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Abstract

Adaptive transmission protocols are often employed to communicate over wireless

channels with fading and other time-varying propagation losses. The protocols compensate

for the propagation losses and maintain high throughput by adjusting transmission param-

eters in response to the channel variations. Performance evaluations for practical adaptive

transmission protocols typically require simulation of both the time-varying processes and

the procedure by which the protocol derives information about the channel quality. In this

thesis, we develop an analytical method to evaluate the performance of two practical proto-

cols, an adaptive coding protocol and an adaptive modulation and coding protocol, which

rely on statistics derived from the demodulation process. Our method for performance

analysis avoids the need for simulations of the adaptive protocols and the derivation of

statistics that are used for adaptation; furthermore, our approach avoids the simulation of

the time-varying channel.
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Chapter 1

Introduction

Communication over wireless channels typically suffers from fading and other time-

varying propagation losses. Adaptive transmission protocols are employed to achieve high

throughput on such channels. The basic premise is to adapt transmission parameters such

as modulation and error-control coding in response to the variations in the channel. Several

adaptation strategies [1–4] assume that perfect channel-state information is either read-

ily available at the transmitter or relayed back to the transmitter at the same time as the

forward transmission. Other adaptive protocols employ pilot or training symbols to esti-

mate the channel state (e.g., [5] and several IEEE standards). In contrast, [6] and [7] have

proposed adaptive protocols that rely only on statistics derived from the demodulator and

decoder at the receiver. These protocols give nearly optimal performance without requiring

full-duplex transmission or the use of pilot symbols; hence, they are more practical.

Performance evaluations of such adaptive transmission protocols typically require

extensive simulations. Firstly, the time-varying characteristics of the channel such as fading

and shadowing have to be accurately simulated. Finite-state Markov models [8–14] of

the channel are often employed to simplify such simulations. Secondly, the operation of

the protocol, including the procedure by which it extracts information about the channel

1



quality, has to be simulated. For the receiver-statistic protocols [6, 7], simulations of the

demodulator and decoder, especially an iterative decoder, prove to be time-consuming.

Hence, there is a need for analytical evaluation of adaptive transmission protocols that

avoids time-consuming simulations. To address this need, analytical methods were given

in [14] to determine the performance bounds for adaptive coding on fading channels that

are modeled by Markov chains. In [15], the authors derive an analytical approximation to

the throughput of an adaptive coding protocol [6] that relies on a count of binary symbol

errors.

In this thesis, we build on the work of [14] and [15] to outline an analytical method

for evaluating the performance of a general class of adaptive transmission protocols for

packet radio systems operating over a time-varying channel. A key aspect in the analyti-

cal evaluation of a protocol is the statistical characterization of the process by which the

protocol selects transmission parameters for a packet. The analytical method outlined in

the thesis can be applied to a general class of adaptive transmission protocols that select

transmission parameters for the next packet based on the channel-state information that is

derived from measurements, estimates, or statistics obtained from the preceding packet.

Our analytical method avoids the need for simulations of the fading process, the shadow-

ing, or the Markov models for these phenomena; furthermore, it avoids simulation of the

protocol itself.

We illustrate the analytical method for two protocols, namely, an adaptive coding

protocol proposed in [6] and an adaptive modulation and coding protocol investigated in

[7]. Both protocols adapt the transmission parameters based on statistics that are derived

from the demodulation process. The process by which the protocols select the code or

code-modulation combination for a packet can be statistically characterized in terms of the

probability distribution of the demodulator statistics. The demodulator statistic for a packet

depends on which modulation is employed for the packet. The two adaptive protocols

2



and the analytical method to evaluate their performance are applicable to many forms of

modulation; however, for the purposes of illustration, we consider coherent demodulation

of quadriphase shift key (QPSK) modulation, quadrature amplitude modulation (QAM),

and biorthogonal modulation. We determine the probability distribution of demodulator

statistics that are specific to these modulation formats. The probability distribution is in

turn used to statistically characterize the selection process of the protocols.

The thesis is organized as follows. In Chapter 2, a review of the demodulator-

statistic based adaptive transmission protocols is provided. The channel model used to

evaluate the protocols is given. The modulation formats and the corresponding demodu-

lator statistics that are employed by the protocols are explained. In Chapter 3, we deter-

mine the probability distribution of the demodulator statistics. In Chapter 4, we develop

the method for performance analysis of the demodulator-statistic based adaptive transmis-

sion protocols. As a benchmark for performance, two hypothetical protocols [6, 7] that

are given varying degrees of perfect channel-state information are considered. In Chapter

5, the simulation results for the demodulator-statistic based protocols are compared with

the analytical calculations for various fading and shadowing scenarios. We also compare

the performance of the demodulator-statistic based protocols with that of the hypothetical

protocols.

3



Chapter 2

System Description

We consider packet radio communication systems with half-duplex radios that can

adapt transmission parameters on a packet-by-packet basis. In Section 2.1, we give an

overview of the adaptive transmission protocols that are considered in this thesis. The

channel model is given in Section 2.2. The modulation formats and their corresponding

demodulator statistics are given in Sections 2.3 and 2.4 respectively.

2.1 An overview of the protocols

Consider a source that has to send a sequence of packets over a channel with fading

and shadowing. The receiver derives information about the channel quality while demod-

ulating and decoding a packet. This information about the channel quality is used by an

adaptive protocol to select the transmission parameters for the next packet. The transmis-

sion parameters that can be adapted include coding and modulation. The set of error-control

codes available at the source is denoted by {Ci : 1≤ i≤nc}, indexed in order of increasing

rates. The set of modulation formats available at the source is denoted by {Mv : 1≤v≤nm}.

The set of code-modulation combinations available at the source is {Bn : 1≤n≤N}, for
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N≤ncnm. In Section 2.1.1, we describe an adaptive coding protocol and in Section 2.1.2,

we describe an adaptive modulation and coding protocol.

2.1.1 An adaptive coding protocol

Suppose that the source uses a fixed modulation format and adapts the error-control

code in response to the variations in the channel. In this case, nm = 1, nc > 1, N = nc,

and Bn is a combination of the fixed modulation format and code Cn. We consider the

adaptive coding protocol proposed in [6] with the modification that the adaptation is based

on demodulator statistics (such as those described in Section 2.4).

The adaptive coding protocol selects the code for the next packet by applying an

interval test to the demodulator statistic for the preceding packet. The adaptation parame-

ters for the interval test are γ0,γ1, . . . ,γnc in decreasing order. The adaptation intervals are

In = [γn,γn−1) for 1 ≤ n ≤ nc. If the demodulator statistic γ for the preceding packet falls

in the interval In, then code Cn is chosen for the next packet. We refer to this protocol as

the demodulator-statistic based adaptive coding (AC) protocol.

2.1.2 An adaptive modulation and coding protocol

Suppose that the source is allowed to adapt both the modulation and error-control

code in response to the variations in the channel. We consider a variation of the adaptive

modulation and coding protocol proposed in [7]. The protocol in [7] uses decoder statistics

for adapting the code-modulation combination, and it is restricted to select a combination

that is within one step from the combination used for the preceding packet. In our variation,

the adaptation is based on demodulator statistics. Further, similar to the AC protocol [6],

the adaptive modulation and coding protocol is allowed to choose for the next packet a

code-modulation combination that is multiple steps away from the combination used for

5



the preceding packet.

The adaptive modulation and coding protocol selects a code-modulation combina-

tion for the next packet by applying an interval test to the demodulator statistic for the

preceding packet. Different modulation formats use different demodulator statistics. The

adaptation parameters associated with modulation format Mv are ξ0(v),ξ1(v), . . . ,ξN(v) in

decreasing order. The adaptation intervals are Iv,n = [ξn(v),ξn−1(v)) for 1 ≤ n ≤ N. Sup-

pose that the modulation format used for the preceding packet was Mv and the demodulator

statistic was determined to be γv. If γv falls in the interval Iv,n, then combination Bn is cho-

sen for the next packet. We refer to this protocol as the demodulator-statistic based adaptive

modulation and coding (AMC) protocol

2.2 Channel model

We consider time-varying channels that are subject to additive white Gaussian noise

(AWGN) with one-sided power spectral density N0. The time-varying propagation losses

in such channels may be due to fading or shadowing. Two independent finite-state Markov

chains are used to model the fading and shadowing phenomena.

The parameters of the Markov chain model for fading are derived by the method

described in [14]. Each state in the Markov chain corresponds to a propagation loss due to

fading. The states of the Markov chain are indexed by j=0,1, . . . ,J f −1. State j represents

a propagation loss of j∆1 dB above that of state 0, where ∆1 is the step-size of the Markov

chain. The probability of transition from state j to state l in one step is denoted by q1(l| j).

The steady-state probability for state j is denoted by π j.

A Js-state Markov chain is used to model shadowing. The states of the Markov

chain are indexed by k=0,1, . . . ,Js−1. State k represents a shadow loss of k∆2 dB, where

∆2 is the step-size of the Markov chain. The probability of transition from state k to state m
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in one step is denoted by q2(m|k). The steady-state probability of state k is denoted by π ′k.

The channel is said to be in state ( j,k) when the Markov chain for fading is in state

j and the Markov chain for shadowing is in state k. The channel state is assumed to be the

same for the duration of a packet transmission, but it may change from one packet to the

next according to the two Markov chains.

2.3 Modulation formats

The adaptive protocols of Section 2.1 can be employed with many forms of modu-

lation; however, for the purposes of illustration, we consider quadriphase shift key (QPSK)

modulation, quadrature amplitude modulation (QAM), and biorthogonal modulation.

Let Lv be the number of modulation symbols in a packet that employs Mv. A packet

that employs M-QAM is of the form

s(t) = A
Lv∑
`=1

[u1,` cos(ωt +φ)−u2,` sin(ωt +φ)]pτ(t + τ− `τ), (2.1)

where A is the received signal amplitude, ω is the carrier frequency, τ is the individual

symbol duration, φ is the phase of the signal, u1,` and u2,` are the data variables on the

inphase and quadrature component respectively, and pτ(t) is a rectangular pulse of duration

τ (pτ(t)=1 for 0≤t<τ and pτ(t)=0 for other values of t). The data variables u1,` and u2,`

take values from a set B={±1,±3, . . . ,±Km}, where Km is an odd positive integer such

that M=(Km+1)2. For M=4, (2.1) represents a sequence of Lv QPSK modulated symbols.

