coding 

gene and a lincRNA. 
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Figure 2.3. Comparison of differentially expressed and cis-effect genes associated with 

photoreceptor CREs. Genes were classified as being associated with CRX ChIP-seq peaks 

(CBR-associated) or not. (A) Differentially expressed (DE) autosomal genes were identified 

using DESeq at 5% FDR. The proportions of genes with higher expression in F0 Cast/EiJ than 

F0 C57BL/6J at various fold changes are shown. (B) Cis-effect autosomal genes were identified 

using MMDIFF. Proportions of genes with higher expression in F1 Cast/EiJ allele than F1 

C57BL/6J allele at various fold changes are shown. P-values were calculated with two-tailed 

Fisher’s exact test. N.S. = not significant, *< 0.05, **< 0.01, ***< 0.001, **** < 0.0001. 
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Figure 2.4. Classification of genes by mechanism of gene regulatory divergence. (A) Genes 

were classified as conserved (yellow; largely obscured), cis (green), trans (red), or cis and trans 

(purple). (B) Cis- and trans-effect genes were further subcategorized as to whether the cis and 

trans effects acted in the same (plus sign; pink and brown) or opposite (minus sign; orange and 

blue) directions, and whether the cis (CAPS; orange and pink) or trans (CAPS; blue and brown) 

effect was stronger. Insets, magnified views. 
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Figure 2.5. Analysis of variant density in photoreceptor CREs. (A) The number of Cast/EiJ 

(top) or Spret/EiJ (bottom) SNPs and indels relative to C57BL/6J was determined in 50 bp 

windows (sliding 25 bp at a time) across the 2 kb region centered on CBRs. Phylogenetic 

conservation for CBRs is based on PhastCons scores as found in (Corbo et al. 2010). The 

highlighted area corresponds to the central 300 bp region. (B) Histogram showing frequency of 

variants (SNPs + indels) in the 1 kb region centered on all CBRs (black), CBRs associated with 

cis-effect genes (green), and CBRs associated with trans-effect genes (red). Total bar height was 

normalized to 1 for each category. 
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Figure 2.6. Cis-effect genes associated with retinal disease and photoreceptor CREs. (A) 

Cis-effect genes associated with CRX ChIP-seq peaks were matched against the RetNet database 

of retinal disease genes. The yellow circle highlights Sag.  (B) Sag locus, mm9. Top: Screenshot 

from UCSC Genome Browser (Kent et al. 2002). DNaseI hypersensitivity site (DHS) signals are 

from ENCODE data (The ENCODE Project Consortium 2012). Bottom: Enlargement of boxed 

region. The 0.7 kb promoter region is depicted here. Locations of known Cast/EiJ variants 

(Keane et al. 2011) are depicted as green tic marks (SNPs) or blue tic marks (indels). (C) Retinal 

explant electroporation was used to assay the activity of the 0.7 kb Sag promoter region of B6 

and Cast alleles. Representative images are shown here for the B6 (top) and Cast (bottom) 0.7 kb 

Sag promoter constructs driving DsRed expression. Rho-CBR3-eGFP served as the loading 

control. (D) Quantification of the cis-regulatory activity measured by the explant electroporation 

assay. Error bar represents SEM. P-value was calculated with one-tailed Wilcoxon rank-sum test. 
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Figure 2.7. Comparison of cis effects and trans effects between liver and retina. (A) Using 

the same analytic pipeline as for retina, genes in the liver were classified as conserved (yellow; 

largely obscured), cis (green), trans (red), or cis and trans (purple). (B) Cis- and trans- regulated 

genes were further subcategorized as to whether the cis and trans effects acted in the same (plus 

sign; pink and brown) or opposite (minus sign; orange and blue) directions, and whether the cis 

(CAPS; orange and pink) or trans (CAPS; blue and brown) effect was stronger. (C) Number of 

genes classified as cis in liver and conserved in retina, cis in both tissues, or cis in retina and 

conserved in liver. (D) Number of genes classified as trans in liver and conserved in retina, trans 

in both tissues, or trans in retina and conserved in liver. (E) Correlation between genes classified 

as cis in both tissues. Pearson r values for F0 samples (left) and F1 samples (right) are shown. (F) 

Correlation between genes classified as trans in both tissues. Pearson r values for F0 samples 

(left) and F1 samples (right) are shown. Insets, magnified view. 
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Table 2.1. Agreement between F0 biological replicates. 

 F0 C57BL/6J F0 Cast/EiJ 

R1 R2 R3 R1 R2 R3 

F0 C57BL/6J R1 1      

R2 0.983 1     

R3 0.992 0.982 1    

F0 Cast/EiJ R1 0.873 0.814 0.876 1   

R2 0.912 0.893 0.919 0.956 1  

R3 0.907 0.912 0.904 0.897 0.979 1 

 

Pearson r values for FPKM (fragments per kb of transcripts per million mapped read pairs) 

estimates across F0 samples. Bold denotes comparison between biological replicates (R1, R2, 

and R3) of the same genotype. 
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Table 2.2. Agreement between F1 biological replicates. 

 
 F1 B6xCast, B6 allele F1 B6xCast, Cast allele F1 CastxB6, B6 allele F1 CastxB6, Cast allele 

R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3 

F1 B6xCast, B6 allele R1 1            

R2 0.929 1           

R3 0.975 0.940 1          

F1 B6xCast, Cast allele R1 0.949 0.911 0.953 1         

R2 0.937 0.922 0.946 0.973 1        

R3 0.923 0.918 0.941 0.977 0.960 1       

F1 CastxB6, B6 allele R1 0.932 0.971 0.960 0.914 0.924 0.926 1      

R2 0.927 0.974 0.952 0.911 0.920 0.916 0.987 1     

R3 0.939 0.957 0.965 0.925 0.924 0.935 0.985 0.975 1    

F1 CastxB6, Cast allele R1 0.885 0.947 0.923 0.926 0.943 0.939 0.951 0.958 0.950 1   

R2 0.909 0.909 0.945 0.942 0.940 0.961 0.948 0.928 0.963 0.965 1  

R3 0.906 0.917 0.947 0.946 0.938 0.959 0.951 0.947 0.948 0.971 0.979 1 

 

Pearson r values for FPKM estimates across F1 samples. Bold denotes comparison between 

biological replicates (R1, R2, and R3) of the same genotype and for the same allele (B6 allele or 

Cast allele). 
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Table 2.3. Accuracy of X chromosomal read mapping in F1 samples. 

 
F1 B6xCast F1 CastxB6 

Maternal allele: Cast/EiJ Maternal allele: C57BL/6J 

R1 99.4% R1 99.5% 

R2 99.5% R2 99.5% 

R3 99.5% R3 99.5% 

 

Percentages of X chromosomal unique hits (i.e., read pairs mapping uniquely to C57BL/6J or 

Cast/EiJ) that mapped to the correct genome. Since only males were used, reads should derive 

only from the maternal allele.  
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CHAPTER 3: 

Massively Parallel Cis-Regulatory Analysis in the Mammalian Central Nervous System 
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3.2 ABSTRACT 

 Cis-regulatory elements (CREs, e.g., promoters and enhancers) regulate gene expression, 

and variants within CREs can modulate disease risk. Next-generation sequencing has enabled the 

rapid generation of genomic data that predict the locations of CREs, but a bottleneck lies in 

functionally interpreting these data. To address this issue, massively parallel reporter assays 

(MPRAs) have emerged, in which barcoded reporter libraries are introduced into cells and the 

resulting barcoded transcripts are quantified by next-generation sequencing. Thus far, MPRAs 

have been largely restricted to assaying short CREs in a limited repertoire of cultured cell types. 

Here, we present two advances that extend the biological relevance and applicability of MPRAs. 

First, we adapt exome capture technology to instead capture candidate CREs, thereby tiling 

across the targeted regions and markedly increasing the length of CREs that can be readily 

assayed. Second, we package the library into adeno-associated virus (AAV), thereby allowing 

delivery to target organs in vivo. As a proof-of-concept, we introduce a capture library of 

~46,000 constructs, corresponding to ~3,500 DNase I hypersensitive (DHS) sites, into the mouse 

retina by ex vivo plasmid electroporation and into the mouse cerebral cortex by in vivo AAV 

injection. We demonstrate tissue-specific cis-regulatory activity of DHSs and provide examples 

of high-resolution truncation mutation analysis for multiplex parsing of CREs. Our approach 

should enable massively parallel functional analysis of a wide range of CREs in any organ or 

species that can be infected by AAV, such as non-human primates and human stem cell-derived 

organoids. 
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3.3 INTRODUCTION 

 Cis-regulatory elements (CREs, e.g., promoters and enhancers) are DNA regions that 

regulate gene expression, and variants within CREs can contribute to phenotypic diversity, 

including disease susceptibility (Wray 2007; Albert and Kruglyak 2015). In the past several 

years, vast amounts of genomic data have been generated that predict the locations of hundreds 

of thousands of CREs in cell lines and primary tissues (Shen et al. 2012; The ENCODE Project 

Consortium 2012; Romanoski et al. 2015). As an avenue for the experimental validation of these 

predictions, massively parallel reporter assays (MPRAs, e.g., CRE-seq) have been developed, in 

which barcoded plasmid reporters are introduced into cells. Next-generation sequencing of the 

resulting barcoded transcripts provides a quantitative measure of CRE activity (Kwasnieski et al. 

2012; Melnikov et al. 2012; Patwardhan et al. 2012; Arnold et al. 2013; White et al. 2013; Levo 

and Segal 2014; Shlyueva et al. 2014). Thus far, MPRAs have been largely restricted to assaying 

short CRE fragments (<150 bp) synthesized as oligonucleotide libraries on microarrays 

(Patwardhan et al. 2009; Baker 2011; White et al. 2013) and delivered into select mammalian 

cells accessible by transfection or electroporation. However, CREs are often hundreds of base 

pairs in length, and CRE activity depends crucially on the assayed cell type and its particular 

complement of transcription factors (TFs) (Davidson 2001). Therefore, we sought to expand the 

biological relevance and applicability of MPRAs by increasing the length of assayed CREs and 

by widening the repertoire of assayable cell types. 

 The retina and cerebral cortex are two parts of the central nervous system (CNS) with a 

shared forebrain origin, whose gene regulatory networks are topics of intense research interest 

(Swaroop et al. 2010; Wright et al. 2010; Bae et al. 2015; Nord et al. 2015). The genome-wide 

locations of putative CREs have been mapped in both tissues, using methods such as ChIP-seq 
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and DNase-seq (Visel et al. 2009; Corbo et al. 2010; The ENCODE Project Consortium 2012; 

Wilken 2015). Compared to the cortex, the retina is more experimentally amenable to cis-

regulatory analysis, in part because its cellular composition is more completely understood 

(Livesey and Cepko 2001; London et al. 2013). Electroporation can be used to efficiently deliver 

plasmid DNA into rod photoreceptors, which constitute the majority (~80%) of the cells in the 

retina (Jeon et al. 1998). We previously conducted CRE-seq by electroporating thousands of 

short CREs into the neonatal mouse retina ex vivo (Kwasnieski et al. 2012; White et al. 2013). 

Although hundreds of putative developmental forebrain enhancers have been assayed with one-

at-a-time transgenic mouse reporter assays (Nord et al. 2013; Visel et al. 2013), never before has 

massively parallel cis-regulatory analysis been conducted in the mammalian CNS in vivo. 

 Here, we sought to overcome current technological hurdles by developing a ‘capture-and-

clone’ approach for synthesizing CRE-seq libraries with a selectable range of fragment sizes for 

targeted cis-regulome analysis. As a built-in feature, our approach allows for truncation mutation 

analyses, which can identify regions within CREs that are critical for activity. We furthermore 

demonstrate the feasibility of conducting in vivo CRE-seq in the adult cerebral cortex by AAV-

mediated delivery. Our approach provides a framework for the massively parallel functional 

analysis of CREs in a broad repertoire of organs and species in vivo. 
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3.4 RESULTS 

3.4.1 Identification and characterization of candidate CRE regions 

 The genomic locations of CREs can be predicted by the patterns of phylogenetic 

conservation, the occurrence of transcription factor binding sites, and the presence of various 

chromatin features (Levo and Segal 2014; Shlyueva et al. 2014). DNase I hypersensitive (DHS) 

sites, which demarcate regions of open chromatin, are one of the most informative predictive 

features of active CREs (Arvey et al. 2012; Natarajan et al. 2012; Kwasnieski et al. 2014). 

Moreover, DNase-seq data for a variety of primary mouse tissues are available as part of the 

Mouse ENCODE Project (Yue et al. 2014). To facilitate the direct comparison of a given CRE-

seq library in retina and cerebral cortex, we generated a list of tissue-specific candidate CREs 

based on mouse DNase-seq data, corresponding to 1,000 DHS regions from adult retina and 

1,000 DHS regions from adult whole brain. Additionally, we included DHSs from two adult 

mouse non-neural tissues (1,000 DHSs from heart and 1,000 DHSs from liver) as controls 

(Supplemental Table S1). Together, this yielded 4,000 target DHS regions. 

 We first examined the genome-wide distributions of the 4,000 target DHS regions using 

GREAT and HOMER, two computational tools for annotating coding and non-coding regions 

(Heinz et al. 2010; McLean et al. 2010). The majority (75%) of the DHS regions were distal 

elements located more than 10 kb away from the nearest transcriptional start site (TSS) (Figure 

3.S1A). Almost all of the DHS regions fell within introns (46%) or intergenic regions (45%) 

(Figure 3.S1B), similar to the genome-wide distribution of DHS regions in other cell types (Shu 

et al. 2011). A small number of DHSs (156/4,000 or 4%) were ‘promoter-proximal’, i.e., falling 

within -1 kb to +100 bp relative to the nearest TSS (Figure 3.S1A). Among these, 77/156 (49%) 
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were retinal DHSs, consistent with the previous observation that photoreceptor CREs often 

cluster around TSS’s (Corbo et al. 2010). 

 Tissue-specific CREs are often enriched for the binding of TFs important for cell identity 

and function (Davidson 2001). Accordingly, we used HOMER (Heinz et al. 2010) to quantify 

enrichment of TF motifs in the target regions (Supplemental Table S2). For each set of tissue-

specific target DHSs, we found strong enrichment of putative binding sites for TFs known to be 

important in that tissue. For example, among the top statistically significant enrichments for the 

retina, brain, heart, and liver DHSs were putative motifs for CRX (Chen et al. 1997; Freund et al. 

1997), ASCL1 (Kim et al. 2008b), MEF2C (Edmondson et al. 1994), and ONECUT1 (also 

known as HNF6) (Clotman et al. 2005), respectively. 

 Since tissue-specific CREs are often associated with genes specifically expressed in the 

corresponding tissue (Natarajan et al. 2012; Heinz et al. 2015), we also examined the genes 

associated with the target DHSs based on the nearest TSS (Supplemental Table S1). Gene 

Ontology (GO) analysis (Carbon et al. 2009) revealed an enrichment for tissue-specific functions 

that corresponded to the tissue of DHS origin. For instance, among the top significant hits for the 

retina, brain, heart, and liver target DHSs were ‘sensory perception of light stimulus’, ‘nervous 

system development’, ‘cardiovascular system development’, and ‘organic substance metabolic 

process’, respectively (Supplemental Table S3). Thus, the 4,000 target DHS regions were likely 

enriched for tissue-specific CREs. 

 

3.4.2 ‘Capture-and-clone’ allows synthesis of targeted cis-regulome libraries 

 To overcome the length restrictions imposed by oligonucleotide array synthesis of CRE 

fragments (Cleary et al. 2004), we took advantage of DNA capture, a technique routinely used 
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for exome sequencing. For exome capture, biotinylated RNA baits are designed to selectively 

hybridize with DNA fragments containing sequences of interest, i.e., exonic regions (Gnirke et al. 

2009). Here, we adapted this technology to target our CREs of interest (a subset of the putative 

‘cis-regulome’) instead of the exome. This approach offers important advantages. First, the input 

DNA pool can derive from any genomic DNA source. Hence, the cis-regulome of any single 

individual or groups of individuals can be assessed. Second, the input DNA pool can be size-

selected for a range of fragment lengths, enabling inclusion of long CREs.  

 Using mouse (C57BL/6J) genomic DNA that was sheared by sonication and then size-

selected to be ~400-500 bp (excluding adapter sequence), we captured with RNA baits tiling the 

central 300 bp (which is the median size of DHSs (Natarajan et al. 2012)) of the 4,000 target 

DHS regions. We amplified the captured fragments with primers containing restriction sites for 

cloning into a barcoded vector library (Figure 3.1A). Since the cloning was non-directional, both 

orientations were roughly equally represented, as expected (49% and 51% of fragments mapped 

to the plus and minus strands of the mm9 reference genome, respectively). Paired-end 

sequencing revealed a distribution of CRE fragment sizes with a median length of 464 bp (SD = 

72 bp) (Figure 3.1B). Using two successive rounds of capture, we achieved a very high ‘on-

target’ rate: 98.5% of the captured fragments overlapped a target region. The median overlap for 

on-target fragments was 282 bp out of the 300 bp target, i.e., 94% of the target region length 

(Figure 3.S2). Overall, 3,483 of the 4,000 (87%) targeted regions were represented, with a 

median coverage of 8 barcodes per represented region, for a total of 45,670 uniquely barcoded 

constructs (Figure 3.1C). 

 The distribution of captured fragments across a representative chromosome is shown in 

Figure 3.2A. Notably, many loci exhibited a multiplicity of captured fragments corresponding to 
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a single target region, resulting in a tiling of the DHS peak, as exemplified in Figure 3.2B-E. 

Hence, the ability to conduct CRE truncation mutation analysis at a given locus is a key built-in 

feature of our capture-and-clone approach. 

 

3.4.3 AAV packaging and delivery preserves CRE-seq library composition 

 We next considered how to expand the repertoire of cell types accessible by CRE-seq. 

Whereas efficient plasmid delivery is limited to mitotic cells amenable to chemical transfection 

or electroporation (Mortimer et al. 1999; Karra and Dahm 2010), the ideal CRE-seq delivery 

vehicle would permit access to a variety of tissues, including post-mitotic tissues, and in a range 

of species. We reasoned that adeno-associated virus (AAV), a non-pathogenic virus commonly 

used for gene therapy studies, would be suitable for this purpose. AAV causes long-lasting 

infection in rodents and primates, and its tissue tropism ranges by serotype from promiscuous to 

cell-type selective (Mingozzi and High 2011). Moreover, unlike DNA delivered by lentivirus, 

the AAV-delivered DNA remains almost exclusively episomal, thereby permitting cis-regulatory 

analysis without the insertion site effects associated with integration into the host genome 

(McCarty et al. 2004). 

 After cloning in a TATA box-containing minimal promoter-green fluorescent protein 

(GFP) cassette (Figure 3.1A), we transferred the library into a vector with inverted terminal 

repeats (ITRs), which are necessary for AAV packaging (Yan et al. 2005)). This yielded the final 

plasmid library (Figure 3.3A). To deliver the library into the retina, we conducted ex vivo 

electroporation of the plasmid library into the neonatal mouse retina, as in our past CRE-seq 

studies (Kwasnieski et al. 2012; White et al. 2013). We generated three biological replicates, 

each consisting of multiple electroporated retinas. 
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 To deliver the library into the cerebral cortex, we packaged the plasmid library into 

AAV9(2YF) and conducted in vivo stereotactic injections to infect adult primary motor cortex. 

AAV9 is a serotype that exhibits broad tissue tropism, and its tyrosine-mutated derivative 

AAV9(2YF) transduces neurons of the CNS with high efficiency and minimal host-mediated 

degradation of viral particles (Zhong et al. 2008; Zincarelli et al. 2008; Dalkara et al. 2012; 

Aschauer et al. 2013). We generated three biological replicates, each consisting of cerebral 

cortex tissue from a single injected mouse. 

 As evidence that AAV packaging and stereotactic injection did not adversely affect the 

composition of the library, we observed a strong correlation (Pearson r = 0.95) between the 

relative abundance of individual barcoded constructs in the retina after delivery of the plasmid 

CRE-seq library and in the cerebral cortex after infection with the AAV-packaged CRE-seq 

library (Figure 3.3B). Furthermore, 76% (34,824/45,670) of the on-target barcodes were ‘well-

represented’ (i.e., had at least 10 raw DNA reads) in all six biological replicates (three replicates 

each for retina and cerebral cortex). These 34,824 barcodes covered 97% (3,375/3,483) of the 

targeted DHS regions that were represented in the initial post-capture library. These results 

indicated good preservation of barcode abundance and diversity throughout the procedure, from 

the initial post-capture cloning to the delivery of the library. 

 We then examined the tissues histologically for evidence of library expression, as 

visualized by fluorescence microscopy. Upon examination of the electroporated retinas, we 

observed GFP-positive cells in the outer nuclear layer (ONL) of the retina, where the rod 

photoreceptor cell bodies reside (Figure 3.3C). Moreover, the GFP-positive cells co-expressed 

the rod-specific Rho-CBR3-DsRed reporter (Corbo et al. 2010) (Figure 3.S3A). These findings 
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indicated that the GFP-positive cells were rod photoreceptors, which are the predominant cell 

type assayed by neonatal retinal electroporation. 

 Upon histological examination of the AAV-injected brains, we observed bilateral GFP-

positive regions throughout all layers of the cerebral cortex (Figure 3.3D), corresponding to 

GFP-expressing cells seen under higher magnification (Figure 3.3E). Many of the GFP-positive 

cells were morphologically consistent with pyramidal neurons, with an apically oriented primary 

dendrite and an axon. Furthermore, GFP expression co-localized with RBFOX3 (also known as 

NeuN) (Mullen et al. 1992), a widely expressed marker of mature neurons (Figure 3.S3B). 

Interestingly, there were bundles of GFP-positive axons crossing the midline in the corpus 

callosum (red arrow in Figure 3.3D), indicating that interhemispheric projection neurons were 

among the cells that expressed the CRE-seq library. 

 

3.4.4 AAV-mediated CRE-seq demonstrates tissue-specific CRE activity of DHSs in vivo 

 Given the histological evidence for expression of the library in both tissues, we next 

quantified the cis-regulatory activity of individual constructs by next-generation sequencing. As 

quality control measures, we verified that the samples overall clustered by the assayed tissue 

type (retina vs. cerebral cortex). We also observed that the RNA read counts for individual 

barcodes were correlated among the three biological replicates for each tissue, although greater 

variability was observed among the cerebral cortex samples than the retinal samples (Figure 3.S4 

and Supplemental Table S4). 

 Since tissue-specific DHSs are believed to mediate tissue-specific cis-regulatory activity 

(Natarajan et al. 2012; Heinz et al. 2015), we first asked whether this was the case. For this 

analysis, we assigned the ‘overall’ cis-regulatory activity of a given DHS by averaging across 
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corresponding barcoded constructs (as well as across biological replicates). Here, we included 

the ~3,000 DHSs with at least two barcoded constructs. When we examined the relationship 

between the DHS type (i.e., the tissue origin of the DHS) and CRE activity as assayed in the 

retina, we observed strong enrichment of retinal DHSs among highly expressed DHSs, especially 

among the top ~20% most highly expressed DHSs in the retina (Figure 3.4A). Since averaging 

across barcoded constructs may not necessarily be the best metric of cis-regulatory activity for a 

given DHS, we also examined the expression of individual barcoded constructs. This again 

revealed the strong preference of the retina for expressing retinal DHSs (Figure 3.4B).  

 Similarly, in the cerebral cortex, there was an enrichment of brain DHSs among highly 

expressed DHSs, especially among the top ~15% most highly expressed DHSs in the cortex 

(Figure 3.4A). However, this enrichment was less pronounced than for retina: among the top 15% 

most highly expressed DHSs in the retina, 79% were retinal DHSs, while among the top 15% 

most highly expressed DHSs in the cerebral cortex, 42% were brain DHSs (p < 0.0001, Fisher’s 

exact test). As seen from the individual barcoded constructs (Figure 3.4B), there was a clear 

preference for brain DHSs among the most active constructs, but there was overall more 

promiscuous (less selective) activity of constructs in the cortex. The activity profile of non-brain 

DHSs in the cortex was right-shifted (increased) and overlapped to a greater extent with the 

activity profile of brain DHSs in the cortex, compared to the activity profile of non-retinal vs. 

retinal DHSs in the retina. Overall, these findings indicated that there was tissue-specific cis-

regulatory activity of DHSs in the retina and the cortex, with the retina exhibiting a stronger 

preference for retinal DHSs than the cortex exhibited for brain DHSs. 
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3.4.5 Parameters that predict cis-regulatory activity 

 We next asked whether certain parameters previously found to be associated with cis-

regulatory activity were predictive of high activity in our assay. For each parameter examined in 

Figure 3.5A-D, we considered the top 100 and top 200 most highly expressed DHSs for the 

tissue-appropriate DHS type (i.e., for the retina, we restricted our analysis to retinal DHSs, and 

for the cerebral cortex, we restricted our analysis to brain DHSs). Corresponding data for the 

liver and heart DHSs are provided in Figure 3.S5. We first surveyed expression as a function of 

position relative to the center of the DHS target region, within a 1 kb window (Figure 3.5A). 

While DNase-seq signals had a relatively narrow peak (~300 bp width) (Figure 3.5B), cis-

regulatory activity in both the retina and cortex had a much broader peak, plateauing in the 

central ~500 bp. The breadth of the cis-regulatory activity peaks likely reflects the longer length 

of the captured fragments (median length of 464 bp) and the large extent of overlap with the 

central 300 bp of the DHS regions (median overlap of 94%). Notably, we did not find a 

substantial relationship between the length of individual CRE fragments and CRE activity 

(Figure 3.S6), or between distance from the nearest TSS and CRE activity (Figure 3.S7). 

 Interestingly, higher DNase-seq scores were significantly associated with higher cis-

regulatory activity in the retina but not in the cortex (Figure 3.5B). A possible explanation is that 

the retinal DNase-seq data primarily reflect the chromatin state of rods, since they constitute the 

vast majority of cells in the retina (Jeon et al. 1998), and that the most strongly expressed DHSs 

are rod CREs. By comparison, the brain DNase-seq data reflect the chromatin state of a 

heterogeneous cell population, and the most strongly expressed DHSs in the cortex may be cell 

type-specific CREs highly active in only a subset of cells.  



