24 research outputs found

    Modeling and Analysis of Noise and Interconnects for On-Chip Communication Link Design

    Get PDF
    This thesis considers modeling and analysis of noise and interconnects in onchip communication. Besides transistor count and speed, the capabilities of a modern design are often limited by on-chip communication links. These links typically consist of multiple interconnects that run parallel to each other for long distances between functional or memory blocks. Due to the scaling of technology, the interconnects have considerable electrical parasitics that affect their performance, power dissipation and signal integrity. Furthermore, because of electromagnetic coupling, the interconnects in the link need to be considered as an interacting group instead of as isolated signal paths. There is a need for accurate and computationally effective models in the early stages of the chip design process to assess or optimize issues affecting these interconnects. For this purpose, a set of analytical models is developed for on-chip data links in this thesis. First, a model is proposed for modeling crosstalk and intersymbol interference. The model takes into account the effects of inductance, initial states and bit sequences. Intersymbol interference is shown to affect crosstalk voltage and propagation delay depending on bus throughput and the amount of inductance. Next, a model is proposed for the switching current of a coupled bus. The model is combined with an existing model to evaluate power supply noise. The model is then applied to reduce both functional crosstalk and power supply noise caused by a bus as a trade-off with time. The proposed reduction method is shown to be effective in reducing long-range crosstalk noise. The effects of process variation on encoded signaling are then modeled. In encoded signaling, the input signals to a bus are encoded using additional signaling circuitry. The proposed model includes variation in both the signaling circuitry and in the wires to calculate the total delay variation of a bus. The model is applied to study level-encoded dual-rail and 1-of-4 signaling. In addition to regular voltage-mode and encoded voltage-mode signaling, current-mode signaling is a promising technique for global communication. A model for energy dissipation in RLC current-mode signaling is proposed in the thesis. The energy is derived separately for the driver, wire and receiver termination.Siirretty Doriast

    Design and modelling of variability tolerant on-chip communication structures for future high performance system on chip designs

    Get PDF
    The incessant technology scaling has enabled the integration of functionally complex System-on-Chip (SoC) designs with a large number of heterogeneous systems on a single chip. The processing elements on these chips are integrated through on-chip communication structures which provide the infrastructure necessary for the exchange of data and control signals, while meeting the strenuous physical and design constraints. The use of vast amounts of on chip communications will be central to future designs where variability is an inherent characteristic. For this reason, in this thesis we investigate the performance and variability tolerance of typical on-chip communication structures. Understanding of the relationship between variability and communication is paramount for the designers; i.e. to devise new methods and techniques for designing performance and power efficient communication circuits in the forefront of challenges presented by deep sub-micron (DSM) technologies. The initial part of this work investigates the impact of device variability due to Random Dopant Fluctuations (RDF) on the timing characteristics of basic communication elements. The characterization data so obtained can be used to estimate the performance and failure probability of simple links through the methodology proposed in this work. For the Statistical Static Timing Analysis (SSTA) of larger circuits, a method for accurate estimation of the probability density functions of different circuit parameters is proposed. Moreover, its significance on pipelined circuits is highlighted. Power and area are one of the most important design metrics for any integrated circuit (IC) design. This thesis emphasises the consideration of communication reliability while optimizing for power and area. A methodology has been proposed for the simultaneous optimization of performance, area, power and delay variability for a repeater inserted interconnect. Similarly for multi-bit parallel links, bandwidth driven optimizations have also been performed. Power and area efficient semi-serial links, less vulnerable to delay variations than the corresponding fully parallel links are introduced. Furthermore, due to technology scaling, the coupling noise between the link lines has become an important issue. With ever decreasing supply voltages, and the corresponding reduction in noise margins, severe challenges are introduced for performing timing verification in the presence of variability. For this reason an accurate model for crosstalk noise in an interconnection as a function of time and skew is introduced in this work. This model can be used for the identification of skew condition that gives maximum delay noise, and also for efficient design verification

    Advances in Superconducting Circuit Quantum Electrodynamics

    Get PDF
    The topics of this thesis are based on circuit quantum electrodynamics (cQED), a theoretical and experimental platform allowing the study of light--matter interaction. This platform is rich both in observable physical phenomena and future practical applications. A "circuit" in cQED may comprise various elements, with the two main types being electromagnetic quantum harmonic oscillators, or resonators, and superconducting Josephson quantum bits, qubits. Because of the relative ease to fabricate and control quantum circuits—especially when compared to the more traditional cavity quantum electrodynamics—cQED has quickly grown in popularity in research labs across the world and is regarded as one of the major contenders for quantum computing. The advances referred to in the title of this thesis address three significant challenges to practical applications of cQED; they are relevant not only to quantum computing, but also to other applications, such as simulations of physical systems. The first advance is related to control scalability. Practical applications require large circuits, and the current approaches used to send control signals to those circuits will not scale indefinitely. A solution to this challenge, the quantum socket, is presented and evaluated in depth. The second advance concerns calibration. Any application of cQED requires knowing the precise parameters defining the interactions between the various components of a circuit. Two cutting edge methods for the calibration of interaction parameters are explained and benchmarked; they show a remarkable improvement over existing, inefficient, methods. The third advance involves the physics of dielectric defects in the samples on which circuits are fabricated. These unwanted defects are modeled as two-level systems (TLS) that interact with circuit elements such as qubits. Experimental measurements and novel simulations conclusively demonstrate that interactions between TLS are responsible for the stochastic relaxation-time fluctuations observed in superconducting qubits