Likewise, for M=16, (2.1) represents a sequence of Lv 16-QAM modulated symbols.

A packet that uses M-ary biorthogonal modulation is of the form

s(t) = A
Lv∑
`=1

ψ`(t)pT (t +T − `T ), (2.2)
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where ψ`(t) is a signal from a set of biorthogonal signals of duration T =Kτ , where M =

2K. For M-ary pulse-coded biorthogonal modulation or M-ary biorthogonal keying (M-

BOK), ψ`(t) in (2.2) is of the form

ψ`(t) =
K∑

i=1

u(i)` cos(ωt +φ)pτ(t + τ− iτ), (2.3)

where u`=(u(1)` , ...,u(K)
` ) is a vector that takes values from a set of M-biorthogonal vectors.

We use the rows of a K×K Hadamard matrix HK and its complement −HK as the set of

M-biorthogonal vectors.

The rectangular pulse of duration τ is referred to as the modulation chip. There

is one modulation chip per modulation symbol for M-QAM and there are K modulation

chips per modulation symbol for M-BOK. For each modulation format, the chip rate is

1/τ , which is proportional to the signal’s bandwidth. The chip rate is held constant when

the source switches from one modulation format to another; consequently, the bandwidth

of the system does not change. The average transmitted power is also held constant, so

the best measure of signal-to-noise ratio (SNR) is the chip-energy-to-noise-density ratio

defined as CENR=10log10(E/N0), where E is the average energy per modulation chip.

2.4 Demodulator statistics

The adaptive protocols given in Section 2.1 use a statistic that is derived from the

demodulation process. The choice of a demodulator statistic for a packet depends on which

modulation format is used for the packet. For M-QAM, the demodulator statistic is a dis-

tance statistic and for M-ary biorthogonal modulation, the demodulator statistic is a ratio

statistic. In the following sections, we briefly describe the demodulation process and ex-

plain the statistic that is derived from the process for each modulation format.
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2.4.1 Distance statistic

The coherent demodulator for M-QAM modulation may be implemented using

matched filters or equivalent correlators in the inphase and quadrature branches. Let Z1,`

and Z2,` denote the ouputs of the correlator in the inphase and quadrature branches, respec-

tively, for the `th received symbol. The decision statistic for the `th received symbol is

(Z1,`,Z2,`), a point in two-dimensional space. When Z1,`= z1,` and Z2,`= z2,`, we refer to

(z1,`,z2,`) as the received point. When the data variable ui,` is bκ , one of the elements of set

B defined in Section 2.3, the correlator output Zi,` is Gaussian with mean bκAτ/2 and vari-

ance N0τ/4. For notational convenience, let µ =Aτ/2 and σ2 =N0τ/4 for the remainder

of this thesis.

In the absence of noise, the M possible received points

{(bκ µ,bκ ′µ) : 0≤κ≤Km,0≤κ
′≤Km}

are the M symbols that form the output signal constellation. Two nearest neighbors in the

constellation are separated by a distance of 2µ . The maximum-likelihood decision is the

symbol in the output signal constellation that is closest to the received point. Alternatively,

we can view the symbol decision as independent decisions on the inphase and quadrature

components. We can view the demodulation of the two-dimensional M-QAM signal as the

demodulation of a pair of one-dimensional (Km+1)-ary amplitude shift keying (ASK) sig-

nals [16]. As a result, we use a distance statistic that is based on one-dimensional distances.

In order to obtain the demodulator statistic, the receiver computes D1,` and D2,`,

the one-dimensional (1-D) distances for the `th received symbol. The 1-D distance D1,`

for the inphase branch is the minimum of the distances between z1,` and the output sig-

nal levels {−(Km+1)µ, . . . ,−µ,+µ, . . . ,(Km+1)µ)} of (Km+1)-ary ASK on the inphase

component of M-QAM. Similarly, the 1-D distance D2,` for the quadrature branch is the

9
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Figure 2.1: Illustration of the 1-D distances for QPSK

minimum of the distances between z2,` and the output signal levels of (Km+1)-ary ASK on

the quadrature component. The 1-D distance is

Di,` = min{|Zi,`−bκ µ| : 0≤ κ ≤ Km}, i ∈ {1,2}. (2.4)

An illustration of the two 1-D distances for a received QPSK symbol is given in Figure 2.1.

The distance statistic Γ for a packet is the average of the normalized 1-D distances

for all the Lv regular M-QAM modulation symbols in the received packet,

Γ =
1

2Lvµ

Lv∑
`=1

(D1,`+D2,`). (2.5)

Although the distance statistic is sensitive to the errors in the amplitude and phase refer-

ences, such errors are typically small in the range of SNR values for which the adaptive
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protocol elects to use M-QAM.

2.4.2 Ratio statistic

For M-ary biorthogonal modulation, the maximum-likelihood coherent demodula-

tor may be implemented using K correlators or matched filters. The output sequence of

a chip waveform correlator is correlated with each of the K rows of the K×K Hadamard

matrix to give a K-dimensional decision vector Z`=(Z1,`,Z2,`, ...,ZK,`) for the `th received

symbol [16]. Let m1(Z`) and m2(Z`) be the decision statistics with the largest and sec-

ond largest magnitude respectively. For the `th received symbol, the receiver calculates the

symbol ratio

R` =
|m2(Z`)|
|m1(Z`)|

. (2.6)

The symbol ratio was introduced by Viterbi in [17] for anti-jam communications. It was

used for soft-decision decoding in [18].

The ratio statistic Λ for a packet is the average of the symbol ratios for all the Lv

modulation symbols in the packet,

Λ =
1
Lv

Lv∑
`=1

R`. (2.7)

The ratio statistic was used to adjust the transmission power of cognitive radios in [7]. It

was also used for adapting the code rate in [19].

11



Chapter 3

Distribution of Demodulator Statistics

In this chapter, we determine the probability distribution of the demodulator statis-

tics for the modulation formats of Section 2.3. The probability distribution is required for

the analytical evaluation presented in Chapter 4. In Section 3.1, we determine the dis-

tribution of the distance statistic, the demodulator statistic for M-QAM modulation. In

Section 3.2, we determine the distribution of the ratio statistic, the demodulator statistic for

nonbinary biorthogonal modulation.

The demodulator statistic for a packet depends on the value of CENR when the

packet was received. Hence, the distribution of the demodulator statistic varies with the

state of the channel. The probability distributions and their parameters (e.g., mean, second

moment, and variance) presented in this chapter are conditioned on the channel being in

state ( j,k). We indicate this dependence on the channel state in the analytical expressions.

Also, we compare the values obtained from the analytical expressions with the empirical

values obtained from Monte-Carlo simulations in each case.

12
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µµ− z

g(z)

Figure 3.1: The function g for QPSK.

3.1 Distance statistic

For M-QAM, the data variables U1,` and U2,`, 1≤ `≤Lv are chosen uniformly at

random from the set B={bκ : κ=1,2, . . . ,Km}, where bκ =Km−2κ and M=(Km+1)2. For

QPSK, the set elements are b0=+1 and b1=−1 and for 16-QAM, the elements are b0=+3,

b1=+1, b2=−1, and b3=−3.

The ith 1-D distance (i=1,2 as M-QAM is a two-dimensional modulation scheme)

for the `th modulation symbol of any packet can be expressed as a function of the correlator

output Zi,`, Di,`=g(Zi,`), where

g(z)=min{|z−bκ µ| : 0≤ κ ≤ Km}, −∞<z<∞.

The function g is shown in Figures 3.1 and 3.2 for QPSK and 16-QAM respectively. By

definition, the function g is non-negative and even-symmetric.

We assume that the data variables U1,` and U2,` are independent. Because the noise

components at the output of the inphase and quadrature correlators are statistically inde-

pendent [16], the correlator outputs Z1,` and Z2,` are independent. Consequently, the two

1-D distances D1,` and D2,` are independent. Additionally, we assume that the data vari-

13
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µ

z
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Figure 3.2: The function g for 16-QAM.

ables for a packet, {Ui,` : 1≤ i≤ 2,1≤ `≤Lv} are mutually independent and identically

distributed (i.i.d.). Recall that the fade level is constant for the duration of a packet trans-

mission and the thermal noise at the receiver is an AWGN process. Hence, the noise com-

ponents are independent across all symbols in the packet. So, the correlator outputs for

a packet, {Zi,` : 1≤ i≤ 2,1≤`≤Lv} are i.i.d. Therefore, the 1-D distances for a packet,

{Di,` : 1≤ i≤2,1≤`≤Lv} are i.i.d.

In Section 3.1.1, we first determine the distribution of the 1-D distance for QPSK

and 16-QAM. Then, in Section 3.1.2, we determine the distribution of the distance statistic

Γ, which is the average of the sequence of 1-D distances for a packet.

3.1.1 1-D distance distribution

Since all the 1-D distances Di,`, correlator outputs Zi,`, and data variables Ui,` are

identically distributed, in all that follows, we use the subscripts i and ` only when referring

to the sequence of the respective variables corresponding to a packet. Otherwise, we drop

the subscripts to simplify the notation.

14



The cumulative distribution function of the 1-D distance D is

FD(x| j,k) =
Km∑

κ=0

P(U = bκ)P(g(Z)≤ x| j,k,bκ), (3.1)

where P(g(Z)≤x| j,k,bκ) is the conditional probability that g(Z)≤x when the channel is

in state ( j,k) and the data variable U is bκ . If Gx is the set of all z for which g(z)≤x, then

FD(x| j,k) =
Km∑

κ=0

1
Km +1

P(Z ∈ Gx| j,k,bκ). (3.2)

Recall that when conditioned on the data variable U =bκ , the correlator output Z is Gaus-

sian with mean bκ µ and variance σ2, where µ depends on the channel state and σ depends

on the thermal noise. For QPSK, µ2/σ2 =E j,k/N0 and for 16-QAM, µ2/σ2 =E j,k/5N0,

where E j,k is the average energy per chip for state ( j,k).

In Section 3.1.1.1, we determine the distribution function of the 1-D distance for

QPSK by first determining the set Gx and then evaluating the probability that the correlator

output Z belongs to this set. In Section 3.1.1.2, we do the same for 16-QAM.