78 

  

 Next, we investigated GC content, which has been reported to be elevated within CREs. 

This elevation in GC content is thought to favor nucleosome occupancy in tissues where the 

CRE is not active, thereby repressing cis-regulatory activity in those tissues (Tillo and Hughes 

2009; Tillo et al. 2010; Fenouil et al. 2012; Wang et al. 2012; Hughes and Rando 2014). We 

previously published an enhancer study, in which short (84 bp) synthetic CREs were cloned 

upstream of a photoreceptor-specific proximal promoter. This study revealed a positive 

correlation between GC content and enhancer activity in the retina (White et al. 2013). Thus, we 

were surprised to find that here, the most active retinal DHSs in the retina had significantly lower 

GC content (Figure 3.5C). However, a recent CRE-seq study using a minimal promoter also 

found lower GC content in highly active enhancers (Kwasnieski et al. 2014). Therefore, GC 

content appears to have distinct roles when the CRE acts as an autonomous element with a 

minimal promoter or as an enhancer with an active proximal promoter. Brain DHSs had a 

different pattern, with markedly elevated GC content centrally, and further increased GC content 

was seen among the most active brain DHSs in the cortex (Figure 3.5C). The different effects of 

GC content in the two tissues may reflect AT-rich vs. GC-rich motifs of tissue-specific TFs,  

and/or the distinct preferences of tissue-specific TFs for AT-rich vs. GC-rich ‘environments’ 

surrounding the TF motif (Dror et al. 2015). 

 An ongoing debate in the field of genomics is the degree to which phylogenetic 

conservation at the DNA sequence level is an accurate predictor of functional CREs, given that 

there is rapid turnover of individual TF binding sites in the course of evolution (Dermitzakis and 

Clark 2002; Vierstra et al. 2014). We observed significantly higher vertebrate conservation (as 

measured by PhastCons scores (Siepel et al. 2005)) for the most strongly expressed retinal and 

brain DHSs in the retina and cortex, respectively. This elevated phylogenetic conservation 
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occurred primarily within the central ~100 bp of DHSs (Figure 3.5D). This distribution of 

phylogenetic conservation is consistent with the previous observation that highly local (<100 bp) 

sequences confer substantial CRE activity (White et al. 2013).  

 We then considered TF motif content, which has been found to be predictive of cis-

regulatory activity (Kwasnieski et al. 2014; Blatti et al. 2015).  Here, we examined the 

enrichment of TF motifs among the DHSs with the highest or lowest activity in the retina and 

cortex, regardless of the type of DHS (Figure 3.5E and Supplemental Table S5). In the retina, 

highly active DHSs were enriched for homeobox, E-box, nuclear receptor (NR), MADS-box, and 

CCAAT motifs, while in the cerebral cortex, highly active DHSs were enriched for MADS-box, 

zinc finger (ZF), and helix-turn-helix (HTH) motifs.  

 To assess the predictive power of these features (DNase-seq scores, GC content, 

PhastCons scores, and TF motifs), we created logistic regression models and visualized their 

performance with receiver operating characteristic (ROC) curves, with five-fold cross-validation 

to control for over-fitting (Figure 3.5F and Supplemental Table S6). All constructs assayed in 

each tissue were classified as ‘high’ (top ~5% of ~36,000 constructs in retina, or top ~1% of 

~39,000 constructs in cerebral cortex) vs. ‘not high’. In the retina, DNase-seq was the single 

most predictive feature (AUC = 0.921), reflecting the strong tendency for highly active 

constructs to be retinal DHSs. Retinal CRX ChIP-seq peaks (Corbo et al. 2010) performed nearly 

as well (AUC = 0.892), likely reflecting the fact that CRX ChIP-seq peaks are essentially a 

subset of retinal DHSs (Wilken 2015). Interestingly, a model based on 15 TF motifs also 

performed reasonably well (AUC = 0.785). By comparison, in a prior CRE-seq study conducted 

in cell lines, a model using 50 TF motifs attained an AUC of 0.80 (Kwasnieski et al. 2014). The 

predictive values of GC content (AUC = 0.521) and PhastCons (AUC = 0.537) were weak. In the 
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cerebral cortex, DNase-seq was likewise the single most predictive feature (AUC = 0.778). A 

model based on 13 TF motifs performed reasonably well (AUC = 0.734), while GC content 

(AUC = 0.608) and PhastCons (AUC = 0.659) had modest predictive power in the cortex. 

Notably, in both tissues, the combined model performed only slightly better than DNase-seq 

alone. Overall, these results reflect the degree of preference of the retina and cerebral cortex for 

expressing retinal DHSs and brain DHSs, respectively, while underscoring the importance of TF 

motifs in specifying CRE activity. Furthermore, these results underscore the power of open 

chromatin mapping techniques such as DNase-seq for identifying functional CREs. 

 

3.4.6 Tiling of captured fragments allows for truncation mutation analysis 

 The potential for conducting truncation mutation analysis is an attractive and potentially 

powerful feature of the capture approach. We therefore sought to determine whether the results 

were comparable to those of a previously published ‘traditional’ one-at-a-time promoter analysis. 

NRL is a master regulator of rod photoreceptor development, required both for rod fate 

determination and maintenance (Mears et al. 2001; Swaroop et al. 2010). Past studies of the Nrl 

promoter region identified a 30 bp ‘critical region’ that is absolutely required for promoter 

activity. This critical region contains TF binding sites for CRX and RORB, both of which are 

required for Nrl expression (Kautzmann et al. 2011; Montana et al. 2011a). Since the Nrl 

promoter contained a retinal DHS that was targeted in our library, we compared the results of 

CRE-seq and a traditional promoter analysis that used fluorescence as a read-out of cis-

regulatory activity (Montana et al. 2011a). Since promoters act directionally (Andersson et al. 

2014; Duttke et al. 2015), we compared CRE-seq constructs that were oriented in the same 

direction as the traditional promoter constructs. We found good agreement between the two 
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assays overall (Figure 3.6A), despite differences in construct design (e.g., the CRE-seq 

constructs contained a minimal promoter, and the 3’ ends of fragments varied). Importantly, both 

identified the same critical region within a block of phylogenetic conservation (Montana et al. 

2011a). Thus, CRE-seq truncation analysis recapitulated the results of a traditional truncation 

mutation analysis.  

 Besides the Nrl promoter, we found additional instances of novel truncation mutation 

analyses afforded by the capture approach. As seen in Figure 3.6B, a retinal DHS in the intron of 

Rbm20 showed strong activity in the retina and weak activity in the cortex. Intriguingly, our 

assay revealed a 12 bp critical region containing a predicted binding motif for CRX. This motif, 

‘CTAATCCT’ (on the negative strand) is a near-perfect match to the consensus motif, 

‘CTAATCCC’ (Lee et al. 2010). 

 Figure 3.6C depicts another truncation mutation analysis, this time for two brain DHSs 

(labeled ‘1’ and ‘2’) located <0.5 kb apart within an intron of Bsn (Bassoon). Bassoon is a 

presynaptic protein that is important for neurotransmitter release from glutamatergic (excitatory) 

neurons (Altrock et al. 2003). Both of these brain DHSs contained phylogenetically conserved 

regions, as observed by PhastCons (Siepel et al. 2005). Interestingly, while both had low cis-

regulatory activity in the retina, DHS #1 had low activity in the cerebral cortex, whereas DHS #2 

had high activity in the cortex. Furthermore, given the extensive tiling of the region, the 

boundaries of activity could be determined at both the 5’ and 3’ ends of DHS #2. 

 Next, we present a brain DHS region with high cis-regulatory activity in the cerebral 

cortex (Figure 3.6D). A critical region of ~150 bp in length was identified that overlapped a 

block of phylogenetic conservation. Incremental loss of bases in this region resulted in 

progressive decreases in cis-regulatory activity. Within this critical region, two TF motifs were 
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identified: a consensus E-box motif (recognized by bHLH TFs) (Massari and Murre 2000), 

immediately next to a motif recognized by basic region leucine zipper (bZIP) proteins of the AP-

1 family (Heinz et al. 2010). Like neural bHLH proteins, AP-1 family proteins are known to 

have important roles in regulating gene expression in the cerebral cortex (Raivich and Behrens 

2006; Mongrain et al. 2011). 

Additional examples of truncation mutation analysis are presented in Figure 3.S8. Overall, 

we identified 46 retinal DHSs and 13 brain DHSs with examples of truncation mutation analysis, 

thus representing 4.6% and 1.3% of the 1000 retinal DHSs and 1000 brain DHSs initially 

targeted in the library, respectively. We observed that for the loci with truncation mutation 

analyses, at least 8 barcoded constructs tiled across the DHS. For DHSs with at least 8 assayed 

barcodes, the fraction of loci with truncation mutation analyses was about 3-fold higher: 46/363 

(12.7%) of retinal DHSs and 13/345 (3.8%) of brain DHSs.  

Truncation mutation analyses rely on assaying long CRE fragments that tile across CRE 

regions. Previously, we conducted a CRE-seq enhancer study (White et al. 2013) in which short 

(84 bp) CREs (synthesized by oligonucleotide array) were assayed upstream of a rod 

photoreceptor-specific proximal promoter. These short CREs corresponded to retinal CRX ChIP-

seq peaks, which are essentially a subset of retinal DHSs (Wilken 2015). Thus, we wondered 

whether, for a given CRE, our capture-and-clone approach identified active cis-regulatory 

sequences beyond the central region tested by the short CRE. Overall, there were 176 CRE 

regions in the White et al. library that overlapped with assayed regions in the current library, all 

of which corresponded to retinal DHSs. Most (141/176 or 80%) regions were more active as 

short enhancers than as long autonomous elements (Figure 3.S9A). This is not surprising, as it is 

known that some photoreceptor CREs exhibit strong activity as enhancers but minimal activity 
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as autonomous elements (Corbo et al. 2010). Interestingly, in a minority (13/176 or 7%) of cases, 

the long autonomous elements exhibited substantially more activity, likely because they 

encompassed functional regions (e.g., critical regions and/or phylogenetically conserved regions) 

that were not found within the short CREs, as illustrated in Figure 3.S9B and 3.S9C. Although 

the comparison of these two studies is limited by the differences in assay platforms and the small 

number of shared CREs, these results indicate that the capture-and-clone approach can provide 

additional cis-regulatory information beyond that of short CREs. 

 Together, these examples illustrate that CRE-seq multiplex truncation mutation analysis 

can identify both known and novel critical regions. In some cases, the spatial resolution is high 

enough to pinpoint candidate TF motifs required for activity. Thus, our assay has the ability not 

only to measure the overall activity of a candidate CRE, but also to demarcate the spatial 

boundaries of cis-regulatory activity.  

 

3.4.7 Traditional reporter assays confirm that critical bases identified by CRE-seq 

truncation mutation analysis are required for activity 

 To validate the ability of CRE-seq truncation mutation analysis to identify critical regions 

de novo, we utilized traditional reporter assays. We previously developed a quantitative 

fluorescence reporter assay in retinal explants that accurately measures CRE activity (Montana et 

al. 2011b; Kwasnieski et al. 2012). Thus, we selected three retinal DHS loci (including R64, 

which is the locus depicted in Figure 3.6B) with critical regions identified by CRE-seq truncation 

mutation analysis to test with the traditional approach (Figure 3.7A). These critical regions 

contained bioinformatically predicted CRX sites, thus allowing us to test whether these CRX 

sites were required for cis-regulatory activity. 
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For each locus, we created a ‘long’ construct, a ‘short’ construct missing the critical 

region, and a ‘mutant’ construct identical to the ‘long’ construct except that a single point 

mutation was introduced in the predicted CRX site (Figure 3.7A). The point mutation was an 

adenine-to-cytosine substitution at the fourth position of the CRX motif (thymine-to-guanine in 

the reverse orientation), which is predicted to inactivate the CRX site (Supplemental Table S7) 

(Lee et al. 2010; White et al. 2013). The constructs were directionally cloned upstream of the 

minimal promoter-GFP cassette in a non-AAV vector without barcodes in the 3’ UTR, thus 

controlling for any effects of orientation, AAV vector sequence, or barcode sequence. 

 Each construct was individually electroporated into multiple retinas and quantified 

relative to a loading control, Rho-CBR3-DsRed (Figure 3.7B). We observed that in each case, 

the long construct showed high activity, while the short construct showed extremely low activity. 

Notably, the mutant construct exhibited a low level of activity comparable to the activity of the 

short construct (Figure 3.7C). Thus, for all three loci, we not only verified that the critical 

regions are required for activity, but also that these specific CRX sites are required. These 

experiments demonstrate that our approach identifies bona fide TF binding sites required for 

activity. 
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3.5 DISCUSSION 

 Here, we described an innovative ‘capture-and-clone’ approach for synthesizing CRE-seq 

libraries. We furthermore demonstrated the feasibility of using AAV-mediated CRE-seq to 

conduct massively parallel cis-regulatory analysis in the cerebral cortex in vivo. By comparing 

retina and cerebral cortex, we showed tissue-specific cis-regulatory activity of DHSs. By taking 

advantage of the truncation mutation analysis afforded by the tiling of captured fragments across 

targeted loci, we illustrated high-resolution, multiplex functional parsing of CREs. 

 Previously, high-throughput functional assays of CRE activity had been technologically 

limited with regards to the length of CREs that could be readily assayed (Levo and Segal 2014; 

Shlyueva et al. 2014). Our capture-and-clone approach provides a strategy for assaying candidate 

CREs with lengths of a desired range. Moreover, the capture approach can be used in 

conjunction with any existing MPRA-like approach, including those that already rely on DNA 

fragmentation (Dickel et al. 2014; Murtha et al. 2014). For example, STARR-seq (Arnold et al. 

2013) has been used to assess long DNA fragments obtained by whole-genome shotgun cloning 

of the Drosophila genome. However, the mouse and human genomes are ~25 times larger than 

the fly genome. Moreover, only ~5-10% of the mammalian genome is thought to be functionally 

constrained (Graur et al. 2013; Kellis et al. 2014; Rands et al. 2014). Therefore, whole-genome 

shotgun cloning of mammalian genomes for cis-regulatory analysis is impractical. Instead, 

capture-and-clone permits targeted cis-regulome analysis. 

  We note that another group has recently coupled capture technology to STARR-seq (i.e., 

CapSTARR-seq) (Vanhille et al. 2015). Our approach differs from CapSTARR-seq in two key 

ways (Supplemental Table S8). First, we achieved higher on-target rates of capture (98.5% vs. 

14%) due to a rigorous capture protocol to avoid non-specific pull-down of off-target DNA 
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(Gnirke et al. 2009; Lee et al. 2009). Second, we conducted paired-end sequencing of the input 

library, whereas CapSTARR-seq mapped only one end of the fragments. Thus, we were able to 

harness the potential of capture-and-clone for truncation mutation analysis. 

 Capture-and-clone allows the testing of longer CREs, which presumably harbor more cis-

regulatory information. However, there was essentially no correlation between fragment length 

and CRE activity. What accounts for this observation? One consideration is that the size range of 

assayed CRE fragments was relatively narrow. Another explanation, based on the truncation 

mutation analyses, is that some long fragments exhibited low activity due to the omission of 

critical regions. A third possibility is that some long CRE fragments included repressive 

sequences that decreased activity (Reynolds et al. 2013).  

 The capture-and-clone approach is particularly well suited for screening thousands of 

candidate CREs and identifying the most active CREs in a particular tissue of interest, thereby 

narrowing the list of CREs that may be relevant to a particular phenotype. For instance, genome-

wide association studies (GWAS) and whole-genome sequencing studies have generated lists of 

thousands of disease-associated non-coding variants (Ward and Kellis 2012b; Albert and 

Kruglyak 2015). To prioritize these lists and thereby accelerate the identification of causal 

variants, the locations of the candidate variants can be intersected with the locations of putative 

CREs. The cis-regulomes of unaffected and affected individuals can then be screened by capture-

and-clone CRE-seq to identify CREs that exhibit the greatest differential activity between the 

unaffected and affected groups. Capture-and-clone is thus complementary to CRE-by-synthesis, 

which is better suited to precisely measuring the effects of specific variants (Levo and Segal 

2014). Capture-and-clone can be used to assess a broad range of regions in any organism whose 

DNA and reference genome are available, although certain types of sequences are not amenable 
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to targeted capture, namely repetitive regions (due to non-specific pull-down) and sequences 

with very high (>65%) or low (<25%) GC content (Mertes et al. 2011).  

 Prior to our study, the implementation of MPRAs in mammalian cells had been almost 

exclusively restricted to immortalized cell lines and cultured tissues (Shlyueva et al. 2014). The 

only mammalian tissue that had been assayed in vivo was the mouse liver, due to its ability to 

take up limited amounts of plasmid DNA via a hydrodynamic tail vein assay (Herweijer and 

Wolff 2007; Patwardhan et al. 2012). Here, we take a step forward by using AAV to conduct 

CRE-seq in vivo in the mammalian CNS.  

 One potential drawback of AAV is that packing constraints limit the size of the insert to 

less than 4.7 kb (Wu et al. 2010). Lentiviruses have greater carrying capacity (Kumar et al. 2001), 

but their integration into the host genome poses the risk of integration site cis-regulatory effects 

(Clark et al. 1994). By contrast, AAV-mediated CRE-seq measures the cis-regulatory potential 

of elements independent of chromosomal context, thereby interrogating the function of the DNA 

sequences themselves. Interestingly, there is evidence that despite being episomal, the AAV 

vector is organized into nucleosomes (Penaud-Budloo et al. 2008). Another limitation of AAV is 

that the onset of expression is relatively slow, with maximal expression requiring up to several 

weeks (Day et al. 2014). This delay is due to the required conversion of the genome from single-

stranded into double-stranded DNA. Recently, self-complementary AAV (scAAV) serotypes 

have been developed that exhibit more rapid transgene expression (McCarty 2008). As novel 

AAV serotypes for gene therapy continue to emerge (Wu et al. 2006; Daya and Berns 2008), 

AAV-mediated CRE-seq will become increasingly powerful. 

 Why are some tissue-specific DHSs active and others inactive, even when assayed in the 

appropriate tissue? One reason is that DHSs demarcate not only active enhancers but also other 



88 

  

types of regulatory elements (e.g., silencers and insulators) (Gross and Garrard 1988; Thurman et 

al. 2012). Here, we used a TATA-box containing minimal promoter to assay the autonomous cis-

regulatory activity of the tested elements, rather than a tissue-specific proximal promoter to assay 

for enhancer/silencer activity (Butler and Kadonaga 2002). Only a minority (~10-20%) of 

mammalian promoters contain TATA boxes (Sandelin et al. 2007). Future use of tissue-specific 

proximal promoters may allow for more sensitive assays, especially as enhancer-promoter 

compatibility and TATA-box vs. DPE-containing promoters become better understood (Sandelin 

et al. 2007; van Arensbergen et al. 2014; Zabidi et al. 2015). Additionally, since some enhancers 

become active only in response to particular stimuli (Ostuni et al. 2013; Shlyueva et al. 2014), 

environmental perturbations may be necessary to unmask their cis-regulatory potential. 

Furthermore, the cis-regulatory landscape of a given tissue is dynamic across development, as 

illustrated by DNase-seq in the developing mouse retina and brain (Wilken 2015). Future CRE-

seq experiments at multiple developmental stages will help elucidate the temporal dynamics of 

CREs. Nonetheless, even with the TATA-box containing minimal promoter assayed in steady-

state conditions, we demonstrated tissue-specific CRE activity. 

 Assaying autonomous activity and assaying enhancer activity are complementary 

approaches, as they appear to reflect different biological activities and properties of a given CRE. 

In the current study, we observed that GC content was associated with decreased autonomous 

CRE activity in the retina. Given the differences in the assays, this finding does not contradict 

our earlier retinal CRE-seq study (White et al. 2013), in which we observed a positive 

association between GC content and enhancer activity. In fact, the current result is consistent 

with a recent CRE-seq study in which GC content was associated with decreased autonomous 

activity of predicted enhancers in cell culture (Kwasnieski et al. 2014)..  
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  In our study, the retina exhibited a stronger preference for retinal DHSs than the cerebral 

cortex exhibited for brain DHSs. Several explanations are possible. First, the cellular complexity 

of the brain is likely a major factor (Wurmbach et al. 2002). A recent DNase-seq study in the 

mouse brain observed that DHSs could be found around genes expressed in only a small 

percentage of neurons, such as cortical laminar-specific genes (Wilken 2015). Thus, a given 

‘brain DHS’ may actually be a cell type-specific DHS that is active in a small population of cells. 

When averaged over the entire population of assayed cells, the cell type-specific activity of the 

DHS may be obscured. For tissues with highly heterogeneous cell populations such as the 

cerebral cortex, it should be possible to target specific subpopulations by combining AAV-

mediated CRE-seq with fluorescence-activated cell sorting (FACS) of defined cell types (Okaty 

et al. 2011; Gisselbrecht et al. 2013; Dickel et al. 2014). Second, the minimal promoter used in 

this study contains a possible weak CRX site, whose affinity is predicted to be ~10% that of the 

CRX consensus motif (Chen and Zack 1996; Lee et al. 2010). Lastly, although DNA barcode 

representation was similar in the retina and cerebral cortex, the difference in delivery methods 

for the two tissues may have been a contributing factor.  

 In summary, we have developed a powerful and efficient strategy for constructing CRE-

seq libraries that extends the size range of the CREs that can readily be assayed, using targeted 

cis-regulome capture. At the same time, we have demonstrated the feasibility of conducting 

CRE-seq in vivo in a mammalian tissue using AAV. As new assays for rapidly identifying the 

locations of putative cell type-specific CREs are developed, e.g., ATAC-seq (Buenrostro et al. 

2013), our study sets the stage for the high-throughput functional screening of thousands of 

candidate CREs in a range of cell types and in a variety of model systems, including non-human 



90 

  

primates and human induced pluripotent stem cell (iPSC)-derived organoids (Lancaster et al. 

2013). 
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3.6 METHODS 

3.6.1 Animals 

 Mice were maintained on a 12-hour light/dark cycle at ~20-22 C with free access to food 

and water. Neonatal mice were euthanized by decapitation, and adult animals were euthanized 

with CO2 anesthesia followed by cervical dislocation, unless otherwise stated. All experiments 

were conducted in accordance with the Guide for the Care and Use of Laboratory Animals of the 

National Institutes of Health, and were approved by the Washington University in St. Louis 

Institutional Animal Care and Use Committee. 

 

3.6.2 Reference genome 

 The mouse reference genome used throughout was mm9. 

 

3.6.3 Identification of target tissue-specific DHS peaks 

 We downloaded DHS data in narrowPeak format from the Mouse ENCODE Project (Yue 

et al. 2014) for the following tissues (GEO sample accessions are listed): whole brain age E14.5 

(GSM1014197, replicate 1), whole brain age E18.5 (GSM1014184, replicate 1), whole brain age 

8 weeks (GSM1014151, replicate 1), retina age P1 (GSM1014188), retina age P7 

(GSM1014198), retina age 8 weeks (GSM1014175), liver age E14.5 (GSM1014183, replicate 1), 

liver age 8 weeks (GSM1014195, replicate 1), lung age 8 weeks (GSM1014194, replicate 1), 

kidney age 8 weeks (GSM1014193, replicate 1), thymus age 8 weeks (GSM1014185, replicate 1), 

and heart age 8 weeks (GSM1014166, replicate 1). We parsed these data using custom Perl 

scripts, tallying the number of reads per 150 bp block across the mouse genome to give a DHS 

‘score’. We then examined the top ~4,000 tissue-specific peaks each for brain age 8 weeks, 
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retina age 8 weeks, heart age 8 weeks, and liver age 8 weeks. For a peak to be identified as 

‘tissue-specific’, it was required to have a DHS score of >25 in the 8 week tissue of interest and 

<25 in samples derived from other tissues (but the peak score for samples deriving from different 

developmental stages of the same tissue type were not required to be <25). For instance, if the 

score for a retina age 8 weeks peak was >25 and the score for the corresponding retina age P7 

peak was >25, but all non-retinal peaks were <25, then that peak was called ‘retina-specific’. 

After removing any tissue-specific peaks that overlapped repetitive genomic sequences (~10% of 

peaks), we selected the 1,000 peaks with the highest tissue-specific peak scores from each of 

adult brain, retina, heart, and liver for inclusion as capture targets. 

 

3.6.4 Capture bait library design and synthesis 

 Baits were synthesized by MYcroarray. For each of the 4,000 target regions, seven 80 bp 

baits were designed to tile across the 300 bp region (sliding 37 bp at a time), for a total of 1.2 Mb 

and 28,000 baits. To check for potential off-target bait hybridization, bait candidates were 

blasted against the mm9 genome, which was masked for the regions from which baits were 

designed. By definition, Tm is the temperature at which 50% of the molecules are hybridized. 

Bait candidates were accepted only if no BLAST hits (Altschul et al. 1990) with a predicted Tm > 

40.0 C were found. 

 

3.6.5 GREAT analysis and Gene Ontology 

 GREAT v2.0.2 analysis with mm9 as the reference genome was implemented, using the 

‘single nearest gene’ within 1000 kb as the algorithm for associating genomic regions to genes, 

and using the whole genome as background and excluding the ‘include curated regulatory 
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domains’ option (McLean et al. 2010). The input to the GREAT analysis was the list of 4,000 

target DHS regions. Gene Ontology (GO) (Ashburner et al. 2000) enrichment analysis for 

‘biological process’ in Mus musculus was implemented using PANTHER (Mi et al. 2005) with 

AmiGO 2 v2.1.4 (Carbon et al. 2009). The input to the GO analysis was the GREAT-generated 

list of genes associated with target DHSs (‘region-to-gene’ associations). 

 

3.6.6 Restriction enzymes and PCR reagents 

 Unless otherwise indicated, restriction enzymes were from New England Biolabs, and 

Phusion Hot Start Flex 2X Master Mix (New England Biolabs) was used for PCR. Primer 

sequences are listed in Supplemental Table S9. 

