159 research outputs found

    Realization of Low-Voltage Modified CBTA and Design of Cascadable Current-Mode All-Pass Filter

    Get PDF
    In this paper, a low voltage modified current backward transconductance amplifier (MCBTA) and a novel first-order current-mode (CM) all-pass filter are presented. The MCBTA can operate with ±0.9 V supply voltage and the total power consumption of MCBTA is 1.27 mW. The presented all-pass filter employs single MCBTA, a grounded resistor and a grounded capacitor. The circuit possesses low input and high output impedances which make it ideal for current-mode systems. The presented all-pass filter circuit can be made electronically tunable due to the bias current of the MCBTA. Non-ideal study along with simulation results are given for validation purpose. Further, an nth-order cascadable all-pass filter is also presented. It uses n MCBTAs, n grounded resistors and n grounded capacitors. The performance of the proposed circuits is demonstrated by using PSPICE simulations based on the 0.18 µm TSMC level-7 CMOS technology parameters

    Log-domain electronically-tuneable fully differential high order multi-function filter

    Get PDF
    This paper presents the synthesis of fully deferential circuit that is capable of performing simultaneous high-pass, low-pass, and band-pass filtering in the log domain. The circuit utilizes modified Seevinck’s integrators in the current mode. The transfer function describing the filter is first presented in the form of a canonical signal flow graph through applying Mason’s gain formula. The resulting signal flow graph consists of summing points and pick-off points associated with current mode integrators within unity-gain negative feedback loops. The summing points and the pick-off points are then synthesized as simple nodes and current mirrors, respectively. A new fully differential current-mode integrator circuit is proposed to realize the integration operation. The proposed integrator uses grounded capacitors with no resistors and can be adjusted to work as either lossless or lossy integrator via tuneable current sources. The gain and the cutoff frequency of the integrator are adjustable via biasing currents. Detailed design and simulation results of an example of a 5th order filter circuit is presented. The proposed circuit can perform simultaneously 5th order low-pass filtering, 5th order high-pass filtering, and 4th order band-pass filtering. The simulation is performed using Pspice with practical Infineon BFP649 BJT model. Simulation results show good matching with the target

    Various Order Low–Pass Filter with the Electronic Change of Its Approximation

    Get PDF
    A design of a low pass frequency filter with the electronic change of the approximation characteristics of resulting responses is presented. The filter also offers the reconnection–less reconfiguration of the order (1st, 2nd, 3rd and 4th order functions are available). Furthermore, the filter offers the electronic control of the cut–off frequency of the output response. The feature of the electronic change of the approximation characteristics has been investigated for Butterworth, Bessel, Cauer, Chebyshev and Inverse Chebyshev approximations. The design is verified by PSpice simulations and experimental measurements. The results are also supported by the transient domain response (response to the square waveform), comparison of group delay, sensitivity analysis and implementation feasibility based on given approximation. The benefit of the proposed electronic change of the approximation characteristics feature (in general signal processing or for sensors in particular) has been presented and discussed for an exemplary scenario

    Digital Filters

    Get PDF
    The new technology advances provide that a great number of system signals can be easily measured with a low cost. The main problem is that usually only a fraction of the signal is useful for different purposes, for example maintenance, DVD-recorders, computers, electric/electronic circuits, econometric, optimization, etc. Digital filters are the most versatile, practical and effective methods for extracting the information necessary from the signal. They can be dynamic, so they can be automatically or manually adjusted to the external and internal conditions. Presented in this book are the most advanced digital filters including different case studies and the most relevant literature