3.1.1.1 QPSK

As the function g is non-negative, the set Gx is empty for x < 0. For QPSK, Gx =

[−µ−x,−µ+x]∪ [µ−x,µ+x], for 0< x ≤ µ (Figure 3.3a), and Gx = [−µ−x,µ+x], for

x> µ (Figure 3.3b). Without loss of generality, we assume that U = b0 and evaluate the

probability that Z belongs to the set Gx. This gives

FD(x| j,k) =


0, x≤ 0,

Φ

(
x−2µ

σ

)
+Φ

(
x+2µ

σ

)
+2Φ

( x
σ

)
−2, 0 < x≤ µ ,

Φ
( x

σ

)
+Φ

(
x+2µ

σ

)
−1, x > µ ,

(3.3)
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where Φ is the standard Gaussian distribution function.

Using the notation ϕ(x;a,b)= d
dxΦ{(x−a)/b}, the density function of the 1-D dis-

tance for QPSK can be written as

fD(x| j,k) =


0, x≤ 0,

ϕ(x;2µ,σ)+ϕ(x;−2µ,σ)+2ϕ(x;0,σ), 0 < x≤ µ ,

ϕ(x;0,σ)+ϕ(x;−2µ,σ), x > µ .

(3.4)

From inspection, we see that fD(x| j,k) is bounded for any finite set of nonzero values of

σ2.

The density function given by an analytical expression such as (3.4) is referred to as

the analytical density in all that follows. For comparison, we also generate a large number

of random samples of Z and find the corresponding 1-D distances in order to plot a unit-area

histogram of the 1-D distance. The histogram shows relative frequencies of consecutive

non-overlapping bins of appropriately chosen size. Such a histogram is referred to as the

empirical density. The analytical density in (3.4) is compared with the empirical density

(bin size=0.01) in Figure 3.4 for three representative values of CENR.

The sharp drop at x=µ is attributed to the discontinuity in the density function at

that point. At x=µ , the density function is

fD(µ| j,k) =
1

σ
√

2π

(
3exp

{
−µ2

2σ2

}
+ exp

{
−9µ2

2σ2

})
.

At x=µ+, the density function is

fD(µ
+| j,k) = 1

σ
√

2π

(
exp
{
−µ2

2σ2

}
+ exp

{
−9µ2

2σ2

})
.
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=
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(b) x > µ

Figure 3.3: QPSK: The intervals of z corresponding to Gx for (a) 0<x≤ µ and (b) x>µ .

17



0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5

Analytical density (CENR = -7dB)

Empirical density (CENR = -7dB)

Analytical density (CENR = -1dB)

Empirical density (CENR = -1dB)

Analytical density (CENR = 4dB)

Empirical density (CENR = 4dB)

QPSK Normalized 1-D Distance (x/µ)

C
o
n
d
it

io
n
al

 P
ro

b
ab

il
it

y
 D

en
si

ty
 F

u
n
ct

io
n

Figure 3.4: QPSK 1-D distance: Comparison of the empirical density and the analytical
density for three different values of CENR.

3.1.1.2 16-QAM

For 16-QAM, Gx=[−3µ−x,−3µ+x]∪ [−µ−x,−µ+x]∪ [µ−x,µ+x]∪ [3µ−x,3µ+x]

for 0<x≤µ (Figure 3.5a) and Gx=[−3µ−x,3µ+x] for x>µ (Figure 3.5b). The probability

that Z belongs to the set Gx can be evaluated to give

FD(x| j,k) =



0, x≤ 0,

2Φ
( x

σ

)
+ 3

2Φ

(
x−2µ

σ

)
+ 3

2Φ

(
x+2µ

σ

)
+Φ

(
x−4µ

σ

)
+Φ

(
x+4µ

σ

)
+ 1

2Φ

(
x−6µ

σ

)
+ 1

2Φ

(
x+6µ

σ

)
−4, 0 < x≤ µ ,

1
2

[
Φ
( x

σ

)
+Φ

(
x+2µ

σ

)
+Φ

(
x+4µ

σ

)
+Φ

(
x+6µ

σ

)]
−1, x > µ .

(3.5)

The derivation of (3.5) is given in Appendix A.
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The density function of the 1-D distance for 16-QAM is given by

fD(x| j,k) =



0, x≤ 0,

2ϕ(x;0,σ)+ 3
2ϕ(x;2µ,σ)+ 3

2ϕ(x;−2µ,σ)+ϕ(x;4µ,σ)

+ϕ(x;−4µ,σ)+ 1
2ϕ(x;6µ,σ)+ 1

2ϕ(x;−6µ,σ), 0 < x≤ µ ,

1
2 (ϕ(x;0,σ)+ϕ(x;−2µ,σ)+ϕ(x;−4µ,σ)+ϕ(x;−6µ,σ)) , x > µ .

(3.6)

The analytical density in (3.6) is compared with the empirical density (with bin size

=0.01) for three representative values of CENR in Figure 3.6. The sharp drop at x=µ is

attributed to the discontinuity in the density function at that point. At x= µ , the density

function is

fD(µ| j,k)=
1

σ
√

8π

(
7exp

{
−µ2

2σ2

}
+5exp

{
−9µ2

2σ2

}
+3exp

{
−25µ2

2σ2

}
+exp

{
−49µ2

2σ2

})
.

At x=µ+, the density function is

fD(µ
+| j,k) = 1

σ
√

8π

(
exp
{
−µ2

2σ2

}
+ exp

{
−9µ2

2σ2

}
+2exp

{
−25µ2

2σ2

})
.

3.1.2 Distribution of distance statistic

We are primarily interested in the distribution of the distance statistic Γ, average

of the i.i.d. sequence of normalized 1-D distances for a packet. One possible approach to

obtain the exact density of Γ is to carry out a 2Lv-fold convolution of the density function

of D with itself [20]. An alternative approach is to find the 2Lvth power of the moment

generating function of D and take its inverse Fourier transform. Both the approaches fail to

give a closed-form expression for the distribution of Γ.
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Figure 3.5: 16-QAM: The intervals of z corresponding to Gx for (a) 0<x≤µ and (b) x>µ .
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Figure 3.6: 16-QAM 1-D distance: Comparison of the empirical density and the analytical
density for three different values of CENR.

However, we observe that the central limit theorem can be used to obtain a good

approximation for the distribution of the distance statistic. Recall that the distance statistic

is

Γ =
1

2Lvµ

Lv∑
`=1

(D1,`+D2,`)

=
1

2Lvµ

Lv∑
`=1

{g(Z1,`)+g(Z2,`)}. (3.7)

The 1-D distances {Di,` : 1≤ i≤ 2,1≤`≤Lv} for a packet are i.i.d. with each random

variable having both a finite mean µD( j,k) and finite variance σ2
D( j,k), which is proved

shortly. From the central limit theorem, the probability distribution function of the average

Γ is approximately a Gaussian distribution function with mean µD( j,k)/µ and variance

σ2
D( j,k)/2Lvµ2 for large values of Lv.
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The mean and the second moment of D are given by

E[D| j,k] =
Km∑

κ=0

P(U = bκ)

∫
∞

−∞

g(z) fZ(z| j,k,bκ)dz (3.8)

and

E[D2| j,k] =
Km∑

κ=0

P(U = bκ)

∫
∞

−∞

g2(z) fZ(z| j,k,bκ)dz, (3.9)

where fZ(z| j,k,bκ) is the conditional density of the correlator output when the channel is

in state ( j,k) and the data variable is bκ . Evaluation of (3.8) and (3.9) for QPSK (Appendix

C) gives

µD( j,k) = σ

√
2
π

(
1− e

−µ2

2σ2 + e
−2µ2

σ2

)
+2µ

{
Φ

(
−µ

σ

)
−2Φ

(
−2µ

σ

)}
(3.10a)

and

σ
2
D( j,k) = σ

2 +4µ
2
Φ

(
−µ

σ

)
−2µσ

√
2
π

e
−µ2

2σ2 − [µD( j,k)]2. (3.10b)

Evaluation of (3.8) and (3.9) for 16-QAM (Appendix D) gives

µD( j,k) =
σ√
2π

(
2+

6∑
h=1

(−1)h d(7−h)/2ee
−h2µ2

2σ2

)
+µ

6∑
h=1

h(−1)h+1 d(7−h)/2eΦ
(
−hµ

σ

)
(3.11a)

and

σ
2
D( j,k) =σ

2− µσ

2
√

2π
(13e

−µ2

2σ2 +8e
−9µ2

2σ2 +4e
−25µ2

2σ2 )

+2µ
2
[

3Φ

(
−µ

σ

)
+6Φ

(
−3µ

σ

)
+5Φ

(
−5µ

σ

)]
− [µD( j,k)]2. (3.11b)
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Figure 3.7: Comparison of the analytical mean and the sample average of the 1-D distances
for QPSK and 16-QAM as a function of CENR.

We note that the mean and the variance of 1-D distance are finite for both QPSK

and 16-QAM. The mean and variance values that are given by (3.10) and (3.11) are referred

to as the analytical mean and analytical variance. For comparison, we generate a large

number of random samples of the 1-D distance, find the sample average and the sample

variance, and plot the results in Figures 3.7 and 3.8.

The convergence of the distribution function does not always guarantee the conver-

gence of the density function to the Gaussian density [21]. However, the 1-D distance has

properties that guarantee convergence of the density function as well. The 1-D distance,

for both QPSK and 16-QAM, has a finite second moment (proved in Appendices C and

D). Also, the probability density function of the 1-D distance is bounded (Sections 3.1.1.1

and 3.1.1.2). By the local limit theorem for densities (see §46 in [21] and Chapter VII.2

in [22]), the density function of the average Γ is approximately a Gaussian density with

mean µD( j,k)/µ and variance σ2
D( j,k)/2Lvµ2 for large values of Lv. The empirical den-
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Figure 3.8: Comparison of the analytical variance and the sample variance of the 1-D
distances for QPSK and 16-QAM as a function of CENR.

sity of the distance statistic is compared with the Gaussian approximation for QPSK and

16-QAM in Figures 3.9 and 3.10 respectively.