 

3.6.7 Preparation of gDNA for capture 

 Genomic DNA was purified from liver tissue of C57BL/6J mice and sonicated with 

Covaris E210 (duty 10%, intensity 4, cycles/burst 200, time 100 s). The freshly sonicated DNA 

was end repaired, 3’ adenylated, ligated to commercial adapters, and enriched by PCR, using the 

TruSeq LT or TruSeq Nano Kit (Illumina) according to manufacturer’s instructions (1 ug or 200 

ng input gDNA, and 10 or 8 cycles of PCR, respectively). For final size selection and 

purification prior to capture, the samples were gel electrophoresed on 2% low melting point 

agarose and gel extracted with MinElute (Qiagen). To concentrate the samples in preparation for 

capture, the samples were speed vacuumed in LoBind tubes (Eppendorf). 
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3.6.8 Cis-regulome capture and preparation for cloning 

 Capture was conducted in a similar manner as previously described (Gnirke et al. 2009). 

Two rounds of sequential capture were conducted to achieve high on-target rates (Lee et al. 

2009). Briefly, for the first round of capture, a 9 μL library mix was prepared, consisting of ~300 

ng input (TruSeq LT or TruSeq Nano gDNA library), 2.5 μg human Cot-1 DNA, 2.5 μg salmon 

sperm DNA, and 0.6 μL adapter blocking agent (MYcroarray). This solution was denatured at 95 

C for 5 min. Meanwhile, a 36.8 μL hybridization mix was prepared, consisting of 5 μL 20X 

SSPE (instead of the standard 20 uL), 0.8 μL 0.5 M EDTA, 8 μL 50X Denhardt's, 8 μL 1% SDS, 

and 15 μL RNase-free water. This solution was prewarmed at 65 C for 3 min. A 6 μL capture 

bait mix was prepared, consisting of 50 ng (instead of the standard 500 ng) biotinylated baits and 

1 μL of SUPERase-In (Ambion). This solution was prewarmed at 65 C for 2 min. Finally, 7 μL 

of the library mix, 13 μL of the hybridization mix, and all 6 μL of the capture bait mix were 

incubated at 65 C for ~24 hr. The reaction was then applied to Dynabeads MyOne Streptavidin 

C1 (Invitrogen) with washing and elution as described (Gnirke et al. 2009). Each capture 

reaction was purified with MinElute (Qiagen), with an elution volume of 30 uL. Each eluate was 

speed vacuumed in a LoBind tube (Eppendorf) down to a volume of 3-4 μL and used as the 

library ‘input’ for a single reaction in the second round of capture. The second round of capture 

was otherwise identical to the first. No PCR was conducted between the first and second rounds 

of capture. After the second round of capture, PCR was conducted using Ill_NotI_1XL and 

Ill_NotI_2XL primers (98 C for 1 min, 14-16 cycles: 98 C for 10 sec, 58 C for 30 sec, 72 C 

for 1 min, followed by 72 C for 5 min). The samples were PCR purified with MinElute 

(Qiagen), digested with NotI-high fidelity (HF) , and gel extracted with MinElute (Qiagen). Two 
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independent pools of capture products were generated, with each pool deriving from multiple 

capture reactions. 

 

3.6.9 CRE-seq library construction 

 To minimize the likelihood of cleaving captured fragments, the 8-bp cutters NotI, FseI, 

and AscI were employed. To create the barcoded vector library for insertion of NotI-ended 

captured fragments, the Rho basal-DsRed construct (Hsiau et al. 2007) was modified with linkers 

on the 3’ end of DsRed to replace a former NotI site with an EagI site and to add NsiI, FseI and 

AscI sites, and on the 5’ end of the Rho basal promoter to add a NotI site between XbaI and KpnI 

sites. 

 To add 15-mer barcodes, two pools of 30 nmol oligos were synthesized with random 15 

bp sequences (Integrated DNA Technologies) as BC_F and BC_R. The two pools were annealed 

and ligated into the AscI and NsiI sites of the vector. After transformation of 5-alpha chemically 

competent E. coli (New England Biolabs) and overnight growth in liquid culture, a total of ~9.5 

x 106 colonies were harvested (as estimated from plating a small aliquot) and purified with the 

PureLink HiPure Plasmid Maxiprep Kit (Invitrogen). The barcoded vector library was then 

digested with EagI-HF and dephosphorylated with alkaline phosphatase (Roche). The captured 

fragments were digested with NotI-HF and cloned into the EagI site of the vector library with 5-

alpha chemically competent E. coli (New England Biolabs). A total of ~80,000 colonies were 

scraped from LB/ampicillin agar plates, grown for ~2 hours in liquid LB/ampicillin culture, and 

purified with the PureLink HiPure Plasmid Maxiprep Kit (Invitrogen). 
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After paired-end sequencing to determine the CRE-barcode correspondence (described 

below), the minimal promoter-eGFP cassette was cloned into the FseI and AscI sites3. The 

minimal promoter is the previously described ‘Rho basal’ minimal promoter, which contains a 

TATA box (‘CATAA’), and which by itself does not have detectable activity in electroporated 

retina (Hsiau et al. 2007). The minimal promoter-eGFP cassette was created by replacing DsRed 

with eGFP (Zhang et al. 1996) in the Rho basal-DsRed construct (Hsiau et al. 2007). After 

transformation with 5-alpha chemically competent E. coli (New England Biolabs) and overnight 

growth in liquid culture, a total of ~2.7 x 106 colonies were harvested (as estimated by plating a 

small aliquot) and purified with the PureLink HiPure Plasmid Maxiprep Kit (Invitrogen). 

 The AAV-ITR vector was prepared by digesting the pAAV2.1-RHO-eGFP vector 

(Allocca et al. 2007) with NheI and XhoI, and replacing the RHO-eGFP cassette with a linker 

containing an EagI site. To transfer the library into the AAV-ITR vector, the entire CRE-minimal 

promoter-eGFP-polyA cassette was subjected to PCR using 5’ Tak and NotI_polyA_R1 primers 

(98 C for 1 min, 10 cycles: 98 C for 10 sec, 64 C for 30 sec, 72 C for 1 min 30 sec, followed 

by 72 C for 5 min). The PCR product was digested with NotI-HF (New England Biolabs) and 

cloned into the EagI site of the AAV-ITR vector. After transformation of 5-alpha chemically 

competent E. coli (New England Biolabs) and overnight growth in liquid culture, a total of ~2.5 

x 106 colonies (as estimated by plating a small aliquot) were harvested and purified with the 

PureLink HiPure Plasmid Maxiprep Kit (Invitrogen). ITR integrity was verified by restriction 

digest. Note that the final NotI digestion removes any captured fragments initially cloned in as 

NotI multimers, leaving only the 3’-most captured fragment. 

 

                                                           
3Paired-end sequencing was conducted prior to insertion of the promoter-reporter cassette so that the barcode and 

both ends of each CRE fragment would be sequenced with 2x250 bp sequencing. 
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3.6.10 Paired-end sequencing for CRE-barcode correspondence 

 Prior to insertion of the promoter-reporter cassette, the library was prepared for paired-

end sequencing as follows. PCR amplification was conducted using primers LibPCR_F and 

LibPCR_R (98 C for 1 min, 8 cycles: 98 C for 10 sec, 64 C for 30 sec, 72 C for 1 min, 

followed by 72 C for 5 min). The product was digested with NotI-HF and SacII, gel purified 

with MinElute (Qiagen), and ligated to P1_NotI and PE2_SacII adapters with T4 DNA ligase 

(New England Biolabs), using an equimolar mix of P1_NotI indexed adapters to facilitate 

nucleotide balance. The ligation products were PCR amplified to enrich for molecules that had 

both P1 and PE2 adapters, using primers JKP4F and JKP4R (98 C for 1 min, 14 cycles: 98 C 

for 10 sec, 65 C for 30 sec, 72 C for 1 min, followed by 72 C for 5 min). The final product 

was gel-extracted on 2% low melting point agarose and verified on an Agilent Bioanalyzer. Two 

lanes of MiSeq 2x250 bp sequencing were run at a loading concentration of 1.6-2 pM and 12-15% 

spiked-in Phi-X DNA (Illumina). 

 

3.6.11 Analysis of paired-end sequencing for CRE-barcode correspondence 

 Barcodes and captured fragment sequences were extracted based on flanking bases. 

Captured fragment sequences were aligned as paired reads to mm9 using Bowtie 2 v2.1.0 

(Langmead and Salzberg 2012) with an allowed maximum insert size of 1000 bp (‘-X 1000’ 

setting). SAM files were converted to BAM files using SAMtools v0.1.19 (Li et al. 2009) and 

then to BED files using BEDTools v2.22.1 (Quinlan and Hall 2010). Only paired reads that 

mapped concordantly were used. Fragments were examined for overlap with the 4,000 target 

DHS regions (which were each 300 bp). If a fragment overlapped two adjacent target regions, it 

was assigned to the target region with the most bases of overlap. Barcodes were required to be 
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14-16 bp in length. Barcodes with multiple CRE fragment associations, and PCR-duplicate CRE 

fragments associated with multiple barcodes (~1.6% of fragments), were discarded. A list of ‘on-

target’ CRE correspondences for 45,670 barcoded constructs (minimum 10 reads) resulted. To 

determine the ‘off-target’ rate, the number of barcoded constructs that did not overlap a target 

DHS was found to be 712. Hence, ~98.5% of fragments were on-target.  

 

3.6.12 Retinal explant electroporation and culture for CRE-seq 

 Electroporation and explant culture of mouse retinas were performed as described 

previously (Montana et al. 2011b). In brief, retinas were dissected from newborn (P0) CD-1 

mouse pups and coelectroporated with 0.5g/L AAV-ITR plasmid CRE-seq library and 

0.5g/L Rho-CBR3-DsRed, a rod-specific construct for visualizing electroporation efficiency 

(Corbo et al. 2010). Retinas were grown in explant culture and harvested 8 days later. Five 

retinas were pooled for each CRE-seq biological replicate. 

 

3.6.13 Viral production 

 Recombinant AAV9(2YF) was produced and purified as previously described (Grieger et 

al. 2006). To summarize, HEK293 cells at ~80% confluency were cotransfected with the AAV-

ITR plasmid CRE-seq library, p-Helper plasmid, and AAV9(2YF) rep/cap plasmid (Dalkara et al. 

2012). Cells were harvested 72 hours after transfection, and the virus was purified by Iodixanol 

gradient ultracentrifugation, followed by buffer exchange. The viral titer, as determined by dot 

blot or quantitative PCR, ranged from 5 x 1012 to 1 x 1014 vg/mL (Zolotukhin et al. 2002; 

Aurnhammer et al. 2012). 
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3.6.14 Stereotactic cortical injection 

 Stereotactic cortical injections were performed by the Hope Center Animal Surgery Core 

at Washington University in a manner similar to that described (Cetin et al. 2006). Briefly, 

female CD-1 mice (age 4-6 weeks) were anesthesized with isoflurane. Each mouse received 

bilateral injections. For each injection, a small craniotomy was performed and 1 L of 

AAV9(2YF) CRE-seq library was delivered into the primary motor cortex (stereotactic 

coordinates: dorsal/ventral axis 0.52 mm, anterior/posterior axis 1 mm, medial/lateral axis 1.5 

mm). Animals were harvested 4-5 weeks after injection. The brain was sliced coronally and a 

fluorescent dissecting scope (Leica MZ16 F) was used to visualize GFP-positive regions, which 

were isolated by microdissection. Each CRE-seq biological replicate consisted of GFP-positive 

cortical tissue from a single animal. 

 

3.6.15 Isolation of RNA and DNA and preparation for sequencing 

 Tissues were rapidly harvested and rinsed in cold sterile HBSS with calcium and 

magnesium (Gibco) and stored at -80C in TRIzol (Invitrogen). Samples were homogenized in 

TRIzol, and RNA and DNA were isolated according to the manufacturer’s instructions. RNA 

samples were treated with TURBO DNase (Ambion) to remove potential DNA contamination. 

RNA and DNA were prepared for sequencing essentially as previously described (Kwasnieski et 

al. 2012). RNA was reverse-transcribed with SuperScript III (Invitrogen) using oligo-dT primers. 

The resulting first-strand cDNA was treated with RNaseH. Both the cDNA and DNA samples 

were subjected to PCR to amplify the barcode sequence in the 3’ UTR of GFP using the forward 

primer SSP1F and the reverse primer JKP3R (98 C for 1 min, 22 cycles for DNA or 26 cycles 

for cDNA: 98 C for 10 s, 60 C for 30 s, 72 C for 30 s, followed by 72 C for 5 min). This 
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resulted in PCR products flanked by EagI and EcoRI restriction enzyme sites. The products were 

purified with PureLink PCR Purification Kit (Invitrogen) and digested with EagI-HF and EcoRI. 

After digestion, the samples were gel purified with Qiagen Gel Extraction Kit and ligated to 

P1_EagI and PE2_EcoRI adapters using T4 DNA ligase (New England Biolabs). To enrich for 

molecules that had both P1 and PE2 adapters, the ligation products were PCR amplified with 

primers JKP4F and JKP4R (98 C for 1 min, 20 cycles: 98 C for 30 sec, 65 C for 30 sec, 72 C 

for 30 sec, followed by 72 C for 5 min). The final product was gel purified from 2% low 

melting point agarose and verified on an Agilent Bioanalyzer. 

 

3.6.16 Illumina sequencing for CRE-seq barcode abundance 

 For each tissue, the three cDNA samples and three corresponding DNA samples were 

multiplexed and run on a single lane of Illumina HiSeq 2000 (1x50 bp) at a loading 

concentration of 8 pM with 10% spiked-in Phi-X DNA. 

 

3.6.17 CRE-seq data analysis 

 Samples were demultiplexed and the barcode was extracted based on flanking sequences. 

Reads were tabulated to obtain the raw RNA and DNA counts for each barcode. Only barcodes 

with at least 10 raw DNA reads in all 3 biological replicates of a tissue were included (36,005 

barcodes for retina and 38,826 barcodes for cerebral cortex). For each barcode, the RNA count 

was normalized to the total RNA counts in the sample, and the DNA count was normalized to the 

total DNA counts in the sample. The normalized expression was the ratio of the normalized RNA 

count to the normalized DNA count. A pseudocount of 0.001 was added to the normalized 
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expression, and the log2 was taken. The average of the log2 values across biological replicates 

was the ‘mean expression (log2 units)’. 

 

3.6.18 Histology 

 Retinal explants were rinsed twice with PBS and fixed in 4% paraformaldehyde/PBS for 

30-60 min at room temperature, equilibrated in 30% sucrose/PBS, and embedded in Tissue-Tek 

O.C.T. (Sakura). Retinal cryosections (12-14 m) were prepared and stored at -20 C until 

imaging. For stereotactically injected brains, animals were deeply anesthesized with 

ketamine/xylazine and then transcardially perfused with heparin/PBS followed by 4% 

paraformaldehyde/PBS. Animals were decapitated and the brains were dissected in PBS and 

post-fixed in 4% paraformaldehyde/PBS at 4 C for at least a day. Vibratome sections (200 m) 

were prepared from agarose-embedded brain slices and then optically cleared with glycerol/PBS 

(Selever et al. 2011). Brain slices were treated with sodium borohydride to minimize 

autofluorescence (Clancy and Cauller 1998). For anti-RBFOX3 (also known as anti-NeuN) 

staining of free-floating vibratome sections, the sections were blocked with 4% normal donkey 

serum (NDS)/0.25% Triton X-100/PBS for at least 1 hr at room temperature with gentle agitation, 

incubated with rabbit anti-RBFOX3 antibody (ABN78; EMD Millipore) (1:50, diluted in 4% 

NDS/0.1% Triton X-100/PBS) overnight at 4 C with gentle agitation, washed with 0.1% Triton 

X-100/PBS, incubated with Alexa Fluor 555 donkey anti-rabbit (A-31572; Molecular Probes) 

(1:800, diluted in 4% NDS/0.1% Triton X-100/PBS) for 1 hr at room temperature with gentle 

agitation, and washed with 0.1% Triton X-100/PBS. All brain slices were stored in PBS at 4 C 

until imaging. For imaging, tissue was mounted with Vectashield (Vectorlabs) and coverslipped. 

Confocal imaging was conducted with a laser confocal microscope (Zeiss LSM 700) and ZEN 
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2009 software (Zeiss). Flat-mount imaging of an untreated brain slice (Figure 3.3D) was 

conducted with an inverted fluorescent microscope (Nikon Eclipse TE300) and MetaMorph 

software (Molecular Devices). Images were processed with Adobe Photoshop. 

 

3.6.19 Cluster analysis of biological replicates 

 Hierarchical clustering and principal component analysis (PCA) were used to assess the 

underlying structure of CRE expression across retina and brain replicates. For hierarchical 

clustering, the sample distance was defined as one minus the Pearson correlation coefficient 

(calculated across the normalized expression of the ~35,000 barcodes with at least 10 DNA reads 

in all six samples), and clustering was implemented using average linkage. PCA was performed 

via singular value decomposition on scaled, centered expression data (i.e., zero-centered values 

with unit variance). 

 

3.6.20 Analysis of TF motif enrichment in low vs. high-expressing DHSs 

 To compare the motif content of low- and high-expressing constructs (Figure 3.5E), a list 

of brain and retina TF motifs were obtained as follows. DNase-seq reads for adult brain 

(GSM1014151, replicate 1) and adult retina (GSM1014175) were downloaded and aligned to 

mm9 with Bowtie 2 v2.2.3 (Langmead and Salzberg 2012). DNase-seq peaks were then called 

using MACS2 v2.1.0 (Zhang et al. 2008). For de novo motif discovery, peaks were first 

partitioned by HOMER v4.7 annotations (‘promoter,’ ‘intronic,’ and ‘intergenic’) (Heinz et al. 

2010). De novo motif discovery was then performed independently for each of these classes of 

peaks from brain and retina, with the final motif list consisting of all motifs identified at a 

threshold of p < 1 x 10-50. To compare similar numbers of DHSs in the ‘high’ and ‘low’ 
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categories, individual barcoded constructs were ranked by average expression in each tissue. The 

highest-expressing constructs that constituted 100 distinct DHS target regions (regardless of 

DHS tissue origin) were classified as ‘high’ in that tissue, and the lowest-expressing constructs 

that constituted 100 distinct DHS target regions (regardless of DHS tissue origin) were classified 

as ‘low’ in that tissue (DNA read count was used to break ties). Finally, overlapping intervals 

were merged, and the resulting regions were scored for motif enrichment (binomial test, via 

HOMER) relative to a background of ~50,000 random mm9 sequences matched for size and 

dinucleotide content. 

 

3.6.21 Receiver operating characteristic (ROC) curves 

 To quantify the extent to which sequence features and epigenomic data could predict 

expression (Figure 3.5F), we implemented multiple logistic regression as a means of classifying 

whether or not individual constructs were among those with the highest expression (similar to the 

approach described by (Kwasnieski et al. 2014)). Briefly, all assayed constructs (~36,000 

constructs for retina and ~39,000 constructs for cerebral cortex) were partitioned by expression 

into ‘high’ and ‘not high’ expression groups. ‘High’ was defined here as mean expression across 

replicates (log2 units) of >-2 for constructs assayed in the retina (~95th percentile), and >2 for 

constructs assayed in the cerebral cortex (~99th percentile) (see Figure 3.4B). Our model 

included terms for GC content (averaged across the CRE fragment), phylogenetic conservation 

(30-way vertebrate PhastCons, averaged across the CRE fragment) (Siepel et al. 2005), brain or 

retina DNase-seq data (log2((read depth+1)/CRE size)), retina CRX ChIP-seq data 

(log2((1/2)*(read depth of two WT CRX ChIP-seq replicates + 1)/CRE size))) (Corbo et al. 

2010), and individual TF motifs (the number of each motif in each CRE fragment, as identified 
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by HOMER). CRX ChIP-seq data were only included in the retina model, and distinct TFs were 

considered for retina and cerebral cortex models. TF motifs for each tissue were identified as 

described above (17 motifs for retina, and 13 motifs for cerebral cortex; see Supplemental Table 

S5). Two retinal motifs (YY1 and ZBTB33) were omitted from the model, as they were observed 

fewer than 100 times across the ~36,000 constructs, and hence 15 motifs were in the retina TF 

motif model. The performance (AUC) of models was quantified using the ROCR package in R 

(Sing et al. 2005). Five-fold cross-validation was used to control for over-fitting. 

 

3.6.22 Expression scores for browser screenshots 

 For Figure 3.6A, the scales for the heat maps are indicated. Elsewhere, heat maps were 

generated according to the default grayscale on the UCSC Genome Browser (Karolchik et al. 

2014), using custom bed tracks that were generated as follows. For each biological replicate, a 

bed track was created using the useScore=1 attribute for intensity shading of individual barcoded 

constructs using a ‘bed score’. The ‘bed score’ was obtained by adding 10 to the log2 expression 

and multiplying by 75. For each tissue, an ‘average signal’ bedGraph track was created by 

segmenting the tiled regions and averaging the bed scores across replicates and barcodes. A 

segment was required to be encompassed by at least 2 barcoded constructs to be included in the 

‘average signal’ track. The windowing function was set to ‘mean'. A smoothing window function 

(10 pixels) was applied to the average signal tracks, which were displayed on the following 

scales: 0 to 1400 for retina, and 300 to 1200 for cortex. 
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3.6.23 Synthesis of individual constructs for validation 

 The R28 constructs were cloned as EcoRV/KpnI fragments. To create the long and short 

R28 constructs, the R28_L/R28_R and R28_S/R28_R primer pairs were used, respectively. To 

create the mutant R28 construct, R28_MT was ordered as a double-stranded gene block 

(Integrated DNA Technologies). The R62 constructs were cloned as EcoRI/XbaI fragments. To 

create the long and short R62 constructs, the R62_L/R62_R and R62_S/R62_R primer pairs were 

used, respectively. To create the mutant R62 construct, R62_MT was ordered as a double-

stranded gene block (Integrated DNA Technologies). The R64 constructs were cloned as 

EcoRV/KpnI fragments. To create the long, short, and mutant R64 constructs, the R64_L/R64_R, 

R64_S/R64_R, and R64_MT/R64_R primer pairs were used, respectively. For the PCR reactions, 

C57BL/6J gDNA was the template. The CREs were digested and cloned upstream of the 

minimal promoter-eGFP cassette in the Rho basal-eGFP vector, which was created from Rho 

basal-DsRed (Hsiau et al. 2007) by replacing DsRed with eGFP at XmaI and NotI sites. Test 

constructs were confirmed with Sanger sequencing that encompassed the entire CRE.  

 

3.6.24 Validation of individual constructs by fluorescent reporter assays 

 Electroporation, explant culture, and quantification of fluorescence were performed 

essentially as previously described (Montana et al. 2011b). In brief, as for CRE-seq, retinas were 

dissected from newborn (P0) CD-1 mouse pups. Here, they were coelectroporated with 0.5 

μg/uL of the test construct and 0.5 μg/uL Rho-CBR3-DsRed (Corbo et al. 2010). Retinas were 

cultured for 8 days, fixed, and then whole mounted for quantitative imaging of fluorescent 

intensity (GFP intensity normalized to DsRed intensity), using a monochromatic camera 

(Hamamatsu ORCA-AG) and MetaMorph software (Molecular Devices). For each retina, five 
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regions were quantified in ImageJ and averaged. SEM was calculated based on normalized 

fluorescence measurements across retinas (n = 10-12 retinas per test construct). Representative 

whole mount images using a color camera (Olympus DP70) were also taken.  

 

3.6.25 Comparison with CapSTARR-seq 

 The raw sequence data for the CapSTARR-seq (Vanhille et al. 2015) input library (GEO 

accession number GSM1463994) were downloaded and mapped to mm9 with Bowtie 2 v2.1.0 

(Langmead and Salzberg 2012).  

 

3.7 DATA ACCESS 

The sequence data from this study have been submitted to the NCBI Gene Expression Omnibus 

(GEO; http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE68247. Custom tracks 

for the UCSC Genome Browser (Karolchik et al. 2014) are provided in Supplemental Table S10. 

 

3.8 SUPPLEMENTAL TABLES 

Supplemental tables are available at: 

http://genome.cshlp.org/content/suppl/2015/11/17/gr.193789.115.DC1.html 

 

  

http://www.ncbi.nlm.nih.gov/geo/
http://genome.cshlp.org/content/suppl/2015/11/17/gr.193789.115.DC1.html
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Figure 3.1. ‘Capture-and-clone’ allows synthesis of CRE-seq libraries with long CREs. (A) 

Schematic of the capture-and-clone approach. Size-selected, adapter-ligated genomic DNA was 

hybridized to biotinylated RNA baits that tiled across candidate CRE regions of interest. 

Captured fragments were cloned into a barcoded vector library with unique 15-mer barcodes. 

Paired-end sequencing revealed the CRE-barcode correspondence. A minimal promoter-GFP 

reporter cassette was subsequently cloned into the library. (B) Histogram showing the 

distribution of the lengths of captured fragments that were cloned into the barcoded vector 

library, based on paired-end sequencing. The median length was 464 bp. (C) Histogram showing 

the distribution of target coverage, i.e., the number of captured fragments that overlapped a 300 

bp target region. Of the 4,000 targeted regions, 3,483 regions were represented by at least one 

construct. The median coverage among represented regions was 8. Not shown in graph: 517 non-

represented regions and 114 target regions with a coverage of >50. 
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Figure 3.2. Tiling of captured fragments across target regions. Capture baits were designed 

based on adult (8 week old C57BL/6J) DNase-seq data from Mouse ENCODE (Yue et al. 2014). 