    Cutting Edge Nanotechnology

    Get PDF
    The main purpose of this book is to describe important issues in various types of devices ranging from conventional transistors (opening chapters of the book) to molecular electronic devices whose fabrication and operation is discussed in the last few chapters of the book. As such, this book can serve as a guide for identifications of important areas of research in micro, nano and molecular electronics. We deeply acknowledge valuable contributions that each of the authors made in writing these excellent chapters

    Photodetectors

    Get PDF
    In this book some recent advances in development of photodetectors and photodetection systems for specific applications are included. In the first section of the book nine different types of photodetectors and their characteristics are presented. Next, some theoretical aspects and simulations are discussed. The last eight chapters are devoted to the development of photodetection systems for imaging, particle size analysis, transfers of time, measurement of vibrations, magnetic field, polarization of light, and particle energy. The book is addressed to students, engineers, and researchers working in the field of photonics and advanced technologies

    Microelectromechanical Systems and Devices

    Get PDF
    The advances of microelectromechanical systems (MEMS) and devices have been instrumental in the demonstration of new devices and applications, and even in the creation of new fields of research and development: bioMEMS, actuators, microfluidic devices, RF and optical MEMS. Experience indicates a need for MEMS book covering these materials as well as the most important process steps in bulk micro-machining and modeling. We are very pleased to present this book that contains 18 chapters, written by the experts in the field of MEMS. These chapters are groups into four broad sections of BioMEMS Devices, MEMS characterization and micromachining, RF and Optical MEMS, and MEMS based Actuators. The book starts with the emerging field of bioMEMS, including MEMS coil for retinal prostheses, DNA extraction by micro/bio-fluidics devices and acoustic biosensors. MEMS characterization, micromachining, macromodels, RF and Optical MEMS switches are discussed in next sections. The book concludes with the emphasis on MEMS based actuators

    Design, manufacturing and characterisation of a wireless flexible pressure sensor system for the monitoring of the gastro-intestinal tract

    Get PDF
    Ingestible motility capsule (IMC) endoscopy holds a strong potential in providing advanced diagnostic capabilities within the small intestine with higher patient tolerance for pathologies such as irritable bowel syndrome, gastroparesis and chronic abdominal amongst others. Currently state-of-the art IMCs are limited by the use of obstructive off-the-shelf sensing modules that are unable to provide multi-site tactile monitoring of the Gastro-Intestinal tract. In this work a novel 12 mm in diameter by 30 mm in length IMC is presented that utilises custom-built flexible, thin-film, biocompatible, wireless and highly sensitive tactile pressure sensors arrays functionalising the capsule shell. The 150 μm thick, microstructured, PDMS flexible passive pressure sensors are wirelessly powered and interrogated, and are capable of detecting pressure values ranging from 0.1 kPa up to 30 kPa with a 0.1 kPa resolution. A novel bottom-up wafer-scale microfabrication process is presented which enables the development of these ultra-dense, self-aligned, scalable and uniquely addressable flexible wireless sensors with high yield (>80%). This thesis also presents an innovative metallisation microfabrication process on soft-elastomeric substrates capable to withstand without failure of the tracks 180o bending, folding and iterative deformation such as to allow conformable mapping of these sensors. A custom-built and low-cost reflectometer system was also designed, built and tested within the capsule that can provide a fast (100 ms) and accurate extraction (±0.1 kPa) of their response. In vitro and in vivo characterisation of the developed IMC device is also presented, facilitated respectively via the use of a biomimetic phantom gut and via live porcine subjects. The capsule device was found to successfully capture respiration, low-amplitude and peristaltic motility of the GI tract from multiple sites of the capsule.UK Engineering & Physical Sciences Research Council (EPSRC) through the Programme Grant Sonopill (EP/K034537/2)James Watt Scholarshi

    Biomedical Engineering

    Get PDF
    Biomedical engineering is currently relatively wide scientific area which has been constantly bringing innovations with an objective to support and improve all areas of medicine such as therapy, diagnostics and rehabilitation. It holds a strong position also in natural and biological sciences. In the terms of application, biomedical engineering is present at almost all technical universities where some of them are targeted for the research and development in this area. The presented book brings chosen outputs and results of research and development tasks, often supported by important world or European framework programs or grant agencies. The knowledge and findings from the area of biomaterials, bioelectronics, bioinformatics, biomedical devices and tools or computer support in the processes of diagnostics and therapy are defined in a way that they bring both basic information to a reader and also specific outputs with a possible further use in research and development
    corecore