3.2 Ratio statistic

Recall that the symbol ratio for the `th received symbol of a packet that uses M-

BOK is

R` =
|m2(Z`)|
|m1(Z`)|

,

where m1(Z`) is the decision statistic with the largest magnitude and m2(Z`) is the decision

statistic with the second largest magnitude. Here, R` is well-defined only when |m1(Z`)|

is non-zero. The event m1(Z`)=0 is equivalent to the vector of decision statistics, Z`=

(Z1,`,Z2,`, ...,ZK,`) being zero; hence, it occurs with zero probability. Therefore, we may

assume that the symbol ratio R` is well-defined and takes values in the range [0,1]. We
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assume that the sequence of modulation symbols in a packet is i.i.d.; hence, the symbol

ratios {R` : 1≤`≤Lv} are i.i.d. Further, the symbol ratios {R` : 1≤`≤ Lv} have both a

finite mean µR( j,k) and finite variance σ2
R( j,k), since each R` is bounded.

Recall that the ratio statistic for a packet is the average of the sequence of symbol

ratios for the packet. By the central limit theorem, the probability distribution function of

the ratio statistic converges to the Gaussian distribution with mean µR( j,k) and variance

σ2
R( j,k)/Lv for large values of Lv.

The mean µR( j,k) and the variance σ2
R( j,k) can both be expressed in terms of the

multivariate density of Z`. Suppose that symbol ζ1 from the M-BOK signal set

{−ζK, . . . ,−ζ1,ζ1, . . . ,ζK}

is sent as the `th modulation symbol. Conditioned on ζ1 being sent, the decision statis-

tics Z1,`,Z2,`, ...,ZK,` are mutually independent Gaussian random variables with variance

N0T/4. The mean of Z1,` (the decision statistic that corresponds to the transmitted symbol)

is AT/2, while the mean of the remaining decision statistics is zero. The conditional mean

of the symbol ratio when ζ1 is sent is

E

[
|m2(Z`)|
|m1(Z`)|

∣∣∣∣∣ j,k,ζ1

]
=

∞∫
−∞

. . .

∞∫
−∞

|m2(z)|
|m1(z)|

1
(πN0T/2)K/2 e−

(z1−AT/2)2+
∑K

i=2 z2
i

N0T/2 dz1 . . .dzK.

From this expression, we see that the mean of the symbol ratio does not depend on the

symbol that was sent. Hence,

µR( j,k) =E

[
|m2(Z`)|
|m1(Z`)|

∣∣∣∣∣ j,k
]
= E

[
|m2(Z`)|
|m1(Z`)|

∣∣∣∣∣ j,k,ζ1

]

=

∞∫
−∞

. . .

∞∫
−∞

|m2(z)|
|m1(z)|

1
(πN0T/2)K/2 e−

(z1−AT/2)2+
∑K

i=2 z2
i

N0T/2 dz1 . . .dzK. (3.12)
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Figure 3.11: Comparison of the analytical mean and sample average of the symbol ratio
for 16-BOK and 64-BOK as a function of CENR.

Similarly,

σ
2
R( j,k) =

 ∞∫
−∞

. . .

∞∫
−∞

(
|m2(z)|
|m1(z)|

)2 1
(πN0T/2)K/2 e−

(z1−AT/2)2+
∑K

i=2 z2
i

N0T/2 dz1 . . .dzK


− [µR( j,k)]2. (3.13)

In general, the integrals in (3.12) and (3.13) cannot be evaluated in closed-form. The

K-dimensional integrals in (3.12) and (3.13) can be expressed in terms of repeated one-

dimensional integrals (Appendix E) that can be evaluated using numerical integration. The

mean values obtained from numerical integration are compared with the sample averages

for 16-BOK and 64-BOK in Figure 3.11. Likewise, the comparison for the variance is

shown in Figure 3.12.

Additionally, we can quantify the rate at which the probability distribution of the

ratio statistic converges to the Gaussian distribution as Lv increases. We can bound the error
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Figure 3.12: Comparison of the analytical variance and sample variance of the symbol ratio
for 16-BOK and 64-BOK as a function of CENR.

in the Gaussian approximation by the Berry-Esseen theorem [21,23]. Since E[|R`|3]≤1 for

each `, we can guarantee that for all x

∣∣∣∣FΛ(x| j,k)−Φ

(
x−µR( j,k)

σR( j,k)/
√

Lv

)∣∣∣∣≤ c√
Lv

, (3.14)

where c is a constant.
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Chapter 4

Performance Analysis of Adaptive

Transmission Protocols

When a source must send a sequence of packets to a destination over the duration

of a session, it adapts the transmission parameters on a packet-by-packet basis according

to the adaptive protocol. We evaluate the performance of the adaptive transmission proto-

col by measuring the average throughput for a session. In Section 4.1, we define session

throughput and give the analytical expressions for evaluating the average throughput of the

demodulator-statistic based adaptive transmission protocols for the Markov models of the

fading channel and shadowing. In Section 4.2, we consider two hypothetical protocols that

are given perfect information about the channel state. The hypothetical protocols provide

benchmarks for the performance of the adaptive transmission protocols.

4.1 Session throughput

Each packet represents Nb binary code symbols. Consequently, the number of mod-

ulation chips and the number of modulation symbols (Lv) in a packet depend on the mod-
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ulation format used for the packet. Since the chip rate is held constant, the use of multiple

modulation formats requires packets of variable duration. To account for this, we define the

standard time unit to be the duration of a packet that uses QPSK. We say that an information

bit is delivered if the packet that contains the bit is decoded correctly. The session through-

put for an adaptive transmission protocol is defined as the average number of information

bits delivered per unit of time the source is transmitting packets.

Let Nt [n] be the number of time units required to transmit a packet that uses code-

modulation combination Bn. Let r[n] be the rate of the error-control code employed by

Bn. The number of information bits in a packet that uses Bn is r[n]Nb. Let s(n|l,m)

be the average number of information bits delivered per time unit by a packet that uses

combination Bn and is sent when the channel is in state (l,m). Then, s(n|l,m) is given by

s(n|l,m) =
r[n]NbPc(n|l,m)

Nt [n]
, (4.1)

where Pc(n|l,m) is the probability of correctly decoding a packet that uses combination Bn

when the channel is in state (l,m). The average number of information bits delivered by a

packet that uses Bn is

r[n]NbPc(n|l,m) = s(n|l,m)Nt [n]. (4.2)

We consider a general class of adaptive transmission protocols that select a code-

modulation combination for the next packet based on the preceding channel state. The

selection process of such protocols can be statistically characterized by Q(n| j,k), the con-

ditional probability that the protocol selects Bn for the next packet given that the channel

was in state ( j,k) for the preceding packet. For any such adaptive transmission protocol,
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the average number of information bits delivered per packet transmission is

NI =

N∑
n=1

J f−1∑
l=0

Js−1∑
m=0

r[n]NbPc(n|l,m)

J f−1∑
j=0

Js−1∑
k=0

Q(n| j,k)q1(l| j)q2(m|k)π jπ
′
k

=

N∑
n=1

J f−1∑
l=0

Js−1∑
m=0

s(n|l,m)Nt [n]
J f−1∑
j=0

Js−1∑
k=0

Q(n| j,k)q1(l| j)q2(m|k)π jπ
′
k. (4.3)

The average number of time units per packet that the source is transmitting during a session

is

NT =
N∑

n=1

Nt [n]
J f−1∑
j=0

Js−1∑
k=0

Q(n| j,k)π jπ
′
k. (4.4)

Then, for the protocol the session throughput for the Markov chain models of the fading

channel and shadowing described in Section 2.2 is

S =
NI

NT

=

N∑
n=1

J f−1∑
l=0

Js−1∑
m=0

s(n|l,m)Nt [n]
J f−1∑
j=0

Js−1∑
k=0

Q(n| j,k)q1(l| j)q2(m|k)π jπ
′
k

N∑
n=1

Nt [n]
J f−1∑
j=0

Js−1∑
k=0

Q(n| j,k)π jπ
′
k

. (4.5)

In Section 4.1.1, we illustrate the analytical method for the AC protocol. In Sec-

tion 4.1.2, we do the same for the AMC protocol by deriving analytical expressions for

Q(n| j,k).

4.1.1 AC protocol

If a fixed modulation format is employed with adaptive coding, then all packets are

of the same duration, so Nt [n] does not depend on n. Hence, the analytical expression for

31



Code Cn Code rate In
C1 0.236 [0.685,∞)
C2 0.325 [0.579,0.685)
C3 0.495 [0.493,0.579)
C4 0.660 [0.441,0.493)
C5 0.793 [0,0.441)

Table 4.1: The adaptation intervals for the AC protocol with QPSK modulation.

the throughput of the AC protocol simplifies to

SAC =

nc∑
n=1

J f−1∑
l=0

Js−1∑
m=0

s(n|l,m)

J f−1∑
j=0

Js−1∑
k=0

QAC(n| j,k)q1(l| j)q2(m|k)π jπ
′
k. (4.6)

The protocol’s code selection process is statistically characterized by QAC(n| j,k), the prob-

ability that code Cn is chosen for the next packet given that the preceding channel state was

( j,k). Since the AC protocol chooses the code by applying an interval test to the demod-

ulator statistic, QAC(n| j,k) is the probability that the demodulator statistic Γ falls in the

interval In = [γn,γn−1) given that the preceding channel state was ( j,k); that is

QAC(n| j,k) = P(Γ ∈ In| j,k). (4.7)

For our numerical results, we employ five binary turbo product codes [24] of rates

0.236, 0.325, 0.495, 0.660, and 0.793 with QPSK modulation. The binary code symbols

of a packet are interleaved by an S-random interleaver [25] prior to modulation. The log-

likelihood bit metric [26] is given as an input to the iterative decoder. The intervals for the

AC protocol when the set of five turbo product codes are employed with QPSK modulation

are given in Table 4.1.

According to the approximation suggested in Section 3.1.2 for QPSK modulation,

the conditional distribution of the distance statistic given the channel state is a Gaussian
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distribution with mean µD( j,k)/µ and variance σ2
D( j,k)/2Lvµ2. From the approximation,

it follows that

QAC(n| j,k)≈Φ

(
µγn−1−µD( j,k)
σD( j,k)/

√
2Lv

)
−Φ

(
µγn−µD( j,k)
σD( j,k)/

√
2Lv

)
, (4.8)

where µD( j,k) and σ2
D( j,k) are given by (3.10). Similar expressions can be obtained for

QAC(n| j,k) when the modulation is 16-QAM, 16-BOK, or 64-BOK by using the appropri-

ate analytical expressions for the mean and variance of the demodulator statistic.