Paired-end sequencing revealed the locations of individual barcoded, captured-and-cloned 

fragments. The UCSC Genome Browser (mm9) (Karolchik et al. 2014) screenshots depict: (A) 

Captured fragments for an entire representative chromosome (chr7). ‘Off-target’ fragments, i.e., 

those that did not overlap a 300 bp target bait region, are also shown. Examples of captured 

fragments: (B) around a retina-specific locus, Rho (rhodopsin), (C) in an intron of a brain-

specific locus, Grin2a (glutamate receptor, ionotropic, NMDA2a [epsilon 1]), (D) in the 5’ 

UTR/promoter region of a heart-specific locus, Tnni3 (troponin I, cardiac 3), and (E) 

downstream of a liver-specific locus, Alb (albumin). Note that some DNase-seq peaks visible in 

the screenshots were not included as targets for capture. PhastCons depict 30-way vertebrate 

phylogenetic conservation (Siepel et al. 2005). 
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Figure 3.3. Delivery of capture CRE-seq library into mouse retina ex vivo and cerebral 

cortex in vivo. (A) Schematic of the CRE-seq library delivery approach. The plasmid library can 

be directly electroporated into the retina ex vivo. Alternatively, the library can be packaged into 

AAV and delivered via stereotactic injection into the cerebral cortex in vivo. (B) Scatterplot 

comparing the relative abundance of ~45,000 individual barcoded constructs in the plasmid 

library delivered into the retina, and in the AAV-packaged library delivered into cortex, as 

measured by barcode DNA reads summed across the three biological replicates for each tissue 

and then normalized to the total number of barcode DNA reads. Each data point represents a 

unique barcoded construct. DNA reads were well-correlated (Pearson r = 0.95), indicating 

fidelity of barcode representation after AAV packaging and delivery. Off-target constructs and 

constructs with 0 reads in all samples were excluded. Not shown: 4 points falling outside the 

depicted plot range (included in the calculation of Pearson r). Red line, linear regression. (C) 

Confocal image of a retina that was electroporated with the plasmid library and cryosectioned 

after 8 days in culture. ONL, outer nuclear layer. INL, inner nuclear layer. (D) Flat-mount image 

of a coronal slice from a brain injected with the AAV-packaged library bilaterally into the 

primary motor cortex and harvested ~4 weeks later. (D’) Schematic corresponding to the flat-

mount image. Note the bilateral GFP-positive regions in the cortex, as well as bundles of GFP-

positive axons in the corpus callosum (red arrow). (E) Confocal image of a cortical region 

infected with the AAV-packaged library.  
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Figure 3.4. Tissue-specific cis-regulatory activity of DHSs. (A) Frequency distribution of 

DHSs ranked by cis-regulatory activity (bin size: 5 percentiles) as measured in the retina (top) or 

cerebral cortex (bottom). In the retina, ~15% DHSs had undetectable activity and hence were 

binned together. Averages were taken across biological replicates and barcodes for a given target 

DHS. Only DHSs with at least 2 barcoded constructs were included in this analysis (~3,000 

DHSs). Frequencies were normalized to the total number of DHSs in each category. To test for 

enrichment, chi-squared test was performed (one-tailed): ***p<10-4, **p<0.01, *p<0.05. (B) 

Scatterplot showing the expression of individual barcoded constructs as assayed in the cerebral 

cortex (x-axis) vs. retina (y-axis). Each dot represents an individual construct. For each construct, 

the average measurement across the three biological replicates for each tissue was taken. The 

~35,000 barcodes that were well-represented (at least 10 DNA reads) in all six samples were 

included in the analysis. Gray, blue, red, and orange dots denote constructs with CRE fragments 

that overlap retina, brain, heart, and liver DHSs, respectively. The dotted gray box encompasses 

constructs that are strongly active in the retina, and the dotted blue box encompasses constructs 

that are strongly active in the cortex. 
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Figure 3.5. Parameters that predict CRE activity. (A) to (D) Retinal DHSs as assayed in the 

retina (left) and brain DHSs as assayed in the cerebral cortex (right). Each panel shows a 1 kb 

centered window. Only DHSs with at least 2 barcodes were included in this analysis, i.e., 710 

retinal DHSs in retina (black lines, left) and 696 brain DHSs in cortex (black lines, right). The 

top 100 (red lines, left) and top 200 (orange lines, left) retinal DHSs expressed in the retina and 

the top 100 (red lines, right) and top 200 (orange lines, right) brain DHSs expressed in the cortex 

are shown. To compare the top 100 DHSs vs. the rest of the DHSs in each group, two-tailed 

student’s t-test was calculated for the means within the 1 kb window, except for PhastCons 

scores, which was calculated within the central 100 bp. ***p<0.001, **p<0.01, N.S., not 

significant. (A) Cis-regulatory activity, as measured by mean expression in log2 units. For each 

assayed DHS, at each base position across the 1 kb window, the expression values of the 

individual barcoded constructs whose CREs overlapped the position were averaged across 

biological replicates. (B) DNase-seq score (Yue et al. 2014). (C) GC content, calculated in 50 bp 

windows, sliding 25 bp at a time. The fractions denote the proportion of DHSs that were 

promoter-proximal (i.e., located within -1 kb to +100 bp relative to the nearest TSS) based on 

GREAT annotations (McLean et al. 2010). (D) Phylogenetic conservation as measured by 30-

way vertebrate PhastCons (Siepel et al. 2005)). (E) Enrichment for TF motifs among low vs. 

high-expressing DHSs in each tissue, without restriction on the type of DHS (see Methods). Only 

significant motifs are shown (p < 0.05 in at least one category). For motifs enriched in both 

tissues, the logo from the tissue with the more significant enrichment is shown. Abbreviations: 

HD, homeodomain; NR, nuclear receptor; ZF, zinc finger; HTH, helix-turn-helix. (F) Receiver 

operator characteristic (ROC) curves show the performance of logistic regression models for GC 

content, PhastCons, TF motifs, retina or brain DNase-seq, or a combined model. A model based 

on CRX ChIP-seq (Corbo et al. 2010) was included for the retina only. The area under the curve 

(AUC) for each model is indicated. For cross-validation results, see Supplemental Table S6. 

  



116 

  

 



117 

  

Figure 3.6. Truncation mutation analysis by CRE-seq. (A) Example of a truncation mutation 

analysis at the Nrl promoter via a traditional one-at-a-time reporter assay (Montana et al. 2011b) 

vs. capture-and-clone CRE-seq. For the traditional reporter constructs, the 3’ end extends beyond 

the window depicted in the figure. For the CRE-seq data, only barcoded constructs in the same 

orientation as the Nrl promoter are shown. The yellow highlighted region corresponds to a 

known critical region with CRX and RORB motifs (Andre et al. 1998; Montana et al. 2011b). 

The minus strand of DNA is displayed. In (A) and (B), the CRX motif (from HOMER (Heinz et 

al. 2010)) is based on CRX ChIP-seq data (Corbo et al. 2010). The reverse orientation of the 

CRX motif is displayed. Additional examples of CRE-seq truncation mutation analysis: (B) 

Retinal DHS with retina-specific expression. The critical region identified by CRE-seq (pink) 

contains a putative CRX motif. (C) Two adjacent brain DHSs in the same intron of Bsn exhibit 

low (DHS #1, green) vs. high (DHS #2, pink) activity in the cortex. (D) Truncation mutation 

analysis of a brain DHS. A gradual decrease in activity was observed within the ~150 bp critical 

region (pink), corresponding to a phylogenetically conserved peak. Within this critical region, a 

smaller region (vertical blue stripe) was identified that contained an E-box consensus motif 

(‘CANNTG’) and a motif for a bZIP protein, based on AP-1 ChIP-seq data (Heinz et al. 2010). 

All browser images are from the UCSC Genome Browser (mm9) (Karolchik et al. 2014). DNase-

seq data are from Mouse ENCODE (Yue et al. 2014). PhastCons depict 30-way vertebrate 

phylogenetic conservation (Siepel et al. 2005). The heat map scale shown in (B) is the same as 

that used in (C) and (D).   
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Figure 3.7. Validation of individual loci by fluorescence reporter assays. (A) Critical regions 

(pink areas) identified by CRE-seq truncation mutation analysis at three retinal DHSs (R64, R28, 

and R62) were validated by testing of individual constructs with fluorescence reporter assays. 

Depicted CRE-seq data are based on expression scores averaged across retinal replicates. Note 

that R64 is the same locus as in Figure 6B. For each locus, a ‘long’ construct containing the 

critical region (CR), a ‘short’ construct without the critical region, and a ‘mutant’ construct with 

point mutations (red font) in predicted CRX sites (blue font) were synthesized. Sequences are 

shown for the plus strand of DNA in all cases. For R62, one CRX site fell within the critical 

region, and a second CRX site was immediately adjacent (yellow area). Individual test constructs 

were directionally cloned upstream of the minimal promoter-GFP cassette in a non-AAV vector. 

The test constructs were coelectroporated into explant retinas with Rho-CBR3-DsRed (Corbo et 

al. 2010) as a loading control. (B) Representative whole mount images of electroporated retinas 

are shown (exposure times are the same for all images). (C) Quantification of the GFP levels 

normalized to DsRed levels. Error bar represents SEM (n = 10-12 retinas per test construct). 

***P-value < 10-6 (two-tailed student's t test). 
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Figure 3.S1. Distribution of 4,000 target DHS regions. (A) Histogram showing the locations 

of the target regions (up- or downstream) relative to the nearest transcriptional start site (TSS, 

indicated by arrow) based on GREAT analysis (McLean et al. 2010). The number of ‘promoter-

proximal’ DHSs for each group is shown, as defined by DHSs that fell within -1 kb to +100 bp 

relative to the nearest TSS. (B) Histogram showing the basic annotations for the target regions, 

based on HOMER (Heinz et al. 2010). Abbreviations: UTR, untranslated region; TTS, 

transcription termination site; ncRNA, non-coding RNA. 

  



122 

  

 
 

Figure 3.S2. Distribution of overlap of captured fragments with target DHS regions. Each 

target DHS was 300 bp. (A) Histogram showing the distribution of the overlap between targets 

and captured fragments for all 45,670 uniquely barcoded constructs. The median number of 

bases of overlap was 282 bp. (B) Histogram showing the distribution of the overall overlap 

between all 3,483 represented target regions and the captured fragments, based on the union of 

the captured fragments. Fragments collectively tiled at least 200 bp out of the 300 bp target for 

3,402/3,483 (98%) target regions, and the entire 300 bp target for 3,146/3,483 (90%) target 

regions. 
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Figure 3.S3. Co-expression of the library and cellular markers. (A) Same retina as in Figure 

3C, but a wider field and additional channels are shown. The library contains a GFP reporter. 

Rho-CBR3-DsRed is a rod-specific reporter (Corbo et al. 2010) that was coelectroporated with 

the library. Colocalization of DsRed and GFP indicates expression of the library in rods. Blue 

channel in merged image is DAPI, a nuclear counterstain. (B) Antibody staining of the neuronal 

marker RBFOX3 (also known as NeuN) (red channel) (Mullen et al. 1992) in a region of 

cerebral cortex that has been infected with the AAV-packaged library. Colocalization of 

RBFOX3 and GFP indicates expression of the library in neurons. 
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Figure 3.S4. Comparison of biological replicates. (A) Dendrogram showing distance between 

retinal and cerebral cortex biological replicates. (B) Principal component analysis (PCA) plot 

showing that PC1, which separates retina vs. cerebral cortex, accounts for the largest fraction of 

the variance. 
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Figure 3.S5. CRE activity, DNase-seq signal, GC content, and phylogenetic conservation of 

assayed DHSs in a 1 kb centered window. Retina, brain, heart, and liver DHSs were assayed in 

the retina (left) and cerebral cortex (right). Each panel shows a 1 kb centered window. Only 

DHSs with at least 2 barcodes were included in this analysis, i.e., in the retina, 710 retinal DHSs, 

671 brain DHSs, 706 heart DHSs, and 829 liver DHSs, and in the cerebral cortex, 719 retinal 

DHSs, 696 brain DHSs, 724 heart DHSs, and 846 liver DHSs. (A) Cis-regulatory activity, as 

measured by mean expression in log2 units. For each assayed DHS, at each base position across 

the 1 kb window, the expression values of the individual barcoded constructs whose CREs 

overlapped the position were averaged across biological replicates. (B) DNase-seq score, 

normalized to the peak height. (C) GC content, calculated in 50 bp windows, sliding 25 bp at a 

time. The fractions denote the proportion of DHSs that were promoter-proximal (i.e., located 

within -1 kb to +100 bp relative to the nearest TSS) based on GREAT annotations (McLean et al. 

2010). (D) Phylogenetic conservation as measured by 30-way vertebrate PhastCons (Siepel et al. 

2005). 
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Figure 3.S6. Length of CRE fragments vs. expression. Each dot in the scatterplot represents 

an individual barcoded construct whose activity was assayed in (A) retina (~36,000 constructs) 

or (B) cerebral cortex (~39,000 constructs). Expression values were averaged across biological 

replicates. Pearson correlation values are shown. 
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Figure 3.S7. Distance to nearest TSS vs. expression. Each dot in the scatterplot represents a 

DHS whose activity was assayed in (A) retina (~3,000 DHSs) or (B) cerebral cortex (~3,000 

DHSs). Expression values were averaged across barcodes and biological replicates, and only 

DHSs with at least 2 well-represented barcoded constructs were included. Locations of target 

regions (up- or downstream) relative to the nearest TSS (indicated by arrow) are based on 

GREAT analysis (McLean et al. 2010). Gray, blue, red, and orange dots denote retina, brain, 

heart, and liver DHSs, respectively. Dotted lines denote the thresholds for the top 100 and top 

200 most active retinal DHSs assayed in the retina, and the top 100 and top 200 most active brain 

DHSs assayed in the cerebral cortex. 
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Figure 3.S8. Additional examples of truncation mutation analysis by CRE-seq. Additional 

examples of CRE-seq truncation mutation analysis for (A) retinal DHSs, based on retinal CRE-

seq data, and (B) brain DHSs, based on cerebral cortex CRE-seq data. Individual barcoded 

constructs are colored by intensity (darker indicates higher expression; the heat map shown at 

bottom of panel A was used throughout). Critical regions are highlighted in pink. All browser 

images are from UCSC Genome Browser (mm9) (Karolchik et al. 2014). DNase-seq data are 

from Mouse ENCODE (Yue et al. 2014). PhastCons depict 30-way vertebrate phylogenetic 

conservation (Siepel et al. 2005). 
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Figure 3.S9. Comparison between enhancer activity of short synthesized CREs and 

autonomous activity of corresponding captured CRE fragments in the retina. The enhancer 

activity of short CREs (84 bp in length, synthesized on oligonucleotide arrays), representing the 

middle of CRX ChIP-seq peaks, was previously assayed in electroporated retinas by CRE-seq 

using a tissue-specific proximal promoter (White et al. 2013). The current study measured the 

autonomous activity of captured fragments using a minimal promoter. There were 176 regions 

(all retinal DHSs) assayed in both studies. (A) Scatterplot comparing the enhancer activity of 

short CREs (x-axis) with the autonomous activity of corresponding long CREs (y-axis). Each dot 

represents a DHS region (expression values were averaged across barcoded constructs and retinal 

replicates). Dots are color-coded based on whether expression was higher by four-fold or more in 

the current study (red dots) or lower by four-fold or more in the current study (blue dots). Note 

that R642 and R227 (yellow circles) are examples of constructs with higher activity in the 

current study. (B) R642 contains a phylogenetically conserved peak that contains a critical region, 

as identified by truncation mutation analysis in the current study. The short CRE that was tested 

in the enhancer assay excludes a portion of the phylogenetically conserved peak (purple) (White 

et al. 2013). The minus strand of DNA is shown. (C) R227 contains two phylogenetically 

conserved peaks, one of which is encompassed by the short CRE tested in the enhancer assay 

(White et al. 2013). The other peak (purple) contains a predicted CRX site. The CRX motif 

(from HOMER (Heinz et al. 2010)) is based on CRX ChIP-seq data (Corbo et al. 2010). 

Phylogenetic conservation is depicted by 30-way vertebrate PhastCons (Siepel et al. 2005). The 

heat map scales shown in (A) were consistent between the two studies and also used for (B) and 

(C). 
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CHAPTER 4: 

A Candidate Causal Variant Underlying Both Higher Cognitive Performance and 

Increased Risk for Bipolar Disorder 
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4.1 AUTHOR CONTRIBUTIONS 

 This project was initially conceived by Joseph Corbo, shortly after the first educational 

attainment GWAS identifying 6q16.1 was published (Rietveld et al. 2013), as a proof-of-concept 

for demonstrating the power of CRE-seq for cis-regulatory analysis in the brain (Appendix 3). 

As evidence accumulated for involvement of this locus in human cognition and bipolar disorder 

(Muhleisen et al. 2014; Davies et al. 2015; Trampush et al. 2015; Hou et al. 2016), Joe and I 

became more focused on understanding the underlying biological mechanism.  

 This work was conducted in collaboration with Jeongsook Kim-Han (cortical 

electroporations), Cheng Lin (EMSA), Omer Gokcumen (phylogenetic analyses), Andrew 

Hughes (motif analyses), and Connie Myers (cerebral organoid culture). I designed experiments 

and conducted bioinformatic analyses, EMSAs, CRE-seq, allele-specific experiments, and 

experiments involving the transgenic, knockout, and knock-in mice. This project is a work in 

progress, and the contents of this chapter have not yet been published. 
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4.2 ABSTRACT 

 Genome-wide association studies (GWAS’s) have identified thousands of non-coding 

regions associated with complex diseases, but few underlying causal variants are known. 

Multiple GWAS’s have identified an intergenic region associated with both cognition and risk 

for bipolar disorder. This region contains dozens of fetal brain-specific open chromatin peaks 

and is located ~1 Mb upstream of the neuronal transcription factor POU3F2. Using 

computational approaches, we identified a candidate causal variant that falls within a highly 

conserved putative enhancer, LC1. This variant, rs77910749, is a single-base deletion that is 

predicted to be highly deleterious. We hypothesized that rs77910749 alters the enhancer activity 

of LC1 and thereby alters POU3F2 expression. First, we created transgenic reporter mice and 

found evidence of LC1 activity in the developing cerebral cortex and amygdala. To test whether 

rs77910749 alters LC1 enhancer activity, we implemented CRE-seq in embryonic mouse brain 

and human iPSC-derived cerebral organoids for the first time, which revealed subtle gain-of-

function in enhancer activity. To probe the in vivo function of LC1, we deleted the orthologous 

mouse region and examined resulting allele-specific Pou3f2 expression, which showed region-

specific effects. Lastly, to study the effects of rs77910749 in vivo, we knocked the variant into 

the mouse genome. Overall, modest but significant changes were observed, suggesting that 

rs77910749 is a variant of small effect and/or exerts a large effect in a small population of cells. 

Our study provides a framework for establishing the causality of non-coding variants, with 

particular relevance to neuropsychiatric diseases.  
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4.3 INTRODUCTION 

 Genome-wide association studies (GWAS’s) have identified thousands of non-coding 

regions associated with complex diseases, but pinpointing the underlying ‘causal variant’ 

contributing to disease pathogenesis is a challenge (Zhang and Lupski 2015). Identifying causal 

variants and dissecting their molecular effects would not only provide insight into disease 

pathways but also facilitate the clinical interpretation of non-coding variants. For 

neuropsychiatric diseases, the functional study of disease-associated variants is particularly 

challenging, as the etiologically relevant cell type and appropriate experimental model system in 

which to assay the effects of candidate variants are often unclear. 

 Bipolar disorder (BPD) is a neuropsychiatric disease characterized by alterations in mood, 

classically with episodes of both mania and depression (Craddock and Sklar 2013). It affects ~1% 

of the world population and is associated with high morbidity and mortality (Merikangas et al. 

2011; Whiteford et al. 2013). While the disease is highly heritable (~80% heritability), the 

underlying genes are largely unknown (Craddock and Sklar 2013; Harrison 2016). Furthermore, 

the etiology of the disease is poorly understood at the level of molecular pathways, 

neuroanatomy, and neural circuitry, although the amygdala and prefrontal cortex have been 

strongly implicated (Maletic and Raison 2014). In addition to altered mood, BPD is strongly 

associated with heightened creativity, substantiating the link between ‘madness’ and ‘genius’ 

that has been speculated for centuries  (Srivastava and Ketter 2010).  

 Recently, several large GWAS’s of educational attainment and cognitive performance 

have reproducibly implicated an intergenic region located at the MIR2113/POU3F2 locus in 

chromosome region 6q16.1 (Rietveld et al. 2013; Davies et al. 2015; Trampush et al. 2015). At 

the same time, two large GWAS’s of BPD identified this same region (Muhleisen et al. 2014; 
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Hou et al. 2016). The lead SNPs in all of these studies are in strong linkage disequilibrium (LD) 

with each other, suggesting a common underlying causal variant(s). Given that the nearest 

protein-coding gene, POU3F2, is located ~0.7 Mb away, we hypothesized that the underlying 

‘causal variant’ affects the activity of a non-coding cis-regulatory element (CRE, e.g., 

enhancer/silencer). Since CREs can act at long distances, cis-regulatory variants have the 

potential to disrupt the expression of distal genes (Kleinjan and van Heyningen 2005). 

 POU3F2 (also called BRN-2) is a transcription factor (TF) known to be important for the 

development of the hypothalamus and the cerebral cortex. In the cerebral cortex, POU3F2 acts 

with POU3F3 (also called BRN-1) to regulate the neurogenesis, maturation, and migration of 

upper-layer neurons (Nakai et al. 1995; Schonemann et al. 1995; McEvilly et al. 2002; Sugitani 

et al. 2002; Dominguez et al. 2013). Furthermore, overexpression of POU3F2 facilitates the 

direct reprogramming of fibroblasts into neurons (Vierbuchen et al. 2010; Wapinski et al. 2013). 

In mice, both increased and decreased levels of Pou3f2 are associated with alterations in 

neuronal fate (Dominguez et al. 2013; Belinson et al. 2016). In humans, deletions encompassing 

POU3F2 have been associated with intellectual disability (Kasher et al. 2016). Thus, cis-

regulatory changes that alter POU3F2 dosage levels may perturb brain development. 

 Here, we used computational and experimental approaches to identify a candidate causal 

variant, rs77910749, which falls within a putative brain enhancer. To assay for enhancer activity, 

we generated transgenic reporter mice. We also implemented a massively parallel reporter assay 

(MPRA), CRE-seq, in the developing mouse brain and human iPSC-derived cerebral organoids 

for the first time. Finally, to characterize the role of LC1 and the effects of rs77910749 in vivo, 

we used CRISPR-Cas to generate an allelic series of LC1 mutants. We found that rs77910749 

had modest but significant effects on transcription factor binding, enhancer activity, and sensory 
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gating-related behavior. Additionally, we observed region-specific effects, suggesting that 

rs77910749 may exert a larger effect in a small population of disease-relevant cells. 
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4.4 RESULTS 

4.4.1 The MIR2113/POU3F2 locus harbors non-coding variants associated with both 

increased cognitive performance and increased risk for BPD 

 A GWAS of educational attainment in ~100,000 Caucasian individuals identified a 

genome-wide significant signal on chromosome 6, in an intergenic region between MIR2113 and 

POU3F2 (Rietveld et al. 2013). This finding was replicated in a subsequent expansion study 

(Okbay et al. 2016). Further analysis revealed that in this study, educational attainment served as 

a proxy phenotype for cognitive performance (Rietveld et al. 2014). The lead SNP, rs9320913, 

was associated with higher verbal and math standardized test scores in children in the ALSPAC 

study (Ward et al. 2014). Additionally, meta-analysis of GWAS’s in the COGENT consortium 

showed that, while rs9320913 was not directly genotyped, a proxy variant (rs1906252, r2 = 0.96 

with rs9320913) was significantly associated with increased general cognitive ability (Trampush 

et al. 2015). Meta-analysis of GWAS’s in the CHARGE consortium also showed a positive 

association between a proxy variant (rs10457441, r2 = 0.91 with rs9320913) and general 

cognitive ability (Davies et al. 2015). An earlier GWAS in healthy older adults found an 

association between rs1906252 and faster information processing as measured by a symbol 

search task (P = 2.08 x 10-5) (Luciano et al. 2011). Thus, multiple studies have demonstrated a 

reproducible association between variants at this locus and cognitive performance. 

 A recent GWAS of BPD in ~10,000 patients and ~14,000 controls identified a novel risk 

locus in the same region of chromosome 6 between MIR2113 and POU3F2 (Muhleisen et al. 

2014). The lead SNP, rs12202969, was associated with ~10-20% increased risk for BPD (OR = 

~1.1-1.2), which is a typical effect size for GWAS studies (Price et al. 2015). Another 

independent GWAS of BPD in ~10,000 patients and ~30,000 controls replicated the signal at the 
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chromosome 6 locus, identifying a genome-wide significant signal at the proxy variant 

rs1487441 (r2 = 0.98 with rs12202969) with an OR of 1.12 (Hou et al. 2016). We observed that 

these two BPD GWAS lead SNPs (rs12202969 and rs1487441) are in extremely high LD with 

the lead SNPs in the GWAS’s of educational attainment and cognitive performance (rs9320913, 

rs1906252, and rs104757441) (pairwise r2 = 0.92-0.99), suggesting a shared genetic basis for 

cognitive ability and BPD (Supplemental Table 1). In particular, the variants associated with 

higher cognitive performance were also associated with increased BPD risk. In agreement with 

an earlier study (Koenen et al. 2009), children in the ALSPAC study with higher IQ scores were 

more likely to develop manic features of BPD later in life (Smith et al. 2015), further 

underscoring the potential link between cognition and BPD. 

