295 research outputs found

    Analytical evaluation of adaptive transmission protocols for Markov models of channels with fading and moderate shadowing

    Get PDF
    Adaptive transmission protocols are often employed to communicate over wireless channels with fading and other time-varying propagation losses. The protocols compensate for the propagation losses and maintain high throughput by adjusting transmission parameters in response to the channel variations. Performance evaluations for practical adaptive transmission protocols typically require simulation of both the time-varying processes and the procedure by which the protocol derives information about the channel quality. In this thesis, we develop an analytical method to evaluate the performance of two practical protocols, an adaptive coding protocol and an adaptive modulation and coding protocol, which rely on statistics derived from the demodulation process. Our method for performance analysis avoids the need for simulations of the adaptive protocols and the derivation of statistics that are used for adaptation; furthermore, our approach avoids the simulation of the time-varying channel

    Erlang Capacity of Multi-class TDMA Systems with Adaptive Modulation and Coding

    Get PDF

    On Noisy ARQ in Block-Fading Channels

    Get PDF
    Assuming noisy feedback channels, this paper investigates the data transmission efficiency and robustness of different automatic repeat request (ARQ) schemes using adaptive power allocation. Considering different block-fading channel assumptions, the long-term throughput, the delay-limited throughput, the outage probability and the feedback load of different ARQ protocols are studied. A closed-form expression for the power-limited throughput optimization problem is obtained which is valid for different ARQ protocols and feedback channel conditions. Furthermore, the paper presents numerical investigations on the robustness of different ARQ protocols to feedback errors. It is shown that many analytical assertions about the ARQ protocols are valid both when the channel remains fixed during all retransmission rounds and when it changes in each round (in)dependently. As demonstrated, optimal power allocation is crucial for the performance of noisy ARQ schemes when the goal is to minimize the outage probability

    Queueing analysis for cross-layer design with adaptive modulation and coding

    Get PDF
    PhDWith the development of wireless networks, Quality of Service (QoS) has become one of the most important mechanisms to improve the system performance such as loss, delay and throughput. Cross-layer design is seen as one of the main approaches to achieve QoS provisioned services in contrast to the well-adopted TCP/IP network model. This thesis focuses on the cross-layer design incorporating queueing effects and adaptive modulation and coding (AMC), which operates at both the data-link layer and the physical layer, to obtain the performance analyses on loss, delay and throughput using the matrix geometric method. More specifically, this thesis explores the potential to extend the cross-layer analysis, at the data-link and the physical layer respectively. At the data-link layer, since the traffic types such as voice, video and data are proven to be bursty, and the well-adopted Poisson arrivals fail to capture the burstiness of such traffic types, the bursty traffic models including ON-OFF and aggregated ON-OFF arrivals are introduced in the cross-layer analysis. This thesis investigates the impact of traffic models on performance analysis, identifying the importance of choosing the proper traffic model for cross-layer analysis. At the physical layer, IEEE 802.11ac standard is adopted for the cross-layer analysis. In order to meet the specifications of 802.11ac with higher-order Modulation and Coding Schemes (MCS), wider channel bandwidth and more spatial streams, the Signal-to-Noise Ratio (SNR) thresholds are re-determined for the AMC; in addition, a single user (SU) multiple in multiple out (MIMO) spatial multiplexing system with zero-forcing (ZF) detector is adopted for the cross-layer analysis. Furthermore, this thesis explores the impact of antenna correlations on the system performance. All of the work done in this thesis aims at obtaining more practical performance analysis on the cross-layer design incorporating queueing effects and AMC. The proposed cross-layer analysis is quite general, so that it’s ready to be applied to any QoS provisioned networks