4.1.2 AMC protocol

The session throughput for the AMC protocol is given by (4.5). In what follows,

we derive the analytical expressions for Q(n| j,k). In this section, we must consider three

consecutive packets that we refer to as the previous packet, the current packet, and the next

packet. The state of the channel for the previous packet influences the choice of modulation

for the current packet, and that choice dictates which demodulator statistic is employed to

determine the code-modulation combination for the next packet.

The conditional probability Q(n| j,k) is given by

Q(n| j,k) =
nm∑

v=1

P(Mv| j,k)Q(n| j,k,Mv), (4.9)

where P(Mv| j,k) is the conditional probability that the current packet uses modulation

format Mv given that the channel state is ( j,k), and Q(n| j,k,Mv) is the conditional proba-

bility that Bn is chosen for the next packet given that the channel is in state ( j,k) and the

modulation format Mv is used for the current packet.

We first examine the conditional probability P(Mv| j,k). For the current packet

that is transmitted when the channel is in state S2 =( j,k), the protocol selects the code-
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modulation combination based on the previous channel state S1=(l,m). A modulation for-

mat Mv is used for the current packet only if the protocol selects one of the code-modulation

combinations that employ Mv. So,

P(Mv| j,k) =
J f−1∑
l=0

Js−1∑
m=0

P[S1 = (l,m)|S2 = ( j,k)]P[Mv|S1 = (l,m),S2 = ( j,k)], (4.10)

where P[S1 = (l,m)|S2 = ( j,k)] is the conditional probability that the channel was in state

(l,m) prior to being in state ( j,k), and P[Mv|S1 = (l,m),S2 = ( j,k)] is the conditional

probability that Mv is used for the current packet given the previous and current states,

S1 and S2 respectively. The choice of modulation for the current packet is based only the

previous channel state. Therefore, the probability P[Mv|S1 = (l,m),S2 = ( j,k)] does not

depend on S2 at all. Further, the conditional probability P[Mv|S1 = (l,m),S2 = ( j,k)] can

be expressed in terms of Q(n|l,m) to give

P(Mv| j,k) =
J f−1∑
l=0

Js−1∑
m=0

P[S1 = (l,m)|S2 = ( j,k)]
∑

x∈F(v)

Q(x|l,m), (4.11)

where F(v) is the subset of {1,2, . . . ,N} that contains the indices of all the code-modulation

combinations that employ Mv. Using Bayes’ rule, we have

P[S1 = (l,m)|S2 = ( j,k)] =
q1( j|l)q2(k|m)πlπ

′
m

π jπ
′
k

. (4.12)

Using (4.12) in (4.11), we get

P(Mv| j,k) =
J f−1∑
l=0

Js−1∑
m=0

q1( j|l)q2(k|m)πlπ
′
m

π jπ
′
k

∑
x∈F(v)

Q(x|l,m), (4.13)

Next, we examine the conditional probability Q(n| j,k,Mv). For the AMC protocol,
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we have

Q(n| j,k,Mv) = P(Γv ∈ Iv,n| j,k,Mv), (4.14)

where Γv is the demodulator statistic for Mv when the channel is in state ( j,k). The con-

ditional probability can be determined from the conditional distribution of Γv given the

channel state ( j,k).

Using (4.13) and (4.14) in (4.9), we have

Q(n| j,k) =
nm∑

v=1

P(Γv ∈ Iv,n| j,k,Mv)

J f−1∑
l=0

Js−1∑
m=0

q1( j|l)q2(k|m)πlπ
′
m

π jπ
′
k

∑
x∈F(v)

Q(x|l,m)

 ,

(4.15)

where 1≤ n≤ N,0≤ j ≤ J f −1,0≤ k ≤ Js−1. Also,

N∑
n=1

Q(n| j,k) = 1, (4.16)

for each j and k. The system of linear equations in (4.15) and (4.16) can be solved to obtain

the values of Q(n| j,k), 1 ≤ n ≤ N, 0 ≤ j ≤ J f − 1, 0 ≤ k ≤ Js− 1. Using these values in

(4.5) we can evaluate analytically the session throughput for the AMC protocol.

For our numerical results, the five binary turbo product codes are employed with

four modulation formats 64-BOK (M1), 16-BOK (M2), QPSK (M3), and 16-QAM (M4).

Bit-interleaved coded modulation [27] is employed to allow each error-control code to be

used with each modulation format. This gives 20 possible code-modulation combinations,

but we use only the subset of 11 combinations that was selected in [28]. The list of 11 code-

modulation combinations from [28] is given in Table 4.2 and the corresponding adaptation

intervals are given in Table 4.3.

Note that Γ1 and Γ2 are the ratio statistics for 64-BOK and 16-BOK respectively;
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Combination Bn Modulation Code, Rate
B1 M1, 64-BOK C1, 0.236
B2 M1, 64-BOK C3, 0.495
B3 M1, 64-BOK C5, 0.793
B4 M2, 16-BOK C3, 0.495
B5 M3, QPSK C1, 0.236
B6 M3, QPSK C2, 0.325
B7 M3, QPSK C3, 0.495
B8 M3, QPSK C5, 0.793
B9 M4, 16-QAM C3, 0.495
B10 M4, 16-QAM C4, 0.660
B11 M4, 16-QAM C5, 0.793

Table 4.2: The set of code-modulation combinations for the AMC protocol.

Γ3 and Γ4 are the distance statistics for QPSK and 16-QAM respectively. In Chapter 3, we

have approximated the distribution of Γv conditioned on the channel state by a Gaussian

distribution with mean µv( j,k) and variance σ2
v ( j,k). Recall that Lv is the number of

modulation symbols in a packet that uses modulation format Mv. For v=1 and 2, µv( j,k)=

µR( j,k) and σ2
v ( j,k)=σ2

R( j,k)/Lv. For v=3 and 4, µv( j,k)=µD( j,k)/µ and σ2
v ( j,k)=

σ2
D( j,k)/2Lvµ2. From the Gaussian approximation, it follows that

Q(n| j,k,Mv) = P(Γv ∈ Iv,n| j,k,Mv)

≈Φ

(
ξn−1(v)−µv( j,k)

σv( j,k)

)
−Φ

(
ξn(v)−µv( j,k)

σv( j,k)

)
. (4.17)

Using (4.17) in (4.15) and solving the system of linear equations, we obtain the values

of Q(n| j,k), for all n, j, and k. Subsequently, using the values of Q(n| j,k) in (4.5), we

can calculate analytically the session throughput for the AMC protocol that uses the code-

modulation combinations given in Table 4.2.

In what follows, we show that when the set of N = 11 code-modulation combi-

nations in Table 4.2 is used, Q(n| j,k) can be approximated by an expression that can be

evaluated easily. The adaptation parameters ξ0(v), . . . ,ξN(v) for 1≤ v≤ 4 are chosen em-
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Combination Bn I1,n I2,n I3,n I4,n
B1 [0.723,1) [0.726,1) [1.467,∞) [2.663,∞)
B2 [0.617,0.723) [0.704,0.726) [1.159,1.467) [2.018,2.663)
B3 [0.472,0.617) [0.642,0.704) [0.909,1.159) [1.497,2.018)
B4 [0.392,0.472) [0.574,0.642) [0.770,0.909) [1.173,1.497)
B5 [0.328,0.392) [0.485,0.574) [0.691,0.770) [1.000,1.173)
B6 [0.251,0.328) [0.376,0.485) [0.588,0.691) [0.783,1.000)
B7 [0.172,0.251) [0.255,0.376) [0.434,0.588) [0.626,0.783)
B8 [0.130,0.172) [0.204,0.255) [0.355,0.434) [0.567,0.626)
B9 [0.100,0.130) [0.149,0.204) [0.276,0.355) [0.509,0.567)
B10 [0.080,0.100) [0.123,0.149) [0.216,0.276) [0.449,0.509)
B11 [0,0.080) [0,0.123) [0,0.216) [0,0.449)

Table 4.3: The adaptation intervals for the AMC protocol.

pirically with the goal of satisfying the following property: If the current channel state

is ( j,k), then the code-modulation combination Bn j,k must be used for the next packet,

where s(n j,k| j,k) =max{s(n| j,k) : 1 ≤ n ≤ N}. Since the protocol derives information

about the channel state from the demodulator statistic, the protocol may not always select

Bn j,k . The empirical choice of the adaptation parameters ensures that the selection of the

code-modulation combination for the next packet is mostly independent of the modulation

format used for the current packet. In other words, for a given channel state ( j,k), the

conditional probability Q(n| j,k,Mv) is approximately the same for all Mv. We verify this

by examining the plots of Q(n| j,k,Mv) for all n, Mv, and a range of CENR values.

The conditional probability Q(n| j,k,Mv) is plotted in Figure 4.1 for n = 11 as a

function of CENR. Similar plots are shown for other values of n in Figures F.1a – F.3b

(Appendix F). From these plots, we see that

Q(n| j,k,M1)≈ Q(n| j,k,M2)≈ Q(n| j,k,M3)≈ Q(n| j,k,M4). (4.18)

The approximation seems to be accurate over all values of CENR.

Using (4.18) in (4.9), we can approximate Q(n| j,k), for our set of N = 11 code-
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Figure 4.1: The conditional probability Q(n| j,k,Mv) for n = 11.

modulation combinations, as

Q(n| j,k)≈ Q(n| j,k,Mv)

≈Φ

(
ξn−1(v)−µv( j,k)

σv( j,k)

)
−Φ

(
ξn(v)−µv( j,k)

σv( j,k)

)
, (4.19)

where v = 1,2,3, or 4. Using the above approximation for Q(n| j,k) in (4.5), we can give

an approximation to the session throughput for the AMC protocol.

4.2 Benchmark protocols

As a performance benchmark, we consider a hypothetical protocol that is provided

with perfect state information for the next packet (PSI-N) [6,7]. The PSI-N protocol knows

that the channel state will be ( j,k) when the next packet is sent, and it chooses the code-

modulation combination that maximizes the throughput achieved by the next packet. The
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average throughput of the PSI-N protocol is

SPSI-N =

J f−1∑
j=0

Js−1∑
k=0

π jπ
′
ks(n j,k| j,k)Nt [n j,k]

J f−1∑
j=0

Js−1∑
k=0

π jπ
′
kNt [n j,k]

, (4.20)

where s(n j,k| j,k) = max{s(n| j,k) : 1 ≤ n ≤ N}. The PSI-N protocol is not practically

realizable, but nevertheless it gives the highest throughput for the next packet that can

be achieved with the set of error control codes and modulation formats available to the

protocol.