 

4.4.2 Identification of the candidate causal variant rs77910749, a human-specific non-

coding variant that falls within a fetal brain-specific open chromatin region 

 Since the GWAS’s for educational attainment, cognitive performance, and BPD appear to 

have a shared underlying signal at the MIR2113/POU3F2 locus, we sought to find candidate 

causal variants. We first surveyed the epigenomic landscape of the ~0.5 Mb region (Chr6:98.3-

98.8 Mb in hg19) identified by the GWAS’s (Figure 4.1A, yellow box). This LD block contains 

dozens of human fetal brain-specific DNase-seq peaks, which are regions of open chromatin that 

demarcate putative CREs (Bernstein et al. 2010; Roadmap Epigenomics et al. 2015). The lead 

SNPs (rs9320913, rs1906252, rs10457441, rs12202969, and rs1487441) are located ~0.1 Mb 

away from MIR2113 and ~0.7 Mb away from the nearest protein-coding gene, POU3F2. This 

suggested that the underlying causal variant exerts a cis-regulatory effect. 
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 We then focused on the ~60 kb region of highest LD, which contains all five of the lead 

SNPs (Figure 4.1A, purple box). Within this region, we identified six fetal brain-specific DNase 

I hypersensitive sites (DHSs), termed LC0 and LC5 (henceforth referred to as the ‘local cluster’) 

(Figure 4.1B). While none of the lead SNPs fall within fetal brain DHSs, four variants in LD 

with rs9320913 (r2 > 0.2) fell within fetal brain DHSs in the local cluster (Figure 4.1C top panel, 

blue font): rs77910749 in LC1, rs13208578 in LC2, rs12204181 in LC4, and rs17814604 in LC5.  

 We next examined these four variants more closely. Since phylogenetic conservation is 

often a marker of functionality, we hypothesized that the underlying causal variant would fall 

within a phylogenetically conserved region. LC4 exhibits low conservation, and hence we 

deemed rs12204181 a less likely candidate. LC2 is highly conserved, but rs13208578 is present 

in multiple vertebrate species, including primates, suggesting that it is well-tolerated (Figure 

4.S1A). Furthermore, LC2 did not exhibit enhancer activity in a transgenic mouse assay (element 

hs1106 tested at E11.5 in the pHsp68-LacZ vector) (Visel et al. 2007). Thus, rs13208578 also 

appeared less likely to be the causal variant, leaving rs77910749 and rs17814604 as the top 

candidates. Analysis of variants using CADD, a machine learning-based tool that predicts 

pathogenicity based on phylogenetic conservation and epigenomic annotations (Kircher et al. 

2014), corroborated this result (Figure 4.1C, bottom panel). The scaled CADD scores of 

rs77910749 and rs17814604 were 27.3 and 34, respectively, placing them in the top 0.2% and 

0.04% of all variants (including coding variants) for predicted pathogenicity. 

 We noticed that the LD of rs17814604 (r2 = 0.43 with rs9320913) was relatively low 

despite a high D’ (0.99), and that rs17814604 was less common than rs9320913. This suggested 

that individuals with rs17814604 represented a subset of those with rs9320913. Indeed, upon 

construction of a phylogenetic tree (Figure 4.S2), it became apparent that a ‘derived haplotype’ 
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emerged containing rs77910749, as well as rs13208578 in LC2, rs12204181 in LC4, and the lead 

SNPs rs10457441 (cognition), rs12202969 (BPD), and rs9320913 (education). This derived 

haplotype likely arose at least ~60,000-70,000 years ago, after the split of modern humans from 

Neanderthals and Denisovans. Subsequently, ~30,000 years ago, rs17814604 arose from the 

derived haplotype block, and thus it is very rare in certain populations, as seen in Figure 4.S3A. 

In particular, the allele frequency of rs17814604 in East Asians is 0.2% (1000 Genomes Phase 3 

(Genomes Project et al. 2015)). A study of 342 Han Chinese individuals found a significant 

association between rs12202969 (r2 = 0.96 with rs9320913 in Han Chinese) and math ability. 

Since rs17814604 is nearly absent among Chinese individuals, it is extremely unlikely that the 

signal at rs12202969 is due to rs17814604 (Zhu et al. 2015). Therefore, rs17814604 is unlikely 

to be the causal variant. 

 By contrast, rs77910749 is relatively common across the globe (Figure 4.S3B), with an 

allele frequency of 51% in Europeans (1000 Genomes Phase 3 (Genomes Project et al. 2015)). It 

is in strong LD with both rs9320913 (r2 = 0.97) and rs12202969 (r2 = 0.98). Inspection of 

rs77910749 revealed that it is a single base pair deletion of a ‘T’ in a stretch of ~100 bases that 

are nearly perfectly conserved among vertebrates down to coelacanth fish (Figure 4.S1B). Based 

on the phylogenetic conservation of the affected nucleotide and its location within a fetal brain 

DNase-seq peak, another group also suggested rs77910749 as a candidate causal variant 

(Trampush et al. 2015). Despite its high frequency among humans, we did not find evidence for 

a selective sweep, suggesting that this variant does not alter dramatically alter fitness. This is 

consistent with other studies showing that conserved non-coding regions have undergone relaxed 

selective constraint in humans, likely due to the small effective population size (Kryukov et al. 

2005). 
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 Interestingly, rs77910749 appears to be human-specific, as it is absent from other 

vertebrate genomes, including all 79 non-human primate individuals (representing five species) 

that were sequenced in the Great Ape Genome Project (Prado-Martinez et al. 2013) (Figure 4.S4). 

Therefore, rs77910749 is a common human-specific non-coding variant that is a good candidate 

causal variant for cognitive performance and BPD.  

 

4.4.3 Mouse epigenomic data suggest that LC1 is an enhancer in the developing brain and 

reveal that rs77910749 falls within a binding site for Pax6 

 Since LC1 is highly conserved, we examined the orthologous region in the mouse 

genome. We observed that LC1 is located between Mir2113 and Pou3f2 (~0.1 Mb and 1 Mb 

away, respectively) in the mouse genome, as well as in other vertebrate genomes, suggesting that 

LC1 is part of genomic regulatory block (GRB) whose conserved synteny has functional 

importance (Kikuta et al. 2007). Within a topologically associating domain (TAD), there is a 

higher frequency of interactions (e.g., enhancer looping) between chromosomal regions. A 

survey of published Hi-C data (Dixon et al. 2012; Rao et al. 2014; Dixon et al. 2015; Leung et al. 

2015) revealed that LC1 falls within a TAD in multiple mouse and human cell types, suggesting 

that this is an evolutionarily conserved and cell-type invariant TAD (Dixon et al. 2016) (Figure 

4.S5). Notably, this TAD encompasses both Mir2113 and Pou3f2. 

 Next, we examined the epigenomic landscape of LC1 in detail. A time course of DNase-

seq across various mouse tissues (The ENCODE Project Consortium 2012) demonstrated that 

LC1 corresponds to a region of open chromatin specific to the developing mouse brain, with a 

strong signal at E14.5 and diminished signal by E18.5 (Figure 4.2). ChIP-seq signals in the 

developing mouse brain for two enhancer marks, the coactivator p300 (Visel et al. 2009; Wenger 
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et al. 2013) and histone mark H3K27ac (Nord et al. 2013), support the notion that LC1 is a 

developmentally active brain enhancer at E14.5. Moreover, DNase-seq of mouse retina showed 

that LC1 is open in early postnatal period but subsequently closes (Figure 4.2), suggesting that 

LC1 may have a role in neurogenesis in both retina and brain (Wilken 2015). Notably, LC1 does 

not show a DNase-seq or H3K27ac peak in the adult brain, indicating that LC1 is closed in the 

majority of cells in the adult brain.  

 Since cis-regulatory variants can alter enhancer activity via disruption of TF binding, we 

hypothesized that rs77910749 alters TF binding. When we searched for bioinformatically 

predicted TF motifs using FIMO, we found that rs77910749 falls within a predicted binding site 

for the paired domain (PD) of Pax6 (Grant et al. 2011) (Figure 4.3A). Pax6 is a TF with 

numerous critical roles in brain development (reviewed in (Manuel et al. 2015; Ypsilanti and 

Rubenstein 2016)). In addition, it is likely to be a direct transcriptional regulator of Pou3f2 

(Coutinho et al. 2011; Dominguez et al. 2013; Ninkovic et al. 2013). To determine whether Pax6 

binds LC1, we examined published Pax6 ChIP-seq data from E12.5 wild-type mouse forebrain, 

which revealed that LC1 is strongly bound by Pax6 in vivo (80th ranked peak out of 3,536 peaks). 

Moreover, the predicted Pax6 motif falls in the middle of this peak, suggesting that it is 

recognized by Pax6 in vivo (Sun et al. 2015) (Figure 4.2B and Figure 4.3A). Notably, LC1 was 

the only prominent ChIP-seq peak in the region.  

 

 

4.4.4 In silico and in vitro analysis demonstrate modest effects of rs77910749 on Pax6 

binding 

 Based on in vitro binding preferences as determined by SELEX (Jolma et al. 2013), 

rs77910749 is predicted to cause only a slight (~3%) decrease in Pax6 binding affinity (Figure 
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4.3A). By comparison, based on in vivo Pax6 binding preferences as determined by ChIP-seq in 

the E12.5 mouse forebrain (Sun et al. 2015), rs77910749 is predicted to decrease binding affinity 

by ~50%. To directly test the effect of rs77910749 on the binding affinity of the site, we 

expressed the PD of Pax6 and conducted quantitative electrophoretic mobility shift assays 

(EMSAs) using fluorescently labeled DNA probes (Man and Stormo 2001) (Figure 4.3B). 

 We found that PD binds to both the wild-type sequence and the sequence with 

rs77910749. This binding was specific, as demonstrated by abrogation of the gel shift by cold 

competition with unlabeled probes. When we quantified the relative affinities of the ‘Ref’ and 

‘Var’ probes, we found that rs77910749 confers ~30% decreased binding affinity (Figure 4.3B). 

 We also examined the binding of PD5a, a splice isoform of Pax6 that is expressed in the 

brain and contains a 14 amino acid insertion in the PAI domain of PD. The PD5a isoform has a 

very different DNA binding preference than the canonical PD isoform (Epstein et al. 1994; 

Kozmik et al. 1997). Neither PD5a nor PD5a-HD bound to either the reference or variant 

sequence. Together, these results indicate that the canonical but not 5a isoform of Pax6 PD binds 

to the Pax6 site, and rs77910749 causes a modest decrease in the affinity of Pax6 binding. 

 

4.4.5 Transgenic reporter mice show evidence of LC1 enhancer activity in the developing 

central nervous system (CNS) 

 To test whether LC1 is a bona fide enhancer and to investigate its spatiotemporal activity 

pattern, we created transgenic reporter mice, in which human LC1 (~1 kb fragment) was cloned 

upstream of the minimal Hsp68 promoter and LacZ (Pennacchio et al. 2006) (Figure 4.4A). 

Since the DNase-seq signal for the orthologous mouse LC1 appeared strongest at E14.5, we 

screened ‘transient’ transgenic embryos at age E14.5 (i.e., embryos were F0’s and represented 
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independent transgenesis events). Among the seven embryos that were genotypically positive for 

LacZ, five showed LacZ expression (Figure 4.4B). The observed patterns of LacZ staining were 

consistent with expression in the cerebral cortex (lines #1, 4, 5), amygdala (lines #1, 2, and 3), as 

well as the skin (line #5).  

 We also created three independent stable lines (i.e., allowing F0’s to produce F1 progeny). 

Two stable lines showed essentially no enhancer activity in multiple E14.5 embryos that were 

genotypically positive. The third stable line showed LacZ expression in the developing amygdala 

(Figure 4.4C). Thus, overall, 6/10 transgenic lines showed LacZ expression in the developing 

CNS. Among these, 4/6 showed expression in the developing amygdala and 3/6 showed 

expression in the developing cortex. Additionally, in accordance with DNase-seq data suggesting 

that LC1 is active in the developing mouse retina (Figure 4.2), 5/6 (all but transient transgenic 

embryo #5) also expressed LacZ in the retina (Figure 4.4).  

 Together, our data suggest that LC1 is transcriptionally active in the developing CNS. 

There was a high degree of variability from line to line, likely reflecting that LC1 is a relatively 

weak enhancer prone to insertion site effects (Wilson et al. 1990). Nonetheless, in the brain, LC1 

is most likely active in the developing amygdala and/or cerebral cortex.  

 

4.4.6 CRE-seq ‘Nano’ measures subtle gain-of-function enhancer activity of rs77910749  

 To quantitatively assess whether rs77910749 alters the enhancer activity of LC1, we 

utilized a multiplexed plasmid reporter assay, CRE-seq (Kwasnieski et al. 2012). In CRE-seq, a 

library of uniquely barcoded reporter constructs is introduced into cells, and the resulting 

barcoded transcripts are quantified by RNA-seq. We previously used CRE-seq to measure the 

activity of thousands of CREs in the early postnatal mouse retina and in the adult cerebral cortex 
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(Kwasnieski et al. 2012; White et al. 2013; Shen et al. 2016). Here, we adapted CRE-seq to assay 

a small pool of constructs with high coverage and depth, i.e., ‘CRE-seq Nano.’ We created three 

types of constructs: wild-type LC1 (‘Ref’), LC1 with rs77910749 (‘Var’), and a promoter-only 

(no enhancer) control. To increase the sensitivity of our assay, the enhancers were synthesized as 

multimers (Figure 4.5A). For each of these three construct types, twenty barcoded members were 

created, for a total of sixty barcoded constructs in the library. 

 We introduced this library into developing mouse cerebral cortex by ex vivo 

electroporation at E12.5, followed by two days of explant culture (Nichols et al. 2013). 

Histological sectioning revealed reporter GFP expression in the deeper layers of the cortex 

(Figure 45B). By contrast, pDcx-DsRed (a co-electroporated control construct) expressed in the 

upper layers of the cerebral cortex as expected (Wang et al. 2007). Dcx encodes doublecortin, a 

microtubule-binding protein that is expressed in the developing cerebral cortex, specifically in 

post-mitotic neurons undergoing migration (Gleeson et al. 1999). Notably, there was little 

colocalization of DsRed and GFP, suggesting that in the reporter constructs were active either in 

progenitors and/or a subset of developing neurons in the cerebral cortex. 

 As an orthogonal assay system, we also introduced the library into human induced 

pluripotent stem cell (iPSC)-derived cerebral organoids (Lancaster et al. 2013; Pasca et al. 2015). 

These organoids expressed Pax6 and Pou3f2, as detected by antibody staining (Figure 4.S6). 

Seven days after electroporation, live imaging showed electroporated cells expressing a 

ubiquitous loading control, pCAG-DsRed (Figure 4.5B). A subset of DsRed-expressing cells also 

expressed GFP, indicating activity of the reporter constructs.  

 We then quantified the cis-regulatory activity of the constructs by sequencing (Figure 

4.5C). For both mouse cerebral cortex and human cerebral organoids, we observed enhancer 



149 

  

activity of LC1 multimers (both ‘Ref’ and ‘Var’) compared to the promoter-only control, 

although the promoter had relatively stronger activity in the human cerebral organoids than in 

mouse brains. In the mouse cerebral cortex, the LC1 ‘Var’ multimer had ~11% higher activity 

than ‘Ref’, while in the human cerebral organoids, the LC1 ‘Var’ multimer had ~32% higher 

activity than ‘Ref’. Thus, rs77910749 confers higher LC1 enhancer activity in these assay 

systems. Interestingly, this effect is greater in human cerebral organoids than in the mouse 

cerebral cortex.  

 

4.4.7 In vivo deletion of LC1 confers region-specific changes in Pou3f2 expression 

 To directly address whether LC1 regulates Pou3f2 expression and whether rs77910749 

affects Pou3f2 expression, we used CRISPR-Cas to knock out the orthologous mouse LC1 

region (~1 kb) (‘LC1 KO’ mice), as well as to knock in the human-specific variant rs77910749 

(‘KI’ mice) (Figure 4.6A). We also generated mice with a small deletion (4 bp) in the 3’ UTR of 

Pou3f2, which serves as a molecular barcode for allele-specific expression (ASE) analysis. 

 To examine the effect of LC1 deletion on Pou3f2 expression, mice heterozygous for the 

LC1 deletion (‘LC1 het’) were mated to mice with the 3’ UTR variant (Figure 4.6B). We 

analyzed the brains of E14.5 mouse embryos that were ‘trans-het’, that is, heterozygous for both 

the LC1 deletion and the 3’ UTR variant. Importantly, the haplotype phase of trans-het animals 

is known (i.e., the LC1 KO allele is in cis with the wild-type Pou3f2 3’ UTR). To control for any 

effects of the 3’ UTR variant itself, control animals wild-type for LC1 and heterozygous for the 3’ 

UTR variant were also analyzed. By measuring Pou3f2 RNA transcripts with or without the 3’ 

UTR variant, we quantified changes in expression due to the LC1 KO allele relative to the wild-

type LC1 allele.  
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 We first examined the whole brain, which revealed no difference in allele-specific 

Pou3f2 expression as a result of LC1 KO (Figure 4.6C). Since the LacZ transgenic reporter 

assays suggested that LC1 is active in the amygdala and cortex (Figure 4.4), we analyzed these 

two regions separately. No difference was observed in the anterior cortex. Surprisingly, however, 

in the microdissected amygdala region, the LC1 KO allele was associated with ~8% higher 

Pou3f2 expression. This suggests that LC1 normally acts as a silencer in the amygdala, contrary 

to the expectation that it acts as an enhancer there. Together, these data indicate that LC1 has 

region-specific effects on Pou3f2 expression. 

 We conducted an analogous series of ASE experiments by crossing humanized KI mice 

to Pou3f2 3’ UTR variant animals. However, we did not observe any allele-specific changes in 

Pou3f2 expression associated with rs77910749 in the whole brain, microdissected amygdala, or 

microdissected cortex. These data suggest that rs77910749 does not affect Pou3f2 transcript 

levels to an extent that is quantifiable by these assays (Figure 4.6C). 

 

4.4.8 The novel CpG site created by rs77910749 is methylated at a low frequency in the 

developing mouse brain 

 DNA methylation of enhancers is associated with a decrease in chromatin accessibility 

and a loss of enhancer activity (Thurman et al. 2012; Plank and Dean 2014), and methylation of 

a CpG site within a Pax6 binding motif has been associated with decreased cis-regulatory 

activity in one specific instance (Wang et al. 2011). We observed that rs77910749 creates a 

novel CpG site (Figure 4.3A), raising the possibility that this new CpG is methylated and/or that 

the methylation status of neighboring CpG’s is altered, with possible implications for the activity 

of this CRE. 
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 First, we surveyed available methylation data from human primary tissues and cell lines 

(Figure 4.S7). In concordance with chromatin accessibility and other epigenomic data (Figure 

4.1), LC1 is essentially unmethylated in the early developing brain and neural progenitors, but 

methylated in non-neuronal tissues and the adult brain. 

 To probe for whether rs77910749 affects LC1 methylation in the developing brain, we 

conducted allele-specific bisulfite sequencing analysis of LC1 in the E14.5 brains of rs77910749 

knock-in heterozygous mice. We also examined mice with a small (14 bp) deletion within LC1 

(‘LC1 Small Indel’) (Figure 4.7A). In particular, we analyzed a ~400 bp region that contains 

endogenous CpG sites (sites #1-5 and site #7), plus the novel CpG site created by rs77910749 

(site #6). 

 Overall, LC1 exhibited very low levels of methylation in the E14.5 brain for all alleles, as 

expected (Figure 4.7B). In rs77910749 heterozygous animals, site #6 was methylated at a low 

frequency (2/40 clones) (Figure 4.7B, pink arrows). Thus, the novel CpG site created by 

rs77910749 is methylated at low frequency and/or in a small population of cells in vivo. 

Additionally, while no dramatic allele-specific differences in methylation were seen across the 

region, there was lower methylation in the KI allele, particularly at CpG sites #4 and #5, which 

are physically closest to rs77910749 (Figure 4.8C). 

 Together, these data show that rs77910749 creates a site that is methylated in vivo at low 

levels, and there may be lower methylation of neighboring CpG sites. However, overall, the 

methylation status of LC1 is relatively unchanged by the presence of rs77910749. In fact, even 

with the Pax6 binding motif deleted in the LC1 Small Indel, LC1 methylation is unchanged, 

suggesting that LC1 methylation is relatively robust to elimination of a key TF binding site. 
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4.4.9 The effect of rs77910749 on chromatin accessibility in human fetal brain  

 We wondered whether rs77910749 affects the epigenomic status of LC1 in the 

developing human brain. To address this question, we conducted allele-specific analysis of 

chromatin accessibility in fetal human brains using DNase-seq data (Roadmap Epigenomics et al. 

2015). We first inferred the genotype of donors (see Methods) and identified six donors 

heterozygous for rs77910749. Intriguingly, the brains from earlier time points (day 56 and 58) 

showed a read bias in favor of rs77910749, whereas the brains from later time points (day 96 and 

later) showed a read bias in favor of the wild-type allele (Figure 4.8 and Table 4.3). This raises 

the possibility that rs77910749 has stage-specific effects on chromatin accessibility, whereby it 

promotes chromatin openness early in fetal development and chromatin closure later in fetal 

brain development. Additional samples are needed to follow-up on these preliminary results, and 

ideally the samples would be directly genotyped for rs77910749. 

 

4.4.10 LC1 knockout animals have essentially normal behavior 

 Next, we asked whether deletion of LC1 alters behavior. We subjected adult homozygous 

LC1 KO mice and wild-type siblings to a locomotion assay and sensorimotor battery, which 

established that the LC1 KO mice did not have gross abnormalities. We then assayed the animals 

for the following: spatial learning and memory (Morris water maze), conditioned fear, 

sensorimotor reactivity and sensory gating (acoustic startle and prepulse inhibition), and anxiety 

(elevated plus maze and open field test). The LC1 KO animals did not show reproducible 

deficiencies in any of these domains. Thus, we conclude that mice with deletion of LC1 are 

essentially normal as measured by standard behavioral assays.  

 

  



153 

  

4.4.11 Humanized rs77910749 knock-in mice have defective sensory gating 

Lastly, we asked whether rs77910749 alters mouse behavior. In homozygous KI mice 

and wild-type siblings, no abnormalities in locomotion, sensorimotor battery, Morris water maze, 

conditioned fear, or elevated plus maze were seen. However, when we subjected the animals to 

acoustic startle/prepulse inhibition (PPI) testing, we found that the homozygous KI mice had a 

significant defect in PPI (Figure 4.9). PPI is a measure of sensory gating, and defective PPI is 

associated with BPD, especially mania (Perry et al. 2001). Thus, the rs77910749 knock-in mice 

have a specific defect in sensory gating, a psychiatric endophenotype. 

 

4.5 DISCUSSION 

 In this study, we sought to identify the ‘causal variant’ underlying GWAS signals at the 

MIR2113/POU3F2 locus associated with both higher cognitive performance and higher risk for 

BPD. We computationally identified and then experimentally tested the candidate causal variant 

rs77910749. We used multiple orthogonal approaches to elucidate the links between rs77910749, 

enhancer activity, gene expression, and organismal behavior. First, we probed the effect of 

rs77910749 on TF binding. Second, we assayed the enhancer activity of LC1 with transgenic 

reporter mice as well as with CRE-seq, implementing the latter assay in developing mouse 

cerebral cortex and human iPSC-derived cerebral organoids for the first time. Third, we studied 

the effects of LC1 deletion and rs77910749 knock-in in vivo. 

 Overall, we detected subtle but significant effects of rs77910749 on Pax6 binding and 

LC1 enhancer activity. This suggests that at the molecular level, rs77910749 exerts a small effect, 

or a large effect in a small population of cells. Notably, the GWAS signals at this locus had small 

effect sizes, accounting for several weeks of additional schooling and ~10-20% increased risk for 
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BPD (Rietveld et al. 2013; Muhleisen et al. 2014; Trampush et al. 2015; Hou et al. 2016; Okbay 

et al. 2016). These effect sizes are typical for GWAS’s of complex diseases, including 

neuropsychiatric diseases. The relationship between the magnitude of the molecular effect of a 

causal variant and the magnitude of its phenotypic effect will depend on a range of factors, 

including gene-environment interaction, genetic modifiers, and the dose sensitivity of the 

relevant genes. Other non-coding GWAS loci of small effect (which represent the majority of 

GWAS signals) may reveal underlying causal variants with similarly small effect sizes.  

 Surprisingly, our transgenic reporter mice suggest activity of LC1 in not only the 

developing cerebral cortex and retina, but also in the amygdala. Interestingly, Pax6 has known 

roles in the development of the cerebral cortex, retina, and amygdala (Warren et al. 1999; 

Marquardt et al. 2001; Tole et al. 2005). Pou3f2 has known roles in the cerebral cortex and retina, 

and a suggested role in the amygdala (McEvilly et al. 2002; Sugitani et al. 2002; Kim et al. 

2008a; Garcia-Moreno et al. 2010). The amygdala is one of the most strongly implicated brain 

regions in BPD, but its development is relatively poorly understood, in part because it is 

composed of many nuclei of diverse origins (Pabba 2013; Maletic and Raison 2014). Our study 

underscores the need to better understand amygdala development at the molecular level. 

 Notably, the regions of LC1 enhancer activity represent only a subset of the spatial 

pattern of Pou3f2 expression. Given that the MIR2113/POU3F2 intergenic region contains many 

dozens of fetal brain-specific DHSs (and might even be considered a ‘superenhancer’), we 

hypothesize that the full range of Pou3f2 expression is attained via the action of multiple CREs 

in this region, possibly in combination, with some degree of functional redundancy among the 

CREs (i.e., ‘shadow enhancers’) (Hong et al. 2008; Hnisz et al. 2013). In addition to potential 

functional redundancy among CREs, Pou3f2 is functionally redundant with Pou3f3 in the mouse 
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cerebral cortex, which may provide additional buffering against the effects of mutations in LC1 

(McEvilly et al. 2002; Sugitani et al. 2002).  

 Besides rs77910749, what other candidate variants ought to be considered? Since the 

cognition and BPD GWAS’s identified common variants of small effect at 6q16.1, we assumed 

that the causal variant is also a common variant. Given the reproducibility of the 6q16.1 signal in 

independent GWAS cohorts, this is the most likely scenario. However, we cannot rule out the 

possibility that the GWAS signals are attributable to very rare variants with large effects. Indeed, 

ultra-rare variants in highly constrained genes have been associated with decreased cognition and 

educational attainment in the general population (Ganna et al. 2016). Interestingly, a rare coding 

mutation in RIMS1 is associated with genetic enhancement of cognition (Sisodiya et al. 2007). 

This raises the possibility that other rare variants, including non-coding variants, confer 

increased cognitive ability.  