    Mobile and Wireless Communications

    Get PDF
    Mobile and Wireless Communications have been one of the major revolutions of the late twentieth century. We are witnessing a very fast growth in these technologies where mobile and wireless communications have become so ubiquitous in our society and indispensable for our daily lives. The relentless demand for higher data rates with better quality of services to comply with state-of-the art applications has revolutionized the wireless communication field and led to the emergence of new technologies such as Bluetooth, WiFi, Wimax, Ultra wideband, OFDMA. Moreover, the market tendency confirms that this revolution is not ready to stop in the foreseen future. Mobile and wireless communications applications cover diverse areas including entertainment, industrialist, biomedical, medicine, safety and security, and others, which definitely are improving our daily life. Wireless communication network is a multidisciplinary field addressing different aspects raging from theoretical analysis, system architecture design, and hardware and software implementations. While different new applications are requiring higher data rates and better quality of service and prolonging the mobile battery life, new development and advanced research studies and systems and circuits designs are necessary to keep pace with the market requirements. This book covers the most advanced research and development topics in mobile and wireless communication networks. It is divided into two parts with a total of thirty-four stand-alone chapters covering various areas of wireless communications of special topics including: physical layer and network layer, access methods and scheduling, techniques and technologies, antenna and amplifier design, integrated circuit design, applications and systems. These chapters present advanced novel and cutting-edge results and development related to wireless communication offering the readers the opportunity to enrich their knowledge in specific topics as well as to explore the whole field of rapidly emerging mobile and wireless networks. We hope that this book will be useful for students, researchers and practitioners in their research studies

    Network Coding for Packet Radio Networks

    Get PDF
    We present methods for network-coded broadcast and multicast distribution of files in ad hoc networks of half-duplex packet radios. Two forms of network coding are investigated: fountain coding and random linear network coding. Our techniques exploit the broadcast nature of the wireless medium by permitting nodes to receive packets from senders other than their designated relays. File transfer is expedited by having multiple relays cooperate to forward the file to a destination. When relay nodes apply fountain coding to the file, they employ a simple mechanism to completely eliminate the possibility of sending duplicate packets to the recipients. It is not necessary for the nodes to transmit multiple packets simultaneously or to receive packets from multiple senders simultaneously. To combat the effects of time varying propagation loss on the links, each sender has the option to adapt the modulation format and channel-coding rate packet-by-packet by means of an adaptive transmission protocol. We use simulations to compare our network-coded file distributions with conventional broadcast and multicast techniques that use automatic repeat request (ARQ). Our numerical results show that the proposed strategies outperform ARQ-based file transfers by large margins for most network configurations. We also provide analytical upper bounds on the throughput of file distributions in networks comprising four nodes. We illustrate that our network-coded file-distribution strategies, when applied to the four-node networks, perform very close to the bounds

    A Free Space Optic/Optical Wireless Communication: A Survey

    Get PDF
    The exponential demand for the next generation of services over free space optic and wireless optic communication is a necessity to approve new guidelines in this range. In this review article, we bring together an earlier study associated with these schemes to help us implement a multiple input/multiple output flexible platform for the next generation in an efficient manner. OWC/FSO is a complement clarification to radiofrequency technologies. Notably, they are providing various gains such as unrestricted authorizing, varied volume, essential safekeeping, and immunity to interference.

    Delay Performance of MISO Wireless Communications

    Full text link
    Ultra-reliable, low latency communications (URLLC) are currently attracting significant attention due to the emergence of mission-critical applications and device-centric communication. URLLC will entail a fundamental paradigm shift from throughput-oriented system design towards holistic designs for guaranteed and reliable end-to-end latency. A deep understanding of the delay performance of wireless networks is essential for efficient URLLC systems. In this paper, we investigate the network layer performance of multiple-input, single-output (MISO) systems under statistical delay constraints. We provide closed-form expressions for MISO diversity-oriented service process and derive probabilistic delay bounds using tools from stochastic network calculus. In particular, we analyze transmit beamforming with perfect and imperfect channel knowledge and compare it with orthogonal space-time codes and antenna selection. The effect of transmit power, number of antennas, and finite blocklength channel coding on the delay distribution is also investigated. Our higher layer performance results reveal key insights of MISO channels and provide useful guidelines for the design of ultra-reliable communication systems that can guarantee the stringent URLLC latency requirements.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl
    • …
    corecore