We consider another hypothetical protocol that is provided with perfect state in-

formation for the preceding packet (PSI-P) [6, 7], which is more practical to obtain as

opposed to PSI-N. We assume that the PSI-P protocol knows that the channel state was

( j,k) for the preceding packet but does not know the parameters of the channel. The PSI-

P protocol chooses for the next packet the code-modulation combination Bn j,k such that

s(n j,k| j,k)=max{s(n| j,k) : 1≤ n≤ N}. The average throughput of the PSI-P protocol is

SPSI-P =

J f−1∑
j=0

Js−1∑
k=0

π jπ
′
k

J f−1∑
l=0

Js−1∑
m=0

q1(l| j)q2(m|k)s(n j,k|l,m)Nt [n j,k]

J f−1∑
j=0

Js−1∑
k=0

πlπ
′
kNt [n j,k]

. (4.21)
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Chapter 5

Performance Results

In this chapter, we demonstrate the accuracy of the analysis presented in Chapter

4. This is done by comparing the analytical calculations of the session throughput with the

throughput obtained from a simulation of the demodulator-statistic based protocols and the

Markov chain models of the fading channel and shadowing. We also compare the session

throughput for the demodulator-statistic based protocols with the session throughput for

the benchmark protocols.

5.1 AC protocol

We demonstrate the accuracy of the analysis presented in Section 4.1.1 for the AC

protocol that uses QPSK modulation along with the set of five turbo-product codes given in

Table 4.1. Our conclusions remain the same when 16-QAM, 16-BOK, or 64-BOK is used

in place of QPSK modulation. The throughput obtained from the analytical results in (4.6)

and (4.8) is compared with the throughput obtained from a simulation of the AC protocol

and the Markov chain models of the fading channel and shadowing. In this section, the

QPSK symbol-energy-to-noise ratio (QSENR) in dB is used as the measure of SNR. The
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value of QSENR when there is no fading or shadowing is denoted by QSENR∗.

For the fading Markov chain, we consider Nakagami-m fading [29] with m=2.5,

which is approximately Rician fading with K-factor equal to 3.4. For m=2.5, the parame-

ters of the fading Markov chain are as follows: The number of states is J f =12, and the step

size is ∆1=1.25dB. The throughput results are presented in Figure 5.1a for the Nakagami-

m fading channel with fdTs=0.02, where fd is the maximum Doppler frequency and Ts is

the average time between two consecutive packet transmissions. Here, fdTs =0.02 repre-

sents relatively fast fading. In addition to the propagation losses due to Nakagami-m fading,

we consider an additional intermittent 5dB propagation loss due to shadowing that is ex-

perienced 4% of the time. Such a scenario is modeled by a two-state Markov chain with

states 0 and 1 representing shadow losses of 0dB and 5dB respectively, and the transition

probabilities given by q2(1|0)= 0.002 and q2(0|1)= 0.01. The steady-state probabilities

for the Markov chain are π ′0=0.9615 and π ′1=0.0384. The throughput results are given in

Figure 5.1b for the fading channel and the shadowing scenario considered.

The analytical calculations and the simulation results differ by less than 1.8% for

almost all values of QSENR∗ in Figures 5.1a and 5.1b. Also shown in the Figures are the

throughput results for the PSI-P and PSI-N protocols that use QPSK modulation with the

same set of five turbo-product codes as the AC protocol. Although the AC protocol relies

on demodulator statistics for it operation, it achieves throughput within 3% of the PSI-P

protocol for almost all values of QSENR∗ in Figures 5.1a and 5.1b.

Similar results are shown for slower fading in Figure 5.2. When fdTs =0.005, the

analytical calculations and the simulation results differ by less than 1.5% for almost all

values of QSENR∗ in Figure 5.2. The AC protocol achieves throughput within 3% of the

PSI-P protocol for almost all values of QSENR∗.

The throughput of the PSI-N protocol is an upper bound on the performance of any

practical adaptive coding protocol that uses QPSK modulation along with the set of five
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Figure 5.1: Throughput of the adaptive coding protocols for Nakagami-m fading channel
with m=2.5 and fdTs=0.02

turbo-product codes. The performance of the AC protocol is close to this upper bound in

slower fading conditions. From Figures 5.1 and 5.1, we see that shadowing at the 5dB level

for only 4% of the time has negigible effect on the performance of either of the adaptive

coding protocols.

5.2 AMC protocol

We demonstrate the accuracy of the analysis presented in Section 4.1.2 for the AMC

protocol that uses the set of 11 code-modulation combinations given in Table 4.2. The

throughput computed from (4.5) and solutions of (4.15) and (4.16) is compared with the

throughput obtained from a simulation of the AMC protocol and the Markov chain models

of the fading channel and shadowing. The accuracy of the approximation in (4.19) is also

demonstrated. For all the results given in this section, the number of binary symbols per

packet is Nb=4096.

For the fading Markov chain, we consider Nakagami-m fading with m=1, which
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(b) Shadowing (5dB loss 4% of the time)

Figure 5.2: Throughput of the adaptive coding protocols for Nakagami-m fading channel
with m=2.5 and fdTs=0.005

corresponds to Rayleigh fading, the most severe fading that is encountered in typical wire-

less channels. For m=1, the parameters of the fading Markov chain are as follows: The

number of states is J f =12, the step size is ∆1=2dB. The value of CENR in the absence

of fading and shadowing is denoted by CENR∗. The value of CENR represented by each

state in the Markov chain is an offset of CENR∗. The throughput results are presented in

Figure 5.3a for a Rayleigh fading channel with fdTs=0.02.

Three different shadowing scenarios are considered. In shadowing scenario 1, a

10dB shadow loss is experienced approximately 4% of the time. Scenario 1 is modeled by

a two-state Markov chain with states 0 and 1 representing shadow losses of 0dB and 10dB

respectively, and the transition probabilities given by q2(1|0)=0.002 and q2(0|1)=0.05.

The steady-state probabilities are π ′0=0.9615 and π ′1=0.0384. In shadowing scenario 2, a

10dB shadow loss is experienced approximately 17% of the time. Scenario 2 is modeled by

a two-state Markov chain with states 0 and 1 representing shadow losses of 0dB and 10dB

respectively, and the transition probabilities given by q2(1|0)=0.002 and q2(0|1)=0.01.
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The steady-state probabilities are π ′0 =0.8333 and π ′1 =0.1667. In shadowing scenario 3,

shadow losses of 5dB and 10dB are each experienced one-third of the time. Scenario 3 is

modeled by a three-state Markov chain with states 0, 1, and 2 representing shadow losses

of 0dB, 5dB, and 10dB respectively, and the transition probability matrix is given by

q2 =


0.8 0.2 0

0.2 0.6 0.2

0 0.2 0.8

 . (5.1)

The steady-state probabilities are π ′0=π ′1=π ′2=0.33. The throughput results are given in

Figure 5.3b–5.3d for the fading channel and the shadowing scenarios considered.

The analytical calculations and the simulation results differ by less than 4.8% for

almost all values of CENR∗ in Figures 5.3a–5.3d. The analytical calculations using the

approximation predict the simulation results nearly as well as the exact calculations. Also

shown in the graphs are the throughput results for the PSI-P and the PSI-N protocols that

employ the same set of code-modulation combinations as the AMC protocol. Although

the AMC protocol relies on demodulator statistics for its operation, it achieves throughput

within 8% of the PSI-P protocol for almost all values of CENR∗ in Figures 5.3a–5.3d.

Analogous results are shown for slower fading in Figures 5.4a–5.4d. When fdTs=

0.005, the analytical calculations and the simulation results differ by less than 5% for al-

most all values of CENR∗. The AMC protocol achieves throughput within 8% of the PSI-P

protocol for almost all values of CENR∗. As expected, the performance of the AMC pro-

tocol is close to the PSI-N benchmark in slower fading conditions. From Figures 5.3 and

5.4, we see that shadowing at the 10dB level for 4% of the time has very little effect on the

performance of either of the protocols. The other shadowing conditions considered lead to

degradation in the performance of the AMC protocol as well as the benchmark protocols.
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Figure 5.3: Throughput of the adaptive modulation and coding protocols for a Rayleigh
fading channel with fdT s = 0.02 and various shadowing scenarios
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Figure 5.4: Throughput of the adaptive modulation and coding protocols for a Rayleigh
fading channel with fdT s = 0.005 and various shadowing scenarios
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Chapter 6

Conclusion

We have developed an analytical method to evaluate the throughput performance

of two demodulator-statistic based adaptive protocols for channels with fading and mod-

erate shadowing. To this end, the process by which the protocols select the code or code-

modulation combination for a packet was statistically characterized in terms of the proba-

bility distribution of the demodulator statistics. The analytical calculations were found to

be in good agreement with the throughput results obtained from simulations of the protocol

and the channel for various fading and shadowing scenarios. We have demonstrated that

the demodulator-statistic based adaptive protocols are able to track the channel variations

and perform nearly as well as a hypothetical protocol that has perfect state information

for the preceding packet. In our approach for performance analysis, no simulations of the

fading process, the shadowing, or the Markov models for these phenomena were required;

furthermore, neither the adaptive protocol nor the generation of adaptation statistics was

simulated in our approach.
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Appendix A 16-QAM: 1-D Distance Distribution

In this appendix, we determine the probability distribution function of the 1-D dis-

tance for 16-QAM when the channel is in state ( j,k). We assume that the data variable

U takes values uniformly at random from the set {bκ : κ = 0, . . . ,3}, where bκ = 3− 2κ .

When U =bκ , the correlator output Z is Gaussian with mean bκ µ and variance σ2. The

1-D distance D can be expressed as a function of the correlator output, D=g(Z), where

g(z)=min{|z−3µ, ||z−µ|, |z+µ|, |z+3µ|}.

The distribution of the 1-D distance for 16-QAM when the channel is in state ( j,k)

is

FD(x| j,k) =
3∑

κ=0

1
4

P(g(Z)≤ x| j,k,bκ), (A.1)

where P(g(Z)≤ x| j,k,bκ) is the conditional probability that g(Z)≤x given that the channel

state is ( j,k) and the data variable is bκ . Note that the function g is even-symmetric and

the conditional density function of Z when the channel state is ( j,k) and the data variable

is bκ satisfies the following property for κ =2,3

fZ(z| j,k,bκ)= fZ(−z| j,k,b3−κ).