    Analog Implementation of Fractional-Order Elements and Their Applications

    Get PDF
    With advancements in the theory of fractional calculus and also with widespread engineering application of fractional-order systems, analog implementation of fractional-order integrators and differentiators have received considerable attention. This is due to the fact that this powerful mathematical tool allows us to describe and model a real-world phenomenon more accurately than via classical “integer” methods. Moreover, their additional degree of freedom allows researchers to design accurate and more robust systems that would be impractical or impossible to implement with conventional capacitors. Throughout this thesis, a wide range of problems associated with analog circuit design of fractional-order systems are covered: passive component optimization of resistive-capacitive and resistive-inductive type fractional-order elements, realization of active fractional-order capacitors (FOCs), analog implementation of fractional-order integrators, robust fractional-order proportional-integral control design, investigation of different materials for FOC fabrication having ultra-wide frequency band, low phase error, possible low- and high-frequency realization of fractional-order oscillators in analog domain, mathematical and experimental study of solid-state FOCs in series-, parallel- and interconnected circuit networks. Consequently, the proposed approaches in this thesis are important considerations in beyond the future studies of fractional dynamic systems

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Circuit Techniques for Low-Power and Secure Internet-of-Things Systems

    Full text link
    The coming of Internet of Things (IoT) is expected to connect the physical world to the cyber world through ubiquitous sensors, actuators and computers. The nature of these applications demand long battery life and strong data security. To connect billions of things in the world, the hardware platform for IoT systems must be optimized towards low power consumption, high energy efficiency and low cost. With these constraints, the security of IoT systems become a even more difficult problem compared to that of computer systems. A new holistic system design considering both hardware and software implementations is demanded to face these new challenges. In this work, highly robust and low-cost true random number generators (TRNGs) and physically unclonable functions (PUFs) are designed and implemented as security primitives for secret key management in IoT systems. They provide three critical functions for crypto systems including runtime secret key generation, secure key storage and lightweight device authentication. To achieve robustness and simplicity, the concept of frequency collapse in multi-mode oscillator is proposed, which can effectively amplify the desired random variable in CMOS devices (i.e. process variation or noise) and provide a runtime monitor of the output quality. A TRNG with self-tuning loop to achieve robust operation across -40 to 120 degree Celsius and 0.6 to 1V variations, a TRNG that can be fully synthesized with only standard cells and commercial placement and routing tools, and a PUF with runtime filtering to achieve robust authentication, are designed based upon this concept and verified in several CMOS technology nodes. In addition, a 2-transistor sub-threshold amplifier based "weak" PUF is also presented for chip identification and key storage. This PUF achieves state-of-the-art 1.65% native unstable bit, 1.5fJ per bit energy efficiency, and 3.16% flipping bits across -40 to 120 degree Celsius range at the same time, while occupying only 553 feature size square area in 180nm CMOS. Secondly, the potential security threats of hardware Trojan is investigated and a new Trojan attack using analog behavior of digital processors is proposed as the first stealthy and controllable fabrication-time hardware attack. Hardware Trojan is an emerging concern about globalization of semiconductor supply chain, which can result in catastrophic attacks that are extremely difficult to find and protect against. Hardware Trojans proposed in previous works are based on either design-time code injection to hardware description language or fabrication-time modification of processing steps. There have been defenses developed for both types of attacks. A third type of attack that combines the benefits of logical stealthy and controllability in design-time attacks and physical "invisibility" is proposed in this work that crosses the analog and digital domains. The attack eludes activation by a diverse set of benchmarks and evades known defenses. Lastly, in addition to security-related circuits, physical sensors are also studied as fundamental building blocks of IoT systems in this work. Temperature sensing is one of the most desired functions for a wide range of IoT applications. A sub-threshold oscillator based digital temperature sensor utilizing the exponential temperature dependence of sub-threshold current is proposed and implemented. In 180nm CMOS, it achieves 0.22/0.19K inaccuracy and 73mK noise-limited resolution with only 8865 square micrometer additional area and 75nW extra power consumption to an existing IoT system.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138779/1/kaiyuan_1.pd

    Recent Topics in Electromagnetic Compatibility

    Get PDF
    Recent Topics in Electromagnetic Compatability discusses several topics in electromagnetic compatibility (EMC) and electromagnetic interference (EMI), including measurements, shielding, emission, interference, biomedical devices, and numerical modeling. Over five sections, chapters address the electromagnetic spectrum of corona discharge, life cycle assessment of flexible electromagnetic shields, EMC requirements for implantable medical devices, analysis and design of absorbers for EMC applications, artificial surfaces, and media for EMC and EMI shielding, and much more
    • …
    corecore