 In prioritizing candidate causal variants, we assumed that the relevant tissue was the 

developing brain. However, it is possible that the causal variant exerts its effect in another tissue, 

such as the immune system, which is increasingly recognized as a major player in complex 

neuropsychiatric diseases such as schizophrenia and Alzheimer’s disease (Muller et al. 2015; Da 

Mesquita et al. 2016). Additionally, we used phylogenetic conservation as a marker for 

functionality, but it is possible that the causal variant falls within a functional CRE that has 

undergone evolutionary modeling, or even within a human-specific CRE (Vierstra et al. 2014). 

Of course, it is also possible that the causal variant falls outside of a CRE and acts via an 

altogether different mechanism. Finally, we recognize that multiple variants in a haplotype block 

may be acting together in non-additive combinations to confer disease risk, such that there may 

not be a single dominant ‘causal variant.’ 
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 For neuropsychiatric diseases such as BPD whose etiologies are poorly understood, 

detection of biologically meaningful effects should provide novel insights into disease pathways, 

but there are two major bottlenecks. First, the clinical phenotypes of neuropsychiatric diseases 

are often highly complex and heterogeneous, and the underlying genetics is likely to be as well. 

Second, while experimental models for neuropsychiatric diseases (including mouse models, non-

human primates, iPSCs-derived neurons and organoids) have greatly improved over the past 

decade, they still have serious limitations. The choice of the experimental assay system is critical: 

it is possible that certain physiologically relevant deficits will manifest only in certain cell types 

or species and under certain environmental conditions. For cis-regulatory variants, this is a 

particularly acute issue, given the functional redundancy and buffering that occurs at the level of 

TF binding, combinatorial action of CREs, and gene regulatory network feedback loops. In some 

cases, sensitized genetic backgrounds and environmental perturbations may be necessary to 

unmask disease-relevant effects. As multiplex CRE reporter assays and CRISPR-Cas 

technologies continue to evolve in parallel with the development of neurobiological experimental 

models, the functional study of cis-regulatory variants relevant to neuropsychiatric disease will 

continue to accelerate. 
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4.6 METHODS 

4.6.1 Animals 

 Mice were kept on a 12 hour light/dark cycle at ~20-22 C with free access to food and 

water. Pregnant dams were euthanized with CO2 anesthesia and subsequent cervical dislocation. 

For timed pregnancies, mating occurred overnight and the next day was considered embryonic 

day E0.5. All experiments were conducted in accordance with the Guide for the Care and Use of 

Laboratory Animals of the National Institutes of Health and approved by the Washington 

University in St. Louis Institutional Animal Care and Use Committee (protocol #20140072). 

 

4.6.2 DNase-seq data 

 The following human fetal DNase-seq data from Roadmap Epigenomics were visualized 

in the UCSC Genome Browser (Karolchik et al. 2014; Roadmap Epigenomics et al. 2015). 

Donor name, age, sex, and GEO accession are listed: fBrain #1 (donor H-23284, 96 day female, 

GSM595928), fBrain #2 (donor H-22911, 117 day female, GSM595920), fBrain #3 (donor H-

22510, 122 day male, GSM530651), fHeart: (donor H-23604, 110 day female, GSM665830), 

fKidney (donor H-22676, 122 day sex unknown, GSM530655), fLung (donor H-22727, 101 day 

sex unknown, GSM530662), and fThymus (donor H-23964, 98 day female, GSM701537). The 

following mouse (C57BL/6) DNase-seq data from ENCODE were visualized (The ENCODE 

Project Consortium 2012). Mice were 8 weeks old unless otherwise indicated: E14.5 brain 

(GSM1014197), E18.5 brain (GSM1014184), adult brain (GSM1014151), P1 retina 

(GSM1014188), P7 retina (GSM1014198), adult retina (GSM1014175), adult heart 

(GSM1014166), adult kidney (GSM1014193), adult lung (GSM1014194), E14.5 liver 

(GSM1014183), adult liver (GSM1014195), and adult thymus (GSM1014185).  
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4.6.3 Calculation of linkage disequilibrium (LD) 

 Unless otherwise indicated, linkage disequilibrium (r2 and D’) are based on EUR 1000G 

Phase 1, as calculated by HaploReg V4.1 (Ward and Kellis 2012a).  

 

4.6.4 Analysis of primate genomes 

 Variant calls (SNPs and indels) for primate genomes (Prado-Martinez et al. 2013) were 

downloaded as VCF files in hg18 from https://eichlerlab.gs.washington.edu/greatape/data/VCFs/. 

VCFtools v0.1.10 (Prado-Martinez et al. 2013) was used to obtain variants in the interval 

Chr6:98,673,000-98,674,000 in hg18, which is equivalent to Chr6:98,566,279-98,567,279 in 

hg19. Variants in this 1 kb window were manually examined for rs77910749, which is at 

chr6:98,673,228 in hg18 or chr6:98,566,507 in hg 19. The LiftOver tool on the UCSC Genome 

Browser was used to convert between hg18 and hg19 (Karolchik et al. 2014). 

 

4.6.5 Motif analysis 

 For ‘SELEX PWM’ scores, FIMO in MEME v4.9.1 (Bailey et al. 2009; Grant et al. 2011) 

was used with the default p-value threshold (0.0001) to scan for TF motif occurrences. TF motifs 

used as input were from (Jolma et al. 2013). The Pax6 motif was the only one identified that 

overlapped with rs77910749. For the endogenous sequence, the following Pax6 motif was found 

(plus strand of hg19): ‘TTGTCTGCTTGAATGGTCC’. For the variant sequence, the following 

Pax6 motif was found: ‘TTTGTCGCTTGAATGGTCC’. 

 For ‘ChIP-seq PWM’ scores, a PWM was generated by aligning the raw Pax6 ChIP-seq 

data (Sun et al. 2015) (GEO accession GSE66961), aligned to mm9 with Bowtie 2 (v2.2.5) 

(Langmead and Salzberg 2012), sorted with Picard (v2.1.0) (http://picard.sourceforge.net/), 

https://eichlerlab.gs.washington.edu/greatape/data/VCFs/
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filtered for alignment quality (-q 30) with SAMtools (v1.3) (Li et al. 2009), and PCR duplicates 

were removed with Picard (v2.1.0). Peaks were called using MACS2 (v2.1.0) (FDR < 0.01) 

(Zhang et al. 2008). Peak calls were partitioned into TSS-proximal (peak summit within -1kb to 

+100 bp of an annotated TSS) and TSS-distal sets using HOMER (v4.8) (Heinz et al. 2010). De 

novo motifs were identified using HOMER (200 bp regions centered on TSS-distal peak 

summits), and the highest scoring de novo motif was used.  

 The logo for the SELEX motif was generated in enoLOGOS using default parameters 

with M. musculus %GC (Workman et al. 2005). The logo for the ChIP-seq motif is from (Sun et 

al. 2015). 

 

4.6.6 Electrophoretic mobility shift assays (EMSAs) 

 PAX6 is perfectly conserved at the amino acid level between mouse and human (Ton et 

al. 1992). PD and PD5a were ordered as gene blocks from Integrated DNA Technologies with E. 

coli codon optimization and cloned as NdeI/NotI fragments into the pET-28a(+) vector. 

Constructs were confirmed by Sanger sequencing. For protein expression, BL21 cells were 

transformed and induced with IPTG overnight at 16 C. His-tagged proteins were purified with 

HisPur Ni-NTA Resin (Thermo Scientific), dialyzed with PBS, and concentrated with Amicon 

Ultra-4 10K MWCO (Millipore). Proteins were quantified with the Pierce BCA Assay Kit 

(Thermo Scientific). 

 Quantitative EMSAs were conducted essentially as previously described (Man and 

Stormo 2001; Lee et al. 2010). Plus strand DNA probes were ordered with FAM or ROX 

fluorophores (Integrated DNA Technologies), and annealed to (unlabeled) minus strand probes. 

Unlabeled plus and minus strand oligos were annealed and used for cold competition reactions. 
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DNA binding reactions were conducted light-protected at 4 C for 1 hr. The binding reaction was 

conducted in 10 mM Tris pH 7.5, 100 mM KCl, 1 mM -mercaptoethanol, 2.5 mg/mL BSA, 100 

ug/mL poly(dI-dC), and 10% glycerol. Labeled probe concentration was 10 nM in binding 

reactions (8 nM for cold competition, with 500-fold molar excess of the unlabeled probes), and 

protein concentration was 1 μM. 

 Protein-DNA complexes were separated on 10% TBE gels (Invitrogen) at 100 V for 90 

min, light-protected at room temperature. Gels were imaged on a Typhoon Trio Variable Mode 

Imager with excitation laser at 532 nm, emission filter at 526 nm for FAM, and emission filter at 

610 nm for ROX. Band intensities were quantified with ImageQuant. 

 

4.6.7 Generation of transgenic reporter mice 

 The LC1-Hsp68-LacZ construct was synthesized by cloning a 951 bp fragment of LC1 

(chr6:98,566,099-98,567,049 in hg19, which was initially obtained by PCR of human gDNA) 

into the HindIII and PstI sites of Hsp68-LacZ Gateway vector (Pennacchio et al. 2006). Sanger 

sequencing confirmed that LC1 matched the hg19 reference. The construct was linearized with 

HindIII and purified by gel extraction (Qiagen). The DNA was then microinjected into fertilized 

eggs of C57BL/6 x CBA hybrid mice and implanted into pseudopregnant dams using standard 

techniques (Hogan et al. 1994). 

 

4.6.8 LacZ staining and histology 

 Embryos (age E14.5) were dissected in cold phosphate-buffered saline (PBS). The tail 

(plus yolk sac for transient transgenics) was saved for PCR genotyping with LacZ primers (Table 

4.2). Embryos were rinsed with PBS with 0.1% Tween-20 and then fixed on ice for 90 min with 
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2% formaldehyde, 0.2% glutaraldehyde, 5 mM EGTA, and 2 mM MgCl2 in 0.1 M phosphate 

buffer pH 7.3. After rinsing three times with wash buffer (0.1% sodium deoxycholate, 0.02% 

NP-40, 2 mM MgCl2, and 0.5 mg/mL BSA in 0.1 M phosphate buffer pH 7.3), embryos were 

incubated with X-gal staining solution (5 mM potassium ferricyanide, 5 mM potassium 

ferrocyanide, 0.1% sodium deoxycholate, 0.02% NP-40, and 2 mM MgCl2 in 0.1 M phosphate 

buffer pH 7.3. Incubation conducted at 37 ⁰C overnight (up to several days, with fresh X-gal 

staining solution added every ~12 hr). Embryos were post-fixed with 4% paraformaldehyde in 

PBS and stored at 4 ⁰C until whole-mount imaging. For cryosections, embryos were equilibrated 

in 30% sucrose/PBS and decapitated. The head was embedded in Tissue-Tek OCT (Sakura) and 

cryosectioned at 20 μm. Sections were rinsed with PBS and counterstained with Nuclear Fast 

Red (Sigma). 

 

4.6.9 CRE-seq Nano library construction  

 To create the LC1 multimer constructs, individual 200 bp sequences (centered on the 

position of rs77910749, which is a deletion of a ‘T’) were obtained by PCR using template DNA 

with or without rs77910749, with primers to add restriction enzyme sites. These ‘monomers’ 

were ligated pairwise in two rounds to create the 4X multimer with or without the variant (NotI-

LC1-XbaI-LC1-XhoI-LC1-XmaI-LC1-FseI). Note that the LC1 monomer with rs77910749 

includes an additional ‘T’ base at the 3’ end, such that the length and base content is the same as 

the LC1 monomer without rs77910749. Multimer sequences were confirmed by Sanger 

sequencing. The multimer was then cloned into the NotI/FseI sites of the previously described 

CRE-seq vector, which has random 15 bp barcodes in the 3’ UTR (Shen et al. 2016). The 3.6 kb 

POU3F2 promoter encompassing chr6:99,279,024-99,282,671 (hg19) was obtained by PCR of 
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human gDNA. The basal rho promoter-GFP cassette of the CRE-seq vector was replaced with a 

3.6 kb POU3F2 promoter-GFP cassette between the FseI and AscI sites. The LC1 multimer was 

cloned into the NotI/FseI site, and individual colonies were picked for Sanger sequencing with 

Barcode_seq_R to determine barcode sequences (Table 4.2). For the promoter-only control 

constructs, there was no insert upstream the 3.6 kb POU3F2 promoter.  Twenty barcoded 

constructs were obtained for each of the LC1 REF multimer, the LC1 VAR multimer, and the 

promoter-only control. Each pool of twenty constructs was maxiprepped (Invitrogen). For 

electroporations, the maxipreps were pooled in a mass ratio of 1:1:2 of LC1 REF, LC1 VAR, and 

promoter-only control.  

 

4.6.10 Mouse cerebral cortex electroporations  

 Ex vivo cerebral cortex electroporation of E12.5 CD-1 mouse embryos (from timed 

pregnant dams) was conducted essentially as previously described (Nichols et al. 2013). The 

CRE-seq Nano library (2.5 μg/uL) was pooled with pDcx-DsRed (1 μg/uL) for a total of 3.5 

μg/uL DNA. To visualize the injection, ~0.02% Fast Green dye was added. DNA was injected 

with a pulled glass pipette and Hamilton syringe. Electroporation was conducted with BTX 

ECM830 (Harvard Apparatus) with the following settings: 33 V, 50 ms pulse duration separated 

by 950 ms intervals, for 5 pulses. After electroporation, the head was transected just superior to 

the level of the eye and transferred on ice to explant media (50% DMEM (Gibco), 50% F12 

(Gibco), 1X GlutaMAX (Gibco), 100 U/mL penicillin, and 100 μg/mL streptomycin). Up to 

three heads were arranged on a 25 mm circular Whatman Nucleopore 0.2 μm filter (with the cut 

surface against the shiny side of the filter), which floated in one well of a 6-well dish containing 

explant media with supplements (1X B27 (Gibco) and 1X G5 (Gibco)). Explants were incubated 
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at 37 C with 5% CO2. After two days in culture, the electroporated regions were microdissected 

under a fluorescent microscope (Leica MZ16 F) in cold HBSS with calcium and magnesium and 

stored in TRIzol (Invitrogen) at -80 C. Each biological replicate consisted of electroporated 

tissue from multiple (5-8) cortices.  

 For histology, tissue was fixed in 4% paraformaldehyde/PBS, embedded in 4% agarose, 

and vibratome sectioned at 100 μm. Sections were mounted with Vectashield (Vectorlabs), 

coverslipped, and subjected to laser confocal imaging (Zeiss LSM700) with ZEN 2009 software 

(Zeiss).  

 

4.6.11 Human cerebral organoid electroporations  

 Human iPS(IMR90)-4 (WiCell) were cultured in mTeSR1 (STEMCELL Technologies) 

and passaged every 3-4 days at 1:10 with ReleSR (STEMCELL Technologies) on 6-well plates 

with Matrigel (Corning). Cells were maintained at 37 C with 5% CO2. Cells (passage 64) were 

differentiated following a protocol similar to (Pasca et al. 2015). On the day of passage (Day 0), 

cell aggregates were released with ReLeSRTM and allowed to float freely in a 100 mm low-bind 

Petri dish in neural induction media: Neurobasal (Gibco) supplemented with 1% B27 without 

vitamin A (Gibco), 1X GlutaMAX (Gibco), 3 μM IWR-1-endo (Wnt antagonist) (Calbiochem), 5 

μM SB431542 (TGF inhibitor) (Calbiochem), 100 U/mL penicillin, and 100 μg/mL 

streptomycin. This media was replaced every 3-4 days. On Day 18, media was changed to 

cerebral growth media similar to that published in (Lancaster et al. 2013): 50% DMEM-F12 

(Gibco) and 50% Neurobasal (Gibco) supplemented with 0.5% N2 (Gibco), 1% B27 (with 

vitamin A) (Gibco), 2.5 μg/mL human insulin (Sigma), 1X GlutaMAX (Gibco), 0.5X MEM-
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NEAA (Corning), 25 μM -mercaptoethanol, 100 U/mL penicillin, and 100 μg/mL streptomycin. 

This media was replaced every 3-4 days. 

 The CRE-seq Nano library (1 μg/uL) was co-electroporated with the loading control 

pCAG-DsRed (1 μg/uL) (Matsuda and Cepko 2004), for a total of 2 μg/uL DNA in PBS, into 

Day 88-109 organoids. The same equipment and similar protocol as for ex vivo retinal 

electroporations was used (Montana et al. 2011b). Four organoids were loaded into an 

electroporation chamber and allowed to float freely. Electroporation settings were as follows: 35 

V, 50 ms pulse duration separated by 950 ms intervals, for five pulses. Organoids were placed 

back into conditioned cerebral growth media and allowed to float freely. After 7 days in culture, 

organoids were rinsed with HBSS with calcium and magnesium and stored in TRIzol (Invitrogen) 

at -80 C. Each biological replicate consisted of eight electroporated organoids. 

 Organoids were imaged as live whole mounts with an inverted fluorescent microscope 

(Nikon Eclipse TE300). For antibody staining, organoids were fixed in 4% 

paraformaldehyde/PBS for 45 min, equilibrated in 30% sucrose/PBS and embedded in Tissue-

Tek OCT (Sakura) for cryosections (12-14 μm). The following antibodies were used: anti-Pax6 

(PRB-278P at 1:300), anti-Pou3f2 (sc-6029 at 1:80), anti-Ki67 (BD Pharmigen 550609 at 1:100). 

Note that the anti-Pou3f2 antibody recognizes both Pou3f2 and Pou3f3 (Yamanaka et al. 2010). 

Confocal imaging was conducted on a BX61 WI microscope (Olympus) with a DSU spinning 

disk and ORCA-ER CCD camera (Hamamatsu). Images were processed with MetaMorph 

software (Molecular Devices). 
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4.6.12 CRE-seq Nano tissue processing and data analysis 

 RNA and DNA were isolated with TRIzol (Invitrogen), treated with TURBO DNase 

(Ambion), and purified with RNeasy Mini (Qiagen) as previously described (Shen et al. 2016). 

RNA (~0.5-1 μg) was then reverse-transcribed with SuperScript IV (Invitrogen), and the 

resulting cDNA was treated with RNaseH. The barcode region of the cDNA and DNA was 

amplified by PCR with Nano_initial_PCR primers (Table 4.2) using Phusion (New England 

BioLabs) and as follows: 98 C for 30 sec, 16-22 cycles of 98 C for 10 sec, 64 C for 30 sec, 72 

C for 30 sec, and finally 72 C for 5 min. The number of PCR cycles was: 16 for DNA, 20 for 

mouse cortex cDNA, and 22 for organoids cDNA. Samples were then prepared for amplicon-seq 

(see below). 

 Data analysis was conducted similarly as in (Shen et al. 2016). Barcode sequences were 

extracted, requiring a perfect match to one of the sixty known 15 bp barcodes plus 6 bp of 

flanking sequence on either side (i.e., 27 total bp) in either the forward or reverse direction (since 

sequencing adapters were ligated non-directionally). The RNA read count was normalized to the 

DNA read count for each barcode and then averaged across the twenty barcodes to yield the 

overall activity of a construct type (‘Ref’, ‘Var’, or promoter-only) in a given biological replicate.  

 

4.6.13 CRISPR-Cas mice generation 

 CRISPR/Cas9 reagents were generated at the Genome Engineering and iPSC center at 

Washington University School of Medicine (St. Louis, MO). For the ‘LC1 KO’, a pair of guides 

flanking LC1 was to delete the intervening sequence. Multiple lines were generated with nearly 

identical deletions, but the line with the deletion chr4:23,438,846-23,439,893 for all ‘LC1 KO’ 

experiments. For knock-in of rs77910749, a single-stranded donor oligo centered on the variant 
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(with ~60 bp of homology on either side) was injected with a central LC1 guide for homologous 

recombination (Wang et al. 2013). For the ‘Pou3f2 3’UTR variant’, a single guide in the 3’ UTR 

was used to generate a 4 bp deletion (chr4:22,412,587-22,412,590). For the ‘LC1 Small Indel’, 

the central LC1 guide was used alongside a central LC5 guide, such that this strain carries a 14 

bp deletion (chr4:23,439,327-23,439,340) plus an insertion of ‘C’ at the site of the deletion, as 

well as a 103 bp deletion in LC5 (chr4:23,417,446-23,417,548). 

 All CRISPR-Cas lines were generated in a C57BL/6J background. For pronuclear 

microinjections, hormone-primed females were mated to generate embryos (E0.5), which were 

subjected to pronuclear micro-injection of 2.5 ng/μl guide RNA and 5 ng/μl of Cas9 mRNA. 

Embryos were transferred to the oviducts of pseudo-pregnant recipient females. CRISPR-Cas 

guides, knock-in oligo sequence, as well as genotyping information (primer sequences and PCR 

conditions) are provided in Table 4.2. Founders (F0’s) were outbred to C57BL/6J. After the F1 

generation, LC1 KO animals were genotyped by PCR only. Otherwise, CRISPR-Cas alleles were 

verified by Sanger sequencing of PCR products. 

 

4.6.14 Allele-specific expression (ASE) analysis 

 E14.5 embryos were harvested in cold HBSS with calcium and magnesium, and brain 

tissue was rapidly dissected and stored in TRIzol (Invitrogen) at -80 C. For ‘whole brain’ 

dissection, the olfactory lobes were left intact, and the brain was transected coronally at the 

posterior edge of the cortex (i.e., through the midbrain). For ‘amygdala region’ and ‘anterior 

cortex’ microdissection, the brain was additionally transected coronally approximately at the 

anterior-posterior level of the middle cerebral artery in the circle of Willis. The anterior tissue 

(with olfactory lobes removed) was harvested as ‘anterior cortex’. The inferior and lateral 
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portions of the posterior tissue from the same brain were harvested as ‘amygdala region’. For 

rs77910749 knock-in ‘whole brain’, only the left half was used for ASE (the right half was 

harvested for ChIP). Tail tissue was saved from each embryo for genotyping of the LC1 region 

and Pou3f2 3’ UTR region (Table 4.2).  

 For sequencing, RNA was extracted with TRIzol (Invitrogen), treated with TURBO 

DNase, and purified with RNeasy Mini (Qiagen). RNA (~1-2 μg) was then reverse-transcribed 

with SuperScript IV (Invitrogen) and treated with RNase. The 3’ UTR of Pou3f2 was amplified 

with Pou3f2_3UTR_F and Pou3f2_3UTR_R primers (Table 4.2) using Phusion (New England 

BioLabs) as follows: 98 C for 30 sec, 20-22 cycles of 98 C for 10 sec, 64 C for 30 sec, 72 C 

for 30 sec, and finally 72 C for 5 min. The number of PCR cycles was: 20 for whole brain, 21 

for half brain, and 22 for microdissected regions. Samples were then prepared for amplicon-seq 

(see below). Sequence reads containing ‘CGTATATATATGGG’ (wild-type 3’ UTR) or 

‘TGCGTATATGGGAT’ (variant 3’ UTR) were tabulated, and the ratio of reads (i.e., allelic bias) 

was calculated. The 3’ UTR variant itself causes ~10% increased Pou3f2 mRNA levels 

compared to the wild-type 3’ UTR sequence, as determined from the animals that were 

heterozygous for the 3’ UTR variant and wild-type for LC1.  

 

4.6.15 Allele-specific methylation analysis 

 Sample preparation and analysis conducted following a protocol similar to that 

previously described (Montana et al. 2013). DNA was extracted from brain tissue with DNeasy 

(Qiagen). For each biological replicate, ‘whole brain’ was dissected as described above for ASE, 

and the right half of the brain was used for bisulfite analysis. About 1 μg was bisulfite-converted 

with EpiTect Bisulfite Kit (Qiagen) and subjected to PCR with LC1_bis_F and LC1_bis_R 
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primers (Table 4.2). The resulting products were cloned into the pCR2.1 TOPO vector 

(Invitrogen) and Sanger sequenced with universal M13 reverse primer. Sequence data were 

analyzed and visualized with BISMA using default parameters with removal of PCR duplicates 

(Rohde et al. 2010). 

 

4.6.16 Amplicon-seq  

 Qubit dsDNA HS Assay (Invitrogen) was used to quantify samples. About 200 ng of 

cDNA or DNA was end repaired, 3’ adenylated, and ligated to MiSeq adapters according to 

standard protocols (Son and Taylor 2011) (Table 4.2). The product was then amplified with a 

universal Illumina PCR primer and an indexed primer (Table 4.2) with Phusion as follows: 98 C 

for 30 sec, 18 cycles (for ASE) or 20 (for CRE-seq Nano) cycles of 98 C for 10 sec, 57 C for 

30 sec, 72 C for 30 sec, and finally 72 C for 5 min. Products were gel-purified and verified on 

an Agilent Bioanalyzer. For a given sequencing run, four or six indexed samples were pooled 

(controls were always processed and sequenced in parallel to the corresponding experimental 

samples). Samples were loaded at 7-8 pM concentration onto MiSeq for 2x250 bp sequencing as 

spike-in samples, representing ~10% of reads on a full lane, yielding ~1-2 million reads total per 

pool of samples. Reads were demultiplexed and checked with FastQC (Andrews 2010).  

 

4.6.17 Allele-specific human fetal brain DNase-seq analysis 

 Publicly available human fetal brain DNase-seq data from Roadmap Epigenomics and 

ENCODE were downloaded. Aligned bams were used when available; otherwise, reads were 

mapped to hg19 with Bowtie 2 to obtain aligned bams (Langmead and Salzberg 2012). 

SAMtools (Li et al. 2009) was used for bam-to-sam conversion. Data were visualized on the 
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Integrative Genomics Viewer (IGV) (Robinson et al. 2011). To infer donor genotype, reads that 

overlapped the positions of the following variants in fetal brain DHSs were manually examined 

(r2 and D’ values are with respect to rs77910749): rs77910749 in LC1, rs13208578 in LC2 (r2 = 

0.9, D’ = 0.99), rs12204181 in LC4 (r2 = 0.9, D’ = 0.99), and rs17814604 in LC5 (r2 = 0.42, D’ = 

0.97). For donors inferred to be heterozygous for rs77910749, allele-specific read counts at LC1 

were tabulated. Additional details are provided in Table 4.3.   