Using these properties of g(z) and fZ(z| j,k,bκ), we can show that for κ =2,3

P(g(Z)≤ x| j,k,bκ)=P(g(Z)≤ x| j,k,b3−κ).

Hence, we have

FD(x| j,k) =
1
2
{P(g(Z)≤ x| j,k,b0)+P(g(Z)≤ x| j,k,b1)}, (A.2)
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where P(g(Z)≤ x| j,k,bκ), κ =0,1 is given by

P(g(Z)≤ x| j,k,bκ) =



0, x≤ 0,

P(Z ∈ [−3µ− x,−3µ + x]∪ [−µ− x,−µ + x]

∪[µ− x,µ + x]∪ [3µ− x,3µ + x]| j,k,bκ), 0 < x≤ µ ,

P(Z ∈ [−3µ− x,3µ + x]| j,k,bκ), x > µ .

(A.3)

When the data variable is b1, we have

P(g(Z)≤ x| j,k,b1) =



0, x≤ 0,

2Φ
( x

σ

)
+2Φ

(
x+2µ

σ

)
+2Φ

(
x−2µ

σ

)
+Φ

(
x+4µ

σ

)
+Φ

(
x−4µ

σ

)
−4, 0 < x≤ µ ,

Φ

(
x+2µ

σ

)
+Φ

(
x+4µ

σ

)
−1, x > µ .

(A.4)

When the data variable is b0, we have

P(g(Z)≤ x| j,k,b0) =



0, x≤ 0,

Φ

(
x+2µ

σ

)
+Φ

(
x−2µ

σ

)
+2Φ

( x
σ

)
+Φ

(
x+4µ

σ

)
+Φ

(
x−4µ

σ

)
+Φ

(
x+6µ

σ

)
+Φ

(
x−6µ

σ

)
−4, 0 < x≤ µ ,

Φ
( x

σ

)
+Φ

(
x+6µ

σ

)
−1, x > µ .

(A.5)

Using (A.4) and (A.5) in (A.2), we can obtain the probability distribution function of the
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1-D distance for 16-QAM as

FD(x| j,k) =



0, x≤ 0,

2Φ
( x

σ

)
+ 3

2Φ

(
x+2µ

σ

)
+ 3

2Φ

(
x−2µ

σ

)
+Φ

(
x+4µ

σ

)
+Φ

(
x−4µ

σ

)
+ 1

2Φ

(
x+6µ

σ

)
+ 1

2Φ

(
x−6µ

σ

)
−4, 0 < x≤ µ ,

1
2(Φ

( x
σ

)
+Φ

(
x+2µ

σ

)
+Φ

(
x+4µ

σ

)
+Φ

(
x+6µ

σ

)
)−1, x > µ .

(A.6)
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Appendix B Identities

In this appendix, we prove two identities that are used to determine the mean and

variance of the 1-D distances for QPSK and 16-QAM in Appendices C and D, respectively.

1. For real numbers a, b, and c,

b∫
a

(z−cµ̂)ϕ(z; µ̂,σ)dz=
σ√
2π

(
e
−(a−µ̂)2

2σ2 −e
−(b−µ̂)2

2σ2

)
−(c−1)µ̂

{
Φ

(
b−µ̂

σ

)
−Φ

(
a−µ̂

σ

)}
.

(B.1)

Proof. As ϕ(z; µ̂,σ)=(1/σ
√

2π)exp{−(z− µ̂)2/2σ2}, we have

b∫
a

(z− cµ̂)ϕ(z; µ̂,σ)dz =

b∫
a

(z− µ̂)
1

σ
√

2π
e−

(z−µ̂)2

2σ2 dz− (c−1)µ̂

b∫
a

1
σ
√

2π
e−

(z−µ̂)2

2σ2 dz.

Using change of variable x = (z−µ̂)2

2σ2 , we have

b∫
a

(z− cµ̂)ϕ(z; µ̂,σ)dz =

(b−µ̂)2

2σ2∫
(a−µ̂)2

2σ2

σ√
2π

e−xdx− (c−1)µ̂
{

Φ

(
b− µ̂

σ

)
−Φ

(
a− µ̂

σ

)}

=
σ√
2π

(
e
−(a−µ̂)2

2σ2 −e
−(b−µ̂)2

2σ2

)
−(c−1)µ̂

{
Φ

(
b−µ̂

σ

)
−Φ

(
a−µ̂

σ

)}
.

The values of a and b that are of interest while evaluating the mean of the 1-D distance are

−∞, +∞, and multiples of µ .

2. For real numbers p and q,

q∫
p

(z− cµ̂)2
ϕ(z; µ̂,σ)dz=

q∫
p

(z−µ̂)2
ϕ(z; µ̂,σ)dz+(c−1)2

µ̂
2
{

Φ

(
q−µ̂

σ

)
−Φ

(
p−µ̂

σ

)}

+(2c−2)µ̂
σ√
2π

e−
(q−µ̂)2

2σ2 +(2−2c)µ̂
σ√
2π

e−
(p−µ̂)2

2σ2 . (B.2)
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Proof.

q∫
p

(z− cµ̂)2
ϕ(z; µ̂,σ)dz =

q∫
p

(z− µ̂)2
ϕ(z; µ̂,σ)dz+(c2−1)µ̂2

q∫
p

ϕ(z; µ̂,σ)dz

−2(c−1)µ̂

q∫
p

zϕ(z; µ̂,σ)dz

Using (B.1), we have

q∫
p

(z− cµ̂)2
ϕ(z; µ̂,σ)dz=

q∫
p

(z−µ̂)2
ϕ(z; µ̂,σ)dz+(c2−1)µ̂2

{
Φ

(
q−µ̂

σ

)
−Φ

(
p−µ̂

σ

)}

−2(c−1)µ̂
(

σ√
2π

(
e−

(p−µ̂)2

2σ2 − e−
(q−µ̂)2

2σ2

)
+µ̂

{
Φ

(
q− µ̂

σ

)
−Φ

(
p− µ̂

σ

)})

=

q∫
p

(z−µ̂)2
ϕ(z; µ̂,σ)dz+(c−1)2

µ̂
2
{

Φ

(
q−µ̂

σ

)
−Φ

(
p−µ̂

σ

)}

+(2c−2)µ̂
σ√
2π

e−
(q−µ̂)2

2σ2 +(2−2c)µ̂
σ√
2π

e−
(p−µ̂)2

2σ2 .

The unevaluated integral in the final expression is equal to σ2 when p=−∞ and q=∞, and

it is useful when deriving the expressions for the variance of the 1-D distance.
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Appendix C QPSK: 1-D Distance Mean and Variance

In this appendix, we determine the mean and variance of the 1-D distance for QPSK

when the channel is in state ( j,k). We assume that the data variable U can take the value+1

or−1 with equal probability. When U =±1, the correlator output Z is Gaussian with mean

±µ and variance σ2. The 1-D distance D can be expressed as a function of the correlator

output Z as D=g(Z), where g(z)=min{|z−µ|, |z+µ|}.

C.1 Mean

The mean of the 1-D distance for QPSK when the channel is in state ( j,k) is given

by

E[D| j,k] = 1
2

(∫
∞

−∞

g(z) fZ(z| j,k,+1)+
∫

∞

−∞

g(z) fZ(z| j,k,−1)
)
, (C.1)

where fZ(z| j,k,±1) is the conditional density function of Z when the channel is in state

( j,k) and U =±1. Note that fZ(z| j,k,−1)= fZ(−z| j,k,+1) and the function g is even-

symmetric. Using these two properties, we can show that the conditional mean of the 1-D

distance does not depend on the data variable U . Hence, without loss of generality, we

assume that U =+1. Then, we have

E[D| j,k] =
∫

∞

−∞

g(z) fZ(z| j,k,+1). (C.2)

Let

E[D| j,k] =
4∑

i=1

Ii, (C.3)

where I1=
∫ −µ

−∞
(−z−µ)ϕ(z; µ,σ)dz, I2=

∫ 0
−µ

(z+µ)ϕ(z; µ,σ)dz, I3=
∫

µ

0 (−z+µ)ϕ(z; µ,σ)dz,

and I4 =
∫

∞

µ
(z−µ)ϕ(z; µ,σ)dz.
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Identity (B.1) can be used to evaluate the integrals I1 through I4,

I1 =
σ√
2π

e
−2µ2

σ2 −2µΦ

(
−2µ

σ

)
,

I2 =
σ√
2π

(
e
−2µ2

σ2 − e
−µ2

2σ2

)
+2µ

{
Φ

(
−µ

σ

)
−Φ

(
−2µ

σ

)}
,

I3 =
σ√
2π

(1− e
−µ2

2σ2 ),

and

I4 =
σ√
2π

.

This gives

E[D| j,k] = σ

√
2
π

(
1− e

−µ2

2σ2 + e
−2µ2

σ2

)
+2µ

{
Φ

(
−µ

σ

)
−2Φ

(
−2µ

σ

)}
. (C.4)

C.2 Variance

Without loss of generality, we assume that U =+1. The second moment of the 1-D

distance D when the channel is in state ( j,k) is given by

E[D2| j,k] =
∫

∞

−∞

(g(z))2 fZ(z| j,k,+1)dz

=

∫ 0

−∞

(z+µ)2
ϕ(z; µ,σ)dz+

∫
∞

0
(z−µ)2

ϕ(z; µ,σ)dz.
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Using (B.2), we have

E[D2| j,k] =
∫ 0

−∞

(z−µ)2
ϕ(z; µ,σ)dz+4µ

2
Φ

(
−µ

σ

)
−4µσ

√
1

2π
e
−µ2

2σ2 +

∫
∞

0
(z−µ)2

ϕ(z; µ,σ)dz

=σ
2 +4µ

2
Φ

(
−µ

σ

)
−2µσ

√
2
π

e
−µ2

2σ2 . (C.5)

The variance of the 1-D distance when the channel is in state ( j,k) can be determined by

using (C.4) and (C.5),

Var(D| j,k) = E[D2| j,k]− (E[D| j,k])2

= σ
2 +4µ

2
Φ

(
−µ

σ

)
−2µσ

√
2
π

e
−µ2

2σ2 − (E[D| j,k])2. (C.6)
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Appendix D 16-QAM: 1-D Distance Mean and Variance

In this appendix, we determine the mean and variance of the 1-D distance for 16-

QAM when the channel is in state ( j,k). We assume that the data variable U takes values

uniformly at random from the set {bκ : κ = 0, . . . ,3}, where bκ = 3− 2κ . When U =bκ ,

the correlator output Z is Gaussian with mean bκ µ and variance σ2. The 1-D distance D

can be expressed as a function of the correlator output Z as D=g(Z), where

g(z)=min{|z−3µ, ||z−µ|, |z+µ|, |z+3µ|}.

D.1 Mean

The mean of the 1-D distance for 16-QAM when the channel is in state ( j,k) is

given by

E[D| j,k] =1
4

3∑
κ=0

E[D| j,k,bκ ]

=
1
4

3∑
κ=0

∫
∞

−∞

g(z) fZ(z| j,k,bκ)dz, (D.1)

where the third variable in the conditioning refers to U =bκ . Note that the function g is

even-symmetric and fZ(z| j,k,bκ)= fZ(−z| j,k,b3−κ) for κ =2,3. We can show that

E[D| j,k,b2]=E[D| j,k,b1]

and

E[D| j,k,b3]=E[D| j,k,b0].
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Hence, we have

E[D| j,k] = 1
2
(E[D| j,k,b1]+E[D| j,k,b0]) . (D.2)

Let

E[D| j,k,bκ ] =

4∑
h=1

I(κ)h , (D.3)

where κ ∈ {0,1}, I(κ)1 =
∫ −2µ

−∞
|z+ 3µ|ϕ(z;bκ µ,σ)dz, I(κ)2 =

∫ 0
−2µ
|z+ µ|ϕ(z;bκ µ,σ)dz,

I(κ)3 =
∫ 2µ

0 |z−µ|ϕ(z;bκ µ,σ)dz, and I(κ)4 =
∫

∞

2µ
|z−3µ|ϕ(z;bκ µ,σ)dz. When κ=1, using

(B.1) to evaluate the integrals, we obtain

I(1)1 =−
∫ −3µ

−∞

(z+3µ)ϕ(z; µ,σ)dz+
∫ −2µ

−3µ

(z+3µ)ϕ(z; µ,σ)dz

=− σ√
2π

(
e−∞− e−

(−3µ−µ)2

2σ2

)
−4µΦ

(
−3µ−µ

σ

)
+

σ√
2π

(
e−

(−3µ−µ)2

2σ2 − e−
(−2µ−µ)2

2σ2

)
+4µ

{
Φ

(
−2µ−µ

σ

)
−Φ

(
−3µ−µ

σ

)}
=

σ√
2π

e
−8µ2

σ2 −4µΦ

(
−4µ

σ

)
+

σ√
2π

(e
−8µ2

σ2 − e
−9µ2

2σ2 )+4µ

{
Φ

(
−3µ

σ

)
−Φ

(
−4µ

σ

)}
,

(D.4)

I(1)2 =−
∫ −µ

−2µ

(z+µ)ϕ(z; µ,σ)dz+
∫ 0

−µ

(z+µ)ϕ(z; µ,σ)dz

=
σ√
2π

(
e
−2µ2

σ2 − e
−9µ2

2σ2

)
−2µ

{
Φ

(
−2µ

σ

)
−Φ

(
−3µ

σ

)}
+

σ√
2π

(
e
−2µ2

σ2 − e
−µ2

2σ2

)
+2µ

{
Φ

(
−µ

σ

)
−Φ

(
−2µ

σ

)}
, (D.5)
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and

I(1)4 =−
∫ 3µ
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This gives

E[D| j,k,b1] =
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Similarly, when κ =0, we have
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(D.9)

I(0)2 =−
∫ −µ

−2µ

(z+µ)ϕ(z;3µ,σ)dz+
∫ 0

−µ

(z+µ)ϕ(z;3µ,σ)dz

=
σ√
2π

(
e
−8µ2

σ2 − e
−25µ2

2σ2

)
−4µ

{
Φ

(
−4µ

σ

)
−Φ

(
−5µ

σ

)}
+

σ√
2π

(
e
−8µ2

σ2 − e
−9µ2

2σ2

)
+4µ

{
Φ

(
−3µ

σ

)
−Φ

(
−4µ

σ

)}
, (D.10)

I(0)3 =−
∫

µ

0
(z−µ)ϕ(z;3µ,σ)dz+

∫ 2µ

µ

(z−µ)ϕ(z;3µ,σ)dz

=− σ√
2π

(
e
−2µ2

σ2 − e
−9µ2

2σ2

)
−2µ

{
Φ

(
−2µ

σ

)
−Φ

(
−3µ

σ

)}
+

σ√
2π

(
e
−2µ2

σ2 − e
−µ2

σ2

)
+2µ

{
Φ

(
−µ

σ

)
−Φ

(
−2µ

σ

)}
, (D.11)

and

I(0)4 =−
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which gives

E[D| j,k,b0] =
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Using (D.8) and (D.13) to evaluate (D.2) gives
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which can be written compactly as

E[D| j,k]= σ√
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(D.15)

D.2 Variance

Without loss of generality, we can assume that U = b0 or U = b1. The second

moment of the 1-D distance D for 16-QAM when the channel is in state ( j,k) is given

by

E[D2| j,k] = 1
2
(
E[D2| j,k,b0]+E[D2| j,k,b1]

)
. (D.16)

Let

E[D2| j,k,bκ ] =

4∑
h=1

J(κ)h , (D.17)
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where κ ∈{0,1}, J(κ)1 =
∫ −2µ

−∞
(z+3µ)2ϕ(z;bκ µ,σ)dz, J(κ)2 =

∫ 0
−2µ
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∫
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using (B.2) to evaluate the integrals, we obtain
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J(1)3 =
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0
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and
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This gives
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Similarly, when κ =0, we have

J(0)1 =
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and

J(0)4 =

∫
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ϕ(z;3µ,σ)dz, (D.26)

which gives
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Using (D.22) and (D.27) in (D.16) gives the second moment when the channel state is

( j,k),

E[D2| j,k] =σ
2− µσ

2
√

2π
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. (D.28)
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Using (D.15) and (D.28) to evaluate the variance when the channel is in state ( j,k) gives

Var(D| j,k) = E[D2| j,k]− (E[D| j,k])2

= σ
2− µσ

2
√

2π
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(
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σ

)
+5Φ

(
−5µ

σ
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− (E[D| j,k])2. (D.29)
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Appendix E BOK: Symbol Ratio Mean and Variance

The analytical expression for the mean of symbol ratio in (3.12) can be expressed in

terms of repeated one-dimensional integrals. When ζ1 is sent as the symbol, the conditional

mean of the symbol ratio is

E[R| j,k,ζ1] =

K∑
i=2

Ai +

K∑
i=2

Bi +

K∑
i=2

K∑
l=2
l 6=i

Ci,l, (E.1)

where

Ai =

∞∫
−∞

|z1|∫
−|z1|

|zi|
|z1|

P
(
m1(z)=z1,m2(z)=zi

∣∣ j,k,ζ1)φ(z1;AT/2,N0T/4
)

φ(zi;0,N0T/4)dzidz1,

(E.2)

Bi =

∞∫
−∞

|zi|∫
−|zi|

|z1|
|zi|

P
(
m1(z)=zi,m2(z)=z1

∣∣ j,k,ζ1
)

φ(zi;0,N0T/4)φ(z1;AT/2,N0T/4)dz1dzi,

(E.3)

and

Ci,l =

∞∫
−∞

|zi|∫
−|zi|

|zl|
|zi|

P
(
m1(z)=zi,m2(z)=zl

∣∣ j,k,ζ1
)

φ(zi;0,N0T/4)φ(zl;0,N0T/4)dzldzi.

(E.4)
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The analytical expression for Ai, 2< i<K can be expressed as

Ai =

∞∫
−∞

1
|z1|

φ(z1;AT/2,N0T/4)

|z1|∫
−|z1|
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 |zi|∫
−|zi|

1√
2πσ2

e−
z2

2σ2 dz


K−2

dzidz1.

(E.5)

With change of variables x=(z1−AT/2)/N0T/4 and y=zi/N0T/4, we obtain

Ai =

∞∫
−∞

1∣∣∣x+√2Es
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dydx (E.6)

=

∞∫
−∞

1∣∣∣x+√2Es
N0

∣∣∣φ(x;0,1)
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N0
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−
∣∣∣x+√ 2Es

N0
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|y| φ(y;0,1) [2Φ(|y|)−1]K−2 dydx, (E.7)

where Es = A2T/2. Similarly, we have
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(E.8)

and
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Note that Ai, Bi, and Ci,l do not depend on the subscripts. Also, the mean of the symbol

ratio does not depend on the symbol that was sent. Hence, we have

E[R| j,k] = (K−1)A2 +(K−1)B2 +(K−1)(K−2)C2,3. (E.10)

Similarly, the second moment of the symbol ratio is given by

E[R2| j,k] = (K−1)A′2 +(K−1)B′2 +(K−1)(K−2)C′2,3, (E.11)

where
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and
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The variance of the symbol ratio is computed from (E.10) and (E.11) as

Var(R| j,k) = E[R2| j,k]− (E[R| j,k])2 (E.15)
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Appendix F Plots

The remaining plots that support the approximation (4.18) of Section 4.1.2 are given

here.
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(d) n = 7

Figure F.1: The conditional probability Q(n| j,k,Mv) for (a) n = 10, (b) n = 9, (c) n = 8,
and (d) n = 7.
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(a) n = 6
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(c) n = 4

0

0.2

0.4

0.6

0.8

1

-10 -5 0 5 10 15

64-BOK

16-BOK

QPSK

16-QAM

C
o
n
d
it

io
n
al

 P
ro

b
. 
o
f 

C
h
o
o
si

n
g
 n

CENR (dB) of the Channel State

(d) n = 3

Figure F.2: The conditional probability Q(n| j,k,Mv) for (a) n = 6, (b) n = 5, (c) n = 4, and
(d) n = 3.
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Figure F.3: The conditional probability Q(n| j,k,Mv) for (a) n = 2 and (b) n = 1.
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