 

4.6.18 Behavioral assays 

 A total of 10 homozygous LC1 knockout and 10 age-matched, sex-matched wild-type 

siblings, and a total of 12 homozygous rs77910749 knock-in and 12 age-matched, sex-matched 

wild-type siblings, were subjected to behavioral testing at the Washington University Animal 

Behavior Core as previously described (Dougherty et al. 2013). Animals were allowed to 

habituate in the testing facility for two weeks before testing was initiated at age 10-15 weeks. 

The following tests were conducted: 1-hour locomotor activity, sensorimotor battery, Morris 

water maze, conditioned fear, acoustic startle and PPI, elevated plus maze, and open field test. 

For the acoustic startle and PPI assays in the rs77910749 knock-in animals vs. wild-type animals, 

two independent cohorts were tested and data from these two cohorts were pooled for 24 

homozygous rs77910749 knock-in and 24 wild-type control animals. 
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Figure 4.1. Prioritization of candidate variants at 6q16.1 associated with higher educational 

attainment, increased cognitive performance, and risk for bipolar disorder. (A) Genomic 

context (hg19, 1 Mb window) of the intergenic locus at 6q16.1 implicated in GWAS studies of 

educational attainment, cognition, and BPD. The ~0.5 Mb region identified by these studies 

(highlighted in yellow) contains a ~60 kb ‘local cluster’ region (highlighted in purple) with the 

highest LD. All variants in LD with rs9320913 (r2 > 0.2) are shown. Note that the nearest 

protein-coding gene, POU3F2, is ~0.7 Mb away. DNase-seq data from three human fetal brains 

and four other human fetal tissues are shown (Roadmap Epigenomics et al. 2015). PhastCons 

depict 100-way vertebrate conservation (Siepel et al. 2005). The UCSC Genome Browser was 

used for visualization (Karolchik et al. 2014). (B) Enlarged view the 60 kb ‘local cluster’. Note 

the fetal brain (fBrain) DHSs (LC0 to LC5, pink highlight). Lead SNPs (red font)—rs9320913 

for educational attainment (Rietveld et al. 2013; Okbay et al. 2016), rs1906252 for cognitive 

performance (Trampush et al. 2015), rs10457441 for cognitive performance (Davies et al. 2015), 

rs12202969 for BPD (Muhleisen et al. 2014), and rs1487441 for BPD (Hou et al. 2016))—are 

depicted. (C) Variants within the local cluster that are in LD with rs9320913 (as defined by r2 > 

0.2). Note the five lead SNPs (red font) and four variants that fall within LC1-5 (blue font). The 

r2 values are shown (green dots). Phred-scaled CADD scores (blue dots) are from (Kircher et al. 

2014). 
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Figure 4.2. Epigenomic landscape around the orthologous LC1 region in mouse. (A) 

Genomic context (mm9, 1 Mb window) around mouse LC1 (pink highlight). Locations of 

orthologous LC2 and LC5 are also indicated (gray highlight). Pou3f2 (gray font) is outside the 

window at chr4:22,409,242-22,415,513, i.e., ~1 Mb away from LC1, and is transcribed from the 

minus strand of DNA. Mir2113 is a non-RefSeq gene identified by homology to the human 

sequence. DNase-seq data are from (The ENCODE Project Consortium 2012). P300 ChIP-seq 

data (orange tracks) are from E11.5 forebrain (Visel et al. 2009) and E14.5 forebrain (Wenger et 

al. 2013). H3K27ac ChIP-seq data (pink tracks) are from forebrain at the indicated ages; for ages 

with multiple replicates, only the first replicate is shown (Nord et al. 2013). Pax6 ChIP-seq data 

(dark red tracks) are from E12.5 forebrain; two replicates are shown with y-axis autoscaling (Sun 

et al. 2015). (B) Enlarged view of the 30 kb mouse ‘local cluster’. Note that LC1 overlaps with 

E14.5 brain and P1 retina DNase-seq peaks, E14.5 forebrain p300 peak, E14.5 forebrain 

H3K27ac peak, and E12.5 forebrain Pax6 ChIP-seq peak. The orthologous position of 

rs77910749 (black vertical line in LC1) falls within the middle of the Pax6 ChIP-seq peak. 
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Figure 4.3. In silico and in vitro analysis Pax6 binding. (A) Comparison of the reference 

sequence (‘Ref’), sequence with rs77910749 (‘Var’), and Pax6 consensus motifs. The position of 

rs77910749 is indicated (red highlighted ‘T’). Note that the reference sequence is perfectly 

conserved between mouse and human, and the minus strand of mm9 is shown. Motifs were 

scored using Pax6 SELEX and ChIP-seq position weight matrices (PWMs). For SELEX, a 

protein with Pax6 PD and HD domains was used (Jolma et al. 2013). The logo was generated in 

enoLOGOS (Workman et al. 2005). The E12.5 Pax6 ChIP-seq motif is based on (Sun et al. 

2015), and only the PD PWM was used for FIMO analysis. (B) Quantitative EMSA assay. 

Reference (FAM) and variant (ROX) probes were fluorescently labeled and incubated with Pax6 

PD or PD5a. For the ‘cold competition’ (lane 4), 500-fold molar excess of cold (i.e., unlabeled) 

probe was used. The bound and unbound fractions for the PD lanes were quantified and relative 

binding affinity was calculated according to (Man and Stormo 2001). Error bar represents SD 

across lanes. 
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Figure 4.4. Transgenic reporter mice show evidence of LC1 activity in the developing CNS. 

Mice were generated that carried a reporter construct for wild-type human LC1 (951 bp fragment) 

on the Hsp68 promoter, driving the expression of LacZ, which stains blue with X-gal 

(Pennacchio et al. 2006). (A) Schematic of the reporter construct (drawn to scale). (B) Transient 

transgenic embryos. Of seven genotypically positive embryos, five (#1-5 shown here) exhibited 

LacZ staining. Each mouse represents an independent integration event. Whole mount images of 

side and frontal views; light blue asterisks in the frontal views denote the approximate location 

of annotated regions in the brain coronal sections. For the brain coronal image of embryo #3, the 

white oval encircles sparse LacZ-expressing cells. Note that the entire head of the embryo was 

embedded. Close-up images of the eye are also shown. (C) Embryos from a stable transgenic line. 

Of three genotypically positive transgenic lines, only this line exhibited LacZ staining. All 

embryos look essentially identical, as expected for a given line. Side, frontal, and back views are 

shown (note the staining in the spinal cord, which is part of the CNS). Coronal section of head 

and corresponding enlarged images of the amygdala and eye are shown. Sections were 

counterstained with Nuclear Fast Red. 

 

 



177 

  

 



178 

  

Figure 4.5. The variant rs77910749 causes a subtle increase in enhancer activity in 

developing mouse brain and human cerebral organoids. (A) Schematic of the CRE-seq Nano 

experimental design. Multimers (4X) of the central 200 bp of human LC1 were cloned upstream 

of a 3.6 kb POU3F2 (human) promoter and GFP with unique 15 bp barcodes (BCs) in the 3’ 

UTR. ‘REF’ indicates wild-type sequence and ‘VAR’ indicates the presence of rs77910749 (red 

asterisk), whose position is indicated by the black vertical line. Twenty barcoded constructs were 

generated for each of LC1 REF, LC1 VAR, and promoter-only. (B) Delivery of the library. Left: 

E12.5 mouse cerebral cortex was electroporated and harvested after 2 days ex vivo. A vibratome 

section shows expression of the library (GFP) in the deeper layers of the cerebral cortex. The co-

electroporated control construct, pDcx-DsRed, is expressed in post-mitotic migrating neurons 

(Wang et al. 2007). DAPI is a nuclear counterstain. Right: Human iPSC-derived cerebral 

organoids were electroporated and harvested after 7 days in vitro. A whole mount image of a live 

organoid shows expression of the library (GFP). The co-electroporated control construct, pCAG-

DsRed, marks electroporated cells. (C) Quantification of cis-regulatory activity by CRE-seq. P-

values were calculated with two-tailed Student’s t-test. Error bars indicate SEM between 

biological replicates (n = 3 for mouse cerebral cortex, n = 4 for human cerebral organoids). 
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Figure 4.6. The effect of LC1 deletion on Pou3f2 expression is region-specific. (A) An allelic 

series of LC1 mutants generated by CRISPR-Cas. Sizes of deletions are indicated. Note that 

rs77910749 ‘knock in’ is an introduction of a 1 bp deletion. (B) Schematic of ASE experimental 

design (not to scale). Mice heterozygous for an LC1 mutation were mated (E14.5 timed 

pregnancies) to mice with a variant in the 3’ UTR of Pou3f2, which served as a molecular 

barcode (light blue rectangle). Resulting trans-heterozygous mice (i.e., heterozygous for both the 

LC1 mutation and the 3’ UTR variant) were analyzed for allele-specific Pou3f2 expression. Note 

the phasing, i.e., the LC1 mutation is in cis to the wild-type 3’ UTR. To account for any effects 

due to the 3’ UTR variant alone, control animals wild-type for LC1 and heterozygous for the 3’ 

UTR variant were included. (C) E14.5 whole brain, microdissected amygdala region, and 

microdissected anterior cortex were analyzed for allele-specific Pou3f2 expression in control and 

trans-het LC1 KO animals (left panel), and in control and trans-het rs77910749 knock-in animals 

(right panel). Gray denotes controls, and red denotes trans-het animals. P-values were calculated 

with two-tailed Student’s t-test. Error bars indicate SEM between biological replicates. Sample 

size per condition is indicated (trans-het animals and matched controls; amygdala and anterior 

cortex samples were from the same embryos). Each biological replicate consists of tissue from 

one brain (amygdala and anterior cortex were harvested from the same brain). 
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Figure 4.7. Allele-specific methylation analysis of LC1. (A) Region within LC1 analyzed by 

bisulfite sequencing. The variant rs77910749 is a single bp deletion of ‘T’ (on the minus strand 

for mm9), creating a novel CpG site (site #6). (B) Bisulfite sequencing of E14.5 brain from mice 

that were heterozygous for rs77910749 knock-in (KI) allele (n = 4, left panels), or the LC1 Small 

Indel allele (n = 3, right panels). Each row represents a clone, and each column represents a CpG 

site. Note the two clones (pink arrow) of the KI allele, in which site #6 is methylated. 

Methylation was overall slightly higher in the LC1 Small Indel heterozygous animals than in 

rs77910749 KI heterozygous animals, suggesting a trans effect (the LC1 Small Indel allele also 

has a 103 bp deletion within LC5—see Methods). Red = methylated, blue = unmethylated, white 

= no data. CpG site #6 is not present in the wild-type allele or the small indel allele. (C) 

Quantification of methylation at each CpG site. Top: rs77910749 knock-in heterozygotes. 

Bottom: Small indel heterozygotes. Error bars indicate SEM. P-values were calculated with two-

tailed Fisher’s exact test (reads across replicates were combined). N.D., no data. 
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Figure 4.8. Human fetal brain allele-specific DNase-seq analysis. Human fetal brain DNase-

seq data (Roadmap Epigenomics et al. 2015) from donors inferred to be heterozygous for 

rs77910749 (see Methods) were analyzed. Raw read counts are shown in the bar graph (top). 

Read proportions are shown in the pie charts, whose sizes roughly reflect total read number 

(bottom). 
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Figure 4.9. Prepulse inhibition (PPI) is defective in ‘humanized’ rs779710749 knock-in 

mice. Adult mice homozygous for the rs77910749 knock-in allele and wild-type (WT) siblings 

(age- and sex-matched) underwent acoustic startle testing with prepulse inhibition (PPI) assays. 

The knock-in (KI) animals showed defective prepulse inhibition that was statistically significant 

(p<0.05, ANOVA) for the highest decibel (db) tested. One WT animal did not have a startle 

response at baseline and was excluded from the analysis. PPI measurements were normalized to 

baseline startle responses. Of note, baseline startle response magnitudes were lower in KI than 

WT animals (p=0.018). 

p<0.05 
p<0.05 

WT (n=23) 
Knock-in (n=24) 

WT (n=23) 
Knock-in (n=24) 
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Figure 4.S1. Phylogenetic conservation of rs13208578 and rs77910749. Multiz alignments 

(100 vertebrates) as viewed on the UCSC Genome Browser (Blanchette et al. 2004; Karolchik et 

al. 2014). A 150 bp window is shown roughly centered on each variant (position of variant is 

highlighted in red): (A) rs13208578 (a substitution of ‘C’ to ‘T’), and (B) rs77910749 (a 1 bp 

deletion of a ‘T’). 
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Figure 4.S2. Identification of a derived haplotype through construction of a human 

phylogenetic tree. (A) Human phylogenetic tree. Note that rs77910749 is part of the derived 

haplotype (pink circle), and that rs17814604 arose secondarily (green circle). (B) Haplotype 

analysis. The derived haplotype contains GWAS variants (red font) and linked variants (blue font) 

that fall within LC1 to LC5. The analysis was anchored on rs10457441. 
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Figure 4.S3. Global distribution of rs17814604 and rs77910749 frequencies. Allele 

frequencies based on Phase 3 of the 1000 Genomes Project (Genomes Project et al. 2015) are 

shown for the major populations (large pie charts) as well as for subpopulations (small pie 

charts), with black indicating the reference allele: (A) rs17814604 (green allele) and (B) 

rs77910749 (purple allele). Abbreviations: AFR, African; AMR, American; BEB, Bengali in 

Bangladesh; CDX, Chinese Dai in Xishuangbanna, China; CHB, Han Chinese in Beijing, China; 

CHS, Southern Han Chinese, China; CLM, Colombian in Medellin, Colombia; EAS, East Asian; 

ESN, Esan in Nigeria; EUR, European; FIN, Finnish in Finland; GBR, British in England and 

Scotland; IBS,  Iberian populations in Spain; JPT, Japanese in Tokyo, Japan; KHV, Kinh in Ho 

Chi Minh City, Vietnam; LWK, Luhya in Webuye, Kenya; MAG, Mandinka in The Gambia; 

MSL, Mende in Sierra Leone; PEL, Peruvian in Lima, Peru; PJL, Punjabi in Lahore, Pakistan; 

PUR, Puerto Rican in Puerto Rico; SAS, South Asian; TSI, Toscani in Italy; YRI, Yoruba in 

Ibadan, Nigeria. 
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Figure 4.S4. Absence of rs77910749 from non-human primate genomes. The genomes of 79 

individuals from five non-human primate species were examined for rs77910749, and none were 

found to contain this variant. Number of individuals for each species is indicated. Sequences and 

estimates of divergence times (in millions of years ago, MYA) are from (Prado-Martinez et al. 

2013). Minor allele frequency (MAF) in humans is based on aggregate 1000 Genomes Phase 3 

data (Genomes Project et al. 2015). 
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Figure 4.S5. LC1 falls within a conserved topologically associating domain (TAD). 

Published Hi-C data were visualized with default heat map scaling on the 3D Genome Browser 

(http://www.3dgenome.org). Darker red indicates higher frequency of interactions. Data are 

shown at 40 kb resolution, except for CH12 (25 kb resolution). The TAD containing LC1 is 

highlighted in yellow, and LC1 is highlighted in pink. Note the positions of Mir2113/MIR2113 

and Pou3f2/POU3F2 (red font) within the TADs. In the mouse genome, the Pou3f2 is 

transcribed from the minus strand of DNA. In the mouse genome, the region is inverted such that 

the relative orientation (LC1 upstream of Pou3f2) is preserved. Mouse Mir2113 is a non-RefSeq 

gene identified by homology with the human sequence. (A) Human Hi-C data for left ventricle of 

heart, liver, and H1-derived neural progenitor cells (NPC) (Dixon et al. 2015; Leung et al. 2015). 

(B) Mouse Hi-C data for CH12 (a B cell lymphoma cell line), embryonic stem cells (ESC), and 

cerebral cortex (Dixon et al. 2012; Rao et al. 2014).  

  

http://www.3dgenome.org/
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Figure 4.S6. Antibody staining of cerebral organoids. Human iPSCs were differentiated into 

cerebral organoids and grown in culture for 53 days (left panels) or 70-79 days (right panels) 

prior to harvest for immunohistochemistry. Cryosections were labeled with anti-Pou3f antibody 

(green, all panels) and anti-Pax6 antibody (red, top panels) or anti-Ki67 antibody (red, bottom 

panels). The anti-Pou3f antibody recognizes both Pou3f2 and Pou3f3 (see Methods). Ki67 is a 

marker of proliferation (Scholzen and Gerdes 2000). Blue, DAPI counterstain. 
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Figure 4.S7. The methylation landscape of LC1 to LC5 in human primary tissues and 

cultured cells. LC1 is highlighted (pink), and LC2 to LC5 are also shown (gray). LC1 is 

unmethylated in fetal brain and neural progenitors, and methylated in adult brain and other 

tissues. MRE enriches for unmethylated regions, while MeDIP enriches for methylated regions. 

The height of MethylC-seq and bisulfite (BS)-seq signals reflects the degree of methylation at 

single CpG resolution. The lack of data for LC3 and LC5 is due to the paucity of CpG sites. Data 

are from (Roadmap Epigenomics et al. 2015) except for MethylC-seq (Lister et al. 2013; Schultz 

et al. 2015), with the following GEO accessions: MRE (GSM669604 and GSM707015) and the 

corresponding MeDIP (GSM669614 and GSM707019) of fetal brain (fBrain), MethylC-seq 

(GSE47966) of fetal frontal cortex (fFC) and middle frontal gyrus (MFG, part of the cortex) at 

the indicated ages (d = day, yo = years old), H1-derived neuronal progenitor cells (HDNP) 

(GSM675546), brain germinal matrix (BGM) (GSM941747), NCD neurosphere culture (cortex-

derived) (GSM1127118), left ventricle (LV) of heart (GSM1010978), lung (GSM983647), liver 

(GSM916049), fetal thymus (GSM1172595), thymus (GSM1010979), and fetal muscle (fMuscle) 

from leg (GSM1172596). 
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Table 4.1. Measures of LD among lead SNPs in GWAS studies of educational attainment, 

cognitive ability, and BPD. 

 

r2 (EUR, Haploreg v4.1) rs9320913 rs1906252 rs10457441 rs12202969 rs1487441 

rs9320913 - educational attainment 1         

rs1906252 - cognitive ability 0.96 1       

rs10457441 - cognitive ability 0.91 0.88 1     

rs12202969 - BPD 0.99 0.96 0.92 1   

rs1487441 - BPD 0.97 0.98 0.9 0.98 1 

      D' (EUR, Haploreg v4.1) rs9320913 rs1906252 rs10457441 rs12202969 rs1487441 

rs9320913 - educational attainment 1         

rs1906252 - cognitive ability 0.98 1       

rs10457441 - cognitive ability 1 0.98 1     

rs12202969 - BPD 1 0.98 1 1   

rs1487441 - BPD 0.99 0.99 0.99 0.99 1 

 

The pairwise r2 and D’ values among the following five lead GWAS are shown: rs9320913 for 

educational attainment (Rietveld et al. 2013; Okbay et al. 2016), rs1906252 for cognitive ability 

(Trampush et al. 2015), rs10457441 for cognitive ability (Davies et al. 2015), rs12202969 for 

BPD (Muhleisen et al. 2014), and rs1487441 for BPD (Hou et al. 2016). Values were retrieved 

from HaploReg V4.1 (Ward and Kellis 2012a) for European populations based on 1000 

Genomes Phase 1 (Genomes Project et al. 2012). 
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Table 4.2. Oligonucleotides used in this study. 
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Table 4.3. Allele-specific fetal brain DNase-seq analysis. 
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Data accession codes, donor information, alignment rates, and read counts at positions 

overlapping SNPs are provided (rs77910749 is highlighted in yellow) (see Methods). Red font 

indicates non-reference alleles. ‘NA’ indicates no reads at the position of the SNP. Individuals 

inferred to be rs77910749 heterozygotes (blue column) were included in the allele-specific 

analysis of LC1 (Figure 4.8). Note that donors H-23266, H-23284, and H-22510 were each 

associated with two GEO accessions. For these samples, read counts from the same donor were 

summed. Donors H-25606 and H-24297 had several reads that had an ‘A’, ‘C,’ or ‘G’ base at 

rs77910749; these reads were excluded from the analysis. 
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CHAPTER 5: CONCLUSIONS AND FUTURE DIRECTIONS 
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“Science is made by scientists, whose creations deeply affect each others’ progress.” 

 

-Eric H. Davidson (Davidson 2006) 

 

 

“As you know, in most areas of science, there are long periods of beginning before we really 

make progress.” 

-Eric Kandel (Kandel 2012) 
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 In this dissertation, I described: an approach for mapping the effects of cis-regulatory 

variants onto changes in gene expression, which yielded insights into gene regulatory effects 

(Chapter 2), a method for functionally dissecting large numbers of CREs, which holds promise 

for studying cis-regulatory regulation in a broad repertoire of cell types (Chapter 3), and a 

mechanistic study of a disease-associated cis-regulatory variant, which serves as a blueprint for 

future studies assessing the causality of non-coding variants  (Chapter 4). Below, I discuss recent 

advances and prospects related to this work. 

 

5.1 The utility of hybrid animals for studying cis-regulation and imprinting 

 In Chapter 2, I described a study in which we mapped the effects of cis-regulatory 

variants onto changes in gene expression genome-wide in the retina by taking advantage of 

hybrid animals, which serve as unique genetic tools (Shen et al. 2014). Although prior studies 

also utilized hybrids to identify cis- and trans-regulatory effects, ours was unique in intersecting 

knowledge of the locations of CREs, specific sequence variants, and changes in gene expression. 

Our study is analogous to eQTL studies in human tissues, which probe for statistical associations 

between variants and changes in gene expression, but with the advantages of complete genetic 

information and extremely high nucleotide diversity between Cast/EiJ and C57BL/6J alleles. 

With MPRAs, it will be feasible to comprehensively assay the effects of the specific cis-

regulatory variants identified by hybrid and eQTL studies. 

 As a byproduct our study, we identified parent-of-origin effects (e.g., imprinted genes) in 

the retina for the first time. Shortly after the publication of our work, another group published a 

study that examined cis- and trans-regulatory effects and parent-of-origin effects in brain, liver, 

kidney, and lung, based on reciprocal crosses of Cast/EiJ, PWK/PhJ, and WSB/EiJ (Crowley et 
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al. 2015). Two of the novel imprinted genes identified in our study (A230006K03Rik and 

A330076H08Rik) were replicated in their study, substantiating the validity and robustness of our 

approach. Our study establishes the retina as a model system for investigating imprinting and 

further underscores the value of the retina in studying mechanisms of gene regulation. 

 

5.2 The future of high-throughput cis-regulatory analysis  

 Massively parallel reporter assays (MPRAs) have become the method of choice for 

assaying cis-regulatory variants on a large scale. Our study in Chapter 3 is the first demonstration 

of high-throughput truncation mutation analysis, the first AAV-mediated MPRA, and the first 

MPRA in the mammalian brain (Shen et al. 2016). Since the publication of our study, other 

groups have adopted capture-and-clone and AAV MPRA strategies (Nguyen et al. 2016; 

Verfaillie et al. 2016). Additionally, others have used data from our study to gain insights into 

gene regulation (Mo et al. 2016). 

 In the past, the study of CREs in the brain and most other tissues was limited to laborious 

one-at-a-time experiments. Due to the difficulty of delivering MPRAs to tissues in vivo, most 

systematic studies of large numbers of CREs were conducted in cell lines, with uncertain 

relevance to mammalian tissues. Our demonstration of the feasibility of AAV-mediated MPRAs 

overcomes technological barriers and brings the era of functional genomics to mammalian 

systems in vivo. Virus-based strategies expand the repertoire of cells that could potentially be 

assayed, and systemic delivery of viruses may allow simultaneous multi-tissue cis-regulatory 

analysis (Inagaki et al. 2006; Zincarelli et al. 2008). Furthermore, since AAV can be designed to 

target specific cell types (Smith et al. 2000; Michelfelder and Trepel 2009), our study paves the 

way for refining the study of mammalian cis-regulation in vivo. 
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 In addition to AAV, lentivirus has also been used to deliver MPRAs, with the major 

difference being that lentiviral constructs integrate into the host genome. It has been suggested 

that chromosomally integrated reporter constructs recapitulate endogenous CRE activity more 

faithfully than episomal reporters, but thus far it is unclear whether this is the case (Inoue et al. 

2017). In yeast, delivery of 29 reporter constructs as plasmids or as integrated constructs in a 

specific chromosomal location (i.e., controlling for the site of integration) yielded very similar 

results (Sharon et al. 2012). However, lentivirus integrates randomly into the host genome, with 

the potential for undesirable insertion site effects (Murtha et al. 2014; Inoue et al. 2017). 

Furthermore, lentivirus is a pathogenic retrovirus that elicits a substantial host inflammatory 

response, whereas AAV is non-pathogenic (Nayak and Herzog 2010). Lentivirus does offer the 

advantage of a carrying capacity of 8 kb (compared to 4.7 kb for AAV), which would allow the 

delivery of CRE-seq libraries containing longer promoter-reporter cassettes (Kumar et al. 2001). 

Thus, AAV and lentivirus both have advantages and disadvantages, and both have utility in 

future MPRAs depending on the experimental goal. 

 Ideally, one would like to assay CREs in their endogenous context, at their endogenous 

sites within the genome. How could this be achieved? One possible approach would be to profile 

enhancer RNAs (eRNAs), non-coding RNAs that are transcribed at active enhancers. While the 

functional role of eRNAs is still debated (Lam et al. 2014; Kim et al. 2015), there is considerable 

evidence that levels of eRNAs (specifically, ‘2D’ or bidirectional non-polyadenylated eRNAs) 

reflect the activity of the corresponding enhancers. Thus, allele-specific eRNA profiling could be 

a way to detect the effects of enhancer variants in situ.  

 An even more promising approach for studying cis-regulatory variants in situ is by 

coupling MPRAs with CRISPR-Cas. In the few years since its first implementation in 
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mammalian cells, CRISPR-Cas has revolutionized molecular biology as a rapid, efficient means 

of editing DNA (Doudna and Charpentier 2014). CRISPR-Cas has already been utilized for 

saturation mutagenesis of coding regions (Findlay et al. 2014). It should be possible to use 

CRISPR-Cas for saturation mutagenesis of CREs, or even for combinations of coding and cis-

regulatory variants to study their interactions (e.g., epistasis) (Sackton and Hartl 2016). 

 

5.3 Future directions for investigating the MIR2113/POU3F2 locus 

 Most GWAS signals fall in non-coding regions and have modest effect sizes, rendering 

the identification of the underlying causal variant a challenge. The MIR2113/POU3F2 locus is 

typical in these regards, but it is exceptionally interesting because it harbors variants associated 

with both higher cognitive performance and increased risk for bipolar disorder. Unraveling the 

mechanism underlying this link may not only provide insights into the etiology of BPD, but also 

elucidate the molecular aspects of human brain development that confer both enhanced cognitive 

capacities and susceptibility to mental illness. 

 With this goal in mind, we identified a candidate causal variant, rs77910749, which falls 

within a highly conserved non-coding region, LC1. Our transgenic mouse lines suggest enhancer 

activity of LC1 in the developing amygdala and cortex. However, we observed considerable line-

to-line variability in transgene expression, likely due to insertion site effects (Wilson et al. 1990). 

To avoid insertion site effects, LC1 reporter constructs can be integrated into the mouse genome 

at a specific locus (‘safe harbor’) with CRISPR-Cas (Lombardo et al. 2011). It would be 

particularly valuable to generate a targeted transgenic reporter line with LC1 driving the 

expression of a fluorescent protein (e.g., GFP), which would enable FACS-based isolation of 

cells with LC1 activity. This may facilitate analysis of subpopulations within nuclei of the 
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amygdala, potentially enabling the detection of a small population of disease-relevant cells. 

Another way to isolate amygdala subregions would be with laser-capture microdissection (LCM), 

although this would not provide single-cell resolution (Zirlinger and Anderson 2003).  

 In our study, we primarily used mice as the model system. Besides the anatomical 

differences between mouse and human brains, there are also known species-specific and region-

specific differences in gene dosage requirements. For example, humans with mutations in Dcx 

have abnormal neocortical and hippocampal development, whereas mice with mutant Dcx have 

essentially normal neocortices but abnormal hippocampi (Corbo et al. 2002). Furthermore, 

rs77910749 is a human-specific variant, and we observed differences in LC1 enhancer activity in 

the developing mouse brain compared to human iPSC-derived cerebral organoids. Many of the 

experiments that were implemented in mouse (e.g., allele-specific expression analysis, 

methylation analysis, and allele-specific Pax6 binding) can also be conducted in iPSC-derived 

neurons or cerebral organoids. In particular, CRISPR-Cas can be used to knock-in rs77910749 

(or to revert rs77910749 to the reference allele) in otherwise isogenic cell lines. Furthermore, 

since POU3F2 promotes the conversion of differentiated cells into neurons, it would be 

interesting to measure the efficiency of cellular reprogramming (Vierbuchen et al. 2010; 

Wapinski et al. 2013).  

 In order to investigate the effects of cis-regulatory variants on organismal phenotype, 

however, animal models are needed. If LC1 is such a highly conserved region, why does deletion 

of LC1 in mice produce such modest effects? Previously, other groups deleted several ‘ultra-

conserved’ genomic regions in mouse, and no organismal phenotype was found despite extensive 

assays (Ahituv et al. 2007). To elicit the relevant phenotypes, it may be necessary to stimulate 

the animals with environmental stressors and/or pharmacological treatments. Additionally, 
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neuroimaging of mutant animals may provide more sensitive measures for detecting abnormal 

brain structure and function (Nieman et al. 2007). Ultimately, the study of variants of small 

effect will likely require highly sensitive assays and large sample sizes. 

 

5.4 Cis-regulatory biology in the era of clinical whole-genome sequencing 

 Routine whole-genome sequencing (WGS) of patients will soon become a reality. Thus 

far, most instances of clinical WGS have focused on the exome because of the difficulty of 

interpreting non-coding regions. Hence, the clinical potential of WGS has not been fully realized. 

Many issues related to medical ethics and healthcare policies remain to be addressed (van El et al. 

2013; Howard et al. 2015), but scientifically, one of the biggest bottlenecks is deciphering the 

functional consequences of the thousands of variants in non-coding regions, which represent 98% 

of the genome. This need is particularly pressing for neurological and neurodevelopmental 

disorders, which represent a large fraction of rare diseases with unknown causes (Gahl et al. 

2012). Given the complexities of assigning causality to cis-regulatory variants in the CNS, this 

challenge will likely persist for many years.  

 In the near future, physicians, scientists, and the public alike will grapple with the many 

uncertainties that accompany modifiable genetic risk. The definition of ‘disease’ will also have 

to be revisited, as evidence accumulates that disease-associated traits fall along a continuum and 

manifest in a context-dependent manner (e.g., (Constantino 2011)). The beauty of cis-regulatory 

biology is that it encapsulates many of the dualities pervasive across biology: nature vs. nurture, 

stochasticity vs. determinism, and flexibility vs. tight control. Likewise, the study of cis-

regulatory variants should teach us to balance necessary caution with acceptable risk, scientific 
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curiosity with clinical need, and subjectivity with objectivity. Eventually, though, science for the 

sake of science is what will drive the next breakthrough in cis-regulatory biology. 
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 Methylation is a type of DNA modification most often observed at CpG dinucleotides, in 

which a methyl group is added at the fifth carbon of cytosine (5mC). This modification is 

generally associated with gene silencing and is thought to have evolved as a host defense 

mechanism against viral DNA (Waterhouse et al. 2001). In development, methylation and 

demethylation are dynamic processes mediated by specific enzymes (Smith and Meissner 2013). 

Since methylation can block the binding of TFs, methylation can alter CRE activity, and 

methylated DNA is often associated with repressive histone marks and compacted chromatin. 

Methylation can be assayed with a variety of methods, but bisulfite sequencing provides single 

base resolution and is the gold standard (Bock 2012). One caveat of associated with this 

technique is that both 5mC and 5hmC (discussed below) are protected from bisulfite conversion, 

so they both appear ‘methylated’ in the assay. Newer techniques have been developed to 

overcome this issue (e.g., (Booth et al. 2012)). 

 It was recently discovered that in addition to 5mC (the ‘fifth’ DNA base), there is also 

5hmC (the ‘sixth’ DNA base), in which the fifth position of cytosine harbors a hydroxymethyl 

group (Kriaucionis and Heintz 2009; Pfeifer and Szabo 2009; Tahiliani et al. 2009). The 

conversion of 5mC to 5hmC occurs via the action of TET enzymes, and 5hmC is thought to be 

an intermediate leading to demethylation of a CpG (Wu and Zhang 2011). Since its discovery, 

5hmC has been widely studied in the brain, where it was first discovered (Sun et al. 2014), as 

well as in cancers (Ficz and Gribben 2014). The retina expresses several DNA 

methyltransferases (DNMTs) early in development. Later, rods and cones exhibit differential 

expression of Dnmt1 (Nasonkin et al. 2011). Therefore, I sought to investigate the potential roles 

of 5mC and 5hmC in retinal development, with a focus on photoreceptors. 
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 Whereas nearly all mammalian cells exhibit a ‘conventional’ nuclear architecture, with 

peripheral heterochromatin and central euchromatin, the rods (but not cones) of nocturnal 

mammalians have an ‘inverted’ nuclear architecture. In particular, there is a thin layer of 

peripheral euchromatin and a single large, central clump of heterochromatin in the rod nucleus of 

nocturnal mammals, which is thought to act as a lens to concentrate light onto the photosensitive 

outer segment (Carter-Dawson and LaVail 1979; Solovei et al. 2009). Based on mouse studies, 

the formation of the central clump of heterochromatin occurs slowly over development, 

beginning with small spheres that coalesce over the first postnatal month (Solovei et al. 2009). 

The chromatin structure of the rod nucleus is also reflected by histone marks: from central to 

peripheral, there is an increasing density of activating histone marks and a decreasing density of 

repressing histone marks (Kizilyaprak et al. 2010). Recent studies suggest that lamin A/C and 

lamin B receptor play key roles in the establishment of this rod nuclear architecture, and that 

methylation may also be involved (Solovei et al. 2013; Mo et al. 2016). 

 I examined the relationship between 5mC, 5hmC, and nuclear architecture in the 

developing retina by using antibodies that recognize 5mC-rich or 5hmC-rich DNA (Figure A1.1). 

At P0 (peak of rod birth), 5mC and 5hmC staining exhibit considerable overlap in cells of the 

NBL, where presumptive rods reside. As development progresses (P5-P8), 5mC becomes more 

localized to discrete foci within each nucleus in the ONL (which are nearly all rod nuclei), 

whereas 5hmC is distributed through the nucleus. By P22, most ONL nuclei have only one or 

two 5mC foci, and by P35, essentially all ONL cells have a single, central 5mC focus. In contrast, 

cells of the INL and GCL have similar 5mC and 5hmC staining patterns throughout development, 

namely one or few 5mC foci located in the nuclear periphery. Thus, it appears that the overall 

distribution of 5mC and 5hmC reflect heterochromatin and euchromatin, respectively, and mirror 
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the development of rod nuclear architecture (Figure A1.1C). Interestingly, the rod nuclear 

architecture is not fully established until ~4-5 weeks after birth, whereas by most other measures 

(including gene expression and electrophysiology), rods are mature by 3 weeks.  

 Cones are a relatively rare population in the wild-type mouse retina (~2% of cells) but 

abundant in the Nrl-/- retina, where rods have been developmentally transfated to cones (Mears et 

al. 2001). These transfated photoreceptors have been shown to be largely indistinguishable from 

native cones at the molecular, morphological, and functional levels. Compared to rods, native 

cones and Nrl-/- cones have a more conventional nuclear architecture, with a lesser degree of 

central clumping of heterochromatin and an increased amount of peripheral euchromatin 

(Solovei et al. 2013). In the Nrl-/- retina at age P63, the 5mC and 5hmC staining patterns are not 

qualitatively different from those of the wild-type retina (Figure A1.2). A conditional knockout 

of Nrl, in which mature rods have been partially converted to cones, also appeared normal 

(Figure A1.2). Additional studies are needed to confirm and clarify these findings.  

 The promoters of a handful of genes known to be expressed in the retina have been 

reported to exhibit retina-specific methylation patterns (Merbs et al. 2012). To examine the 

dynamics of methylation in the retina at the DNA level, I conducted bisulfite sequencing of 

retinas at multiple ages, focusing on the promoters of two genes: Rho (rhodopsin), a canonical 

rod photoreceptor gene, and Opn1sw (S-opsin), a canonical blue cone gene.  

 These analyses revealed that there is a progressive decrease in methylation over 

development at the Rho promoter in the WT retina but not in the Nrl-/- retina (Figure A1.3A). 

Similarly, there is a progressive decrease in methylation at the Opn1sw promoter in the Nrl-/- 

retina but not the WT retina (Figure A1.3B). This suggests that there are waves of demethylation 

that occur in rods and cones at the Rho and Opn1sw loci, respectively. Notably, these waves of 
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demethylation occur somewhat later than the known increase in expression of Rho and Opn1sw 

in rods and cones, respectively, although here I did not directly measure expression of these 

genes. 

 To confirm the cell type specificity of the effect, I also conducted bisulfite analysis of the 

Rho promoter for FACS-sorted photoreceptors (nearly all of which are rods) and bipolar cells 

from adult Otx2-GFP mice (Fossat et al. 2007). As expected, the Rho promoter was essentially 

unmethylated in FACS-sorted adult photoreceptors, but heavily methylated in bipolar cells 

(Figure A1.4).  

 In summary, methylation in rod photoreceptors is highly dynamic over development, as 

assessed by 5mC and 5hmC antibody staining as well as by bisulfite sequencing. Changes in 

methylation are temporally delayed compared to changes in gene expression, suggesting a 

maintenance rather than causal role. Recent studies in our lab have attempted to directly 

reprogram rods into cones for therapeutic purposes, but thus far, these efforts have achieved only 

partial reprogramming, presumably due to epigenetic barriers to transdifferentiation (Montana et 

al. 2013). It is possible that introducing demethylases or histone deacetylase (HDAC) inhibitors 

such as valproic acid (Milutinovic et al. 2007; Huangfu et al. 2008) may help overcome 

epigenetic barriers to transdifferentiation, thereby permitting more efficient conversion of rods 

into cones. 
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Figure A1.1. The distribution of 5mC and 5hmC in mouse rod photoreceptors during 

development reflects nuclear architecture. (A) Frozen sections of retinas at the indicated 

postnatal days were analyzed by immunohistochemistry. Retinas were from controls in CTCF 

experiments (Appendix 2). CTCF mutant retinas were also analyzed and showed no difference in 

antibody staining patterns compared to controls (data not shown). Rod nuclei reside in the ONL 

and constitute most of the cells there. The following antibodies were used: anti-5mC, Eurogentec 

BI-MECY-9199 (with red secondary); anti-5hmC, ActiveMotif 39769 (with green secondary). 

Images were taken at 400X magnification. Blue, DAPI stain. NBL, neuroblast layer; ONL, outer 

nuclear layer; INL, inner nuclear layer; GCL; ganglion cell layer. (B) Enlarged images with 

DAPI channel removed for clarity. P35 image was taken at 1000X. (C) Model of mouse rod 

nuclear architecture development, at ages corresponding to those in the images above, based on 

(Solovei et al. 2009). 
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Figure A1.2. 5mC and 5hmC distributions in models of rod-to-cone transdifferentiation. 

Antibody staining for 5mC and 5hmC were conducted as for Figure A1.1. All mice were age P63. 

Left panel: Nrl-/- retina, which contains cones only (no rods) for photoreceptors. Note the rosettes 

typical for this mutant. Middle panel: Control retina (CAG-Cre-ERT;Nrlfl/+) treated with 

tamoxifen daily at P42-P44. Right panel: Conditional Nrl knockout retina (CAG-Cre-ERT;Nrlfl/fl) 

treated with tamoxifen daily at P42-P44. Slides were a gift from Cynthia Montana—see 

(Montana et al. 2013) for information. All images were taken at 400X magnification. ONL, outer 

nuclear layer; INL, inner nuclear layer; GCL; ganglion cell layer. 
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Figure A1.3. Bisulfite analysis of Rho and Opn1sw promoters in wild-type and Nrl-/- retinas 

over development. Bisulfite treatment, PCR, cloning, and analysis were conducted described in 

(Rohde et al. 2010; Montana et al. 2013) for these two loci. Two replicates (each consisting of 

multiple retinas) for each time point were harvested. Top: Data for individual CpG sites are 

shown. Each row represents an analyzed cell. Red = methylated, blue = unmethylated, white = 

no data. Bottom: Quantification of methylation levels (averaged over the analyzed region). Error 

bars indicate SEM between the two replicates. (A) Rho promoter. (B) Opn1sw promoter.  
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Figure A1.4. FACS-sorted photoreceptors and bipolar cells reveal cell type-specific 

methylation patterns at the Rho promoter. (A) FACS plot depicting sorting of bipolar cells 

and photoreceptor cells (most of which are rods). The retinas of mice (age 3 months) 

heterozygous for the Otx2-GFP transgene were dissociated. Cells with high GFP levels (bipolar 

cells) and cells with low GFP levels (photoreceptors) were collected. As a control, retinas from 

wild-type littermates were dissociated and sorted to establish baseline levels of fluorescence. 

Two independent sorts were conducted, resulting in two biological replicates each of bipolar 

cells and photoreceptors. X-axis (FSC-A), forward scatter. Y-axis (FITC-A), GFP levels. (B) 

Bisulfite analysis of the Rho promoter. Data for individual CpG sites are shown. Each row 

represents an analyzed cell. Red = methylated, blue = unmethylated, white = no data. The 

difference in methylation levels between the two bipolar replicates may be due to contamination 

of first bipolar replicate with rod photoreceptors. 
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APPENDIX 2: 

The role of CTCF in the retina 
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 CTCF (CCCTC-binding factor) is a ubiquitously expressed transcription factor (TF) that 

facilitates the establishment of 3D genome architecture by forming topologically associating 

domains (TADs). TADs are separated by DNA elements called insulators, which contain motifs 

bound by CTCF (Ghirlando and Felsenfeld 2016). For many years, CTCF was widely touted as 

the ‘master weaver’ of the genome (Phillips and Corces 2009). This was most convincingly 

demonstrated by CRISPR-Cas mediated mutation of CTCF sites, which caused changes in gene 

expression and chromatin looping (Guo et al. 2015). In its role as a mediator of chromatin 

looping, CTCF is thought to act in concert with cohesin (Rubio et al. 2008; Wendt et al. 2008; 

Nativio et al. 2009). However, cohesin-independent effects of CTCF have been reported (Kim et 

al. 2011; Zuin et al. 2014). Additionally, it is unclear how CTCF establishes cell type-specific 

chromatin architecture. 

 In the avian retina, CTCF and Pax6 are initially coexpressed in early development but 

then segregate, such that photoreceptors are CTCF+, Pax6- and amacrine cells are Pax6+, CTCF- 

(Canto-Soler et al. 2008). In that study, it was suggested the CTCF represses Pax6 expression 

and thereby indirectly promotes photoreceptor fate. To clarify the role of CTCF in the 

mammalian retina, I histologically characterized CTCF knockout mouse retinas in collaboration 

with Connie Myers.  

 To knock out CTCF in the developing retina, we recombined a floxed allele of CTCF 

using a Cre recombinase driven by the Six3 promoter. Since Six3 is widely expressed in retinal 

progenitors (as well as in other parts of the CNS) by E11.5, Six3Cre+;CTCFfl/fl retinas should be 

essentially CTCF-deficient (Oliver et al. 1995). We found morphological evidence of retinal 

degeneration in the CTCF mutants, with rapidly progressive thinning of all retinal layers (Figure 

A2.1). Despite this degeneration, multiple cell types could still be identified in the CTCF 
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mutants by antibody staining against M-opsin (M-cones), S-opsin (S-cones), PKCɑ (bipolar 

cells), anti-Pax6 (amacrine cells), and glutamine synthetase (Müller glia) (Figure A2.2). These 

findings suggest that while CTCF may be important for the maintenance of these retinal cell 

types, it is not required for their formation. It is possible that CTCF has subtle effects on specific 

cell subpopulations or on the relative proportions of cell types. Also, rods and horizontal cells 

were not analyzed, although well-characterized markers for these cells, and additional markers 

for the other cell types, are available and should be used in future studies (Cheng et al. 2013). 

 Notably, in the mutants but not in the controls, there appeared to be a greater degree of 

co-localization of Pax6 and glutamine synthetase (GS) expression in the cells of the INL, both at 

P28 (Figure A2.2C, white arrowheads) and at P10 (data not shown). This suggests that either 

amacrine cells (typically Pax6+ and GS-) have gained GS expression, or Müller glia (generally 

assumed to be GS+ and Pax6-) have gained Pax6 expression. It is now known that Müller glia 

can express Pax6 and their nuclei can migrate in response to injury (Roesch et al. 2008; Joly et al. 

2011). It is also possible that, since CTCF normally represses Pax6 expression, the deletion of 

CTCF may directly lead to the derepression of Pax6 in Müller glia. Further experiments are 

needed to verify the initial observation and to distinguish these scenarios. Also, the distribution 

of CTCF expression in the wild-type retina, and the extent of CTCF knockout in the mutant, 

should be assessed in the future.  
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Figure A2.1. Deletion of CTCF in the mouse neural retina results in retinal degeneration. 

Control and mutant eyes were examined by H&E staining of paraffin sections. Ages and 

genotypes are indicated. For P8 mutant, rosettes were observed in some regions. Images were 

taken at 400X magnification. ONL, outer nuclear layer; INL, inner nuclear layer; GCL, ganglion 

cell layer.  

 

  



248 

  

 
 

Figure A2.2. Expression of cellular markers in CTCF knockout retinas. Frozen sections of 

control (Six3Cre+;CTCF+/fl) and mutant (Six3Cre+;CTCFfl/fl) P28 retinas were analyzed with 

antibodies. (A) anti-M-opsin (red/green cones), Millipore AB5405; anti-Chx10 (bipolar cells), 

Exalpha Biologicals X1180; (B) anti-S-opsin (blue cones), Millipore AB5407; anti-PKCɑ 

(bipolars), Millipore 05-154; (C) anti-Pax6 (amacrine cells), Developmental Studies Hybridoma 

Bank; anti-glutamine synthetase (Müller glia), BD 610517. White arrowheads are described in 

the text. Images were taken at 200X magnification. Blue, DAPI stain. GS, glutamine synthetase; 

ONL, outer nuclear layer; INL, inner nuclear layer; GCL, ganglion cell layer.  
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APPENDIX 3 

High-coverage CRE-seq libraries tiling the MIR2113/POU3F2 locus   
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 In our study of the MIR2113/POU3F2 locus, we pursued a candidate causal variant 

(rs77910749) that fell within a fetal brain DHS (LC1). However, the locus contains many dozens 

of fetal brain-specific DHS peaks, suggesting that multiple CREs within this region act in 

combination to regulate POU3F2 and/or other target genes. To systematically and 

comprehensively assay these fetal brain-specific DHSs for cis-regulatory activity, I synthesized 

two types of CRE-seq libraries: (1) a PCR-based library of candidate CREs within a 1.5 Mb 

window, and (2) a bacterial artificial chromosome (BAC)-based library of elements that tiled 

across 440 kb. These two libraries are targeted and unbiased strategies, respectively, that 

complement each other. 

 For the PCR library, I selected 100 fetal brain-specific DHSs in a 1.5 Mb window 

(Chr6:97.8-99.3 Mb in hg19), designed primers, and conducted individual PCR reactions, using 

commercially available human gDNA as the template (Figure A3.1). Next, I cloned each PCR 

product (~0.5-2 kb in length, with an average of ~1 kb) as a NotI fragment into a barcoded CRE-

seq vector (described in Chapter 3) and picked individual colonies for Sanger sequencing to 

determine the barcode sequence. A total of 799 barcoded constructs representing 97 (out of the 

targeted 100) DHS’s were obtained (Figure A3.2). Notably, since the template DNA for PCR 

came from a pool of individuals, variants were represented in this library. 

 I made two versions of the PCR library: one with Rho basal-GFP (described in Chapter 3), 

and another with the 3.6 kb POU3F2 promoter (described in Chapter 4) driving DsRed. The 

promoter-reporter cassette was cloned into the FseI/AscI sites of the vector. These libraries are 

ready for CRE-seq by transfection or electroporation. Alternatively, the libraries can be 

transferred into the AAV vector for packaging and delivery as AAV libraries (described in 

Chapter 3). Preliminary studies (using the 3.6 kb POU3F2-DsRed version of the library) showed 
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minimal DsRed expression in ex vivo electroporated developing mouse cerebral cortex, as seen 

under a dissecting fluorescent microscope. This suggests that most elements in this library are 

inactive and/or incompatible with this promoter.  

 To generate a library that would tile the locus in a relatively unbiased manner, I created a 

CRE-seq library with three BAC constructs (RP11-640D17, RP11-13H22, RP11-71E9) that 

encompass a region of ~440 kb (Chr6:98,378,700-98,821,999 in hg19). After purifying the 

BACs with the Qiagen Large-Construct Kit, I sonicated the DNA to a target fragment size of 

~600-700 bp. After end repair, I cloned the fragments into the NotI site of the barcoded CRE-seq 

vector. I determined the correspondence between the BAC fragments and barcode sequences 

using paired-end sequencing (described in Chapter 3). Overall, I obtained 20,867 barcodes with a 

median BAC fragment size of ~630 bp and 40X median coverage (Figure A3.3 and Figure A3.4). 

The Rho basal-GFP cassette has been cloned into this library.  

  Together, the PCR library and BAC library should be valuable tools for screening the 

cis-regulatory potential of regions within the MIR2113/POU3F2 intergenic locus. In each case, 

an alternate promoter-reporter cassette can be cloned into the FseI/AscI sites. The choice of the 

promoter is an important consideration, because detection of enhancer activity may require a 

compatible proximal promoter with some level of basal activity. The choice of the assayed cell 

type is another important consideration. Given that both of these libraries are composed of 

human DNA elements, it may be valuable to test them in both developing mouse cerebral cortex 

and iPSC-derived cerebral organoids (as in Chapter 4).  
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Figure A3.1. The 100 target regions in the MIR2113/POU3F2 locus for the PCR CRE-seq 

library. One hundred human fetal brain-specific DHSs within a 1.5 Mb window (roughly 

centered on the ‘local cluster’, highlighted in pink) were selected for PCR and cloning (purple 

regions). Note the locations of MIR2113 and POU3F2 (red font). 

 

 

  



253 

  

 
 

Figure A3.2. Distribution of product lengths in the PCR library and coverage of target 

DHSs in the MIR2113/POU3F2 locus. (A) Distribution of the lengths of the PCR products. (B) 

Coverage of target DHS’s. Of the 100 targeted DHSs, 97 were successfully cloned with a total of 

799 barcoded constructs. The median coverage was 8X. 
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Figure A3.3. A BAC library tiling 440 kb of the MIR2113/POU3F2 locus at 40X coverage. 

A total of 20,867 barcoded constructs were obtained, with the individual BAC fragments shown 

in red. The vertical scale for 40X coverage is indicated. Note the overlap of the three original 

BACs where there is higher coverage in the library as expected (yellow highlighted regions). 

Also note the location of LC1 (red font) within the ‘local cluster’ (pink highlighted region) (see 

Chapter 4). 
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Figure A3.4. Distribution of fragment lengths in the BAC library and coverage of the 

MIR2113/POU3F2 locus. Three BACs covering a ~440 kb region (Chr6:98,378,700-98,821,999 

in hg19) were sonicated, cloned into a barcoded CRE-seq vector, and subjected to paired-end 

sequencing. (A) Distribution of the lengths of BAC fragments cloned into the library. The 

average length was 629 bp (SD = 87 bp). (B) Coverage of the region (split into 1 kb windows, 

i.e., 440 regions). The median coverage was 40X. 
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